Singularity categories, Leavitt path algebras and shift spaces

Xiao-Wu Chen, USTC

SFB Workshop, 2012/Bielefeld

(ロ) (同) (注) (注)

- 2 The singularity category
- 3 The Leavitt path algebra
- 4 The shift space
- 5 Their connections

・ロト ・日本 ・モート ・モート

Notation: quivers and algebras

The singularity category The Leavitt path algebra The shift space Their connections

• $Q = (Q_0, Q_1; s, t \colon Q_1 \to Q_0)$ a finite *quiver* (= oriented graph)

イロン スポン イヨン イヨン

Notation: quivers and algebras The singularity category

The Leavitt path algebra The shift space Their connections

- $Q = (Q_0, Q_1; s, t \colon Q_1 \to Q_0)$ a finite *quiver* (= oriented graph)
- Q_0 = the set of vertices, Q_1 = the set of arrows

・ロン ・回と ・ヨン・

Notation: quivers and algebras The singularity category

The Leavitt path algebra The shift space Their connections

Quivers

- $Q = (Q_0, Q_1; s, t \colon Q_1 \to Q_0)$ a finite *quiver* (= oriented graph)
- Q_0 = the set of vertices, Q_1 = the set of arrows
- for an arrow α , $s(\alpha) \xrightarrow{\alpha} t(\alpha)$

・ロン ・回と ・ヨン ・ヨン

Notation: quivers and algebras The singularity category The Leavitt path algebra

e Leavitt path algebra The shift space Their connections

Quivers

- $Q = (Q_0, Q_1; s, t \colon Q_1 \to Q_0)$ a finite *quiver* (= oriented graph)
- Q_0 = the set of vertices, Q_1 = the set of arrows
- for an arrow α , $s(\alpha) \stackrel{\alpha}{\longrightarrow} t(\alpha)$
- We assume for simplicity that for each vertex in Q, there exist at least one arrow starting at it, and one arrow ending at it.

Examples

Example

Let Q be the following *rose quiver* with two panels

イロン イヨン イヨン イヨン

Examples

Example

Let Q be the following *rose quiver* with two panels

$$\alpha \bigcirc \cdot_1 \bigcirc \beta$$

Then $Q_0 = \{1\}, Q_1 = \{\alpha, \beta\}.$

イロン イヨン イヨン イヨン

Examples

Example

Let Q be the following rose quiver with two panels

$$\alpha \bigcirc \cdot_1 \bigcirc \beta$$

Then
$$Q_0 = \{1\}, Q_1 = \{\alpha, \beta\}.$$

Example

Let Q' be the following quiver

$$\alpha \bigcap 1 \cdot \frac{\gamma}{\overbrace{\delta}} 2 \cdot \bigcap \beta$$

Examples

Example

Let Q be the following *rose quiver* with two panels

$$\alpha \bigcirc \cdot_1 \bigcirc \beta$$

Then
$$Q_0 = \{1\}, Q_1 = \{\alpha, \beta\}.$$

Example

Let Q' be the following quiver

$$\alpha \bigcap 1 \cdot \frac{\gamma}{\overbrace{\delta}} 2 \cdot \bigcap \beta$$

Then $Q_0' = \{1,2\}$, $Q_1' = \{\alpha, \beta, \gamma, \delta\}$, $s(\gamma) = 1$ for example.

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdot \cdot \cdot \xrightarrow{\alpha_n} \cdot$$

・ロン ・回 とくほど ・ ほとう

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdot \cdot \cdot \xrightarrow{\alpha_n} \cdot$$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

・ロト ・回ト ・ヨト ・ヨト

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdots \xrightarrow{\alpha_n} \cdot$$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

 paths of length one = arrows; paths of length zero = vertices (for *i* ∈ Q₀, we associate a trivial path *e_i*.)

소리가 소문가 소문가 소문가

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

 $\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdots \cdot \xrightarrow{\alpha_n} \cdot$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

- paths of length one = arrows; paths of length zero = vertices (for *i* ∈ Q₀, we associate a trivial path *e_i*.)
- The *path algebra kQ* over a field *k* is an associative algebra defined as follows: it has a *k*-basis given by all paths in *Q*, the multiplication is given by concatenation of paths.

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

 $\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdots \cdot \xrightarrow{\alpha_n} \cdot$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

- paths of length one = arrows; paths of length zero = vertices (for *i* ∈ Q₀, we associate a trivial path *e_i*.)
- The path algebra kQ over a field k is an associative algebra defined as follows: it has a k-basis given by all paths in Q, the multiplication is given by concatenation of paths. More precisely, for two paths p and q in Q, p · q = pq if s(p) = t(q), otherwise, p · q = 0.

(ロ) (同) (E) (E) (E)

Path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdots \xrightarrow{\alpha_n} \cdot$$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

- paths of length one = arrows; paths of length zero = vertices (for *i* ∈ Q₀, we associate a trivial path *e_i*.)
- The path algebra kQ over a field k is an associative algebra defined as follows: it has a k-basis given by all paths in Q, the multiplication is given by concatenation of paths. More precisely, for two paths p and q in Q, p ⋅ q = pq if s(p) = t(q), otherwise, p ⋅ q = 0. For example, e_ie_j = δ_{i,j}e_i, e_ip = δ_{i,t}(p)p, pe_i = δ_s(p),ip.

Path algebras, continued

• Q_n = the set of paths in Q of length n.

イロン イヨン イヨン イヨン

Path algebras, continued

• Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.

Path algebras, continued

- Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.

Path algebras, continued

- Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.
- Set $J^2 = \bigoplus_{n \ge 2} kQ_2$; it is a two-sided ideal of kQ.

Path algebras, continued

- Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.
- Set $J^2 = \bigoplus_{n \ge 2} kQ_2$; it is a two-sided ideal of kQ.
- We set $A_Q = kQ/J^2$ to be the quotient algebra, which is finite dimensional.

・ロン ・四マ ・ヨマ ・ヨマ

Path algebras, continued

- Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.
- Set $J^2 = \bigoplus_{n \ge 2} kQ_2$; it is a two-sided ideal of kQ.
- We set $A_Q = kQ/J^2$ to be the quotient algebra, which is finite dimensional.
- Indeed, A_Q has a basis {e_i | i ∈ Q₀} ∪ {α | α ∈ Q₁}, the multiplication rule is given by

Path algebras, continued

- Q_n = the set of paths in Q of length n. Then $kQ = \bigoplus_{n>0} kQ_n$ with $kQ_n \cdot kQ_m = kQ_{n+m}$.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.
- Set $J^2 = \bigoplus_{n \ge 2} kQ_2$; it is a two-sided ideal of kQ.
- We set $A_Q = kQ/J^2$ to be the quotient algebra, which is finite dimensional.
- Indeed, A_Q has a basis {e_i | i ∈ Q₀} ∪ {α | α ∈ Q₁}, the multiplication rule is given by
 e_ie_j = δ_{i,j}e_i, e_iα = δ_{i,t(α)}α, βe_j = δ_{s(β),j}β, αβ = 0.

Notation: quivers and algebras

The singularity category The Leavitt path algebra The shift space Their connections

Example

Let Q be the rose quiver with two panels. Then $kQ \simeq k \langle \alpha, \beta \rangle$ the free algebra with two variables, and A_Q is a three dimensional algebra with basis $\{1 = e_1, \alpha, \beta\}$.

