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Abstract

For a finite quiver without sinks, we establish an isomorphism in the homo-
topy category Ho(B∞) of B∞-algebras between the Hochschild cochain complex
of the Leavitt path algebra L and the singular Hochschild cochain complex of the
corresponding radical square zero algebra Λ. Combining this isomorphism with a
description of the dg singularity category of Λ in terms of the dg perfect derived
category of L, we verify Keller’s conjecture for the singular Hochschild cohomology
of Λ. More precisely, we prove that there is an isomorphism in Ho(B∞) between the
singular Hochschild cochain complex of Λ and the Hochschild cochain complex of
the dg singularity category of Λ. One ingredient of the proof is the following duality
theorem on B∞-algebras: for any B∞-algebra, there is a natural B∞-isomorphism
between its opposite B∞-algebra and its transpose B∞-algebra.

We prove that Keller’s conjecture is invariant under one-point (co)extensions
and singular equivalences with levels. Consequently, Keller’s conjecture holds for
those algebras obtained inductively from Λ by one-point (co)extensions and sin-
gular equivalences with levels. These algebras include all finite dimensional gentle
algebras.
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CHAPTER 1

Introduction

1.1. The background

Let k be a field and Λ be a finite dimensional associative k-algebra. Denote by
Λ-mod the abelian category of finite dimensional left Λ-modules and by Db(Λ-mod)
its bounded derived category. The singularity category Dsg(Λ) of Λ is by definition
the Verdier quotient category of Db(Λ-mod) by the full subcategory of perfect
complexes. This notion is first introduced in [17], and then rediscovered in [75]
with motivations from homological mirror symmetry. The singularity category
measures the homological singularity of the algebra Λ, and reflects the asymptotic
behaviour of syzygies of Λ-modules.

It is well-known that the theory of triangulated categories is inadequate to han-
dle many basic algebraic and geometric operations. One way around this problem
is to replace triangulated categories by their dg enhancements. The bounded dg
derived category Db

dg(Λ-mod) is a dg category whose zeroth cohomology coincides

with Db(Λ-mod). Similarly, the dg singularity category Sdg(Λ) of Λ [12,16,55] is
defined to be the dg quotient category of Db

dg(Λ-mod) by the full dg subcategory of

perfect complexes. Then the zeroth cohomology of Sdg(Λ) coincides with Dsg(Λ).
In other words, the dg singularity category provides a canonical dg enhancement
for the singularity category.

As one of the advantages of working with dg categories, their Hochschild the-
ory behaves well with respect to various operations [52, 64, 83]. We consider
the Hochschild cochain complex C∗(Sdg(Λ),Sdg(Λ)) of the dg singularity cate-
gory Sdg(Λ), which has a natural structure of a B∞-algebra [39]. Moreover,
it induces a Gerstenhaber algebra structure [36] on the Hochschild cohomology
HH∗(Sdg(Λ),Sdg(Λ)). The B∞-algebra structures on the Hochschild cochain com-
plexes play an essential role in the deformation theory [64] of categories. We men-
tion that B∞-algebras are the key ingredients in the proof [82] of Kontsevich’s
formality theorem. We refer to [69, Subsection 1.19] for the relationship between
B∞-algebras and Deligne’s conjecture.

The singular Hochschild cohomology HH∗
sg(Λ,Λ) of Λ is defined as

HHn
sg(Λ,Λ) := HomDsg(Λe)(Λ,Σ

n(Λ)), for any n ∈ Z,

where Σ is the suspension functor of the singularity category Dsg(Λ
e) of the en-

veloping algebra Λe = Λ ⊗ Λop; see [11, 55, 88]. By [90], there are two com-

plexes C
∗
sg,L(Λ,Λ) and C

∗
sg,R(Λ,Λ) computing HH∗

sg(Λ,Λ), called the left singular
Hochschild cochain complex and the right singular Hochschild cochain complex of Λ,

respectively. Moreover, both C
∗
sg,L(Λ,Λ) and C

∗
sg,R(Λ,Λ) have natural B∞-algebra

structures, which induce the same Gerstenhaber algebra structure on HH∗
sg(Λ,Λ);

see Proposition 8.9.

1
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There is a canonical isomorphism

C
∗
sg,L(Λ

op,Λop) � C
∗
sg,R(Λ,Λ)

opp(1.1)

of B∞-algebras; see Proposition 8.10. Here, for a B∞-algebra A we denote by
Aopp its opposite B∞-algebra; see Definition 5.7. We mention that the B∞-algebra
structures on the singular Hochschild cochain complexes come from a natural action
of the cellular chains of the spineless cacti operad introduced in [48].

The singular Hochschild cohomology is also called Tate-Hochschild cohomology
in [89–91]; it is a bimodule analogue of the usual Tate cohomology [17], which
might be traced back to [85]. The result in [78] shows that the singular Hochschild
cohomology can be viewed as an algebraic formalism of Rabinowitz-Floer homology
[24] in symplectic geometry.

1.2. The main results

Let A = (A,mn;μp,q) be a B∞-algebra, where (A,mn) is the underlying A∞-
algebra and μp,q are the B∞-products. We denote by Atr the transpose B∞-algebra;
see Definition 5.9.

The first main result, a duality theorem on general B∞-algebras, might be
viewed as a conceptual advance on B∞-algebras.

Theorem 1.1 (= Theorem 5.10). Let (A,mn;μp,q) be a B∞-algebra. Then
there is a natural B∞-isomorphism between the opposite B∞-algebra Aopp and the
transpose B∞-algebra Atr.

It is a standard fact that a B∞-algebra structure on A is equivalent to a dg
bialgebra structure on the tensor coalgebra T c(sA) over the 1-shifted graded space
sA. By a classical result, the dg bialgebra T c(sA) admits a bijective antipode S.
The B∞-isomorphism in Theorem 1.1 is precisely induced by the antipode S.

We mention that if μp,q = 0 for any p > 1, the antipode S and thus the
required B∞-isomorphism have an explicit graphic description from the Kontsevich-
Soibelman minimal operad; see Remark 5.11.

Theorem 1.1 is applied to establish B∞-isomorphisms between the (resp. sin-
gular) Hochschild cochain complexes of an algebra and of its opposite algebra; see
Propositions 6.5 and 8.10 (= the isomorphism (1.1)), respectively.

Recall that Λ is a finite dimensional k-algebra. Denote by Λ0 the semisimple
quotient algebra of Λ modulo its Jacobson radical. Recently, Keller proved in [55]
that if Λ0 is separable over k, then there is a natural isomorphism of graded algebras

HH∗
sg(Λ,Λ)

∼−→ HH∗(Sdg(Λ),Sdg(Λ)).(1.1)

This isomorphism plays a central role in the proof of Donovan-Wemyss’s conjecture
[29,44,45].

Denote by Ho(B∞) the homotopy category of B∞-algebras [43, 52]. In [55,
Conjecture 1.2], Keller conjectures that there is an isomorphism in Ho(B∞)

C
∗
sg,L(Λ

op,Λop) � C∗(Sdg(Λ),Sdg(Λ)).(1.2)

In particular, we have an induced isomorphism

HH∗
sg(Λ,Λ)

∼−→ HH∗(Sdg(Λ),Sdg(Λ))
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respecting the Gerstenhaber structures. A slightly stronger version of the conjec-
ture claims that the induced isomorphism above coincides with the natural isomor-
phism (1.1).

It is well-known that a B∞-algebra induces a dg Lie algebra and that a
B∞-quasi-isomorphism induces a quasi-isomorphism of dg Lie algebras; see Re-
mark 5.19. Keller’s conjecture yields a zigzag of quasi-isomorphisms of dg Lie

algebras, or equivalently, an L∞-quasi-isomorphism, between C
∗
sg,L(Λ

op,Λop) and
C∗(Sdg(Λ),Sdg(Λ)). From the general idea of deformation theory via dg Lie alge-
bras in characteristic zero [67,76], Keller’s conjecture indicates that the deforma-
tion theory of the dg singularity category is controlled by the singular Hochschild
cohomology, where the latter is usually much easier to compute than the Hochschild
cohomology of the dg singularity category. For example, in view of the work
[12,31,55], it would be of interest to study the relationship between the singular
Hochschild cohomology and the deformation theory of Landau-Ginzburg models.
We mention that Keller’s conjecture is analogous to the isomorphism

C∗(Λop,Λop) � C∗(Db
dg(Λ-mod),Db

dg(Λ-mod))

for the classical Hochschild cochain complexes; see [52,64].
We say that an algebra Λ satisfies Keller’s conjecture, provided that there is an

isomorphism (1.2) for Λ. The second main result, an invariance theorem, justifies
Keller’s conjecture to some extent, as a reasonable conjecture should be invariant
under reasonable equivalence relations.

Theorem 1.2 (= Theorem 14.4). Let Π be another algebra. Assume that Λ
and Π are connected by a finite zigzag of one-point (co)extensions and singular
equivalences with levels. Then Λ satisfies Keller’s conjecture if and only if so does Π.

Recall that a derived equivalence [77] between two algebras naturally induces
a singular equivalence with level. It follows that Keller’s conjecture is invariant
under derived equivalences.

We leave some comments on the proof of Theorem 1.2. It is known that both
one-point (co)extensions of algebras [20] and singular equivalences with levels [87]
induce triangle equivalences between the singularity categories. We observe that
these triangle equivalences can be enhanced to quasi-equivalences between the dg
singularity categories.

On the other hand, we prove that the singular Hochschild cochain complexes,
as B∞-algebras, are invariant under one-point (co)extensions and singular equiva-
lences with levels. For the invariance under singular equivalences with levels, the
idea of using a triangular matrix algebra is adapted from [52], while our argument
is much more involved due to the colimits occurring in the consideration. For ex-
ample, analogous to the colimit construction [90] of the right singular Hochschild
cochain complex, we construct an explicit colimit complex for any Λ-Π-bimodule
M . When M is projective on both sides, the constructed colimit complex computes
the Hom space from M to Σi(M) in the singularity category of Λ-Π-bimodules.

Let Q be a finite quiver without sinks. Denote by kQ/J2 the correspond-
ing finite dimensional algebra with radical square zero. We aim to verify Keller’s
conjecture for kQ/J2. However, our approach is indirect, using the Leavitt path
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algebra L(Q) over k in the sense of [1,6,7]. We mention close connections of Leav-
itt path algebras with symbolic dynamic systems [2,21,41] and noncommutative
geometry [80].

By the work [23,60,80], the singularity category of kQ/J2 is closely related to
the Leavitt path algebra L(Q). The Leavitt path algebra L(Q) is infinite dimen-
sional as Q has no sinks, therefore its link to the finite dimensional algebra kQ/J2

is somehow unexpected. We mention that L(Q) is naturally Z-graded, which will
be viewed as a dg algebra with trivial differential throughout this paper.

The third main result verifies Keller’s conjecture for the algebra kQ/J2.

Theorem 1.3 (= Theorem 14.5). Let Q be a finite quiver without sinks. Set
Λ = kQ/J2. Then there are isomorphisms in the homotopy category Ho(B∞) of
B∞-algebras

C
∗
sg,L(Λ

op,Λop)
Υ−→ C∗(L(Q), L(Q))

Δ−→ C∗(Sdg(Λ),Sdg(Λ)).

In particular, there are isomorphisms of Gerstenhaber algebras

HH∗
sg(Λ

op,Λop) −→ HH∗(L(Q), L(Q)) −→ HH∗(Sdg(Λ),Sdg(Λ)).

In Theorem 1.3, the isomorphism Δ between the Hochschild cochain com-
plex of the Leavitt path algebra L(Q) and the one of the dg singularity cate-
gory Sdg(kQ/J2) enhances the link [23, 60,80] between L(Q) and kQ/J2 to the
B∞-level. The approach to obtain Δ is categorical, relying on a description of
Sdg(kQ/J2) via the dg perfect derived category of L(Q). The isomorphism Υ,
which is inspired by [89] and is of combinatoric flavour, establishes a brand new
link between L(Q) and kQ/J2. The primary tool to obtain Υ is the homotopy
transfer theorem [47] for dg algebras.

The composite isomorphism Δ ◦ Υ verifies Keller’s conjecture for the algebra
kQ/J2, which seems to be the first confirmed case. Indeed, combining Theorems
1.2 and 1.3, we verify Keller’s conjecture for kQ/J2 for any finite quiver Q (possibly
with sinks), and for any finite dimensional gentle algebra. Let us mention that gentle
algebras are of interest from many different perspectives [35, 40]. It is unclear
whether the proof of Theorem 1.3 can be generalized to a wider class of algebras,
for example, Koszul algebras.

Let us describe the key steps in the proof of Theorem 1.3, which are illustrated
in the diagram (14.2) in the proof of Theorem 14.5.

Using the standard argument for dg quotient categories [30,50], we prove first
that the dg singularity category is essentially the same as the dg enhancement of the
singularity category via acyclic complexes of injective modules [58]; see Corollary
3.2. Then using the explicit compact generator [60] of the homotopy category of
acyclic complexes of injective modules and the general results in [52] on Hochschild
cochain complexes, we infer the isomorphism Δ.

The isomorphism Υ is constructed in a very explicit but indirect manner.
The main ingredients are the (non-strict) B∞-isomorphism (1.1), two strict B∞-
isomorphisms and an explicit B∞-quasi-isomorphism (Φ1,Φ2, · · · ).

