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Quivers

Q = (Q0,Q1; s, t : Q1 → Q0) a finite quiver (= oriented
graph)

Q0 = the set of vertices, Q1 = the set of arrows

for an arrow α, s(α)
α−→ t(α)

We assume for simplicity that for each vertex in Q, there exist
at least one arrow starting at it, and one arrow ending at it.
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Examples

Example

Let Q be the following rose quiver with two panels

·1 βffα 88

Then Q0 = {1}, Q1 = {α, β}.

Example

Let Q ′ be the following quiver

1·α 88

γ //
2·

δ
oo βff

Then Q ′0 = {1, 2}, Q ′1 = {α, β, γ, δ}, s(γ) = 1 for example.
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Path algebras

a finite path in Q is p = αn · · ·α2α1 of length n

· α1−→ · α2−→ · · · · · αn−→ ·

In this case, we set s(p) = s(α1) and t(p) = t(αn).

paths of length one = arrows; paths of length zero = vertices
(for i ∈ Q0, we associate a trivial path ei .)

The path algebra kQ over a field k is an associative algebra
defined as follows: it has a k-basis given by all paths in Q, the
multiplication is given by concatenation of paths.
More precisely, for two paths p and q in Q, p · q = pq if
s(p) = t(q), otherwise, p · q = 0.
For example, eiej = δi ,jei , eip = δi ,t(p)p, pei = δs(p),ip.
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Path algebras, continued

Qn = the set of paths in Q of length n.

Then kQ =
⊕

n≥0 kQn with kQn · kQm = kQn+m.

The unit 1kQ =
∑

i∈Q0
ei has a decomposition into pairwise

orthogonal idempotents.

Set J2 =
⊕

n≥2 kQ2; it is a two-sided ideal of kQ.

We set AQ = kQ/J2 to be the quotient algebra, which is
finite dimensional.

Indeed, AQ has a basis {ei | i ∈ Q0} ∪ {α | α ∈ Q1}, the
multiplication rule is given by
eiej = δi ,jei , eiα = δi ,t(α)α, βej = δs(β),jβ, αβ = 0.
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Examples

Example

Let Q be the rose quiver with two panels. Then kQ ' k〈α, β〉 the
free algebra with two variables, and AQ is a three dimensional
algebra with basis {1 = e1, α, β}.

Example

Let Q ′ be the quiver as above. Then AQ′ is a six dimensional
algebra with basis {e1, e2, α, β, γ, δ}, such that 1 = e1 + e2 is the
unit.
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The AQ-modules

a (finite dimensional) left AQ-module V = a family {Vi}i∈Q0

of (finite dimensional) vector spaces indexed by Q0 together
with a family {Vα : Vs(α) → Vt(α)}α∈Q1 of linear maps
indexed by Q1 such that Vα ◦ Vβ = 0.

a homomorphism f : V → V ′ = a family {fi : Vi → V ′i }i∈Q0 of
linear maps such that V ′α ◦ fs(α) = ft(α) ◦ Vα;
composition of homomorphisms are componentwise.

This gives rise to the AQ-module category, denoted by
AQ-mod.
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Examples

Example

A module of AQ for the rose quiver Q takes the form

V1 VβiiVα 55

V1 a vector space, linear maps Vα and Vβ with zero relations.

Example

A module of AQ′ takes the form

V1Vα 55

Vγ //
V2

Vδ

oo Vβii

Remarks: all indecomposable modules of AQ and AQ′ are known.
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Homological properties of AQ

The category AQ-mod is an abelian category:

short exact

sequences 0→ V
f→ U

g→W → 0 are given by short exact
sequence of vector spaces. More precisely, for each vertex i ,

the sequence Vi
fi→ Ui

gi→Wi of vector spaces satisfies that fi
is injective, gi is surjective and Kergi = Imfi .

homological properties of AQ : the behavior of (long) exact
sequences of AQ-mod

gl.dim AQ =∞: the homological properties of AQ are rather
complicated!
For example, for any n ≥ 1, there are nontrivial exact
sequence 0→ V → V1 → · · · → Vn →W → 0 in AQ-mod.
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Complexes of modules

A = a finite dimensional algebra (for example, our algebra
AQ).

A bounded cochain complex X • of A-modules means

· · · → X n−1 dn−1

→ X n dn

→ X n+1 → · · ·
with dn ◦ dn−1 = 0, X n = 0 for |n| >> 0. The n-th
cohomology of X • is Hn(X •) = Kerdn/Imdn−1. Hence, X • is
acyclic if and only if Hn(X •) = 0 for all n.
The shifted complex X •[1] is given by (X •[1])n = X n+1,
dn
X•[1] = −dn+1

X ; inductively, we have X •[n].