イロン イヨン イヨン イヨン

Notation: quivers and algebras

The singularity category The Leavitt path algebra The shift space Their connections

Examples

Example

Let Q be the rose quiver with two panels. Then $kQ \simeq k \langle \alpha, \beta \rangle$ the free algebra with two variables, and A_Q is a three dimensional algebra with basis $\{1 = e_1, \alpha, \beta\}$.

Example

Let Q' be the quiver as above. Then $A_{Q'}$ is a six dimensional algebra with basis $\{e_1, e_2, \alpha, \beta, \gamma, \delta\}$, such that $1 = e_1 + e_2$ is the unit.

ヘロン 人間 とくほど くほとう

The A_Q -modules

a (finite dimensional) left A_Q-module V = a family {V_i}_{i∈Q0} of (finite dimensional) vector spaces indexed by Q₀ together with a family {V_α: V_{s(α)} → V_{t(α)}}_{α∈Q1} of linear maps indexed by Q₁ such that V_α ∘ V_β = 0.

イロン イヨン イヨン イヨン

The A_Q -modules

- a (finite dimensional) left A_Q-module V = a family {V_i}_{i∈Q0} of (finite dimensional) vector spaces indexed by Q₀ together with a family {V_α: V_{s(α)} → V_{t(α)}}_{α∈Q1} of linear maps indexed by Q₁ such that V_α ∘ V_β = 0.
- a homomorphism f: V → V' = a family {f_i: V_i → V'_i}_{i∈Q0} of linear maps such that V'_α ∘ f_{s(α)} = f_{t(α)} ∘ V_α; composition of homomorphisms are componentwise.

The A_Q -modules

- a (finite dimensional) left A_Q-module V = a family {V_i}_{i∈Q0} of (finite dimensional) vector spaces indexed by Q₀ together with a family {V_α: V_{s(α)} → V_{t(α)}}_{α∈Q1} of linear maps indexed by Q₁ such that V_α ∘ V_β = 0.
- a homomorphism $f: V \to V' =$ a family $\{f_i: V_i \to V'_i\}_{i \in Q_0}$ of linear maps such that $V'_{\alpha} \circ f_{s(\alpha)} = f_{t(\alpha)} \circ V_{\alpha}$; composition of homomorphisms are componentwise.
- This gives rise to the A_Q -module category, denoted by A_Q -mod.

소리가 소문가 소문가 소문가

Examples

Example

A module of A_Q for the rose quiver Q takes the form

$$V_{lpha} igcarrow V_1 igcarrow V_{eta}$$

 V_1 a vector space, linear maps V_{lpha} and V_{eta} with zero relations.

イロン イヨン イヨン イヨン

Examples

Example

A module of A_Q for the rose quiver Q takes the form

$$V_{lpha} igcap V_1 igcap V_{eta}$$

 V_1 a vector space, linear maps V_{lpha} and V_{eta} with zero relations.

Example

A module of $A_{Q'}$ takes the form

$$V_{\alpha} \bigcap V_1 \xrightarrow[]{V_{\gamma}} V_2 \bigcap V_{\beta}$$

Examples

Example

A module of A_Q for the rose quiver Q takes the form

$$V_{lpha} igcap V_1 igcap V_{eta}$$

 V_1 a vector space, linear maps V_{lpha} and V_{eta} with zero relations.

Example

A module of $A_{Q'}$ takes the form

$$V_{\alpha} \bigcap V_1 \xrightarrow[]{V_{\gamma}} V_2 \bigcap V_{\beta}$$

Remarks: all indecomposable modules of A_Q and $A_{Q'}$ are known.

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces

Homological properties of A_Q

• The category A_Q-mod is an **abelian category**:

Homological properties of A_Q

The category A_Q-mod is an **abelian category**: short exact sequences 0 → V ^f→ U ^g→ W → 0 are given by short exact sequence of vector spaces.

Homological properties of A_Q

The category A_Q-mod is an **abelian category**: short exact sequences 0 → V → U → W → 0 are given by short exact sequence of vector spaces. More precisely, for each vertex *i*, the sequence V_i → U_i → W_i of vector spaces satisfies that f_i is injective, g_i is surjective and Kerg_i = Imf_i.

Homological properties of A_Q

- The category A_Q-mod is an **abelian category**: short exact sequences 0 → V ^f→ U ^g→ W → 0 are given by short exact sequence of vector spaces. More precisely, for each vertex *i*, the sequence V_i ^{f_i}→ U_i ^{g_i}→ W_i of vector spaces satisfies that f_i is injective, g_i is surjective and Kerg_i = Imf_i.
- homological properties of A_Q: the behavior of (long) exact sequences of A_Q-mod

Homological properties of A_Q

- The category A_Q-mod is an abelian category: short exact sequences 0 → V ^f→ U ^g→ W → 0 are given by short exact sequence of vector spaces. More precisely, for each vertex *i*, the sequence V_i ^{f_i}→ U_i ^{g_i}→ W_i of vector spaces satisfies that f_i is injective, g_i is surjective and Kerg_i = Imf_i.
- homological properties of A_Q: the behavior of (long) exact sequences of A_Q-mod
- gl.dim $A_Q = \infty$:

Homological properties of A_Q

- The category A_Q-mod is an abelian category: short exact sequences 0 → V ^f→ U ^g→ W → 0 are given by short exact sequence of vector spaces. More precisely, for each vertex *i*, the sequence V_i ^{f_i}→ U_i ^{g_i}→ W_i of vector spaces satisfies that f_i is injective, g_i is surjective and Kerg_i = Imf_i.
- homological properties of A_Q: the behavior of (long) exact sequences of A_Q-mod
- gl.dim A_Q = ∞: the homological properties of A_Q are rather complicated!

・ロト ・回ト ・ヨト ・ヨト

Homological properties of A_Q

- The category A_Q-mod is an **abelian category**: short exact sequences 0 → V ^f→ U ^g→ W → 0 are given by short exact sequence of vector spaces. More precisely, for each vertex *i*, the sequence V_i ^{f_i}→ U_i ^{g_i}→ W_i of vector spaces satisfies that f_i is injective, g_i is surjective and Kerg_i = Imf_i.
- homological properties of A_Q: the behavior of (long) exact sequences of A_Q-mod
- gl.dim A_Q = ∞: the homological properties of A_Q are rather complicated!

For example, for any $n \ge 1$, there are **nontrivial** exact sequence $0 \to V \to V_1 \to \cdots \to V_n \to W \to 0$ in A_Q -mod.

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

Complexes of modules

• A = a finite dimensional algebra (for example, our algebra A_Q).

イロン 不同と 不同と 不同と

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0.

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker} d^n / \text{Im} d^{n-1}$.

・ロン ・回と ・ヨン ・ヨン

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker} d^n / \text{Im} d^{n-1}$. Hence, X^{\bullet} is acyclic if and only if $H^n(X^{\bullet}) = 0$ for all *n*.

イロト イポト イヨト イヨト

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker}d^n/\text{Im}d^{n-1}$. Hence, X^{\bullet} is acyclic if and only if $H^n(X^{\bullet}) = 0$ for all *n*.

