SINGULAR EQUIVALENCES
INDUCED BY HOMOLOGICAL EPIMORPHISMS

XIAO-WU CHEN

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We prove that a certain homological epimorphism between two algebras induces a triangle equivalence between their singularity categories. Applying the result to a construction of matrix algebras, we describe the singularity categories of some non-Gorenstein algebras.

1. Introduction

Let A be a finite dimensional algebra over a field k. Denote by A-mod the category of finitely generated left A-modules and by D^b(A-mod) the bounded derived category. Following [20], the singularity category D_{sg}(A) of A is the Verdier quotient triangulated category of D^b(A-mod) with respect to the full subcategory formed by perfect complexes; see also [4,5,11,16,17,23].

The singularity category measures the homological singularity of an algebra: the algebra A has finite global dimension if and only if its singularity category D_{sg}(A) is trivial. Meanwhile, the singularity category captures the stable homological features of an algebra ([6]).

A fundamental result of Buchweitz and Happel states that for a Gorenstein algebra A, the singularity category D_{sg}(A) is triangle equivalent to the stable category of (maximal) Cohen-Macaulay A-modules ([6,14]), where the latter category is related to Tate cohomology theory ([2,6]). This result specializes Rickard’s result ([23]) on self-injective algebras. For non-Gorenstein algebras, not much is known about their singularity categories ([7,9]).

The following concepts might be useful in the study of singularity categories. Two algebras A and B are said to be singularly equivalent provided that there is a triangle equivalence between D_{sg}(A) and D_{sg}(B). Such an equivalence is called a singular equivalence; compare [21]. In this case, if A is non-Gorenstein and B is Gorenstein, then Buchweitz-Happel's theorem applies to give a description of D_{sg}(A) in terms of (maximal) Cohen-Macaulay B-modules. We observe that a derived equivalence of two algebras, that is, a triangle equivalence between their bounded derived categories, naturally induces a singular equivalence. The converse is not true in general.

Received by the editors August 12, 2011 and, in revised form, September 6, 2012.

2010 Mathematics Subject Classification. Primary 18E30, 13E10, 16E50.

The author was supported by the Fundamental Research Funds for the Central Universities (WK0010000024) and the National Natural Science Foundation of China (No. 11201446).

©2014 American Mathematical Society
Reverts to public domain 28 years from publication
Let A be an algebra and let $J \subseteq A$ be a two-sided ideal. Following [22], we call J a homological ideal provided that the canonical map $A \to A/J$ is a homological epimorphism ([12]), meaning that the naturally induced functor $\text{D}^b(A/J\text{-mod}) \to \text{D}^b(A\text{-mod})$ is fully faithful.

The main observation we make is as follows.

Theorem. Let A be a finite dimensional k-algebra and let $J \subseteq A$ be a homological ideal which has finite projective dimension as an A-A-bimodule. Then there is a singular equivalence between A and A/J.

This paper is structured as follows. In Section 2, we recall some ingredients and then prove the Theorem. In Section 3, we apply the Theorem to a construction of matrix algebras and then describe the singularity categories of some non-Gorenstein algebras. In particular, we give two examples which extend in different manners an example considered by Happel in [14].

2. Proof of the Theorem

We will present the proof of the Theorem in this section. Before that, we recall from [25] and [15] some results on triangulated categories and derived categories.

Let T be a triangulated category. We will denote its translation functor by $[1]$. For a triangulated subcategory N, we denote by T/N the Verdier quotient triangulated category. The quotient functor $q: T \to T/N$ has the property that $q(X) \simeq 0$ if and only if X is a direct summand of an object in N. In particular, if N is a thick subcategory, that is, it is closed under direct summands, we have that $\text{Ker } q = N$. Here, for a triangle functor F, $\text{Ker } F$ denotes its essential kernel, that is, the (thick) triangulated subcategory consisting of objects on which F vanishes.

The following result is well known.

Lemma 2.1. Let $F: T \to T'$ be a triangle functor which allows a fully faithful right adjoint G. Then F induces uniquely a triangle equivalence $T/\text{Ker } F \simeq T'$.