We introduce two new explicit B∞-algebras, namely the combinatorial B∞-

algebra C
∗
sg,R(Q,Q) of Q constructed by parallel paths in Q, and the Leavitt B∞-

algebra ̂C∗(L,L) whose construction is inspired by an explicit projective bimodule
resolution of L = L(Q).
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Set E = kQ0 to be the semisimple subalgebra of Λ. We first observe that

C
∗
sg,R(Λ,Λ) is strictly B∞-quasi-isomorphic to C

∗
sg,R,E(Λ,Λ), the E-relative right

singular Hochschild cochain complex. Using the explicit description [89] of the

complex C
∗
sg,R,E(Λ,Λ) via parallel paths in Q, we obtain a strict B∞-isomorphism

between C
∗
sg,R,E(Λ,Λ) and C

∗
sg,R(Q,Q). We prove that C

∗
sg,R(Q,Q) and ̂C∗(L,L)

are strictly B∞-isomorphic.

We construct an explicit homotopy deformation retract between ̂C∗(L,L) and

C
∗
E(L,L), the normalized E-relative Hochschild cochain complex of L. Then the

homotopy transfer theorem for dg algebras yields an A∞-quasi-isomorphism

(Φ1,Φ2, · · · ) : ̂C∗(L,L) −→ C
∗
E(L,L).

This A∞-morphism is explicitly given by the brace operation of ̂C∗(L,L). Using
the higher pre-Jacobi identity, we prove that

(Φ1,Φ2, · · · ) : ̂C∗(L,L) −→ C
∗
E(L,L)

opp

is indeed a B∞-morphism. Since the natural embedding of C
∗
E(L,L) into C∗(L,L)

is a strict B∞-quasi-isomorphism, we obtain the required isomorphism Υ.

1.3. The structure of the paper

The paper is structured as follows. In Chapter 2, we review basic facts and
results on dg quotient categories. We prove in Section 2.2 that dg singularity cate-
gories are invariant under both one-point (co)extensions and singular equivalences
with levels.

We enhance a result in [58] to the dg level in Chapter 3. More precisely, we
prove that the dg singularity category is essentially the same as the dg category
of certain acyclic complexes of injective modules; see Proposition 3.1. The no-
tion of Leavitt path algebras is recalled in Chapter 4. We prove that there is a
zigzag of quasi-equivalences connecting the dg singularity category of Λ = kQ/J2

to the dg perfect derived category of the opposite dg algebra Lop = L(Q)op; see
Proposition 4.2. Here, Q is a finite quiver without sinks.

In Chapter 5, we give a brief introduction to B∞-algebras. We describe the
axioms of B∞-algebras explicitly. For any given B∞-algebra, we introduce the
opposite B∞-algebra and the transpose B∞-algebra. We prove that there is a
natural B∞-isomorphism between the opposite B∞-algebra and the transpose B∞-
algebra; see Theorem 5.10. We mainly focus on a special kind of B∞-algebras, the
so-called brace B∞-algebras, whose underlying A∞-algebras are dg algebras as well
as some of whose B∞-products vanish. We review some facts on Hochschild cochain
complexes of dg categories and (normalized) relative bar resolutions of dg algebras
in Chapter 6.

Inspired by the results in [42,59], we provide a general construction of homo-
topy deformation retracts for dg algebras in Chapter 7. Using this, we construct
an explicit homotopy deformation retract for the bimodule projective resolutions
of Leavitt path algebras; see Proposition 7.5.

We recall from [90] the singular Hochschild cochain complexes and their B∞-
structures in Chapter 8. We prove the B∞-isomorphism (1.1) in Proposition 8.10,
based on the general result in Theorem 5.10. We describe explicitly the brace
operation on the singular Hochschild cochain complex and illustrate it with an
example in Subsection 8.2.2.
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In Chapter 9, we prove that the (relative) singular Hochschild cochain com-
plexes, as B∞-algebras, are invariant under one-point (co)extensions of algebras
and singular equivalences with levels.

In Chapter 10, we give a combinatorial description for the singular Hochschild
cochain complex of Λ = kQ/J2. We introduce the combinatorial B∞-algebra

C
∗
sg,R(Q,Q) of Q, which is strictly B∞-isomorphic to the (relative) singular Hochs-

child cochain complex of Λ; see Theorem 10.4. We introduce the LeavittB∞-algebra
̂C∗(L,L) in Chapter 11, and show that it is strictly B∞-isomorphic to C

∗
sg,R(Q,Q),

and thus to the (relative) singular Hoschild cochain complex of Λ; see Proposi-
tion 11.4.

In Chapter 12, we apply the homotopy transfer theorem [47] for dg algebras to

obtain an explicit A∞-quasi-isomorphism (Φ1,Φ2, · · · ) from ̂C∗(L,L) to C
∗
E(L,L);

see Proposition 12.8. In Chapter 13, we verify that (Φ1,Φ2, · · · ) is indeed a B∞-
morphism; see Theorem 13.1.

In Chapter 14, we prove that Keller’s conjecture is invariant under one-point
(co)extensions of algebras and singular equivalences with levels; see Theorem 14.4.
We verify Keller’s conjecture for the algebra kQ/J2 in Theorem 14.5.

Throughout this paper, we work over a fixed field k. In other words, we require
that all the algebras, categories and functors in the sequel are k-linear; moreover, the
unadorned Hom and ⊗ are over k. We use 1V to denote the identity endomorphism
of the (graded) k-vector space V . When no confusion arises, we simply write it as 1.

Acknowledgments

We are very grateful to the referee for many helpful comments, and to Bernhard
Keller for many inspiring discussions. Chen thanks Lleonard Rubio y Degrassi for
the reference [14] and Guisong Zhou for the reference [70]. Li thanks Pere Ara, Jie
Du, Roozbeh Hazrat and Steffen Koenig for their support and help. Wang thanks
Henning Krause for explaining the details in [58] and Alexander Voronov for many
useful discussions on B∞-algebras. He also thanks Guodong Zhou for his constant
support and encouragement.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 2

DG categories and dg quotients

In this chapter, we recall basic facts and results on dg categories. The stan-
dard references are [30, 49]. Following [20] and [87], we prove that both one-
point (co)extensions of algebras and singular equivalences with levels induce quasi-
equivalences between dg singularity categories.

For the fixed field k, we denote by k-mod the abelian category of k-vector
spaces.

2.1. DG categories and dg functors

Let A be a dg category over k. For two objects x and y, the Hom-complex is
usually denoted by A(x, y) and its differential is denoted by dA. For a homogeneous
morphism a, its degree is denoted by |a|. Denote by Z0(A) the ordinary category of
A, which has the same objects as A and its Hom-space is given by Z0(A(x, y)), the
zeroth cocycle of A(x, y). Similarly, the homotopy category H0(A) has the same
objects, but its Hom-space is given by the zeroth cohomology H0(A(x, y)).

Recall that a dg functor F : A → B is quasi-fully faithful, if the cochain map

Fx,y : A(x, y) −→ B(Fx, Fy)

is a quasi-isomorphism for any objects x, y in A. Then H0(F ) : H0(A) → H0(B)
is fully faithful. A quasi-fully faithful dg functor F is called a quasi-equivalence if
H0(F ) is dense.

Example 2.1. Let a be an additive category. Denote by Cdg(a) the dg category
of cochain complexes in a. A cochain complex in a is usually denoted by X =
(
⊕

p∈Z Xp, dX) or (X, dX). The p-th component of the Hom-complex Cdg(a)(X,Y )
is given by the following infinite product

Cdg(a)(X,Y )p =
∏

n∈Z

Homa(X
n, Y n+p),

whose elements will be denoted by f = {fn}n∈Z with fn ∈ Homa(X
n, Y n+p). The

differential d acts on f such that d(f)n = dn+p
Y ◦ fn − (−1)|f |fn+1 ◦ dnX for each

n ∈ Z.
We observe that the homotopy category H0(Cdg(a)) coincides with the classical

homotopy category K(a) of cochain complexes in a.

Example 2.2. The dg category Cdg(k-mod) is usually denoted by Cdg(k).
Let A be a small dg category. By a left dg A-module, we mean a dg functor
M : A → Cdg(k). The following notation will be convenient: for a morphism
a : x → y in A and m ∈ M(x), the resulting element M(a)(m) ∈ M(y) is written
as a ·m. Here, the central dot indicates the left A-action on M . Indeed, we usually

7
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identify M with the formal sum
⊕

x∈obj(A)M(x) with the above left A-action. The

differential dM means
⊕

x∈obj(A) dM(x).

We denote by A-DGMod the dg category formed by left dg A-modules. For
two dg A-modules M and N , a morphism η = (ηx)x∈obj(A) : M → N of degree p
consists of maps ηx : M(x) → N(x) of degree p satisfying

N(a) ◦ ηx = (−1)|a|·pηy ◦M(a)

for each morphism a : x → y in A. These morphisms form the p-th component of
A-DGMod(M,N). The differential is defined such that d(η)x = d(ηx). Here, d(ηx)
means the differential in Cdg(k). In other words, d(ηx) = dN(x)◦ηx−(−1)pηx◦dM(x).

For a left dg A-module M , the suspended dg module Σ(M) is defined such that
Σ(M)(x) = Σ(M(x)), the suspension of the complex M(x). The left A-action on
Σ(M) is given such that a ·Σ(m) = (−1)|a|Σ(a ·m), where Σ(m) means the element
in Σ(M(x)) corresponding to m ∈ M(x). This gives rise to a dg endofunctor Σ on
A-DGMod, whose action on morphisms η is given such that Σ(η)x = (−1)|η|ηx.

Example 2.3. Denote by Aop the opposite dg category of A, whose composition
is given by a ◦op b = (−1)|a|·|b|b ◦ a. We identify a left dg Aop-module with a right
dg A-module. Then we obtain the dg category DGMod-A of right dg A-modules.

For a right dg A-module M , a morphism a : x → y in A and m ∈ M(y),
the right A-action on M is given such that m · a = (−1)|a|·|m|M(a)(m) ∈ M(x).
The suspended dg module Σ(M) is defined similarly. We emphasize that the right
A-action on Σ(M) is identical to the one on M .

Let A be a small dg category. Recall that H0(A-DGMod) has a canonical
triangulated structure with the suspension functor induced by Σ. The derived cat-
egory D(A) is the Verdier quotient category of H0(A-DGMod) by the triangulated
subcategory of acyclic dg modules.

Let T be a triangulated category with arbitrary coproducts. A triangulated
subcategory N ⊆ T is localizing if it is closed under arbitrary coproducts. For a
set S of objects, we denote by Loc(S) the localizing subcategory generated by S,
that is, the smallest localizing subcategory containing S.

An objectX in T is compact if HomT (X,−) : T → k-mod preserves coproducts.
Denote by T c the full triangulated subcategory formed by compact objects. The
category T is compactly generated , provided that there is a set S of compact objects
such that T = Loc(S).

For example, the free dg A-module A(x,−) is compact in D(A). Indeed, D(A)
is compactly generated by these modules. The perfect derived category per(A) =
D(A)c is the full subcategory formed by compact objects.

The Yoneda dg functor

YA : A −→ DGMod-A, x 	−→ A(−, x)

is fully faithful. In particular, it induces a full embedding

H0(YA) : H
0(A) −→ H0(DGMod-A).

The dg category A is said to be pretriangulated , provided that the essential image
of H0(YA) is a triangulated subcategory of H0(DGMod-A). The terminology is
justified by the evident fact: the homotopy category H0(A) of a pretriangulated
dg category A has a canonical triangulated structure.

The following fact is well-known; see [19, Lemma 3.1].
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Lemma 2.4. Let F : A → B be a dg functor between two pretriangulated dg cat-
egories. Then H0(F ) : H0(A) → H0(B) is naturally a triangle functor. Moreover,
F is a quasi-equivalence if and only if H0(F ) is a triangle equivalence. �

In this sequel, we will identify quasi-equivalent dg categories. To be more
precise, we work in the homotopy category Hodgcat [81] of small dg categories,
which is by definition the localization of dgcat, the category of small dg categories,
with respect to quasi-equivalences. The morphisms in Hodgcat are usually called
dg quasi-functors . Any dg quasi-functor from A to B can be realized as a roof

A F1←− C F2−→ B
of dg functors, where F1 is a cofibrant replacement, in particular, it is a quasi-
equivalence. Recall that up to quasi-equivalences, every dg category might be
identified with its cofibrant replacement; compare [30, Appendix B.5].

Assume that B ⊆ A is a full dg subcategory. We denote by π : A → A/B the dg
quotient of A by B [30,50]. Since we work over the field k, the simple construction
of A/B is as follows: the objects of A/B are the same as A; we freely add new
endomorphisms εU of degree −1 for each object U in B, and set d(εU ) = 1U .
Here, by freely adding these εU ’s, we mean that first form the dg tensor category
of A with respect to the free dg A-A-bimodule generated by these εU ’s, and then
deform the differential of the dg tensor category by setting d(εU ) = 1U . The added
endomorphism εU is a contracting homotopy for U ; see [30, Section 3].