• The shifted complex $X^{\bullet}[1]$ is given by $(X^{\bullet}[1])^n = X^{n+1}$, $d_{X^{\bullet}[1]}^n = -d_X^{n+1}$; inductively, we have $X^{\bullet}[n]$.

・ロト ・回ト ・ヨト ・ヨト

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker}d^n/\text{Im}d^{n-1}$. Hence, X^{\bullet} is acyclic if and only if $H^n(X^{\bullet}) = 0$ for all *n*.

- The shifted complex $X^{\bullet}[1]$ is given by $(X^{\bullet}[1])^n = X^{n+1}$, $d_{X^{\bullet}[1]}^n = -d_X^{n+1}$; inductively, we have $X^{\bullet}[n]$.
- A cochain map f[•]: X[•] → Y[•] is given by {fⁿ: Xⁿ → Yⁿ}_{n∈ℤ} with commutativity condition.

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker}d^n/\text{Im}d^{n-1}$. Hence, X^{\bullet} is acyclic if and only if $H^n(X^{\bullet}) = 0$ for all *n*.

- The shifted complex $X^{\bullet}[1]$ is given by $(X^{\bullet}[1])^n = X^{n+1}$, $d_{X^{\bullet}[1]}^n = -d_X^{n+1}$; inductively, we have $X^{\bullet}[n]$.
- A cochain map f[•]: X[•] → Y[•] is given by {fⁿ: Xⁿ → Yⁿ}_{n∈ℤ} with commutativity condition. It induces Hⁿ(f[•]): Hⁿ(X[•]) → Hⁿ(Y[•]);

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

Complexes of modules

- A = a finite dimensional algebra (for example, our algebra A_Q).
- A bounded cochain complex X[•] of A-modules means

$$\cdots \to X^{n-1} \stackrel{d^{n-1}}{\to} X^n \stackrel{d^n}{\to} X^{n+1} \to \cdots$$

with $d^n \circ d^{n-1} = 0$, $X^n = 0$ for |n| >> 0. The *n*-th cohomology of X^{\bullet} is $H^n(X^{\bullet}) = \text{Ker}d^n/\text{Im}d^{n-1}$. Hence, X^{\bullet} is acyclic if and only if $H^n(X^{\bullet}) = 0$ for all *n*.

- The shifted complex $X^{\bullet}[1]$ is given by $(X^{\bullet}[1])^n = X^{n+1}$, $d_{X^{\bullet}[1]}^n = -d_X^{n+1}$; inductively, we have $X^{\bullet}[n]$.
- A cochain map f[•]: X[•] → Y[•] is given by {fⁿ: Xⁿ → Yⁿ}_{n∈Z} with commutativity condition. It induces Hⁿ(f[•]): Hⁿ(X[•]) → Hⁿ(Y[•]); f[•] is called a *quasi-isomorphism* if each Hⁿ(f[•]) is an isomorphism.

The derived category

• **C**^b(A-mod) = the category of bounded cochain complexes;

イロン イヨン イヨン イヨン

The derived category

C^b(A-mod) = the category of bounded cochain complexes; it is an abelian category, short exact sequences
 0 → X[•] → Y[•] → Z[•] → 0 of complexes.

・ロト ・日本 ・モート ・モート

The derived category

- C^b(A-mod) = the category of bounded cochain complexes; it is an abelian category, short exact sequences
 0 → X[•] → ^{f•} → Y[•] → Z[•] → 0 of complexes.
- The bounded derived category **D**^b(A-mod) of A:

イロト イポト イヨト イヨト

The derived category

- C^b(A-mod) = the category of bounded cochain complexes; it is an abelian category, short exact sequences
 0 → X[•] → ^{f•} → Y[•] → Z[•] → 0 of complexes.
- The bounded derived category D^b(A-mod) of A: its objects are the same as C^b(A-mod),

イロン イヨン イヨン イヨン

The derived category

- C^b(A-mod) = the category of bounded cochain complexes; it is an abelian category, short exact sequences
 0 → X[•] ^{f•}→ Y[•] ^{g•}→ Z[•] → 0 of complexes.
- The bounded derived category D^b(A-mod) of A: its objects are the same as C^b(A-mod), the morphisms are modified by adding for each quasi-isomorphism f[•] a formal inverse (f[•])⁻¹.

イロン 不同と 不同と 不同と

The derived category

- $C^{b}(A-mod)$ = the category of bounded cochain complexes; it is an abelian category, short exact sequences $0 \to X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} Z^{\bullet} \to 0$ of complexes.
- The bounded derived category $\mathbf{D}^{b}(A \text{mod})$ of A: its objects are the same as $\mathbf{C}^{b}(A$ -mod), the morphisms are modified by adding for each quasi-isomorphism f^{\bullet} a formal inverse $(f^{\bullet})^{-1}$.
- A-mod $\subset \mathbf{D}^{b}(A$ -mod):

・ロン ・回 とくほど ・ ほとう

The derived category

- C^b(A-mod) = the category of bounded cochain complexes; it is an abelian category, short exact sequences
 0 → X[•] → Y[•] → Z[•] → 0 of complexes.
- The bounded derived category D^b(A-mod) of A: its objects are the same as C^b(A-mod), the morphisms are modified by adding for each quasi-isomorphism f[•] a formal inverse (f[•])⁻¹.
- A-mod ⊆ D^b(A-mod): by identifying a module V with the stalk complex ··· → 0 → V → 0 → ··· with V at the zeroth position.

The derived category, continued

• The category **D**^b(A-mod) is **NOT** abelian,

The derived category, continued

The category D^b(A-mod) is NOT abelian, but a triangulated category in sense of Verdier:

・ロト ・日本 ・モート ・モート

The derived category, continued

The category D^b(A-mod) is NOT abelian,but a triangulated category in sense of Verdier: distinguished triangles X[•] → Y[•] → Z[•] --→ X[•][1],

イロン 不同と 不同と 不同と

The derived category, continued

The category D^b(A-mod) is NOT abelian, but a triangulated category in sense of Verdier: distinguished triangles X[•] → Y[•] → Z[•] --→ X[•][1], often induced by short exact sequences 0 → X[•] → Y[•] → Z[•] → 0 in C^b(A-mod).

The derived category, continued

- The category D^b(A-mod) is NOT abelian,but a triangulated category in sense of Verdier: distinguished triangles X[•] → Y[•] → Z[•] --→ X[•][1], often induced by short exact sequences 0 → X[•] → Y[•] → Z[•] → 0 in C^b(A-mod).
- The category D^b(A-mod) contains almost all information on homological properties of A-mod (or A):

The derived category, continued

- The category D^b(A-mod) is NOT abelian, but a triangulated category in sense of Verdier: distinguished triangles X[•] → Y[•] → Z[•] --→ X[•][1], often induced by short exact sequences 0 → X[•] → Y[•] → Z[•] → 0 in C^b(A-mod).
- The category D^b(A-mod) contains almost all information on homological properties of A-mod (or A): for example, a long exact sequence 0 → V → V₁ → ··· → V_n → W → 0 of modules corresponds to a morphism W → V[n] in D^b(A-mod), or equivalently, an element in Hom_{D^b(A-mod)}(W, V[n]).