Proof. The existence of the induced functor follows from the universal property of the quotient functor. The result is a triangulated version of [11, Proposition I. 1.3]. For details, see [5, Propositions 1.5 and 1.6].

Let $F: T \to T'$ be a triangle functor. Assume that $N \subseteq T$ and $N' \subseteq T'$ are triangulated subcategories satisfying $FN \subseteq N'$. Then there is a uniquely induced triangle functor $\bar{F}: T/N \to T'/N'$.

Lemma 2.2 ([20, Lemma 1.2]). Let $F: T \to T'$ be a triangle functor which has a right adjoint G. Assume that $N \subseteq T$ and $N' \subseteq T'$ are triangulated subcategories satisfying the fact that $FN \subseteq N'$ and $GN' \subseteq N$. Then the induced functor $\bar{F}: T/N \to T'/N'$ has a right adjoint \bar{G}. Moreover, if G is fully faithful, so is \bar{G}.

Proof. The unit and counit of (F,G) induce uniquely two natural transformations $\text{Id}_{T/N} \to GF$ and $FG \to \text{Id}_{T'/N'}$, which are the corresponding unit and counit of the adjoint pair (\bar{F},\bar{G}); consult [19, Chapter IV, Section 1, Theorem 2(v)]. Note that the fully-faithfulness of G is equivalent to the fact that the counit of (F,G) is an isomorphism. It follows that the counit of (\bar{F},\bar{G}) is also an isomorphism, which is equivalent to the fully-faithfulness of \bar{G}; consult [19, Chapter IV, Section 3, Theorem 1].

□
Let k be a field and let A be a finite dimensional k-algebra. Recall that A-mod is the category of finite dimensional left A-modules. We write $\mathcal{A}A$ for the regular left A-module. Denote by $\mathcal{D}(A$-$\text{mod})$ (resp. $\mathcal{D}^b(A$-$\text{mod})$) the (resp. bounded) derived category of A-mod. We identify A-mod as the full subcategory of $\mathcal{D}^b(A$-$\text{mod})$ consisting of stalk complexes concentrated at degree zero; see [15] Proposition I. 4.3.

A complex of A-modules is usually denoted by $X^\bullet = (X^i, d^i)_{i \in \mathbb{Z}}$, where X^i are A-modules and the differentials $d^i : X^i \to X^{i+1}$ are homomorphisms of modules satisfying $d^{i+1} \circ d^i = 0$. Recall that a complex in $\mathcal{D}^b(A$-$\text{mod})$ is \textit{perfect} provided that it is isomorphic to a bounded complex consisting of projective modules. The full subcategory consisting of perfect complexes is denoted by perf(A). Recall from [6] Lemma 1.2.1 that a complex X^\bullet in $\mathcal{D}^b(A$-$\text{mod})$ is perfect if and only if there is a natural number n_0 such that for each A-module M, $\text{Hom}_{\mathcal{D}^b(A$-$\text{mod})}(X^\bullet, M[n]) = 0$ for all $n \geq n_0$. It follows that perf(A) is a thick subcategory of $\mathcal{D}^b(A$-$\text{mod})$. Indeed, it is the smallest thick subcategory of $\mathcal{D}^b(A$-$\text{mod})$ containing $\mathcal{A}A$.

Let $\pi : A \to B$ be a homomorphism of algebras. The functor of restricting of scalars $\pi^* : B$-$\text{mod} \to A$-mod is exact, and it extends to a triangle functor $\mathcal{D}^b(B$-$\text{mod}) \to \mathcal{D}^b(A$-$\text{mod})$, which will still be denoted by π^*. Following [12], we call the homomorphism π a \textit{homological epimorphism} provided that $\pi^* : \mathcal{D}^b(B$-$\text{mod}) \to \mathcal{D}^b(A$-$\text{mod})$ is fully faithful. By [12] Theorem 4.1(1)] this is equivalent to the fact that $\pi \otimes_A^L B : B \simeq A \otimes_A^L B \to B \otimes_A^L B$ is an isomorphism in $\mathcal{D}(A^c$-$\text{mod})$. Here, $A^c = A \otimes_k A^{\text{op}}$ is the enveloping algebra of A, and we identify A^c-mod as the category of A-bimodules.