A cochain map f • : X • → Y • is given by {f n : X n → Y n}n∈Z
with commutativity condition. It induces
Hn(f •) : Hn(X •)→ Hn(Y •); f • is called a quasi-isomorphism
if each Hn(f •) is an isomorphism.
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The derived category

Cb(A-mod) = the category of bounded cochain complexes;

it
is an abelian category, short exact sequences

0→ X •
f •→ Y •

g•→ Z • → 0 of complexes.

The bounded derived category Db(A-mod) of A: its objects
are the same as Cb(A-mod), the morphisms are modified by
adding for each quasi-isomorphism f • a formal inverse (f •)−1.

A-mod ⊆ Db(A-mod): by identifying a module V with the
stalk complex · · · → 0→ V → 0→ · · · with V at the zeroth
position.
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The derived category, continued

The category Db(A-mod) is NOT abelian,

but a triangulated
category in sense of Verdier: distinguished triangles
X • → Y • → Z • 99K X •[1], often induced by short exact
sequences 0→ X • → Y • → Z • → 0 in Cb(A-mod).

The category Db(A-mod) contains almost all information on
homological properties of A-mod (or A): for example, a long
exact sequence 0→ V → V1 → · · · → Vn →W → 0 of
modules corresponds to a morphism W → V [n] in
Db(A-mod), or equivalently, an element in
HomDb(A-mod)(W ,V [n]).
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The singularity category

gl.dim A =∞ ⇐⇒

there exists an A-module W such that for
any n ≥ 0, HomDb(A-mod)(W ,V [n]) 6= 0 for some module V .

A complex X • is perfect if HomDb(A-mod)(X •,V [n]) = 0 for
any module V and n >> 0. This yields a subcategory perf(A)
of Db(A-mod).

gl.dim A =∞ ⇐⇒ perf(A) 6= Db(A-mod).

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the quotient category

Dsg(A) = Db(A-mod)/perf(A).
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The singularity category, continued

The objects of Dsg(A) = the objects of Db(A-mod);

, for
morphisms, we formally invert some morphisms in Db(A-mod).

The category Dsg(A) is a triangulated category.

Dsg(A) is trivial ⇐⇒ gl.dim A <∞.
More generally, a complex X • is zero in Dsg(A) ⇐⇒ X • is
perfect.

The category Dsg(A) is a homological invariant of A, a
measure on how far A is from having finite global dimension.
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The singularity category, the terminology

Theorem (Serre, 1955)

an affine variety V ⊆ Cn is smooth ⇐⇒

the algebra O(V ) of
polynomial functions on V satisfies gl.dim O(V ) <∞. In this
case, dimV = gl.dim O(V ).

Consequently, V is non-smooth, i.e., singular ⇐⇒ Dsg(O(V ))
is non-trivial.

Hence, from a homological perspective, Dsg(O(V )) captures
the singularity of V .

For a non-commutative algebra A, gl.dim A =∞ indicates
that A has certain “homological singularity”. This property
is captured by the singularity category Dsg(A).
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The completion of the singularity category

Definition (Krause 2005)

The stable derived category S(A) is by definition the homotopy
category Kac(A-Inj) of unbounded acyclic complexes of (not
necessarily finite dimensional) injective A-modules.

Then S(A) is a
completion of the singularity category Dsg(A).

The singularity category Dsg(A) is a full subcategory of S(A).

The category S(A) is a triangulated category with arbitrary
coproducts.

The smallest triangulated subcategory of S(A) containing
Dsg(A) and closed under coproducts is S(A) itself.

a triangle equivalence S(A)
∼−→ S(B) =⇒ a triangle

equivalence Dsg(A)
∼−→ Dsg(B).
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Our main concerns

The structure of the singularity category Dsg(AQ) and its
completion S(AQ): morphisms, thick subcategories, ...

The conditions for two quivers Q and Q ′ such that
Dsg(AQ)

∼−→ Dsg(AQ′) or S(AQ)
∼−→ S(AQ′).
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The Leavitt path algebra, the definition

Q̄ = the double quiver of Q, that is, for each arrow α : i → j in Q,
we add a new arrow α∗ : j → i .