・ロン ・回 と ・ ヨ と ・ ヨ と

The singularity category

• gl.dim $A = \infty \iff$

イロン イヨン イヨン イヨン

æ

The singularity category

 gl.dim A = ∞ ⇐⇒ there exists an A-module W such that for any n ≥ 0, Hom_{D^b(A-mod)}(W, V[n]) ≠ 0 for some module V.

The singularity category

- gl.dim A = ∞ ⇐⇒ there exists an A-module W such that for any n ≥ 0, Hom_{D^b(A-mod)}(W, V[n]) ≠ 0 for some module V.
- A complex X[•] is *perfect* if Hom_{D^b(A-mod)}(X[•], V[n]) = 0 for any module V and n >> 0. This yields a subcategory perf(A) of D^b(A-mod).

イロト イポト イヨト イヨト

The singularity category

- gl.dim A = ∞ ⇐⇒ there exists an A-module W such that for any n ≥ 0, Hom_{D^b(A-mod)}(W, V[n]) ≠ 0 for some module V.
- A complex X[•] is *perfect* if Hom_{D^b(A-mod)}(X[•], V[n]) = 0 for any module V and n >> 0. This yields a subcategory perf(A) of D^b(A-mod).
- gl.dim $A = \infty \iff$

・ロン ・回と ・ヨン・

The singularity category

- gl.dim A = ∞ ⇐⇒ there exists an A-module W such that for any n ≥ 0, Hom_{D^b(A-mod)}(W, V[n]) ≠ 0 for some module V.
- A complex X[•] is *perfect* if Hom_{D^b(A-mod)}(X[•], V[n]) = 0 for any module V and n >> 0. This yields a subcategory perf(A) of D^b(A-mod).
- gl.dim $A = \infty \iff perf(A) \neq \mathbf{D}^{b}(A \operatorname{-mod}).$

・ロン ・回と ・ヨン ・ヨン

The singularity category

- gl.dim A = ∞ ⇐⇒ there exists an A-module W such that for any n ≥ 0, Hom_{D^b(A-mod)}(W, V[n]) ≠ 0 for some module V.
- A complex X[●] is *perfect* if Hom_{D^b(A-mod)}(X[●], V[n]) = 0 for any module V and n >> 0. This yields a subcategory perf(A) of D^b(A-mod).
- gl.dim $A = \infty \iff perf(A) \neq \mathbf{D}^{b}(A \operatorname{-mod}).$

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of A is the quotient category

$$\mathbf{D}_{sg}(A) = \mathbf{D}^{b}(A \operatorname{-mod})/\operatorname{perf}(A).$$

イロト イポト イヨト イヨト

The singularity category, continued

• The objects of $\mathbf{D}_{sg}(A) =$ the objects of $\mathbf{D}^{b}(A - mod)$;

The singularity category, continued

 The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).

イロト イポト イラト イラト

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.
- $\mathbf{D}_{sg}(A)$ is trivial \iff

イロン イヨン イヨン イヨン

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.
- $\mathbf{D}_{sg}(A)$ is trivial \iff gl.dim $A < \infty$.

イロン イヨン イヨン イヨン

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.
- D_{sg}(A) is trivial ⇔ gl.dim A < ∞.
 More generally, a complex X[•] is zero in D_{sg}(A) ⇔

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.
- D_{sg}(A) is trivial ⇔ gl.dim A < ∞.
 More generally, a complex X[•] is zero in D_{sg}(A) ⇔ X[•] is perfect.

イロン イヨン イヨン イヨン

The singularity category, continued

- The objects of D_{sg}(A) = the objects of D^b(A-mod); , for morphisms, we formally invert some morphisms in D^b(A-mod).
- The category $\mathbf{D}_{sg}(A)$ is a triangulated category.
- D_{sg}(A) is trivial ⇔ gl.dim A < ∞.
 More generally, a complex X[•] is zero in D_{sg}(A) ⇔ X[•] is perfect.
- The category D_{sg}(A) is a homological invariant of A, a measure on how far A is from having finite global dimension.

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$.

イロン イヨン イヨン イヨン

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

• Consequently, V is non-smooth, i.e., singular \iff

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

• Consequently, V is non-smooth, i.e., singular $\iff \mathbf{D}_{sg}(\mathcal{O}(V))$ is non-trivial.

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

- Consequently, V is non-smooth, i.e., singular $\iff \mathbf{D}_{sg}(\mathcal{O}(V))$ is non-trivial.
- Hence, from a homological perspective,

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

- Consequently, V is non-smooth, i.e., singular $\iff \mathbf{D}_{sg}(\mathcal{O}(V))$ is non-trivial.
- Hence, from a homological perspective, D_{sg}(O(V)) captures the singularity of V.

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

- Consequently, V is non-smooth, i.e., singular $\iff \mathbf{D}_{sg}(\mathcal{O}(V))$ is non-trivial.
- Hence, from a homological perspective, $\mathbf{D}_{sg}(\mathcal{O}(V))$ captures the singularity of V.
- For a non-commutative algebra A, $\operatorname{gl.dim} A = \infty$ indicates that A has certain "homological singularity".

・ロト ・回ト ・ヨト ・ヨト

The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety $V \subseteq \mathbb{C}^n$ is smooth \iff the algebra $\mathcal{O}(V)$ of polynomial functions on V satisfies $\operatorname{gl.dim} \mathcal{O}(V) < \infty$. In this case, $\dim V = \operatorname{gl.dim} \mathcal{O}(V)$.

- Consequently, V is non-smooth, i.e., singular $\iff \mathbf{D}_{sg}(\mathcal{O}(V))$ is non-trivial.
- Hence, from a homological perspective, $\mathbf{D}_{sg}(\mathcal{O}(V))$ captures the singularity of V.
- For a non-commutative algebra A, gl.dim A = ∞ indicates that A has certain "homological singularity". This property is captured by the singularity category D_{sg}(A).

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules.

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules. Then S(A) is a **completion** of the singularity category $D_{sg}(A)$.

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules. Then S(A) is a **completion** of the singularity category $D_{sg}(A)$.

• The singularity category $\mathbf{D}_{sg}(A)$ is a full subcategory of $\mathbf{S}(A)$.

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules. Then S(A) is a **completion** of the singularity category $D_{sg}(A)$.

- The singularity category $\mathbf{D}_{sg}(A)$ is a full subcategory of $\mathbf{S}(A)$.
- The category **S**(*A*) is a triangulated category with arbitrary coproducts.

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules. Then S(A) is a **completion** of the singularity category $D_{sg}(A)$.

- The singularity category $\mathbf{D}_{sg}(A)$ is a full subcategory of $\mathbf{S}(A)$.
- The category **S**(*A*) is a triangulated category with arbitrary coproducts.
- The smallest triangulated subcategory of **S**(*A*) containing **D**_{sg}(*A*) and closed under coproducts is **S**(*A*) itself.

・ロン ・回と ・ヨン・

The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy category $K_{ac}(A-Inj)$ of unbounded acyclic complexes of (not necessarily finite dimensional) injective A-modules. Then S(A) is a **completion** of the singularity category $D_{sg}(A)$.