Remark 2.5. There might be a set-theoretical problem when one defines the
dg quotient category for non-small dg categories. The standard way around this
problem is to fix a universe, in which all the categories in the consideration are
required to be small. When forming dg quotient categories, we might enlarge
the universe if necessary; compare [64, Subsection 2.5] and [66, Remark 1.22 and
Appendix A]. In what follows, we will not discuss the set-theoretical complications.

The following fact follows immediately from the above simple construction.

Lemma 2.6. Assume that C ⊆ B ⊆ A are full dg subcategories. Then there is
a canonical quasi-equivalence

� (A/C)/(B/C) ∼−→ A/B.
The following fundamental result follows immediately from [30, Theorem 3.4];

compare [66, Theorem 1.3(i) and Lemma 1.5].

Lemma 2.7. Assume that both A and B are pretriangulated. Then A/B is also
pretriangulated. Moreover, π : A → A/B induces a triangle equivalence

H0(A)/H0(B) ∼−→ H0(A/B).
Here, H0(A)/H0(B) denotes the Verdier quotient category of H0(A) by H0(B). �

We will be interested in the following dg quotient categories.

Example 2.8. For a small dg category A, denote by A-DGModac the full dg
subcategory of A-DGMod formed by acyclic modules. We have the dg derived
category

Ddg(A) = A-DGMod/A-DGModac.

The terminology is justified by the following fact: there is a canonical identification
of H0(Ddg(A)) with D(A); see Lemma 2.7. Then we have the dg perfect derived
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category perdg(A) = Ddg(A)c, which is formed by those dg modules becoming
compact in D(A).

Example 2.9. Let Λ be a k-algebra, which is a left noetherian ring. Denote
by Λ-mod the abelian category of finitely generated left Λ-modules. Denote by

Cb
dg(Λ-mod) the dg category of bounded complexes, and by Cb,ac

dg (Λ-mod) the full
dg subcategory formed by acyclic complexes. The bounded dg derived category is
defined to be

Db
dg(Λ-mod) = Cb

dg(Λ-mod)/Cb,ac
dg (Λ-mod).

Similar to Example 2.8, we identify H0(Db
dg(Λ-mod)) with the usual bounded de-

rived category Db(Λ-mod).
Denote by per(Λ) the full subcategory of Db(Λ-mod) consisting of perfect

complexes. The singularity category [17, 75] of Λ is defined to be the following
Verdier quotient

Dsg(Λ) = Db(Λ-mod)/per(Λ).

As its dg analogue, the dg singularity category [12, 16, 55] of Λ is given by the
following dg quotient category

Sdg(Λ) = Db
dg(Λ-mod)/perdg(Λ).

Here, perdg(Λ) denotes the full dg subcategory of Db
dg(Λ-mod) formed by perfect

complexes. The notation perdg(Λ) is consistent with the one in Example 2.8, if Λ
is viewed as a dg category with a single object. By Lemma 2.7, we identify Dsg(Λ)
with H0(Sdg(Λ)).

2.2. One-point (co)extensions and singular equivalences with levels

In this section, we prove that both one-point (co)extensions [8, III.2] and sin-
gular equivalences with levels [87] induce quasi-equivalences between dg singularity
categories of the relevant algebras. For simplicity, we only consider finite dimen-
sional algebras and finite dimensional modules. We emphasize that Lemmas 2.10
and 2.11 below are essentially due to [20, Propositions 4.2 and 4.1].

We first consider a one-point coextension of an algebra. Let Λ be a finite
dimensional k-algebra, and M be a finite dimensional right Λ-module. We view
M as a k-Λ-bimodule on which k acts centrally. The corresponding one-point
coextension is an upper triangular matrix algebra

Λ′ =

(

k M
0 Λ

)

.

As usual, a left Λ′-module is viewed as a column vector
(

V
X

)

,

where V is a k-vector space and X is a left Λ-module together with a k-linear map
ψ : M ⊗Λ X → V ; see [8, III.2]. We usually suppress this ψ.

The obvious exact functor j : Λ′-mod → Λ-mod sends
(

V
X

)

to X. It induces a dg functor

j : Db
dg(Λ

′-mod) −→ Db
dg(Λ-mod).
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Lemma 2.10. The above dg functor j induces a quasi-equivalence

j̄ : Sdg(Λ
′)

∼−→ Sdg(Λ).

Proof. We observe that the functor j : Λ′-mod → Λ-mod sends projective Λ′-
modules to projective Λ-modules. It follows that the above dg functor j respects
perfect complexes. Therefore, we have the induced dg functor j̄ between the dg
singularity categories. As in Example 2.9, we identify H0(Sdg(Λ

′)) and H0(Sdg(Λ))
with Dsg(Λ

′) and Ssg(Λ), respectively. Then we observe that H0(j̄) : Dsg(Λ
′) →

Dsg(Λ) coincides with the triangle equivalence in [20, Proposition 4.2 and its proof].
By Lemma 2.4, we are done. �

Let N be a finite dimensional left Λ-module. The one-point extension is an
upper triangular matrix algebra

Λ′′ =

(

Λ N
0 k

)

.

Similarly, a left Λ′′-module is denoted by a column vector
(

Y
U

)

,

where U is a k-vector space and Y is a left Λ-module endowed with a left Λ-module
morphism φ : N ⊗ U → Y .

The exact functor i : Λ-mod → Λ′′-mod sends a left Λ-module Y to an evidently-
defined Λ′′-module

(

Y
0

)

.

It induces a dg functor

i : Db
dg(Λ-mod) −→ Db

dg(Λ
′′-mod).

Lemma 2.11. The above dg functor i induces a quasi-equivalence ī : Sdg(Λ)
∼−→

Sdg(Λ
′′).

Proof. The argument here is similar to the one in the proof of Lemma 2.10.
As the functor i : Λ-mod → Λ′′-mod sends projective Λ-modules to projective Λ′′-
modules, the above dg functor i respects perfect complexes. Therefore, we have
the induced dg functor ī between the dg singularity categories. We observe that
H0(̄i) : Dsg(Λ) → Dsg(Λ

′′) coincides with the triangle equivalence in [20, Proposi-
tion 4.1 and its proof]. Then we are done by applying Lemma 2.4. �

Let Λ and Π be two finite dimensional k-algebras. For a Λ-Π-bimodule, we
always require that k acts centrally. Therefore, a Λ-Π-bimodule might be identified
with a left module over Λ⊗Πop.

Denote by Λe = Λ⊗Λop the enveloping algebra of Λ. Therefore, Λ-Λ-bimodules
are viewed as left Λe-modules. Denote by Λe-mod the stable category of Λe-mod
modulo projective Λe-modules [8, IV.1], and by Ωn

Λe(Λ) the n-th syzygy of Λ for
n ≥ 1. By convention, we have Ω0

Λe(Λ) = Λ. We emphasize that Ωn
Λe(Λ) is an

object of the stable category Λe-mod.
The following terminology is modified from [87, Definition 2.1].

Definition 2.12. Let M and N be a Λ-Π-bimodule and a Π-Λ-bimodule, re-
spectively, and let n ≥ 0. We say that the pair (M,N) defines a singular equivalence
with level n, provided that the following conditions are fulfilled.
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(1) The four one-sided modules ΛM , MΠ, ΠN and NΛ are all projective.
(2) There are isomorphisms M ⊗Π N � Ωn

Λe(Λ) and N ⊗Λ M � Ωn
Πe(Π) in

Λe-mod and Πe-mod, respectively. �
Remark 2.13.

(1) A stable equivalence of Morita type in the sense of [15, Definition 5.A] is
naturally a singular equivalence with level zero.

(2) By [87, Theorem 2.3], a derived equivalence induces a singular equivalence
with a certain level.

(3) By [79, Proposition 2.6], a singular equivalence of Morita type, studied in
[93], induces a singular equivalence with a certain level.

Assume that M is a Λ-Π-bimodule such that both ΛM and MΠ are projec-
tive. The obvious dg functor M ⊗Π − : Db

dg(Π-mod) → Db
dg(Λ-mod) between the

bounded dg derived categories preserves perfect complexes. Hence it induces a dg
functor

M ⊗Π − : Sdg(Π) −→ Sdg(Λ)

between the dg singularity categories.
Definition 2.12 is justified by the following observation, which is essentially due

to [87, Remark 2.2].

Lemma 2.14. Assume that (M,N) defines a singular equivalence with level n.
Then the above dg functor M ⊗Π − : Sdg(Π) → Sdg(Λ) is a quasi-equivalence.

Proof. We identify H0(Sdg(Π)) with Dsg(Π), and H0(Sdg(Λ)) with Dsg(Λ);
see Example 2.9. Then H0(M ⊗Π −) is identified with the obvious tensor functor

M ⊗Π − : Dsg(Π) −→ Dsg(Λ).

As noted in [87, Remark 2.2], the latter functor is a triangle equivalence, whose
quasi-inverse is given by Σn ◦ (N ⊗Λ −). Then we are done by Lemma 2.4. �
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CHAPTER 3

The dg singularity category and acyclic complexes

In this chapter, we enhance a result in [58] to show that the dg singularity
category can be described as the dg category of certain acyclic complexes of injective
modules.

We fix a k-algebra Λ, which is a left noetherian ring. We denote by Λ-mod the
abelian category of left Λ-modules. For two complexes X and Y of Λ-modules, the
Hom complex Cdg(Λ-mod)(X,Y ) is usually denoted by HomΛ(X,Y ). Recall that
the classical homotopy category K(Λ-mod) coincides with H0(Cdg(Λ-mod)).

Denote by Λ-Inj the category of injective Λ-modules, and by K(Λ-Inj) the ho-
motopy category of complexes of injective modules. The full subcategoryKac(Λ-Inj)
is formed by acyclic complexes of injective modules. Since Λ is left noetherian, both
K(Λ-Inj) and Kac(Λ-Inj) admit arbitrary coproducts.

For a bounded complexX of Λ-modules, we denote by φX : X → iX its injective
resolution. Then we have the following isomorphism

HomK(Λ-Inj)(iX, I) � HomK(Λ-Mod)(X, I), f 	−→ f ◦ φX ,(3.1)

for each complex I ∈ K(Λ-Inj). It follows that iX is compact in K(Λ-Inj), if X lies
in Kb(Λ-mod); see [58, Lemma 2.1]. In particular, we have

HomK(Λ-Inj)(iΛ, I) � HomK(Λ-Mod)(Λ, I) � H0(I).(3.2)

Here, we view the regular module ΛΛ as a stalk complex concentrated in degree
zero. We denote by Loc(iΛ) the localizing subcategory of K(Λ-Inj) generated by iΛ.

Denote by Cac
dg(Λ-Inj) the full dg subcategory of Cdg(Λ-mod) formed by acyclic

complexes of injective Λ-modules. We identify H0(Cac
dg(Λ-Inj)) with Kac(Λ-Inj).

Then Cac
dg(Λ-Inj)

c means the full dg subcategory formed by complexes which become

compact in Kac(Λ-Inj).
The following result enhances [58, Corollary 5.4] to the dg level. We mention

that the argument given below is essentially due to [58].

Proposition 3.1. There is a dg quasi-functor

Φ: Sdg(Λ) −→ Cac
dg(Λ-Inj)

c,

such that

H0(Φ): Dsg(Λ) −→ Kac(Λ-Inj)c

is a triangle equivalence up to direct summands.

The following immediate consequence will be useful.

Corollary 3.2. Assume that the k-algebra Λ is finite dimensional. Then there
is a zigzag of quasi-equivalences connecting Sdg(Λ) to Cac

dg(Λ-Inj)
c.

13
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Proof. By [20, Corollary 2.4], the singularity category Dsg(Λ) has split idem-
potents. It follows that H0(Φ) is actually a triangle equivalence. In view of
Lemma 2.4, the required result follows immediately. �

Let T be a triangulated category. For a triangulated subcategory N , we have
the right orthogonal subcategory

N⊥ = {X ∈ T | HomT (N,X) = 0 for all N ∈ N}
and the left orthogonal subcategory

⊥N = {Y ∈ T | HomT (Y,N) = 0 for all N ∈ N}.
The subcategory N is right admissible (resp. left admissible) provided that the
inclusion N ↪→ T has a right adjoint (resp. left adjoint); see [13].

The following lemma is well-known; see [13, Lemma 3.1].

Lemma 3.3. Let N ⊆ T be left admissible. Then the natural functor N →
T /⊥N is a triangle equivalence. Moreover, the left orthogonal subcategory ⊥N is
right admissible satisfying N = (⊥N )⊥. �

Denote by L the full dg subcategory of Cdg(Λ-mod) consisting of those com-
plexes X such that HomΛ(X, I) is acyclic for each I ∈ Cdg(Λ-Inj). Similarly, denote
by M the full dg subcategory formed by Y satisfying that HomΛ(Y, J) is acyclic
for each J ∈ Cac

dg(Λ-Inj).

Lemma 3.4. The following canonical functors are all equivalences

(1) K(Λ-Inj)
∼−→ K(Λ-Mod)/H0(L);

(2) Kac(Λ-Inj)
∼−→ K(Λ-Mod)/H0(M);

(3) Kac(Λ-Inj)
∼−→ K(Λ-Inj)/Loc(iΛ);

(4) K(Λ-Inj)/Loc(iΛ)
∼−→ K(Λ-Mod)/H0(M),

which send any complex I to itself, viewed as an object in the target categories.