Lemma 2.3 ([22] Proposition 2.2(a))]. Let $J \subseteq A$ be an ideal and let $\pi : A \to A/J$ be the canonical projection. Then π is a homological epimorphism if and only if $J^2 = J$ and $\text{Tor}^i_A(J, A/J) = 0$ for all $i \geq 1$.

In the situation of the lemma, the ideal J is called a \textit{homological ideal} in [22]. As a special case, we call an ideal J a \textit{hereditary ideal} provided that $J^2 = J$ and J is a projective A-bimodule; compare [22] Lemma 3.4.

Proof. The natural exact sequence $0 \to J \to A \to A/J \to 0$ of A-bimodules induces a triangle $J \to A \to A/J \to [1]$ in $\mathcal{D}^b(A^c$-$\text{mod})$. Applying the functor $- \otimes_A^L A/J$, we get a triangle $J \otimes_A^L A/J \to A/J \to A/J \otimes_A^L A/J \to A/J$ in $\mathcal{D}^b(A$-$\text{mod})$. Then π is a homological epimorphism if, equivalently, $\pi \otimes_A^L A/J$ is an isomorphism if and only if $J \otimes_A^L A/J = 0$; see [13] Lemma I.1.7]. This is equivalent to the fact that $\text{Tor}^i_A(J, A/J) = 0$ for all $i \geq 0$. We note that $\text{Tor}^j_A(J, A/J) \simeq J \otimes_A A/J \simeq J/J^2$. \qed

Now we are in the position to prove the Theorem. Recall that for an algebra A, its singularity category $\mathcal{D}_{\text{sg}}(A) = \mathcal{D}^b(A$-$\text{mod})/$\text{perf}(A)$. Moreover, a complex X^\bullet becomes zero in $\mathcal{D}_{\text{sg}}(A)$ if and only if it is perfect. Here, we use the fact that $\text{perf}(A) \subseteq \mathcal{D}^b(A$-$\text{mod})$ is a thick subcategory.

Proof of the Theorem. Write $B = A/J$. Since J, as an A-bimodule, has finite projective dimension, so it has finite projective dimension both as a left and right A-module. Consider the natural exact sequence $0 \to J \to A \to B \to 0$. It follows that B, both as a left and right A-module, has finite projective dimension. Moreover, for a complex X^\bullet in $\mathcal{D}^b(A$-$\text{mod})$, $J \otimes_A^L X^\bullet$ is perfect. Indeed, take a bounded projective resolution $P^\bullet \to J$ as an A^c-module. Then $J \otimes_A^L X^\bullet \simeq P^\bullet \otimes_A X^\bullet$. This is a perfect complex, since each left A-module $P^i \otimes_A X^j$ is projective.
Denote by \(\pi : A \to B \) the canonical projection. By the assumption, the functor \(\pi^* : D^b(B\text{-}mod) \to D^b(A\text{-}mod) \) is fully faithful. Since \(\pi^*(B) = AB \) is perfect, the functor \(\pi^* \) sends perfect complexes to perfect complexes. Then it induces a triangle functor \(\pi^* : D_{\text{sg}}(B) \to D_{\text{sg}}(A) \). We will show that \(\pi^* \) is an equivalence.

The functor \(\pi^* : D^b(B\text{-}mod) \to D^b(A\text{-}mod) \) has a left adjoint \(F = B \otimes^L_A \) and a right adjoint \(B \otimes^L_A \). Here we use the fact that the right \(A\)-module \(B_A \) has finite projective dimension. Since \(F \) sends perfect complexes to perfect complexes, we have the induced triangle functor \(\bar{F} : D_{\text{sg}}(A) \to D_{\text{sg}}(B) \). By Lemma 2.2 we have the adjoint pair \((\bar{F}, \pi^*) \); moreover, the functor \(\pi^* \) is fully faithful. By Lemma 2.1 there is a triangle equivalence \(D_{\text{sg}}(A)/\text{Ker} \bar{F} \simeq D_{\text{sg}}(B) \).