- The singularity category $\mathbf{D}_{sg}(A)$ is a full subcategory of $\mathbf{S}(A)$.
- The category **S**(*A*) is a triangulated category with arbitrary coproducts.
- The smallest triangulated subcategory of S(A) containing D_{sg}(A) and closed under coproducts is S(A) itself.
- a triangle equivalence $\mathbf{S}(A) \xrightarrow{\sim} \mathbf{S}(B) \Longrightarrow$ a triangle equivalence $\mathbf{D}_{sg}(A) \xrightarrow{\sim} \mathbf{D}_{sg}(B)$.

Our main concerns

イロン イヨン イヨン イヨン

æ

Our main concerns

The structure of the singularity category D_{sg}(A_Q) and its completion S(A_Q): morphisms, thick subcategories, ...

Our main concerns

- The structure of the singularity category D_{sg}(A_Q) and its completion S(A_Q): morphisms, thick subcategories, ...
- The conditions for two quivers Q and Q' such that $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'})$ or $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'})$.

The Leavitt path algebra, the definition

 \overline{Q} = the *double quiver* of Q, that is, for each arrow $\alpha : i \to j$ in Q, we add a new arrow $\alpha^* : j \to i$.

イロン イヨン イヨン イヨン

The Leavitt path algebra, the definition

 \overline{Q} = the *double quiver* of Q, that is, for each arrow $\alpha : i \to j$ in Q, we add a new arrow $\alpha^* : j \to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

・ロト ・日本 ・モート ・モート

The Leavitt path algebra, the definition

 \overline{Q} = the *double quiver* of Q, that is, for each arrow $\alpha : i \to j$ in Q, we add a new arrow $\alpha^* : j \to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

• (CK1)
$$\alpha\beta^* - \delta_{\alpha,\beta}e_{t(\alpha)}$$
, for all $\alpha, \beta \in Q_1$;

The Leavitt path algebra, the definition

 \overline{Q} = the *double quiver* of Q, that is, for each arrow $\alpha : i \to j$ in Q, we add a new arrow $\alpha^* : j \to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

• (CK1)
$$\alpha\beta^* - \delta_{\alpha,\beta}e_{t(\alpha)}$$
, for all $\alpha, \beta \in Q_1$;

• (CK2)
$$\sum_{\{\alpha \in Q_1 \mid s(\alpha)=i\}} \alpha^* \alpha - e_i$$
, for all $i \in Q_0$.

The Leavitt path algebra, the definition

 \overline{Q} = the *double quiver* of Q, that is, for each arrow $\alpha : i \to j$ in Q, we add a new arrow $\alpha^* : j \to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

• (CK1)
$$\alpha\beta^* - \delta_{\alpha,\beta}e_{t(\alpha)}$$
, for all $\alpha, \beta \in Q_1$;

• (CK2)
$$\sum_{\{\alpha \in Q_1 \mid s(\alpha)=i\}} \alpha^* \alpha - e_i$$
, for all $i \in Q_0$.

Here, CK stands for Cuntz-Krieger.

イロン イヨン イヨン イヨン

Example: The Leavitt algebra

Example

Let ${\boldsymbol{Q}}$ be the rose quiver with two panels. Then we have an isomorphism

$$L(Q) \simeq \frac{k\langle x_1, x_2, y_1, y_2 \rangle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1 \rangle}$$

Example: The Leavitt algebra

Example

Let Q be the rose quiver with two panels. Then we have an isomorphism

$$L(Q) \simeq rac{k\langle x_1, x_2, y_1, y_2
angle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1
angle}.$$

The latter algebra is called the *Leavitt algebra* L_2 of order two [Leavitt, 1957].

・ロト ・日本 ・モート ・モート

Example: The Leavitt algebra

Example

Let Q be the rose quiver with two panels. Then we have an isomorphism

$$L(Q) \simeq rac{k\langle x_1, x_2, y_1, y_2
angle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1
angle}$$

The latter algebra is called the *Leavitt algebra* L_2 of order two [Leavitt, 1957].

• As L_2 -modules, $L_2 \oplus L_2 \simeq L_2$;

Example: The Leavitt algebra

Example

Let Q be the rose quiver with two panels. Then we have an isomorphism

$$L(Q) \simeq rac{k\langle x_1, x_2, y_1, y_2
angle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1
angle}.$$

The latter algebra is called the *Leavitt algebra* L_2 of order two [Leavitt, 1957].

- As L_2 -modules, $L_2 \oplus L_2 \simeq L_2$;
- The algebra L₂ is non-noetherian and simple.

・ロト ・日本 ・モート ・モート

The Leavitt path algebra, the origin

• The Leavitt path algebra L(Q) has an *involution* $(-)^* \colon L(Q) \to L(Q)$ satisfying $(e_i)^* = e_i$, $(\alpha)^* = \alpha^*$ and $(\alpha^*)^* = \alpha$.

The Leavitt path algebra, the origin

- The Leavitt path algebra L(Q) has an *involution* $(-)^* \colon L(Q) \to L(Q)$ satisfying $(e_i)^* = e_i$, $(\alpha)^* = \alpha^*$ and $(\alpha^*)^* = \alpha$.
- Indeed, if $k = \mathbb{C}$, $L(Q) \subseteq C^*(Q)$ is a dense subalgebra, where $C^*(Q)$ is the *Cuntz-Krieger C*-algebra* of Q.

The Leavitt path algebra, the origin

- The Leavitt path algebra L(Q) has an *involution* $(-)^* \colon L(Q) \to L(Q)$ satisfying $(e_i)^* = e_i$, $(\alpha)^* = \alpha^*$ and $(\alpha^*)^* = \alpha$.
- Indeed, if $k = \mathbb{C}$, $L(Q) \subseteq C^*(Q)$ is a dense subalgebra, where $C^*(Q)$ is the *Cuntz-Krieger C*-algebra* of Q.
- Expectation: algebraic properties of L(Q) (over any field k) correspond to C*-algebraic properties of C*(Q) (only over C),

The Leavitt path algebra, the origin

- The Leavitt path algebra L(Q) has an *involution* $(-)^* \colon L(Q) \to L(Q)$ satisfying $(e_i)^* = e_i$, $(\alpha)^* = \alpha^*$ and $(\alpha^*)^* = \alpha$.
- Indeed, if $k = \mathbb{C}$, $L(Q) \subseteq C^*(Q)$ is a dense subalgebra, where $C^*(Q)$ is the *Cuntz-Krieger C*-algebra* of Q.
- Expectation: algebraic properties of L(Q) (over any field k) correspond to C*-algebraic properties of C*(Q) (only over C), which usually is known to correspond to some combinatorial properties of Q.

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

The Leavitt path algebra, the origin

- The Leavitt path algebra L(Q) has an *involution* $(-)^* \colon L(Q) \to L(Q)$ satisfying $(e_i)^* = e_i$, $(\alpha)^* = \alpha^*$ and $(\alpha^*)^* = \alpha$.
- Indeed, if $k = \mathbb{C}$, $L(Q) \subseteq C^*(Q)$ is a dense subalgebra, where $C^*(Q)$ is the *Cuntz-Krieger C*-algebra* of Q.
- Expectation: algebraic properties of L(Q) (over **any** field k) correspond to C^* -algebraic properties of $C^*(Q)$ (only over \mathbb{C}), which usually is known to correspond to some combinatorial properties of Q.