Proof. The Brown representability theorem and its dual version yield the
following useful fact: for a triangulated category T with arbitrary coproducts and
a localizing subcategory N which is compactly generated, the subcategory N is
right admissible; if furthermore N is closed under products, then N is also left
admissible; see [58, Proposition 3.3].

Recall from [58, Proposition 2.3 and Corollary 5.4] that both K(Λ-Inj) and
Kac(Λ-Inj) are compactly generated, which are both closed under coproducts and
products in K(Λ-Mod). Moreover, we observe that

⊥K(Λ-Inj) = H0(L) and ⊥Kac(Λ-Inj) = H0(M),

where the orthogonal is taken in K(Λ-Mod). Then the above fact and Lemma 3.3
yield (1) and (2).

By the isomorphism (3.2), we infer that Kac(Λ-Inj) = Loc(iΛ)⊥, where the
orthogonal is taken in K(Λ-Inj). Since iΛ is compact in K(Λ-Inj), the subcategory
Loc(iΛ) is right admissible. It follows from the dual version of Lemma 3.3 that
Kac(Λ-Inj) ⊆ K(Λ-Inj) is left admissible satisfying ⊥Kac(Λ-Inj) = Loc(iΛ). Then
(3) follows from Lemma 3.3.

The functor in (4) is well-defined, since Loc(iΛ) ⊆ H0(M). Then (4) follows
by combining (2) and (3). �
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Denote by P the full dg subcategory of Cb
dg(Λ-mod) formed by those com-

plexes which are isomorphic to bounded complexes of projective Λ-modules in
Db(Λ-mod). Therefore, we might identify the singularity category Dsg(Λ) with
Kb(Λ-mod)/H0(P).

Lemma 3.5. The canonical functor Kb(Λ-mod)/H0(P) → K(Λ-Mod)/H0(M)
is fully faithful, which induces a triangle equivalence up to direct summands

Kb(Λ-mod)/H0(P)
∼−→ (K(Λ-Mod)/H0(M))c.

Proof. The functor is well-defined since we have P ⊆ M. The assignment
X 	→ iX of injective resolutions yields a triangle functor i : Kb(Λ-mod) → K(Λ-Inj).
It induces the following horizontal functor.

Kb(Λ-mod)/H0(P)

�����
����

����
����

i �� K(Λ-Inj)/Loc(iΛ)

������
����

����
���

K(Λ-Mod)/H0(M)

The unnamed arrows are canonical functors. By [58, Corollary 5.4] the horizontal
functor i induces a triangle equivalence up to direct summands

Kb(Λ-mod)/H0(P)
∼−→ (K(Λ-Inj)/Loc(iΛ))c.

We claim that the diagram is commutative up to a natural isomorphism. Then we
are done by Lemma 3.4(4).

For the claim, we take X ∈ Kb(Λ-mod) and consider its injective resolution
φX : X → iX. We have the exact triangle

X
φX−→ iX −→ Cone(φX) −→ Σ(X).

The isomorphism (3.1) implies that Cone(φX) lies in H0(L) ⊆ H0(M). Therefore,
φX becomes an isomorphism in K(Λ-Mod)/H0(M), proving the claim. �

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Recall that M is the full dg subcategory of Cdg(Λ-Mod)
formed by Y satisfying that Homλ(Y, J) is acyclic for any J ∈ Cac

dg(Λ-Inj). Consider

the dg quotient category Cdg(Λ-Mod)/M.
By the equivalence in Lemma 3.4(2), the canonical dg functor

Cac
dg(Λ-Inj)

∼−→ Cdg(Λ-Mod)/M
is a quasi-equivalence, which restricts to a quasi-equivalence on compact objects

Cac
dg(Λ-Inj)

c ∼−→ (Cdg(Λ-Mod)/M)c.

By Lemma 2.6, we may identify Sdg(Λ) with Cb
dg(Λ-mod)/P. By Lemma 3.5, the

following canonical dg functor

Cb
dg(Λ-mod)/P −→ (Cdg(Λ-Mod)/M)c

is quasi-fully faithful, which induces a triangle equivalence up to direct summands
between the homotopy categories. Combining them, we obtain the required dg
quasi-functor. �
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CHAPTER 4

Quivers and Leavitt path algebras

In this chapter, we recall basic facts on quivers and Leavitt path algebras.
Using the main result in [60], we relate the dg singularity category of the finite
dimensional algebra with radical square zero to the dg perfect derived category of
the Leavitt path algebra. We obtain an explicit graded derivation over the Leavitt
path algebra, which will be used in Section 7.2.

Recall that a quiver Q = (Q0, Q1; s, t) consists of a set Q0 of vertices, a set Q1

of arrows and two maps s, t : Q1 → Q0, which associate to each arrow α its starting
vertex s(α) and its terminating vertex t(α), respectively. A vertex i of Q is a sink
provided that the set s−1(i) is empty.

A path of length n is a sequence p = αn · · ·α2α1 of arrows with t(αj) = s(αj+1)
for 1 ≤ j ≤ n − 1. Denote by l(p) = n. The starting vertex of p, denoted by s(p),
is s(α1) and the terminating vertex of p, denoted by t(p), is t(αn). We identify an
arrow with a path of length one. We associate to each vertex i ∈ Q0 a trivial path
ei of length zero. Set s(ei) = i = t(ei). Denote by Qn the set of paths of length n.

The path algebra kQ =
⊕

n≥0 kQn has a basis given by all paths in Q, whose

multiplication is given as follows: for two paths p and q satisfying s(p) = t(q),
the product pq is their concatenation; otherwise, we set the product pq to be zero.
Here, we write the concatenation of paths from right to left. For example, et(p)p =
p = pes(p) for each path p. Denote by J =

⊕

n≥1 kQn the two-sided ideal generated
by arrows.

We denote by Q the double quiver of Q, which is obtained by adding for each
arrow α ∈ Q1 a new arrow α∗ in the opposite direction. Clearly, we have s(α∗) =
t(α) and t(α∗) = s(α). The added arrows α∗ are called the ghost arrows.

In what follows, we assume that Q is a finite quiver without sinks. We set
Λ = kQ/J2 to be the corresponding finite dimensional algebra with radical square
zero. Observe that J2 is the two-sided ideal of kQ generated by the set of all paths
of length two.

The Leavitt path algebra L = L(Q) [1,6,7] is by definition the quotient algebra
of kQ modulo the two-sided ideal generated by the following set
{

αβ∗ − δα,βet(α) | α, β ∈ Q1 with s(α) = s(β)} ∪ {
∑

{α∈Q1|s(α)=i}
α∗α− ei | i ∈ Q0

}

.

These elements are known as the first Cuntz-Krieger relations and the second Cuntz-
Krieger relations , respectively.

If p = αn · · ·α2α1 is a path in Q of length n ≥ 1, we define p∗ = α∗
1α

∗
2 · · ·α∗

n.
We have s(p∗) = t(p) and t(p∗) = s(p). By convention, we set e∗i = ei. We observe
that for paths p, q in Q satisfying t(p) �= t(q), p∗q = 0 in L. Recall that the Leavitt
path algebra L is spanned by the following set
{

ei, p, p
∗, γ∗η | i ∈ Q0, p, γ, and η are nontrivial paths in Q with t(γ) = t(η)

}

;

17
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see [84, Corollary 3.2]. In general, this set is not k-linearly independent in L. For
an explicit basis, we refer to [3, Theorem 1].

The Leavitt path algebra L is naturally Z-graded by |ei| = 0, |α| = 1 and
|α∗| = −1 for i ∈ Q0 and α ∈ Q1. We write L =

⊕

n∈Z Ln, where Ln consists of
homogeneous elements of degree n.

For each i ∈ Q0 and m ≥ 0, we consider the following subspace of eiLei

Xi,m = Spank{γ∗η | t(γ) = t(η), s(γ) = i = s(η), l(η) = m}.
We observe that Xi,m ⊆ Xi,m+1, since we have

γ∗η =
∑

{α∈Q1|s(α)=t(η)}
(αγ)∗αη.(4.1)

Lemma 4.1. The following facts hold.

(1) The set {γ∗η | t(γ) = t(η), s(γ) = i = s(η), l(η) = m} is k-linearly
independent in L = L(Q).

(2) We have eiLei =
⋃

m≥0 Xi,m.

Proof. Using the grading of L, the first statement follows from [21, Proposi-
tion 4.1]. The second one is trivial. �

The following result is based on the main result of [60]. We will always view
the Z-graded algebra L = L(Q) as a dg algebra with trivial differential. Then Lop

denotes the opposite dg algebra. We view Λ = kQ/J2 as a dg algebra concentrated
in degree zero.

Proposition 4.2. Keep the notation as above. Then there is a zigzag of quasi-
equivalences connecting Sdg(Λ) to perdg(L

op).

Proof. Recall that the injective Leavitt complex I is constructed in [60], which
is a dg Λ-Lop-bimodule. Moreover, it induces a triangle equivalence

HomΛ(I,−) : Kac(Λ-Inj)
∼−→ D(Lop),

which restricts to an equivalence

Kac(Λ-Inj)c
∼−→ per(Lop).

Recall the identifications H0(Cac
dg(Λ-Inj)

c) = Kac(Λ-Inj)c and H0(perdg(L
op)) =

per(Lop). Then combining the above restricted equivalence and Lemma 2.4, we
infer that the dg functor

HomΛ(I,−) : Cac
dg(Λ-Inj)

c −→ perdg(L
op)

is a quasi-equivalence. Then we are done by Corollary 3.2. �

Set E = kQ0 =
⊕

i∈Q0
kei, which is viewed as a semisimple subalgebra of L0.

Let M be a graded L-L-bimodule. A graded map D : L → M of degree −1 is called
a graded derivation provided that it satisfies the graded Leibniz rule

D(xy) = D(x)y + (−1)|x|xD(y)

for x, y ∈ L; if furthermore it satisfies D(ei) = 0 for each i ∈ Q0, it is called a
graded E-derivation.

Let sk be the 1-shifted space of k, that is, sk is concentrated in degree −1. The
element s1k of degree −1 will be simply denoted by s. Then we have the graded
L-L-bimodule

⊕

i∈Q0
Lei ⊗ sk⊗ eiL, which is clearly isomorphic to L⊗E sE⊗E L.
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Lemma 4.3. Keep the notation as above. Then there is a unique graded E-
derivation

D : L −→
⊕

i∈Q0

Lei ⊗ sk ⊗ eiL

satisfying D(α) = −α⊗ s⊗ es(α) and D(α∗) = −es(α) ⊗ s⊗ α∗ for each α ∈ Q1.

Proof. It is well-known that there is a unique graded E-derivation

D : kQ −→
⊕

i∈Q0

Lei ⊗ sk ⊗ eiL

satisfying D(α) = −α⊗ s⊗ es(α) and D(α∗) = −es(α) ⊗ s⊗α∗; consult the explicit
bimodule projective resolution in [27, Chapter 2, Proposition 2.6]. We claim that
D vanishes on the Cuntz-Krieger relations. Therefore, by the graded Leibniz rule,
it vanishes on the whole defining ideal. Then D induces uniquely the required
derivation D.

To prove the claim for the first Cuntz-Krieger relations, we take any α, β ∈ Q1

with s(α) = s(β). We have

D(αβ∗ − δα,βet(α)) = D(α)β∗ − αD(β∗)

= −α⊗ s⊗ β∗ − (−α⊗ s⊗ β∗) = 0.

For the second Cuntz-Krieger relations, we take any i ∈ Q0. Then we have

D
(

∑

{α∈Q1|s(α)=i}
α∗α− ei

)

=
∑

{α∈Q1|s(α)=i}

(

D(α∗)α− α∗D(α)
)

=
∑

{α∈Q1|s(α)=i}
(−ei ⊗ s⊗ α∗α− (−α∗α⊗ s⊗ ei))

= −ei ⊗ s⊗ ei − (−ei ⊗ s⊗ ei) = 0.

Here, the third equality uses the second Cuntz-Krieger relations in L twice. This
completes the proof of the claim. �

The following observation will be useful in Remark 12.1.

Remark 4.4. By the graded Leibniz rule, the graded E-derivation D has
the following explicit description: for nontrivial paths η = αm · · ·α2α1 and γ =
βp · · ·β2β1 satisfying t(η) = t(γ), we have

D(γ∗η) = −es(γ) ⊗ s⊗ γ∗η −
p−1
∑

l=1

(−1)lβ∗
1 · · ·β∗

l ⊗ s⊗ β∗
l+1 · · ·β∗

pαm · · ·α1

+

m−1
∑

l=1

(−1)m+p−lβ∗
1 · · ·β∗

pαm · · ·αl+1 ⊗ s⊗ αl · · ·α1

+ (−1)m+pγ∗η ⊗ s⊗ es(η).

Similarly, we have

D(γ∗) = −es(γ) ⊗ s⊗ γ∗ −
p−1
∑

l=1

(−1)lβ∗
1 · · ·β∗

l ⊗ s⊗ β∗
l+1 · · ·β∗

p , and

D(η) =

m−1
∑

l=1

(−1)m−lαm · · ·αl+1 ⊗ s⊗ αl · · ·α1 + (−1)mη ⊗ s⊗ es(η).
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CHAPTER 5

An introduction to B∞-algebras

In this chapter, we give a brief self-contained introduction to B∞-algebras and
B∞-morphisms. We introduce the opposite B∞-algebra and the transpose B∞-
algebra of any given B∞-algebra. There is a natural B∞-isomorphism between
them; see Theorem 5.10. We are mainly interested in a class of B∞-algebras, called
brace B∞-algebras, whose underlying A∞-algebras are dg algebras and some of
whose B∞-products vanish.