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of kQ̄
by the two-sided ideal generated by the following elements

(CK1) αβ∗ − δα,βet(α), for all α, β ∈ Q1;

(CK2)
∑
{α∈Q1 | s(α)=i} α

∗α− ei , for all i ∈ Q0.

Here, CK stands for Cuntz-Krieger.
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Example: The Leavitt algebra

Example

Let Q be the rose quiver with two panels. Then we have an
isomorphism

L(Q) ' k〈x1, x2, y1, y2〉
〈xiyj − δi ,j , y1x1 + y2x2 − 1〉

.

The latter algebra is called the Leavitt algebra L2 of order two
[Leavitt, 1957].

As L2-modules, L2 ⊕ L2 ' L2;

The algebra L2 is non-noetherian and simple.
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The Leavitt path algebra, the origin

The Leavitt path algebra L(Q) has an involution
(−)∗ : L(Q)→ L(Q) satisfying (ei )

∗ = ei , (α)∗ = α∗ and
(α∗)∗ = α.

Indeed, if k = C, L(Q) ⊆ C ∗(Q) is a dense subalgebra, where
C ∗(Q) is the Cuntz-Krieger C ∗-algebra of Q.

Expectation: algebraic properties of L(Q) (over any field k)
correspond to C ∗-algebraic properties of C ∗(Q) (only over C),
which usually is known to correspond to some combinatorial
properties of Q.
Sometimes true, not always!
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Nice properties of the Leavitt path algebra

The Leavitt path algebra L(Q) has a decomposition
L(Q) =

⊕
n∈Z L(Q)n with the properties:

L(Q)n · L(Q)m = L(Q)n+m, ei ∈ L(Q)0, α ∈ L(Q)1 and
α∗ ∈ L(Q)−1. In other words, L(Q) is strongly graded.

Each component L(Q)n is linearly spanned by
{p∗q | p, q are paths in Q with t(p) =
t(q) and len(q)− len(p) = n}.
The zeroth component subalgebra L(Q)0 is a direct limit of
products of full matrix algebras; in paritucular, it is von
Neumann regular.

The canonical map ι : kQ → L(Q) is injective and a universal
localization in the sense of Cohen-Schofield.
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{p∗q | p, q are paths in Q with t(p) =
t(q) and len(q)− len(p) = n}.
The zeroth component subalgebra L(Q)0 is a direct limit of
products of full matrix algebras; in paritucular, it is von
Neumann regular.

The canonical map ι : kQ → L(Q) is injective and a universal
localization in the sense of Cohen-Schofield.
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Main concerns on Leavitt path algebras

The conditions on two quivers Q and Q ′ such that L(Q) and
L(Q ′) are isomorphic, or graded isomorphic, or graded Morita
equivalent.

Main tools: von Neumann regular rings and their
Grothendieck groups! Very recent work of [Hazrat,
2011/2012], [Ara-Pardo 2012].
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The shift space, the definition

A bi-infinite path in Q is a bi-infinite sequence
α• = · · ·α−1α0α1 · · · with s(αi ) = t(αi+1). This gives rise to
a set XQ .

The product set QZ
1 carries a product topology, XQ ⊆ QZ

1 is a
closed subset, and inherits the topology. XQ has a shift map
σ : XQ → XQ with σ(α•)i = αi+1.

Then the pair (XQ , σ) is called the shift space of Q.

Symbolic dynamics by [Hadamard 1898], [Morse-Hellund,
1938]
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Example and conjugacy

Example

Let Q be the rose quiver with two panels. Then XQ = {α, β}Z, the
so-called full 2-shift.

Two shift spaces XQ and XQ′ is (topologically) conjugate if
there is a homeomorphism φ : XQ → XQ′ that commutes with
the shift maps.

Main concern: when two shift spaces are conjugate? Using
(algebraical) invariants!
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Williams’s Theorem

For a quiver Q, its adjacency matrix M(Q) is defined as follows:
the rows and columns are indexed by Q0, and the (i , j) entry is the
number of arrows from i to j .

Theorem (Williams 1973)

Two shift spaces XQ and XQ′ are conjugate if and only if their
adjacency matrices M(Q) and M(Q ′) are strong shift equivalent.

An elementary shift equivalence between two square matrices
M and N consisting of nonnegative integers is a pair (R, S) of
rectangular matrices consisting of nonnegative integers such
that M = RS and N = SR.

Then M and N are strong shift equivalent if they are
connected by a sequence of elementary shift equivalences.
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Example

Example

Consider the following two quivers.