Sometimes true, not always!

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

Nice properties of the Leavitt path algebra

• The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties:

Nice properties of the Leavitt path algebra

• The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties: $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$.

イロン イヨン イヨン イヨン

Nice properties of the Leavitt path algebra

• The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties: $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$. In other words, L(Q) is strongly graded.

Nice properties of the Leavitt path algebra

- The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties: $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$. In other words, L(Q) is strongly graded.
- Each component L(Q)_n is linearly spanned by {p*q | p, q are paths in Q with t(p) = t(q) and len(q) len(p) = n}.

Nice properties of the Leavitt path algebra

- The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties: $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$. In other words, L(Q) is strongly graded.
- Each component L(Q)_n is linearly spanned by {p*q | p, q are paths in Q with t(p) = t(q) and len(q) len(p) = n}.
- The zeroth component subalgebra L(Q)₀ is a direct limit of products of full matrix algebras; in paritucular, it is von Neumann regular.

소리가 소문가 소문가 소문가

Nice properties of the Leavitt path algebra

- The Leavitt path algebra L(Q) has a decomposition $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with the properties: $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$. In other words, L(Q) is strongly graded.
- Each component L(Q)_n is linearly spanned by {p*q | p, q are paths in Q with t(p) = t(q) and len(q) len(p) = n}.
- The zeroth component subalgebra L(Q)₀ is a direct limit of products of full matrix algebras; in paritucular, it is von Neumann regular.
- The canonical map $\iota \colon kQ \to L(Q)$ is injective and a universal localization in the sense of Cohen-Schofield.

<ロ> (四) (四) (注) (注) (注) (三)

Main concerns on Leavitt path algebras

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces

イロン イヨン イヨン イヨン

Main concerns on Leavitt path algebras

• The conditions on two quivers Q and Q' such that L(Q) and L(Q') are isomorphic, or

Main concerns on Leavitt path algebras

• The conditions on two quivers Q and Q' such that L(Q) and L(Q') are isomorphic, or graded isomorphic, or

Main concerns on Leavitt path algebras

• The conditions on two quivers Q and Q' such that L(Q) and L(Q') are isomorphic, or graded isomorphic, or graded Morita equivalent.

Main concerns on Leavitt path algebras

- The conditions on two quivers Q and Q' such that L(Q) and L(Q') are isomorphic, or graded isomorphic, or graded Morita equivalent.
- Main tools: von Neumann regular rings and their Grothendieck groups!

Main concerns on Leavitt path algebras

- The conditions on two quivers Q and Q' such that L(Q) and L(Q') are isomorphic, or graded isomorphic, or graded Morita equivalent.
- Main tools: von Neumann regular rings and their Grothendieck groups! Very recent work of [Hazrat, 2011/2012], [Ara-Pardo 2012].

イロン イヨン イヨン イヨン

The shift space, the definition

イロン イヨン イヨン イヨン

æ

The shift space, the definition

• A *bi-infinite path* in Q is a bi-infinite sequence $\alpha_{\bullet} = \cdots \alpha_{-1} \alpha_0 \alpha_1 \cdots$ with $s(\alpha_i) = t(\alpha_{i+1})$.

The shift space, the definition

• A bi-infinite path in Q is a bi-infinite sequence $\alpha_{\bullet} = \cdots \alpha_{-1} \alpha_0 \alpha_1 \cdots$ with $s(\alpha_i) = t(\alpha_{i+1})$. This gives rise to a set X_Q .

The shift space, the definition

- A bi-infinite path in Q is a bi-infinite sequence $\alpha_{\bullet} = \cdots \alpha_{-1} \alpha_0 \alpha_1 \cdots$ with $s(\alpha_i) = t(\alpha_{i+1})$. This gives rise to a set X_Q .
- The product set $Q_1^{\mathbb{Z}}$ carries a product topology,

The shift space, the definition

- A bi-infinite path in Q is a bi-infinite sequence $\alpha_{\bullet} = \cdots \alpha_{-1} \alpha_0 \alpha_1 \cdots$ with $s(\alpha_i) = t(\alpha_{i+1})$. This gives rise to a set X_Q .
- The product set $Q_1^{\mathbb{Z}}$ carries a product topology, $X_Q \subseteq Q_1^{\mathbb{Z}}$ is a closed subset, and inherits the topology.

The shift space, the definition

- A bi-infinite path in Q is a bi-infinite sequence
 α_• = ···α₋₁α₀α₁ ··· with s(α_i) = t(α_{i+1}). This gives rise to a set X_Q.
- The product set $Q_1^{\mathbb{Z}}$ carries a product topology, $X_Q \subseteq Q_1^{\mathbb{Z}}$ is a closed subset, and inherits the topology. X_Q has a *shift map* $\sigma \colon X_Q \to X_Q$ with $\sigma(\alpha_{\bullet})_i = \alpha_{i+1}$.

The shift space, the definition

- A bi-infinite path in Q is a bi-infinite sequence
 α_• = ···α₋₁α₀α₁ ··· with s(α_i) = t(α_{i+1}). This gives rise to a set X_Q.
- The product set $Q_1^{\mathbb{Z}}$ carries a product topology, $X_Q \subseteq Q_1^{\mathbb{Z}}$ is a closed subset, and inherits the topology. X_Q has a *shift map* $\sigma \colon X_Q \to X_Q$ with $\sigma(\alpha_{\bullet})_i = \alpha_{i+1}$.
- Then the pair (X_Q, σ) is called the *shift space* of Q.

The shift space, the definition

- A bi-infinite path in Q is a bi-infinite sequence $\alpha_{\bullet} = \cdots \alpha_{-1} \alpha_0 \alpha_1 \cdots$ with $s(\alpha_i) = t(\alpha_{i+1})$. This gives rise to a set X_Q .
- The product set Q₁^ℤ carries a product topology, X_Q ⊆ Q₁^ℤ is a closed subset, and inherits the topology. X_Q has a *shift map* σ: X_Q → X_Q with σ(α_•)_i = α_{i+1}.
- Then the pair (X_Q, σ) is called the *shift space* of Q.
- Symbolic dynamics by [Hadamard 1898], [Morse-Hellund, 1938]

イロン イヨン イヨン イヨン

Example and conjugacy

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces

イロン イヨン イヨン イヨン

æ

Example and conjugacy

Example

Let Q be the rose quiver with two panels. Then $X_Q = \{\alpha, \beta\}^{\mathbb{Z}}$, the so-called *full 2-shift*.

Example and conjugacy

Example

Let Q be the rose quiver with two panels. Then $X_Q = \{\alpha, \beta\}^{\mathbb{Z}}$, the so-called *full 2-shift*.

• Two shift spaces X_Q and $X_{Q'}$ is (topologically) conjugate if there is a homeomorphism $\phi: X_Q \to X_{Q'}$ that commutes with the shift maps.

Example and conjugacy

Example

Let Q be the rose quiver with two panels. Then $X_Q = \{\alpha, \beta\}^{\mathbb{Z}}$, the so-called *full 2-shift*.

- Two shift spaces X_Q and $X_{Q'}$ is (topologically) conjugate if there is a homeomorphism $\phi: X_Q \to X_{Q'}$ that commutes with the shift maps.
- Main concern: when two shift spaces are conjugate?