It remains to show that the essential kernel \(\text{Ker} \bar{F} \) is trivial. For this, we assume that a complex \(X^* \) lies in \(\text{Ker} \bar{F} \). This means that the complex \(F(X^*) \) in \(D^b(B\text{-}mod) \) is perfect. Since \(\pi^* \) preserves perfect complexes, it follows that \(\pi^* F(X^*) \) is also perfect. The natural exact sequence \(0 \to J \to A \to B \to 0 \) induces a triangle \(J \otimes^L_A X^* \to X^* \to \pi^* F(X^*) \to J \otimes^L_A X^*[1] \) in \(D^b(A\text{-}mod) \). Recall that \(J \otimes^L_A X^* \) is perfect. It follows that \(X^* \) is perfect, since \(\text{perf}(A) \subseteq D^b(A\text{-}mod) \) is a triangulated subcategory. The proves that \(X^* \) is zero in \(D_{\text{sg}}(A) \).

The following special case of the Theorem is of interest.

Corollary 2.4. Let \(A \) be a finite dimensional algebra and \(J \subseteq A \) a hereditary ideal. Then we have a triangle equivalence \(D_{\text{sg}}(A) \simeq D_{\text{sg}}(A/J) \).

Proof. It suffices to observe by Lemma 2.3 that \(J \) is a homological ideal. \(\square \)

3. Examples

In this section, we will describe a construction of matrix algebras to illustrate Corollary 2.4. In particular, the singularity categories of some non-Gorenstein algebras are described.

The following construction is similar to [18, Section 4]. Let \(A \) be a finite dimensional algebra over a field \(k \). Let \(A_M \) and \(N_A \) be a left and right \(A \)-module, respectively. Then \(M \otimes_k N \) becomes an \(A\)-bimodule. Consider an \(A\)-bimodule monomorphism \(\phi : M \otimes_k N \to A \). Then \(\text{Im} \phi \) is a two-sided ideal of \(A \). We require further that \((\text{Im} \phi)M = 0 \) and \(N(\text{Im} \phi) = 0 \). The matrix \(\Gamma = \begin{pmatrix} A & M \\ N & k \end{pmatrix} \) becomes an associative algebra via the following multiplication:

\[
\begin{pmatrix} a & m \\ n & \lambda \end{pmatrix} \begin{pmatrix} a' & m' \\ n' & \lambda' \end{pmatrix} = \begin{pmatrix} aa' + \phi(m \otimes n') & am' + \lambda m' \\ na' + \lambda n' & \lambda \lambda' \end{pmatrix}.
\]

For the associativity, we need the above requirement on \(\text{Im} \phi \).

Proposition 3.1. Keep the notation and assumption as above. Then there is a triangle equivalence \(D_{\text{sg}}(\Gamma) \simeq D_{\text{sg}}(A/\text{Im} \phi) \).

Proof. Set \(J = \Gamma e \Gamma \) with \(e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \). Observe that \(\Gamma/J = A/\text{Im} \phi \). The ideal \(J \) is hereditary: \(J^2 = J \) is clear, while the natural map \(\Gamma e \otimes_k e \Gamma \to J \) is an isomorphism of \(\Gamma\Gamma\)-bimodules and then \(J \) is a projective \(\Gamma\Gamma\)-bimodule. The isomorphism uses the assumption that \(\phi \) is mono. Then we apply Corollary 2.4. \(\square \)
Remark 3.2. The above construction contains the one-point extension and coextension of algebras, where M or N is zero. Hence Proposition 3.1 contains the results in [9, Section 4].

We will illustrate Proposition 3.1 by three examples. Two of these examples extend an example considered by Happel in [14]. In particular, based on results in [9], we obtain descriptions of the singularity categories of some non-Gorenstein algebras.

Recall from [14] that an algebra A is Gorenstein provided that both as a left and right module, the regular module A has finite injective dimension. It follows from [6, Theorem 4.4.1] and [14, Theorem 4.6] that in the Gorenstein case, the singularity category $D_{sg}(A)$ is Hom-finite. This means that all Hom spaces in $D_{sg}(A)$ are finite dimensional over k.