5.1. A∞-algebras and morphisms

Let us start by recalling A∞-algebras and A∞-morphisms. For details, we refer
to [51]. For two graded maps f : U → V and f ′ : U ′ → V ′ between graded spaces,
the tensor product f ⊗ f ′ : U ⊗ U ′ → V ⊗ V ′ is defined such that

(f ⊗ f ′)(u⊗ u′) = (−1)|f
′|·|u|f(u)⊗ f ′(u′),

where the sign (−1)|f
′|·|u| is given by the Koszul sign rule. We use 1 to denote the

identity endomorphism.

Definition 5.1. An A∞-algebra is a graded k-vector space A =
⊕

p∈Z Ap

endowed with graded k-linear maps

mn : A
⊗n −→ A, n ≥ 1,

of degree 2− n satisfying the following relations

(5.1)
n−1
∑

j=0

n−j
∑

s=1

(−1)j+s(n−j−s) mn−s+1(1
⊗j ⊗ms ⊗ 1⊗(n−j−s)) = 0, for n ≥ 1.

In particular, (A,m1) is a cochain complex of k-vector spaces.
For two A∞-algebras A and A′, an A∞-morphism f = (fn)≥1 : A → A′ is given

by a collection of graded maps fn : A
⊗n → A′ of degree 1 − n such that, for all

n ≥ 1, we have
(5.2)

∑

a+s+t=n
a,t≥0,s≥1

(−1)a+stfa+1+t(1
⊗a ⊗ms ⊗ 1⊗t) =

∑

r≥1
i1+···+ir=n

(−1)εm′
r(fi1 ⊗ · · · ⊗ fir ),

where ε = (r− 1)(i1 − 1) + (r− 2)(i2 − 1) + · · ·+ 2(ir−2 − 1) + (ir−1 − 1); if r = 1,
we set ε = 0. In particular, f1 : (A,m1) → (A′,m′

1) is a cochain map.
The composition g ◦∞ f of two A∞-morphisms f : A → A′ and g : A′ → A′′ is

given by

(g ◦∞ f)n =
∑

r≥1, i1+···+ir=n

(−1)εgr(fi1 ⊗ · · · ⊗ fir ), n ≥ 1,

where ε is defined as above. �
21
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An A∞-morphism f : A → A′ is strict provided that fi = 0 for all i �= 1. The
identity morphism is the strict morphism f given by f1 = 1A. An A∞-morphism
f : A → A′ is an A∞-isomorphism if there exists an A∞-morphism g : A′ → A such
that the composition f ◦∞ g coincides with the identity morphism of A′ and g ◦∞ f
coincides with the identity morphism of A. In general, an A∞-isomorphism is not
necessarily strict; see Theorem 5.10 for an example.

An A∞-morphism f : A → A′ is called an A∞-quasi-isomorphism provided that
f1 : (A,m1) → (A′,m′

1) is a quasi-isomorphism between the underlying complexes.
An A∞-isomorphism is necessarily an A∞-quasi-isomorphism.

Remark 5.2. Let A be a graded k-space and let sA be the 1-shifted graded
space: (sA)i = Ai+1. In particular, for any homogeneous element a ∈ A we have
that

|sa| = |a| − 1.

Denote by (T c(sA),Δ) the tensor coalgebra of sA, where the coproduct Δ is
given by

Δ(sa1,n) = 1⊗ (sa1,n) +

n−1
∑

i=1

(sa1,i)⊗ (sai+1,n) + (sa1,n)⊗ 1.(5.3)

Here, for simplicity we write sai⊗ sai+1⊗· · ·⊗ saj as sai,j for any i ≤ j. It is well-
known that an A∞-algebra structure on A is equivalent to a dg coalgebra structure
(T c(sA),Δ, D) on T c(sA), whereD is a coderivation of degree one satisfyingD2 = 0
and D(1) = 0; see e.g. [51, Subsection 3.6].

More precisely, for a dg tensor coalgebra (T c(sA),Δ, D) with D(1) = 0, we
may define a family of maps mn on A via the following commutative diagram,

(5.4) A⊗n

s⊗n

��

mn �� A

s

��
(sA)⊗n Mn=pr◦D �� sA

where pr : T c(sA) → sA is the projection and s : A → sA denotes the canonical
isomorphism a 	→ sa of degree −1. Then (A,m1,m2, · · · ) is an A∞-algebra. In
particular, the condition D2 = 0 corresponds to the A∞-identity (5.1).

Conversely, for an A∞-algebra (A,m1,m2, . . . ), we may define a family of
graded maps Mn on sA via the same commutative diagram (5.4). Then we ob-
tain a dg tensor coalgebra (T c(sA),Δ, D), where the coderivation D is given by
D(1) = 0 and

D(sa1,n) =
n

∑

j=1

n−j
∑

i=1

(−1)εsa1,i−1 ⊗Mj(sai,i+j−1)⊗ sai+j,n(5.5)

with ε = |a1|+ · · ·+ |ai−1| − i+ 1.
Accordingly, A∞-morphisms f : A → A′ correspond bijectively to dg coalgebra

homomorphisms T c(sA) → T c(sA′). Under this bijection, the above composition
f ◦∞ g of the A∞-morphisms f and g corresponds to the usual composition of the
induced dg coalgebra homomorphisms; see [51, Lemma 3.6].

We mention that any dg algebra A is viewed as an A∞-algebra with mn = 0
for n ≥ 3. In Section 12.3, we will construct an explicit A∞-quasi-isomorphism



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.2. B∞-ALGEBRAS AND MORPHISMS 23

between two concrete dg algebras, which is a non-strict A∞-morphism, that is, not
a dg algebra homomorphism between the dg algebras.

5.2. B∞-algebras and morphisms

The notion of B∞-algebras is due to [39, Subsection 5.2]. We unpack the
definition therein and write the axioms explicitly. We are mainly concerned with
a certain kind of B∞-algebras, called brace B∞-algebras ; see Definition 5.12. We
mention other references [52,86] for B∞-algebras.

Let A =
⊕

p∈Z Ap be a graded space, and let r ≥ 1 and l, n ≥ 0. For any

two sequences of nonnegative integers (l1, l2, . . . , lr) and (n1, n2, . . . , nr) satisfying
l = l1 + · · ·+ lr and n = n1 + · · ·+ nr, we define a k-linear map

σ(l1,...,lr ;n1,...,nr) : A
⊗l

⊗

A⊗n −→ (A⊗l1
⊗

A⊗n1)⊗ · · · ⊗ (A⊗lr
⊗

A⊗nr)

by sending (a1,l)
⊗

(b1,n) ∈ A⊗l
⊗

A⊗n to

(−1)ε
′
(a1,l1

⊗

b1,n1
)

⊗ (al1+1,l1+l2

⊗

bn1+1,n1+n2
) ⊗ · · · ⊗ (al1+···+lr−1+1,l

⊗

bn1+···+nr−1+1,n),

where ε′ =
∑r−2

i=0 (|bn1+···+ni+1| + · · · + |bn1+···+ni+1
|)(|al1+···+li+1+1| + · · · + |al|)

with n0 = 0. If li = 0 for some 1 ≤ i ≤ r we set A⊗li = k and al1+···+li−1+1 ⊗ · · · ⊗
al1+···+li = 1 ∈ k; similarly, if ni = 0 we set A⊗ni = k and bn1+···+ni−1+1 ⊗ · · · ⊗
bn1+···+ni

= 1 ∈ k. Here and later, we use the big tensor product
⊗

to distinguish
from the usual ⊗ and to specify the space where the tensors belong to.

Definition 5.3. A B∞-algebra is an A∞-algebra (A,m1,m2, · · · ) together with
a collection of graded maps (called B∞-products)

μp,q : A
⊗p

⊗

A⊗q −→ A, p, q ≥ 0

of degree 1− p− q satisfying the following relations.

(1) The unital condition:

(5.1) μ1,0 = 1A = μ0,1, μk,0 = 0 = μ0,k for k �= 1.

(2) The associativity of μp,q: for any fixed k, l, n ≥ 0, we have

l+n
∑

r=1

∑

l1+···+lr=l
n1+···+nr=n

(−1)ε1μk,r

(

1⊗k
⊗

(μl1,n1
⊗ · · · ⊗ μlr,nr

)σ(l1,...,lr ;n1,...,nr)

)

=
k+l
∑

s=1

∑

k1+···+ks=k
l1+···+ls=l

(−1)η1μs,n

(

(μk1,l1 ⊗ · · · ⊗ μks,ls)σ(k1,...,ks;l1,...,ls)

⊗

1⊗n
)

,

(5.2)

where

ε1 =

r−1
∑

i=1

(li + ni − 1)(r − i) +

r−1
∑

i=1

ni(li+1 + · · ·+ lr),

and η1 =

s
∑

i=1

(ki + li − 1)(n+ s− i) +

s−1
∑

i=1

li(ki+1 + · · ·+ ks).
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(3) The Leibniz rule for mn with respect to μp,q: for any fixed k, l ≥ 0, we
have

k+l
∑

r=1

∑

k1+···+kr=k
l1+···+lr=l

(−1)ε2mr(μk1,l1 ⊗ · · · ⊗ μkr,lr)σ(k1,...,kr ;l1,...,lr)

=

k
∑

r=1

k−r
∑

i=0

(−1)η
′
2μk−r+1,l(1

⊗i ⊗mr ⊗ 1⊗k−r−i
⊗

1⊗l)

+
l

∑

s=1

l−s
∑

i=0

(−1)η
′′
2 μk,l−s+1(1

⊗k
⊗

1⊗i ⊗ms ⊗ 1⊗l−i−s),

(5.3)

where

ε2 =
r

∑

i=1

(ki + li − 1)(r − i) +
r

∑

i=1

li(k − k1 − · · · − ki),

η′2 = r(k − r − i+ l) + i, and η′′2 = s(l − i− s) + k + i.

We usually denote a B∞-algebra by (A,mn;μp,q).
A B∞-morphism from (A,mn;μp,q) to (A′,m′

n;μ
′
p,q) is an A∞-morphism

f = (fn)n≥1 : A −→ A′

satisfying the following identity for any p, q ≥ 0:
∑

r,s≥0

∑

i1+i2+···+ir=p
j1+j2+···+js=q

(−1)εμ′
r,s(fi1 ⊗ · · · ⊗ fir

⊗

fj1 ⊗ · · · ⊗ fjs)

=
∑

t≥1

∑

l1+l2+···+lt=p
m1+m2+···+mt=q

(−1)ηft(μl1,m1
⊗ · · · ⊗ μlt,mt

)σ(l1,...,lt;m1,...,mt),
(5.4)

where

ε =

r
∑

k=1

(ik − 1)(r + s− k) +

s
∑

k=1

(jk − 1)(s− k), and

η =
t

∑

k=1

mk(p− l1 − · · · − lk) +
t

∑

k=1

(lk +mk − 1)(t− k).

The composition of B∞-morphisms is the same as the one of A∞-morphisms. �

A B∞-morphism f : A → A′ is strict if fi = 0 for each i �= 1. A B∞-morphism
f : A → A′ is a B∞-isomorphism, if there exists a B∞-morphism g : A′ → A such
that the compositions f ◦∞ g = 1A′ and g ◦∞ f = 1A. A B∞-morphism f : A → A′

is a B∞-quasi-isomorphism if f1 : (A,m1) → (A′,m′
1) is a quasi-isomorphism.

Consider the category of B∞-algebras, whose objects are B∞-algebras and
whose morphisms are B∞-morphisms. We define the homotopy category Ho(B∞)
of B∞-algebras to be the localization [33] of the category of B∞-algebras with re-
spect to B∞-quasi-isomorphisms. In particular, a zigzag of B∞-quasi-isomorphisms
becomes an isomorphism in Ho(B∞).

The following remark is pointed out by the referee.
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Remark 5.4. If the base field k is of characteristic zero, the B∞-operad control-
ling B∞-algebras is Σ-split by [43, Example 4.2.5]. Then by [43, Theorem 4.1.1],
the category of B∞-algebras admits a model structure, whose weak equivalences
are precisely B∞-quasi-isomorphisms. The associated homotopy category coincides
with Ho(B∞). In particular, any isomorphism in Ho(B∞) is given by a zigzag of
B∞-quasi-isomorphisms. If k is of positive characteristic, we do not know the exis-
tence of such a model structure, since it seems unclear, although very probable by
[72, Theorem 2.15], whether the B∞-operad is still Σ-split; compare [52].

Remark 5.5. Similar to Remark 5.2, a B∞-algebra structure on A is equivalent
to a dg bialgebra structure (T c(sA),Δ, D, μ) on the tensor coalgebra T c(sA) such
that 1 ∈ k = (sA)⊗0 is the unit of the algebra (T c(sA), μ); compare [10] and
[61, Subsection 1.4].

More precisely, given a dg bialgebra (T c(sA),Δ, D, μ) we may define two fam-
ilies of graded maps mn given in (5.4) and μp,q by the following commutative
diagram.