Example and conjugacy

Example

Let Q be the rose quiver with two panels. Then $X_Q = \{\alpha, \beta\}^{\mathbb{Z}}$, the so-called *full 2-shift*.

- Two shift spaces X_Q and $X_{Q'}$ is (topologically) conjugate if there is a homeomorphism $\phi: X_Q \to X_{Q'}$ that commutes with the shift maps.
- Main concern: when two shift spaces are conjugate? Using (algebraical) invariants!

Williams's Theorem

イロン イヨン イヨン イヨン

æ

Williams's Theorem

For a quiver Q, its *adjacency matrix* M(Q) is defined as follows: the rows and columns are indexed by Q_0 , and the (i, j) entry is the number of arrows from i to j.

イロン イヨン イヨン イヨン

Williams's Theorem

For a quiver Q, its *adjacency matrix* M(Q) is defined as follows: the rows and columns are indexed by Q_0 , and the (i, j) entry is the number of arrows from i to j.

Theorem (Williams 1973)

Two shift spaces X_Q and $X_{Q'}$ are conjugate if and only if their adjacency matrices M(Q) and M(Q') are strong shift equivalent.

・ロン ・回 と ・ ヨ と ・ ヨ と

Williams's Theorem

For a quiver Q, its *adjacency matrix* M(Q) is defined as follows: the rows and columns are indexed by Q_0 , and the (i, j) entry is the number of arrows from i to j.

Theorem (Williams 1973)

Two shift spaces X_Q and $X_{Q'}$ are conjugate if and only if their adjacency matrices M(Q) and M(Q') are strong shift equivalent.

• An elementary shift equivalence between two square matrices M and N consisting of nonnegative integers is a pair (R, S) of rectangular matrices consisting of nonnegative integers such that M = RS and N = SR.

・ロン ・回 と ・ ヨ と ・ ヨ と

Williams's Theorem

For a quiver Q, its *adjacency matrix* M(Q) is defined as follows: the rows and columns are indexed by Q_0 , and the (i, j) entry is the number of arrows from i to j.

Theorem (Williams 1973)

Two shift spaces X_Q and $X_{Q'}$ are conjugate if and only if their adjacency matrices M(Q) and M(Q') are strong shift equivalent.

- An elementary shift equivalence between two square matrices M and N consisting of nonnegative integers is a pair (R, S) of rectangular matrices consisting of nonnegative integers such that M = RS and N = SR.
- Then *M* and *N* are *strong shift equivalent* if they are connected by a sequence of elementary shift equivalences.

Example

Consider the following two quivers.

$$Q = \alpha \bigcirc \cdot_1 \bigcirc \beta \qquad \qquad Q' = \bigcirc 1 \cdot \underbrace{\longrightarrow}_2 \cdot \bigcirc$$

<ロ> (四) (四) (日) (日) (日)

æ

Example

Example

Consider the following two quivers.

$$Q = \alpha \bigcirc \cdot_1 \bigcirc \beta \qquad Q' = \bigcirc 1 \cdot \swarrow 2 \cdot \bigcirc$$

Then $M(Q) = (2) = (1 \ 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and
 $M(Q') = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (1 \ 1).$

Example

Example

Consider the following two quivers.

$$Q = \alpha \bigcirc \cdot_1 \bigcirc \beta \qquad Q' = \bigcirc 1 \cdot \swarrow 2 \cdot \bigcirc$$

Then $M(Q) = (2) = (1 \ 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and
 $M(Q') = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (1 \ 1)$. Then $M(Q)$ and $M(Q')$ are
strong shift equivalent, and thus X_Q and $X_{Q'}$ are conjugate.

Shift equivalences

Definition (Williams 1973)

Two matrices M and N consisting of nonnegative integers is *shift* equivalent provided that there exist a pair (R, S) of rectangular matrices consisting of nonnegative integers and $r \ge 1$ such that

•
$$MR = RN$$
 and $SM = NS$;

•
$$M^r = RS$$
 and $N^r = SR$.

Shift equivalences

Definition (Williams 1973)

Two matrices M and N consisting of nonnegative integers is *shift* equivalent provided that there exist a pair (R, S) of rectangular matrices consisting of nonnegative integers and $r \ge 1$ such that

•
$$MR = RN$$
 and $SM = NS$;

•
$$M^r = RS$$
 and $N^r = SR$.

• strong shift equivalence \implies shift equivalence;

Shift equivalences

Definition (Williams 1973)

Two matrices M and N consisting of nonnegative integers is *shift* equivalent provided that there exist a pair (R, S) of rectangular matrices consisting of nonnegative integers and $r \ge 1$ such that

•
$$MR = RN$$
 and $SM = NS$;

•
$$M^r = RS$$
 and $N^r = SR$.

- strong shift equivalence \implies shift equivalence;
- the converse is not true; a counterexample of [Kim-Roush 1992].

Shift equivalences

Definition (Williams 1973)

Two matrices M and N consisting of nonnegative integers is *shift* equivalent provided that there exist a pair (R, S) of rectangular matrices consisting of nonnegative integers and $r \ge 1$ such that

•
$$MR = RN$$
 and $SM = NS$;

•
$$M^r = RS$$
 and $N^r = SR$.

- strong shift equivalence \implies shift equivalence;
- the converse is not true; a counterexample of [Kim-Roush 1992].
- an algebraic invariant of [Krieger 1980]: *M* and *N* are shift equivalent if and only if their *dimension groups* are isomorphic.

イロン イ部ン イヨン イヨン 三日

Recent results

[C. 2011/Smith 2012]: there is an equivalence
 D_{sg}(A_Q) → L(Q)-grproj, the category of finitely generated graded projective L(Q)-modules.

Recent results

[C. 2011/Smith 2012]: there is an equivalence
 D_{sg}(A_Q) → L(Q)-grproj, the category of finitely generated graded projective L(Q)-modules.
 Hence, D_{sg}(A_Q) → D_{sg}(A_{Q'}) ⇔ L(Q) and L(Q') are graded Morita equivalent.

Recent results

- [C. 2011/Smith 2012]: there is an equivalence
 D_{sg}(A_Q) → L(Q)-grproj, the category of finitely generated graded projective L(Q)-modules.
 Hence, D_{sg}(A_Q) → D_{sg}(A_{Q'}) ⇔ L(Q) and L(Q') are graded Morita equivalent.
- [Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]: M(Q) and M(Q') are strong shift equivalent $\implies L(Q)$ and L(Q') are graded Morita equivalent.

・ロト ・回ト ・ヨト ・ヨト

Recent results

- [C. 2011/Smith 2012]: there is an equivalence
 D_{sg}(A_Q) → L(Q)-grproj, the category of finitely generated graded projective L(Q)-modules.
 Hence, D_{sg}(A_Q) → D_{sg}(A_{Q'}) ⇔ L(Q) and L(Q') are graded Morita equivalent.
- [Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]: M(Q) and M(Q') are strong shift equivalent $\implies L(Q)$ and L(Q') are graded Morita equivalent.

・ロト ・回ト ・ヨト ・ヨト

Recent results, continued

• [Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to $K_0^{\text{gr}}(L(Q))$, the graded Grothendieck group of L(Q).