For algebras given by quivers and relations, we refer to [11, Chapter III].

Example 3.3. Let Γ be the k-algebra given by the following quiver Q with relations $\{x^2, \delta x, \beta x, x\gamma, x\alpha, \beta\gamma, \delta\alpha, \beta\alpha, \delta\gamma, \alpha\beta - \gamma\delta\}$. We write the concatenation of paths from right to left.

\[
\begin{array}{c}
\circlearrowleft\\1 \\
\circlearrowright\end{array}
\]

We have in Γ that $1 = e_1 + e_2 + e_2$, where the e_i’s are the primitive idempotents corresponding to the vertices. Set $\Gamma' = \Gamma/e_1\Gamma$. It is an algebra with radical square zero, whose quiver is obtained from Q by removing the vertex 1 and the adjacent arrows.

We identify Γ with $\left(\begin{array}{cc}
A & k\alpha \\
\alpha & k\beta \\
\end{array}\right)$, where the k in the southeast corner is identified with $e_1e_1\Gamma$, and $A = (1 - e_1)\Gamma(1 - e_1)$. The corresponding $\text{Im } \phi$ equals $k\alpha\beta$, and we have $A/\text{Im } \phi = \Gamma'$; consult the proof of Proposition 3.1. Then Proposition 3.1 yields a triangle equivalence $D_{sg}(\Gamma) \simeq D_{sg}(\Gamma')$.

The triangulated category $D_{sg}(\Gamma')$ is completely described in [9] (see also [24]); in particular, it is not Hom-finite. More precisely, it is equivalent to the category of finitely generated projective modules on a von Neumann regular algebra. The algebra Γ', or rather its Koszul dual, is related to the noncommutative space of Penrose tilings via the work of Smith; see [24, Theorem 7.2 and Example]. We point out that the algebra Γ is non-Gorenstein, since $D_{sg}(\Gamma)$ is not Hom-finite.

Example 3.4. Let Γ be the k-algebra given by the following quiver Q with relations $\{x_1^2, x_2^2, x_1\alpha_1, x_2\alpha_1, \beta_2\alpha_1, \beta_2\alpha_1, x_1\alpha_2, x_2\alpha_2, \beta_1\alpha_2, \beta_2\alpha_2, \alpha_1\beta_1 - x_1x_2, \alpha_2\beta_2 - x_2x_1\}:

\[
\begin{array}{c}
\circlearrowleft\\1 \\
\circlearrowright\end{array}
\]

We claim that there is a triangle equivalence $D_{sg}(\Gamma) \simeq D_{sg}(k(x_1, x_2)/(x_1, x_2)^2)$. Here, $k(x_1, x_2)$ is the free algebra with two variables.

We point out that the triangulated category $D_{sg}(k(x_1, x_2)/(x_1, x_2)^2)$ is described completely in [9, Example 3.11], where related results are contained in [3, Section 10]. Similar to the example above, this algebra Γ is non-Gorenstein.
To see the claim, we observe that the quiver Q has two loops and two 2-cycles. The proof is done by “removing the 2-cycles”. We have a natural isomorphism

$$\Gamma = \begin{pmatrix} A & k\alpha_1 \\ k\beta_1 & k \end{pmatrix},$$

where $k = e_1\Gamma e_1$ and $A = (1 - e_1)\Gamma(1 - e_1)$. We observe that Proposition 3.4 applies with the corresponding $\text{Im }\phi = k\alpha_1\beta_1$. Set $A/\text{Im }\phi = \Gamma'$. So $\mathcal{D}_{\text{sg}}(\Gamma) \simeq \mathcal{D}_{\text{sg}}(\Gamma')$. The quiver of Γ' is obtained from Q by removing the vertex 1 and the adjacent arrows, while its relations are obtained from the ones of Γ by replacing $\alpha_1\beta_1 - x_1x_2$ with x_1x_2. Similarly, $\Gamma' = \begin{pmatrix} A' & k\alpha_2 \\ k\beta_2 & k \end{pmatrix}$ with $k = e_2\Gamma'e_2$ and $A' = e_\ast\Gamma'e_\ast$. Then Proposition 3.1 applies again, and we get the equivalence $\mathcal{D}_{\text{sg}}(\Gamma') \simeq \mathcal{D}_{\text{sg}}(k(x_1, x_2)/(x_1, x_2)^2)$.