Q = ·1 βffα 88 Q ′ = 1·88
//
2·oo ff

Then M(Q) = (2) =
(
1 1

)(1
1

)
and

M(Q ′) =

(
1 1
1 1

)
=

(
1
1

)(
1 1

)
. Then M(Q) and M(Q ′) are

strong shift equivalent, and thus XQ and XQ′ are conjugate.
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Shift equivalences

Definition (Williams 1973)

Two matrices M and N consisting of nonnegative integers is shift
equivalent provided that there exist a pair (R,S) of rectangular
matrices consisting of nonnegative integers and r ≥ 1 such that

MR = RN and SM = NS ;

M r = RS and N r = SR.

strong shift equivalence =⇒ shift equivalence;

the converse is not true; a counterexample of [Kim-Roush
1992].

an algebraic invariant of [Krieger 1980]: M and N are shift
equivalent if and only if their dimension groups are isomorphic.
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Recent results

[C. 2011/Smith 2012]: there is an equivalence
Dsg(AQ)

∼−→ L(Q)-grproj, the category of finitely generated
graded projective L(Q)-modules.

Hence, Dsg(AQ)
∼−→ Dsg(AQ′) ⇐⇒ L(Q) and L(Q ′) are

graded Morita equivalent.

[Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]:
M(Q) and M(Q ′) are strong shift equivalent =⇒ L(Q) and
L(Q ′) are graded Morita equivalent.

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces



Notation: quivers and algebras
The singularity category
The Leavitt path algebra

The shift space
Their connections

Recent results

[C. 2011/Smith 2012]: there is an equivalence
Dsg(AQ)

∼−→ L(Q)-grproj, the category of finitely generated
graded projective L(Q)-modules.
Hence, Dsg(AQ)

∼−→ Dsg(AQ′) ⇐⇒ L(Q) and L(Q ′) are
graded Morita equivalent.

[Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]:
M(Q) and M(Q ′) are strong shift equivalent =⇒ L(Q) and
L(Q ′) are graded Morita equivalent.

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces



Notation: quivers and algebras
The singularity category
The Leavitt path algebra

The shift space
Their connections

Recent results

[C. 2011/Smith 2012]: there is an equivalence
Dsg(AQ)

∼−→ L(Q)-grproj, the category of finitely generated
graded projective L(Q)-modules.
Hence, Dsg(AQ)

∼−→ Dsg(AQ′) ⇐⇒ L(Q) and L(Q ′) are
graded Morita equivalent.

[Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]:
M(Q) and M(Q ′) are strong shift equivalent =⇒ L(Q) and
L(Q ′) are graded Morita equivalent.

Xiao-Wu Chen, USTC Singularity categories, Leavitt path algebras and shift spaces



Notation: quivers and algebras
The singularity category
The Leavitt path algebra

The shift space
Their connections

Recent results

[C. 2011/Smith 2012]: there is an equivalence
Dsg(AQ)

∼−→ L(Q)-grproj, the category of finitely generated
graded projective L(Q)-modules.
Hence, Dsg(AQ)

∼−→ Dsg(AQ′) ⇐⇒ L(Q) and L(Q ′) are
graded Morita equivalent.

[Abrams-Loudy-Pardo-Smith 2011/Smith 2012/Hazrat 2012]:
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L(Q ′) are graded Morita equivalent.
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Connections, in summary

XQ and XQ′ conjugate ⇐⇒ M(Q) and M(Q ′) strong shift equivalent

=⇒ L(Q) and L(Q ′) graded Morita equivalent

⇐⇒ L(Q) and L(Q ′) derived equivalent

⇐⇒ Dsg(AQ)
∼−→ Dsg(AQ′)

⇐⇒ S(AQ)
∼−→ S(AQ′)

=⇒ M(Q) and M(Q ′) shift equivalent.

Expectation: based on Bratteli’s classification theorem on the
ultramatricial algebras L(Q)0, the last “=⇒” might be “⇐⇒”!
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The final example

Example

Consider the following two quivers.

Q = ·1 βffα 88 Q ′ = 1·88
//
2·oo ff

Recall that M(Q) and M(Q ′) are strong shift equivalent. Then we
have triangle equivalences Dsg(AQ)

∼−→ Dsg(AQ′) and
S(AQ)

∼−→ S(AQ′);L(Q) = L2 and L(Q ′) are graded Morita
equivalent and derived equivalent.
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Thank You!

http://home.ustc.edu.cn/∼xwchen
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