(5.5) A⊗p
⊗

A⊗q

s⊗p ⊗
s⊗q

��

μp,q �� A

s

��
(sA)⊗p

⊗

(sA)⊗q
Mp,q=pr◦μ �� sA

In particular, we have

μ1,0 = 1A = μ0,1, μk,0 = 0 = μ0,k for k �= 1.

Then we may verify that (A,mn;μp,q) is a B∞-algebra. For this, we note that the
associativity of μp,q in (5.2) follows from the associativity of μ, and the Leibniz rule
for mn with respect to μp,q in (5.3) follows from the Leibniz rule for D with respect
to μ.

Conversely, for a B∞-algebra (A,mn;μp,q), we have two families of graded
maps Mn given in (5.4) and Mp,q on sA defined by the commutative diagram (5.5).
Then we obtain a dg bialgebra (T c(sA),Δ, D, μ), where D is given by (5.5) and
the multiplication μ is given by

μ(sa1,l
⊗

sb1,n) =
∑

r≥1

∑

l1+···+lr=l
n1+···+nr=n

(−1)ηMl1,n1
(sa1,l1

⊗

sb1,n1
)

⊗Ml2,n2
(sal1+1,l1+l2

⊗

sbn1+1,n1+n2
)

⊗ · · · ⊗Mlr,nr
(sal1+···+lr−1+1,l

⊗

sbn1+···+nr−1+1,n);

(5.6)

compare [61, Proposition 1.6]. Here, the sign η is given by the Koszul sign rule:

η=

r−2
∑

i=0

(|sbn1+···+ni+1|+· · ·+|sbn1+···+ni+1
|)(|sal1+···+li+1+1|+· · ·+|sal|) with n0= 0.

Accordingly, an A∞-morphism between two B∞-algebras is a B∞-morphism if and
only if its induced dg coalgebra homomorphism is a dg bialgebra homomorphism.

5.3. A duality theorem on B∞-algebras

We introduce the opposite B∞-algebra and the transpose B∞-algebra of any
given B∞-algebra. We show that there is a natural B∞-isomorphism between them.
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5.3.1. The opposite B∞-algebra. Let (A,mn;μp,q) be a B∞-algebra. For
each p, q ≥ 0 and a1, . . . , ap, b1, . . . , bq ∈ A, we define

μopp
p,q (a1,p

⊗

b1,q) = (−1)pq+εμq,p(b1,q
⊗

a1,p).(5.1)

Here ε := (|a1|+ · · ·+ |ap|)(|b1|+ · · ·+ |bq|). Then we have the following result.

Lemma 5.6. Let (A,mn;μp,q) be a B∞-algebra with the corresponding dg bial-
gebra (T c(sA),Δ, D, μ). Then (A,mn;μ

opp
p,q ) is a B∞-algebra and the corresponding

dg bialgebra is given by (T c(sA),Δ, D, μopp). Here, μopp is the usual opposite mul-
tiplication of μ, namely for any sa1,p, sb1,q ∈ T c(sA) we have

μopp(sa1,p
⊗

sb1,q) = (−1)ε
′
μ(sb1,q

⊗

sa1,p),(5.2)

where ε′ = (|a1|+ · · ·+ |ap| − p)(|b1|+ · · ·+ |bq| − q).

Proof. Note that (T c(sA),Δ, D, μopp) is indeed a dg bialgebra. We claim
that the corresponding B∞-algebra is given by (A,mn;μ

opp
p,q ). In particular, this

yields the well-definedness of the B∞-algebra (A,mn;μ
opp
p,q ).

Let us prove the above claim. Indeed, by Remark 5.5 it suffices to verify that
the following square commutes for each p, q ≥ 0

A⊗p
⊗

A⊗q

s⊗p ⊗
s⊗q

��

μopp
p,q �� A

s

��
(sA)⊗p

⊗

(sA)⊗q pr◦μopp

�� sA,

compare (5.5). That is, pr◦μopp ◦(s⊗p
⊗

s⊗q) = s◦μopp
p,q for each p, q ≥ 0. For this,

we apply the left hand side of this equality to the element a1,p
⊗

b1,q and obtain

(−1)ε1(pr ◦ μopp)(sa1,p
⊗

sb1,q) = (−1)ε1+ε′ (pr ◦ μ)(sb1,q
⊗

sa1,p)

= (−1)ε1+ε′+ε2 (s ◦ μq,p)(b1,q
⊗

a1,p)

= (−1)ε1+ε′+ε2+pq+ε (s ◦ μopp
p,q )(a1,p

⊗

b1,q)

= (s ◦ μopp
p,q )(a1,p

⊗

b1,q),

where ε1 =
∑p

i=1 |ai|(p + q − i) +
∑q

j=1 |bj |(q − j), ε2 =
∑q

j=1 |bj |(p + q − j) +
∑p

i=1 |ai|(p− i) and ε′ (resp. ε) is the same as in (5.2) (resp. (5.1)). Here, the first
equality uses (5.2), the second one uses the commutative diagram (5.5), the third
one uses (5.1), and the last one follows since ε1 − ε′ − ε2 − pq + ε = 0. This verifies
the commutative square. �

Definition 5.7. The opposite B∞-algebra of (A,mn;μp,q) is defined to be the
B∞-algebra (A,mn;μ

opp
p,q ), where μopp

p,q is given in (5.1).

This is well-defined by Lemma 5.6. We will simply denote (A,mn;μ
opp
p,q ) by Aopp

when no confusion can arise. By definition, Aopp and A have the same A∞-algebra
structure. Note that (Aopp)opp = A as B∞-algebras.
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5.3.2. The transpose B∞-algebra. We also need the following notion of
the transpose B∞-algebra Atr of A. We mention that the transpose arises naturally
when one considers the Hochschild cochain complex of the opposite algebra; see the
proofs of Propositions 6.5 and 8.10.

Let (A,mn;μp,q) be a B∞-algebra. For n ≥ 1 and p, q ≥ 0 we define

mtr
n (a1,n) := (−1)εnmn(an ⊗ · · · ⊗ a2 ⊗ a1),

μtr
p,q(a1,p

⊗

b1,q) := (−1)εμp,q(ap ⊗ · · · ⊗ a1
⊗

bq ⊗ · · · ⊗ b1),
(5.3)

where

εn =
(n− 1)(n− 2)

2
+

n−1
∑

j=1

|aj |(|aj+1|+ · · ·+ |an|)

ε = 1 +
p(p+ 1)

2
+

q(q + 1)

2
+

p−1
∑

j=1

|aj |(|aj+1|+ · · ·+ |ap|)

+

q−1
∑

j=1

|bj |(|bj+1|+ · · ·+ |bq|).

Lemma 5.8. Let (A,mn;μp,q) be a B∞-algebra with the corresponding dg bial-
gebra (T c(sA),Δ, D, μ). Then (A,mtr

n ;μ
tr
p,q) is a B∞-algebra and the corresponding

dg bialgebra is isomorphic to (T c(sA),Δop, D, μ). Here, Δop is the usual opposite
of Δ, namely we have

Δop(sa1,n) = sa1,n
⊗

1 +
n−1
∑

i=1

(−1)εsai+1,n

⊗

sa1,i + 1
⊗

sa1,n,

where ε = (|a1|+ · · ·+ |ai| − i)(|ai+1|+ · · ·+ |an| − n+ i).

Proof. First note that (T c(sA),Δop, D, μ) is indeed a well-defined dg bialge-
bra. Consider the following isomorphism of graded vector spaces

O : T c(sA)
�−→ T c(sA), sa1,n 	→ (−1)n+ε′nsan ⊗ · · · ⊗ sa2 ⊗ sa1,

where ε′n =
∑n−1

j=1 (|aj |−1)((|aj+1|−1)+ · · ·+(|an|−1)). Clearly, we have O ◦O =

1T c(sA). That is, O
−1 = O. We also have pr ◦O = −pr since O|sA = −1sA.

Since Δop ◦O = (O
⊗

O) ◦Δ, it follows that O : (T c(sA),Δ)
�−→ (T c(sA),Δop)

is a coalgebra isomorphism. Define

Dtr := O ◦D ◦O and μtr := O ◦ μ ◦ (O ⊗O).(5.4)

We emphasize that Dtr is a coderivation, since O = O−1 is a coalgebra isomor-
phism. It follows that (T c(sA),Δ, Dtr, μtr) is a well-defined dg bialgebra such that
O : (T c(sA),Δ, Dtr, μtr) → (T c(sA),Δop, D, μ) is an isomorphism of dg bialgebras.

We claim that the B∞-algebra corresponding to the dg bialgebra (T c(sA),Δ,
Dtr, μtr) is given by (A,mtr

n ;μ
tr
p,q). In particular, this yields the well-definedness

of the B∞-algebra (A,mtr
n ;μ

tr
p,q). Let us prove this claim. Indeed, by Remarks 5.5
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and 5.2 it suffices to verify that the following two squares are commutative.

A⊗n

s⊗n

��

mtr
n �� A

s

��

A⊗p
⊗

A⊗q

s⊗p ⊗
s⊗q

��

μtr
p,q �� A

s

��
(sA)⊗n pr◦Dtr

�� sA (sA)⊗p
⊗

(sA)⊗q pr◦μtr

�� sA

(5.5)

For this, by (5.3) we have that

mtr
n = mn ◦O′

n and μtr
p,q = −μp,q ◦ (O′

p

⊗

O′
q),(5.6)

where O′ : A⊗n → A⊗n is given by O′(a1,n) = (−1)εnan ⊗ · · · ⊗ a2 ⊗ a1 and εn is
the same as in (5.3). By a direct computation we also have that

O ◦ s⊗n = −s⊗n ◦O′
n.(5.7)

Then the commutativity of the first square in (5.5) follows since

pr ◦Dtr ◦ s⊗n = −pr ◦D ◦O ◦ s⊗n

= pr ◦D ◦ s⊗n ◦O′
n

= s ◦mn ◦O′
n

= s ◦mtr
n .

Here, the first equality follows from (5.4) and pr ◦ O = −pr, the second one from
(5.7), the third one from (5.4), and the last one from (5.6).

Similarly, we may verify the commutativity of the second square in (5.5) as
follows

pr ◦ μtr ◦ (s⊗p
⊗

s⊗q) = −pr ◦ μ ◦ ((O ◦ s⊗p)⊗ (O ◦ s⊗q))

= −pr ◦ μ ◦ ((s⊗p ◦O′
p)⊗ (s⊗q ◦O′

q))

= −s ◦ μp,q ◦ (O′
p ⊗O′

q)

= s ◦ μtr
p,q.

Here, the first equality follows from (5.4) and pr ◦ O = −pr, the second one uses
(5.7) twice, the third one follows from (5.5), and the last one follows from (5.6).
This proves the claim. �

Definition 5.9. The transpose B∞-algebra of (A,mn;μp,q) is defined to be
the B∞-algebra Atr = (A,mtr

n ;μ
tr
p,q), where mtr

n , μ
tr
p,q are given in (5.3).

This is well-defined by Lemma 5.8. We have that (Atr)tr = A.
Let us prove the following duality theorem. For applications, we refer to Propo-

sitions 6.5 and 8.10 below.

Theorem 5.10. Let (A,mn;μp,q) be a B∞-algebra. Then there is a natural
B∞-isomorphism between the opposite B∞-algebra Aopp and the transpose B∞-
algebra Atr.

Proof. Denote by (T c(sA),Δ, D, μ) the corresponding dg bialgebra of the
given B∞-algebra (A,mn;μp,q). By Lemma 5.6, the opposite B∞-algebra Aopp

corresponds to the dg bialgebra (T c(sA),Δ, D, μopp). By Lemma 5.8 and its proof,
the transpose B∞-algebra Atr corresponds to the dg bialgebra (T c(sA),Δ, Dtr, μtr),
which is isomorphic to (T c(sA),Δop, D, μ) as a dg bialgebra.
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Recall that the category of B∞-algebras is equivalent to the category of dg
cofree bialgebras; compare Remark 5.5. Therefore, it suffices to prove that there is
an isomorphism of dg bialgebras between (T c(sA),Δ, D, μopp) and (T c(sA),Δop,
D, μ).

It is well-known that as a connected bialgebra, the bialgebra (T c(sA),Δ, μ)
admits an antipode S; see [61, Subsection 1.2]. Moreover, the antipode S is bijective
by a classical result [70, Proposition 1.2].

Indeed, the antipode S is given inductively as follows: S(sa) = −sa for sa ∈ sA;
for n ≥ 2 and x ∈ (sA)⊗n, we use Sweedler’s notation to write

Δ(x) = 1
⊗

x+ x
⊗

1 +
∑

x′
⊗

x′′

with x′ and x′′ having smaller tensor-length, and then set

(5.8) S(x) = −x−
∑

μ(x′
⊗

S(x′′)).

A similar inductive formula holds for the inverse of S.
The antipode S gives automatically a bialgebra isomorphism

S : (T c(sA),Δ, μopp) −→ (T c(sA),Δop, μ).

To complete the proof, it remains to show S ◦D = D ◦S. It is clear that SD(sa) =
DS(sa) for sa ∈ sA, as both equal −sm1(a). We prove the general case by induction
on the tensor-length of elements in T c(sA).

For n ≥ 2 and x ∈ (sA)⊗n, we use (5.8) and the fact that D is a derivation
with respect to μ, and obtain the first equality of the following identity.