・ロト ・日本 ・モート ・モート

Recent results, continued

- [Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒
 - M(Q) and M(Q') are shift equivalent.

イロン イヨン イヨン イヨン

Recent results, continued

- [Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒
 - M(Q) and M(Q') are shift equivalent.
- [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}}),$

イロト イポト イヨト イヨト

Recent results, continued

- [Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒
 - M(Q) and M(Q') are shift equivalent.
- [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}})$, that is a "completion" of the previous equivalence in [C. 2011/Smith 2012].

Recent results, continued

- [Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒
 - M(Q) and M(Q') are shift equivalent.
- [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}})$, that is a "completion" of the previous equivalence in [C. 2011/Smith 2012]. Consequently, $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \iff$

Recent results, continued

[Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒

M(Q) and M(Q') are shift equivalent.

• [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}})$, that is a "completion" of the previous equivalence in [C. 2011/Smith 2012]. Consequently, $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \iff$ $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'}) \iff$

소리가 소문가 소문가 소문가

Recent results, continued

[Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒

M(Q) and M(Q') are shift equivalent.

• [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}})$, that is a "completion" of the previous equivalence in [C. 2011/Smith 2012]. Consequently, $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \iff$ $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'}) \iff L(Q)$ and L(Q') derived equivalent \iff

(日) (部) (注) (注) (言)

Recent results, continued

[Hazrat 2012/Ara-Pardo 2012]: the dimension group of Q is isomorphic to K₀^{gr}(L(Q)), the graded Grothendieck group of L(Q).
 Hence, L(Q) and L(Q') are graded Morita equivalent ⇒

M(Q) and M(Q') are shift equivalent.

• [C.-Yang]: there is a triangle equivalence $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{D}(L(Q)^{\mathrm{op}})$, that is a "completion" of the previous equivalence in [C. 2011/Smith 2012]. Consequently, $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \iff$ $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'}) \iff L(Q)$ and L(Q') derived equivalent $\iff L(Q)$ and L(Q') graded Morita equivalent.

(日) (部) (注) (注) (言)

Connections, in summary

 $\begin{array}{ll} X_Q \text{ and } X_{Q'} \text{ conjugate } & \Longleftrightarrow M(Q) \text{ and } M(Q') \text{ strong shift equivalent} \\ & \Longrightarrow L(Q) \text{ and } L(Q') \text{ graded Morita equivalent} \\ & \Leftrightarrow L(Q) \text{ and } L(Q') \text{ derived equivalent} \\ & \Leftrightarrow \mathbf{D}_{\mathrm{sg}}(A_Q) \overset{\sim}{\longrightarrow} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \\ & \Leftrightarrow \mathbf{S}(A_Q) \overset{\sim}{\longrightarrow} \mathbf{S}(A_{Q'}) \\ & \Longrightarrow M(Q) \text{ and } M(Q') \text{ shift equivalent.} \end{array}$

イロト イポト イヨト イヨト

Connections, in summary

 $\begin{array}{ll} X_Q \text{ and } X_{Q'} \text{ conjugate } & \Longleftrightarrow M(Q) \text{ and } M(Q') \text{ strong shift equivalent} \\ & \Longrightarrow L(Q) \text{ and } L(Q') \text{ graded Morita equivalent} \\ & \Leftrightarrow L(Q) \text{ and } L(Q') \text{ derived equivalent} \\ & \Leftrightarrow \mathbf{D}_{\mathrm{sg}}(A_Q) \overset{\sim}{\longrightarrow} \mathbf{D}_{\mathrm{sg}}(A_{Q'}) \\ & \Leftrightarrow \mathbf{S}(A_Q) \overset{\sim}{\longrightarrow} \mathbf{S}(A_{Q'}) \\ & \Longrightarrow M(Q) \text{ and } M(Q') \text{ shift equivalent.} \end{array}$

Expectation: based on Bratteli's classification theorem on the ultramatricial algebras $L(Q)_0$, the last " \Longrightarrow " might be " \Leftrightarrow "!

소리가 소문가 소문가 소문가

The final example

イロン イヨン イヨン イヨン

æ

The final example

Example

Consider the following two quivers.

$$Q = \alpha \bigcirc \cdot_1 \bigcirc \beta \qquad \qquad Q' = \bigcirc 1 \cdot \rightleftharpoons 2 \cdot \bigcirc$$

Recall that M(Q) and M(Q') are strong shift equivalent.

イロト イヨト イヨト イヨト

The final example

Example

Consider the following two quivers.

Recall that M(Q) and M(Q') are strong shift equivalent. Then we have triangle equivalences $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'})$ and $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'})$;

・ロン ・回と ・ヨン・

The final example

Example

Consider the following two quivers.

Recall that M(Q) and M(Q') are strong shift equivalent. Then we have triangle equivalences $\mathbf{D}_{\mathrm{sg}}(A_Q) \xrightarrow{\sim} \mathbf{D}_{\mathrm{sg}}(A_{Q'})$ and $\mathbf{S}(A_Q) \xrightarrow{\sim} \mathbf{S}(A_{Q'}); L(Q) = L_2$ and L(Q') are graded Morita equivalent and derived equivalent.

・ロン ・回 と ・ ヨ と ・ ヨ と

- G. ABRAMS AND G. ARANDA PINO, *The Leavitt path algebra of a graph*, J. Algebra **293** (2) (2005), 319–334.
- G. ABRAMS, A. LOULY, E. PARDO AND C. SMITH, Flow invariants in the classification of Leavitt path algebras, J. Algebra **333** (2011), 202–231.
- P. ARA, M.A. MORENO AND E. PARDO, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2) (2007), 157–178.
- P. ARA AND E. PARDO, K-theoretic characterization of graded isomorphisms between Leavitt path algebras, arXiv:1210.31287v1.
- R.O. BUCHWEITZ, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, unpublished manuscript, 1987.

- X.W. CHEN, The singularity category of an algebra with radical square zero, Doc. Math. **16** (2011), 921–936.
- X.W. CHEN, D. YANG, Homotopy categories, Leavitt path algebras and Gorenstein projective modules, preprint.
- R. HAZRAT, The graded Grothendieck group and classification of Leavitt path algebras, Math. Ann., to appear, arXiv: 1102.4088.
- R. HAZRAT, The dynamics of Leavitt path algebras, arXiv:1209.2908.
- K.H. KIM AND F.W. ROUSH, Williams' conjecture is false for reducible subshifts, J. Amer. Math. Soc. 5 (1992), 213-215.
- H. KRAUSE, *The stable derived category of a noetherian scheme*, Compositio Math. **141** (2005), 1128–1162.

- D. ORLOV, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Trudy Steklov Math. Institute 204 (2004), 240–262.
- S.P. SMITH, Equivalence of categories involving graded modules over path algebras of quivers, Adv. Math. 230 (2012), 1780–1810.
- S.P. SMITH, Shift equivalence and a category equivalence involving graded modules over path algebras of quivers, arXiv: 1108.4994.
- R.F. WILLIAMS, Classification of subshifts of finite type, Ann. Math. 98 (1973), 120–153; erratum, Ann. Math. 99 (1974), 380–381.

イロト イポト イヨト イヨト

Thank You!

$http://home.ustc.edu.cn/^{\sim}xwchen$

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces

イロン イヨン イヨン イヨン

æ