This example generalizes directly to a quiver with n loops and n 2-cycles with similar relations. The corresponding statement for the case $n = 1$ is implicitly contained in [14] 2.3 and 4.8.

The last example is a Gorenstein algebra.

Example 3.5. Let $r \geq 2$. Consider the following quiver Q consisting of three 2-cycles and a central 3-cycle Z_3. We identify γ_3 with γ_0 and denote by p_i the path in the central cycle starting at vertex i of length 3.

\[
\begin{array}{c}
1' \\
\downarrow \quad \beta_3 \quad \downarrow \\
2' \\
\downarrow \quad \beta_2 \quad \downarrow \\
\downarrow \quad \beta_1 \\
1 \\
\end{array}
\]

\[
\begin{array}{c}
1' \\
\downarrow \quad \beta_3 \quad \downarrow \\
2' \\
\downarrow \quad \beta_2 \quad \downarrow \\
\downarrow \quad \beta_1 \\
1 \\
\end{array}
\]

Let Γ be the k-algebra given by the quiver Q with relations $\{\beta_i\alpha_i, \gamma_i\alpha_i, \beta_i\gamma_{i-1}, \alpha_i\beta_i - p_i^2 | i = 1, 2, 3\}$. We point out that in Γ all paths in the central cycle of length strictly larger than $3r + 1$ vanish.

Set $A = kZ_3/(\gamma_1, \gamma_2, \gamma_3)^{3r}$, where kZ_3 is the path algebra of the central 3-cycle Z_3. The algebra A is self-injective and Nakayama ([11] p.111]). Denote by $A^{\text{-mod}}$ the stable category of A-modules; it is naturally a triangulated category (see [13] Theorem 1.2.6).

We claim that there is a triangle equivalence $\mathcal{D}_{\text{sg}}(\Gamma) \simeq A^{\text{-mod}}$.

For the claim, we observe an isomorphism $A = \Gamma/\Gamma(e_1' + e_2' + e_3')\Gamma$. We argue as in Example 3.4 by removing the three 2-cycles and applying Proposition 3.4 repeatedly. Then we get a triangle equivalence $\mathcal{D}_{\text{sg}}(\Gamma) \simeq \mathcal{D}_{\text{sg}}(A)$. Finally, by [23] Theorem 2.1] we have a triangle equivalence $\mathcal{D}_{\text{sg}}(A) \simeq A^{\text{-mod}}$. Then we are done.

We point out that the algebra Γ is Gorenstein with self-injective dimension two. Hence by [6] Theorem 4.4.1] and [14] Theorem 4.6 there is a triangle equivalence $\mathcal{D}_{\text{sg}}(\Gamma) \simeq \text{MCM}(\Gamma)$, where $\text{MCM}(\Gamma)$ denotes the stable category of (maximal) Cohen-Macaulay Γ-modules. Then we have a triangle equivalence

$$\text{MCM}(\Gamma) \simeq A^{\text{-mod}}.$$

We mention that Γ is a special biserial algebra of finite representation type (by [10] Lemma II.8.1]). It would be interesting to identify (maximal) Cohen-Macaulay Γ-modules in the Auslander-Reiten quiver of Γ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
This example generalizes directly to a quiver with n 2-cycles and a central n-cycle with similar relations. The case where $n = 1$ and $r = 2$ coincides with the examples considered in [14] 2.3 and 4.8.

ACKNOWLEDGEMENTS

The author thanks the referee for useful comments and Huanhuan Li for helpful discussions. The results of this paper partially answer a question that was raised by Professor Changchang Xi during a conference held in Jinan in June 2011.

REFERENCES

WU WEN-TSUN KEY LABORATORY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, CHINESE ACADEMY OF SCIENCES, HEFEI 230026, ANHUI, PEOPLE’S REPUBLIC OF CHINA

E-mail address: xwchen@mail.ustc.edu.cn
URL: http://home.ustc.edu.cn/~xwchen