DS(x) = −D(x)−
∑

μ(D(x′)
⊗

S(x′′))−
∑

(−1)|x
′|μ(x′ ⊗DS(x′′))

= −D(x)−
∑

μ(D(x′)
⊗

S(x′′))−
∑

(−1)|x
′|μ(x′ ⊗ SD(x′′))

= SD(x)

Here, the second equality uses the induction hypothesis. For the last one, we use
the fact that D is a coderivation with respect to Δ. Then we have

ΔD(x) = 1
⊗

D(x) +D(x)
⊗

1 +
∑

D(x′)
⊗

x′′ +
∑

(−1)|x
′|x′

⊗

D(x′′).

Applying (5.8) to D(x), we infer the last equality. This completes the proof. �

Remark 5.11. To obtain an explicit B∞-isomorphism from Aopp to Atr, one
has to compute pr ◦ O ◦ S, where O is the isomorphism given in the proof of
Lemma 5.8. By the inductive formula (5.8), it seems possible to describe the an-
tipode S explicitly. However, if the multiplication μ is arbitrary, we do not have a
closed formula for S.

We assume that μp,q = 0 for any p > 1 (for example, the condition holds for
any brace B∞-algebra; see Section 5.4 below). We might compute explicitly S and
then pr ◦O ◦ S. It turns out that the above B∞-isomorphism is given by

Θk : (sA)⊗k −→ sA, k ≥ 1,

where Θk = 1 and for k > 1

Θk =
∑

(i1,...,ir)∈Ik−1

M tr
1,r ◦ (1⊗Θi1 ⊗Θi2 ⊗ · · · ⊗Θir).(5.9)
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Here, M tr
1,r = pr ◦ μtr|sA⊗

(sA)⊗r and μtr is given in (5.4). The sum on the right
hand side of (5.9) is taken over the set

Ik−1={(i1, i2, . . . , ir) | r ≥ 1 and i1, i2, . . . , ir ≥ 1 such that i1+i2+· · ·+ir=k−1}.
For instance, we have Θ2 = M tr

1,1, Θ3 = M tr
1,2 +M tr

1,1 ◦ (1⊗M tr
1,1) and

Θ4 = M tr
1,3 +M tr

1,2 ◦ (1⊗M tr
1,1 ⊗ 1) +M tr

1,2 ◦ (1⊗ 1⊗M tr
1,1)

+M tr
1,1 ◦ (1⊗M tr

1,2) +M tr
1,1 ◦

(

1⊗M tr
1,1 ◦ (1⊗M tr

1,1)
)

.

The construction of the maps (Θk)k≥1 might be also obtained from the Kont-
sevich-Soibelman minimal operad M introduced in [57, Section 5]. Roughly speak-
ing, the n-th space M(n) for n ≥ 1 is the k-linear space spanned by planar rooted
trees with n-vertices labelled by 1, 2, . . . , n and some (possibly zero) number of un-
labelled vertices. Note that the summands of Θk correspond bijectively to those
trees T without unlabelled vertices in M(k) whose vertices are labelled in coun-
terclockwise order. Since such labelling is unique, the number of summands in Θk

equals the Catalan number Ck−1 = 1
k

(

2k−2
k−1

)

. For instance, the three trees in Figure
5.1 correspond respectively to the following three summands in Θ6.

M tr
1,3 ◦ (1⊗M tr

1,1 ⊗ 1⊗M tr
1,1)

M tr
1,2 ◦ (1⊗M tr

1,2 ⊗M1,1)

M tr
1,2 ◦ (1⊗ 1⊗M tr

1,2(1⊗M tr
1,1 ⊗ 1))

6 4 3

5 2

1

6 4 3

5 2

1

6
4

3

5

2

1

Figure 5.1. Three of the summands in Θ6

5.4. Brace B∞-algebras

The following new terminology will be convenient for us.

Definition 5.12. A B∞-algebra (A,mn;μp,q) is called a brace B∞-algebra,
provided that mn = 0 for n > 2 and that μp,q = 0 for p > 1. �

We mention that a brace B∞-algebra is called a homotopy G-algebra in [38] or
a Gerstenhaber-Voronov algebra in [9,34,62]. The notion is introduced mainly as
an algebraic model to unify the rich algebraic structures on the Hochschild cochain
complex of an algebra.

The underlying A∞-algebra structure of a braceB∞-algebra is just a dg algebra.
For a brace B∞-algebra, we usually use the following notation, called the brace
operation [38,86]:

a{b1, . . . , bp} := (−1)p|a|+(p−1)|b1|+(p−2)|b2|+···+|bp−1| μ1,p(a
⊗

b1 ⊗ · · · ⊗ bp)

for any a, b1, . . . , bp ∈ A. In particular, a{∅} = μ1,0(a
⊗

1) = a by (5.1). We will
abbreviate a{b1, . . . , bp} and a′{c1, . . . , cq} as a{b1,p} and a′{c1,q}, respectively.
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The B∞-algebras occurring in this paper are all brace B∞-algebras; see Sec-
tions 6.1 and 8.1. In the following remark, we describe the axioms for brace B∞-
algebras explicitly, which will be useful later; see also [71, Section 1] and [92, Sec-
tion 1].

Remark 5.13. Let (A,mn;μp,q) be a brace B∞-algebra. Then the above B∞-
relation (5.2) is simplified as (1) below, and the B∞-relation (5.3) splits into (2)
and (3) below (corresponding to the cases k = 2 and k = 1, respectively).

(1) The higher pre-Jacobi identity:

(a{b1,p}){c1,q} =
∑

(−1)εa{c1,i1 , b1{ci1+1,i1+l1}, ci1+l1+1,i2 , b2{ci2+1,i2+l2},
. . . , cip , bp{cip+1,ip+lp}, cip+lp+1,q},

where the sum is taken over all sequences of nonnegative integers (i1,. . ., ip;
l1, . . . , lp) such that

0 ≤ i1 ≤ i1 + l1 ≤ i2 ≤ i2 + l2 ≤ i3 ≤ · · · ≤ ip + lp ≤ q

and

ε =

p
∑

l=1

⎛

⎝(|bl| − 1)

il
∑

j=1

(|cj | − 1)

⎞

⎠ .

(2) The distributivity:

m2(a1 ⊗ a2){b1,q} =

q
∑

j=0

(−1)
|a2|

j∑

i=1

(|bi|−1)
m2((a1{b1,j})⊗ (a2{bj+1,q})).

(3) The higher homotopy:

m1(a{b1,p})− (−1)|a|(|b1|−1)m2(b1 ⊗ (a{b2,p})) + (−1)εp−1m2((a{b1,p−1})⊗ bp)

= m1(a){b1,p} −
p−1
∑

i=0

(−1)εia{b1,i,m1(bi+1), bi+2,p}

+

p−2
∑

i=0

(−1)εi+1a{b1,i,m2(bi+1,i+2), bi+3,p},

where ε0 = |a| and εi = |a|+
i
∑

j=1

(|bj | − 1) for i ≥ 1.

Remark 5.14. The opposite B∞-algebra (A,mn;μ
opp
p,q ) of a brace B∞-algebra

A is given by

μopp
0,1 = μopp

1,0 = 1A, μopp
p,1 (b1 ⊗ · · · ⊗ bp

⊗

a) = (−1)εμ1,p(a
⊗

b1 ⊗ · · · ⊗ bp),

and μopp
p,q = 0 for other cases, where ε = |a|(|b1| + · · · + |bp|) + p. In general, the

opposite B∞-algebra Aopp is not a brace B∞-algebra.
The transpose B∞-algebra (Atr,mtr

1 ,m
tr
2 ;−{−, . . . ,−}tr) of a brace B∞-algebra

A is also a brace B∞-algebra given by

mtr
1 = m1, mtr

2 (a⊗ b) = (−1)|a|·|b|m2(b⊗ a),

a{b1, b2, . . . , bk}tr = (−1)ε
′
a{bk, bk−1, . . . , b1}(5.1)
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where ε′ = k +
∑k−1

j=1 (|bj | − 1)
(

(|bj+1| − 1) + (|bj+2| − 1) + · · ·+ (|bk| − 1)
)

. As dg

algebras, (Atr,mtr
1 ,m

tr
2 ) coincides with the (usual) opposite dg algebra Aop of A.

The following observation follows directly from Definition 5.3.

Lemma 5.15. Let A and A′ be two brace B∞-algebras. A homomorphism of dg
algebras f : (A,m1,m2) → (A′,m′

1,m
′
2) becomes a strict B∞-morphism if and only

if f is compatible with −{−, · · · ,−}A and −{−, . . . ,−}A′ , namely

f(a{b1, . . . , bp}A) = f(a){f(b1), . . . , f(bp)}A′

for any p ≥ 1 and a, b1, . . . , bp ∈ A. �

Let f = (fn)≥1 : A → A′ be an A∞-morphism. We define ˜fn : (sA)⊗n → A′ by
the following commutative diagram.

A⊗n

s⊗n

��

fn �� A′

(sA)⊗n

f̃n

��������������

Namely, we have

(5.2) ˜fn(sa1 ⊗ sa2 ⊗ · · · ⊗ san) = (−1)
∑n

i=1(n−i)|ai|fn(a1 ⊗ a2 ⊗ · · · ⊗ an).

The advantage of using ( ˜fn)n≥1 in Lemma 5.16 below, instead of using (fn)n≥1, is
that the signs become much simpler.

The following lemma will be used in the proof of Theorem 13.1. We will ab-
breviate sa1 ⊗ · · · ⊗ san as sa1,n, and a{b1, . . . , bm} as a{b1,m}.

Lemma 5.16. Let A and A′ be two brace B∞-algebras. Assume that (fn)n≥1 :
A → A′ is an A∞-morphism. Then (fn)n≥1 : A → A′opp is a B∞-morphism if and
only if the following identities hold for any p, q ≥ 0 and a1, . . . , ap, b1, . . . , bq ∈ A

(5.3)
∑

r≥1

∑

i1+···+ir=p

(−1)ε ˜fq(sb1,q){ ˜fi1(sa1,i1),

˜fi2(sai1+1,i1+i2), . . . ,
˜fir (sai1+···+ir−1+1,p)}A′

=
∑

(−1)η ˜ft(sb1,j1 ⊗ s(a1{bj1+1,j1+l1}A)⊗ sbj1+l1+1,j2 ⊗ s(a2{bj2+1,j2+l2}A)
⊗ · · · ⊗ sbjp ⊗ s(ap{bjp+1,jp+lp}A)⊗ sbjp+lp+1,q).

Here, the maps ˜fq and ˜ft are defined in (5.2); the sum on the right hand side is
taken over all the sequences of nonnegative integers (j1, . . . , jp; l1, . . . , lp) such that

0 ≤ j1 ≤ j1 + l1 ≤ j2 ≤ j2 + l2 ≤ · · · ≤ jp ≤ jp + lp ≤ q,

and t = p+ q − l1 − · · · − lp; the signs are determined by the identities

ε = (|a1|+ · · ·+ |ap| − p)(|b1|+ · · ·+ |bq| − q), and

η =

p
∑

i=1

(|ai| − 1)
(

(|b1| − 1) + (|b2| − 1) + · · ·+ (|bji | − 1)
)

.
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Proof. Since μ′
s,r = 0 for s > 1 and (μ′

r,1)
opp = (−1)rμ′

1,r ◦σ(r;1), the identity
(5.4) becomes

∑

r≥1

∑

i1+i2+···+ir=p

(−1)ε1+rμ′
1,r ◦ σ(r;1)(fi1 ⊗ · · · ⊗ fir ⊗ fq)(5.4)

=
∑

t≥1
m1+···+mt=p
n1+···+nt=q

(−1)η1ft ◦ (μm1,n1
⊗ · · · ⊗ μmt,nt

) ◦ σ(m1,...,mt;n1,...,nt)

=
∑

(−1)η1ft ◦ (μ⊗j1
0,1 ⊗ μ1,l1 ⊗ μ

⊗j2−j1−l1
0,1 ⊗ μ1,l2 ⊗· · ·⊗ μ1,lp ⊗ μ

⊗q−lp−jp
0,1 )

◦ σ(m1,...,mt;n1,...,nt),

where the sum on the right hand side of the last identity is taken over all the
sequences of nonnegative integers (j1, . . . , jp; l1, . . . , lp) such that

0 ≤ j1 ≤ j1 + l1 ≤ j2 ≤ j2 + l2 ≤ · · · ≤ jp ≤ jp + lp ≤ q,

and t = p+ q − l1 − · · · − lp. The signs are determined by

ε1 =
r

∑

k=1

(ik − 1)(r + 1− k), and

η1 =

t
∑

k=1

nk(p−m1 − · · · −mk) +

t
∑

k=1

(mk + nk − 1)(t− k)

=

p
∑

i=1

ji +

p
∑

i=1

li(t− ji − l1 − · · · − li−1 + i).

We apply (5.4) to the element (−1)
∑p

i=1 |ai|(p+q−i)+
∑q

j=1 |bj |(q−j)(a1⊗· · ·⊗ap
⊗

b1⊗
· · · ⊗ bq), where the sign (−1)

∑p
i=1 |ai|(p+q−i)+

∑q
j=1 |bj |(q−j) is added just in order to

simplify the sign computation. Using (5.2), we obtain the required identity (5.3).
�

5.5. Gerstenhaber algebras

In this section, we recall the well-known relationship between B∞-algebras and
Gerstenhaber algebras.

Definition 5.17. A Gerstenhaber algebra is the triple (G,−∪−, [−,−]), where
G =

⊕

n∈Z Gn is a graded k-space equipped with two graded maps: a cup product

− ∪− : G⊗G −→ G

of degree zero, and a Lie bracket of degree −1

[−,−] : G⊗G −→ G

satisfying the following conditions:

(1) (G,− ∪−) is a graded commutative associative algebra;
(2) (G∗+1, [−,−]) is a graded Lie algebra, that is

[α, β] = −(−1)(|α|−1)(|β|−1)[β, α]
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and

(5.1) (−1)(|α|−1)(|γ|−1)[[α, β], γ]

+ (−1)(|β|−1)(|α|−1)[[β, γ], α] + (−1)(|γ|−1)(|β|−1)[[γ, α], β] = 0;

(3) the operations −∪− and [−,−] are compatible through the graded Leibniz
rule

� [α, β ∪ γ] = [α, β] ∪ γ + (−1)(|α|−1)|γ|β ∪ [α, γ].

The following well-known result is contained in [39, Subsection 5.2].

Lemma 5.18. Let (A,mn;μp,q) be a B∞-algebra. Then there is a natural Ger-
stenhaber algebra structure (H∗(A,m1),−∪−, [−,−]) on its cohomology, where the
cup product − ∪− and the Lie bracket [−,−] of degree −1 are given by

α ∪ β = m2(α, β);

[α, β] = (−1)|α|μ1,1(α, β)− (−1)(|α|−1)(|β|−1)+|β|μ1,1(β, α).

Moreover, a B∞-quasi-isomorphism between two B∞-algebras A and A′ induces an
isomorphism of Gerstenhaber algebras between H∗(A) and H∗(A′). �

Remark 5.19. A priori, the Lie bracket [−,−] in Lemma 5.18 is defined on A at
the cochain complex level. By definition, we have [α, β] = −(−1)(|α|−1)(|β|−1)[β, α].
It follows from (5.2) that [−,−] satisfies the graded Jacobi identity (5.1). By (5.3)
we have

m1([α, β]) = [m1(α), β] + (−1)|α|−1[α,m1(β)],

which ensures that [−,−] descends to H∗(A). That is, (A,m1, [−,−]) is a dg Lie
algebra of degree −1; see [39, Subsection 5.2]. By (5.4) we see that a B∞-morphism
induces a morphism of dg Lie algebras between the associated dg Lie algebras.

We mention that the associated dg Lie algebras to B∞-algebras play a crucial
role in deformation theory; see e.g. [64].
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CHAPTER 6

The Hochschild cochain complexes

In this chapter, we recall basic results on Hochschild cochain complexes of dg
categories and (normalized) relative bar resolutions of dg algebras.

6.1. The Hochschild cochain complex of a dg category

Recall that for a cochain complex (V, dV ), we denote by sV the 1-shifted com-
plex. For a homogeneous element v ∈ V , the degree of the corresponding element
sv ∈ sV is given by |sv| = |v| − 1 and dsV (sv) = −sdV (v). Indeed, we have
sV = Σ(V ), where Σ is the suspension functor.

Let A be a small dg category over k. The Hochschild cochain complex of A is
the complex

C∗(A,A) =
∏

n≥0

∏

A0,...,An∈obj(A)

Hom(sA(An−1, An)

⊗ sA(An−2, An−1)⊗ · · · ⊗ sA(A0, A1),A(A0, An))

with differential δ = δin + δex defined as follows; see [4]. For any

ψ ∈ Hom(sA(An−1, An) ⊗ · · · ⊗ sA(A0, A1),A(A0, An))

the internal differential δin is

δin(ψ)(sa1,n) = dAψ(sa1,n) +
n

∑

i=1

(−1)εiψ(sa1,i−1 ⊗ sdA(ai)⊗ sai+1,n)

and the external differential is

δex(ψ)(sa1,n+1) = − (−1)(|a1|−1)|ψ|a1 ◦ ψ(sa2,n+1) + (−1)εn+1ψ(sa1,n) ◦ an+1

−
n+1
∑

i=2

(−1)εiψ(sa1,i−2 ⊗ s(ai−1 ◦ ai)⊗ sai+1,n+1).

Here, εi = |ψ|+
∑i−1

j=1(|aj | − 1) and sai,j := sai ⊗ · · · ⊗ saj ∈ sA(An−i, An−i+1)⊗
· · · ⊗ sA(An−j , An−j+1) for i ≤ j.

For any n ≥ 0, we define the following subspace of C∗(A,A)

C∗,n(A,A) :=
∏

A0,...,An∈obj(A)

Hom(sA(An−1, An)

⊗ sA(An−2, An−1)⊗ · · · ⊗ sA(A0, A1),A(A0, An)).

We observe C∗,0(A,A) =
∏

A0∈obj(A) Hom(k,A(A0, A0)) �
∏

A0∈obj(A)A(A0, A0).

There are two basic operations on C∗(A,A). The first one is the cup product

− ∪− : C∗(A,A)⊗ C∗(A,A) −→ C∗(A,A).

35
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For ψ ∈ C∗,p(A,A) and φ ∈ C∗,q(A,A), we define

ψ ∪ φ(sa1,p+q) = (−1)εψ(sa1,p) ◦ φ(sap+1,p+q),

where ε = (|a1|+ · · ·+ |ap| − p)|φ|.
The second one is the brace operation

−{−, . . . ,−} : C∗(A,A)⊗ C∗(A,A)⊗k −→ C∗(A,A)

defined as follows. Let k ≥ 1. For ψ ∈ C∗,m(A,A) and φi ∈ C∗,ni(A,A) (1 ≤ i ≤
k),
(6.1)

ψ{φ1, . . . , φk} =
∑

ψ(1⊗i1⊗(s◦φ1)⊗1⊗i2⊗(s◦φ2)⊗· · ·⊗1⊗ik ⊗(s◦φk)⊗1⊗ik+1),

where the summation is taken over the set

{(i1, i2, . . . , ik+1) ∈ Z×(k+1)
≥0 | i1 + i2 + · · ·+ ik+1 = m− k}.

If the set is empty, we define ψ{φ1, . . . , φk} = 0. Here, s◦φj means the composition
of φj with the natural isomorphism s : A(A,A′) → sA(A,A′) of degree −1 for
suitable A,A′ ∈ obj(A). For k = 0, we set −{∅} = 1. Observe that the cup
product and the brace operation extend naturally to the whole space C∗(A,A) =
∏

n≥0 C
∗,n(A,A). We mention that the study of the Hochschild cohomology of

small categories is traced back to [74, Sections 12 and 17].
It is well-known that C∗(A,A) is a brace B∞-algebra with

m1 = δ, m2 = − ∪−, and mi = 0 for i > 2;

μ0,1 = μ1,0 = 1, μ1,k(ψ, φ1, . . . , φk) = ψ{φ1, . . . , φk}, and μp,q = 0 otherwise.

We refer to [39, Subsections 5.1 and 5.2] for details.
The following useful lemma is contained in [52, Theorem 4.6 b)].

Lemma 6.1. Let F : A → B be a quasi-equivalence between two small dg cate-
gories. Then there is an isomorphism

C∗(A,A) −→ C∗(B,B)

in the homotopy category Ho(B∞) of B∞-algebras. �

Let A be a dg algebra. We view A as a dg category with a single object, still
denoted by A. In particular, the Hochschild cochain complex C∗(A,A) is defined as
above. The dg category Amight be identified as a full dg subcategory of perdg(A

op)
by taking the right regular dg A-module AA. Then the next result follows from
[52, Theorem 4.6 c)]; compare [64, Theorem 4.4.1].

Lemma 6.2. Let A be a dg algebra. Then the restriction map

C∗(perdg(A
op),perdg(A

op)) −→ C∗(A,A)

is an isomorphism in Ho(B∞). �
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6.2. The relative bar resolutions

Let A be a dg algebra with its differential dA. Let E =
⊕

i∈I kei ⊆ A0 ⊆ A
be a semisimple subalgebra satisfying dA(ei) = 0 and eiej = δi,jei for any i, j ∈ I.
Set (sA)⊗E0 = E and TE(sA) :=

⊕

n≥0(sA)⊗En.

The construction of the bar resolution is due to [18, Chapter IX, Section 6].
Following [37, Section 1], we recall that the E-relative bar resolution of A is the dg
A-A-bimodule

BarE(A) := A⊗E TE(sA)⊗E A

with the differential d = din + dex, where din is the internal differential given by

din(a⊗E sa1,n ⊗E b) = dA(a)⊗E sa1,n ⊗E b+ (−1)εn+1a⊗E sa1,n ⊗E dA(b)

−
n

∑

i=1

(−1)εia⊗E sa1,i−1 ⊗E sdA(ai)⊗E sai+1,n ⊗E b

and dex is the external differential given by

dex(a⊗E sa1,n ⊗E b) = (−1)ε1aa1 ⊗E sa2,n ⊗E b− (−1)εna⊗E sa1,n−1 ⊗E anb

+

n
∑

i=2

(−1)εia⊗E sa1,i−2 ⊗E sai−1ai ⊗E sai+1,n ⊗E b.

Here, εi = |a|+
∑i−1

j=1(|aj |−1), and for simplicity, we denote sai⊗E sai+1⊗E · · ·⊗E

saj by sai,j for i < j. The degree of a⊗E sa1,n ⊗E b ∈ A⊗E (sA)⊗En ⊗E A is

|a|+
n

∑

j=1

(|aj | − 1) + |b|.

The graded A-A-bimodule structure on A⊗E (sA)⊗En ⊗E A is given by the outer
action

a(a0 ⊗E sa1,n ⊗E an+1)b := aa0 ⊗E sa1,n ⊗E an+1b.

There is a natural morphism of dg A-A-bimodules ε : BarE(A) → A given by the
composition

BarE(A) −→ A⊗E A
μ−→ A,(6.1)

where the first map is the canonical projection and μ is the multiplication of A. It
is well-known that ε is a quasi-isomorphism.

Set A to be the quotient dg E-E-bimodule A/(E · 1A). We have the notion
of normalized E-relative bar resolution BarE(A) of A. By definition, it is the dg
A-A-bimodule

BarE(A) = A⊗E TE(sA)⊗E A

with the induced differential from Bar(A). It is also well-known that the natural
projection BarE(A) → BarE(A) is a quasi-isomorphism.

Let D(Ae) be the derived category of dg A-A-bimodules. Let M be a dg A-
A-bimodule. The Hochschild cohomology group with coefficients in M of degree p,
denoted by HHp(A,M), is defined as HomD(Ae)(A,Σp(M)), where Σ is the suspen-
sion functor in D(Ae). Since BarE(A) is a dg-projective bimodule resolution of A,
we obtain that

HHp(A,M) ∼= Hp(HomA-A(BarE(A),M), δ), for p ∈ Z
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where δ(f) := dM ◦f−(−1)|f |f ◦d. We observe that there is a natural isomorphism,
for each i ≥ 0,

HomE-E((sA)⊗Ei,M)
∼−→ HomA-A(A⊗E (sA)⊗Ei ⊗E A,M), f 	→ f̌(6.2)

where f̌(a0 ⊗E sa1,i ⊗E ai+1) = (−1)|a0|·|f |a0f(sa1,i)ai+1. It follows that

HHp(A,M) ∼= Hp(HomE-E(TE(sA),M), δ = δin + δex),

where the differentials δin and δex are defined as in Section 6.1.
We call C∗

E(A,M) := (HomE-E(TE(sA),M), δ) the E-relative Hochschild co-
chain complex of A with coefficients in M . In particular, C∗

E(A,A) is called the
E-relative Hochschild cochain complex of A. Similarly, the normalized E-relative

Hochschild cochain complex C
∗
E(A,M) is defined as HomE-E(TE(sA),M) with the

induced differential.

Remark 6.3. Consider the dg category A associated to A and E. That is, the
objects in A are given by the finite set I and the morphism spaces are given by
A(i, j) = ejAei. Then C∗(A,A) coincides with C∗

E(A,A). Thus, from Section 6.1,
C∗

E(A,A) has a B∞-algebra structure induced by the cup product − ∪ − and the
brace operation −{−, . . . ,−}.

When E = k, we simply write C∗
k(A,M) as C∗(A,M), and write C

∗
k(A,M) as

C
∗
(A,M). In this situation, the dg algebra A is identified with a dg category with

a single object, and C∗(A,A) becomes a B∞-algebra.
We have the following commutative diagram of injections.

C
∗
E(A,A) �

� ��
� �

��

C∗
E(A,A)� �

��
C

∗
(A,A) �

� �� C∗(A,A)

Lemma 6.4. The B∞-algebra structure on C∗(A,A) restricts to the other three

smaller complexes C∗
E(A,A), C

∗
E(A,A) and C

∗
(A,A). In particular, the above in-

jections are strict B∞-quasi-isomorphisms.

Proof. It is straightforward to check that the cup product and brace opera-

tion on C∗(A,A) restrict to the subcomplexes C∗
E(A,A), C

∗
E(A,A) and C

∗
(A,A).

Moreover, the injections preserve the two operations. Thus by Lemma 5.15, the
injections are strict B∞-morphisms. Clearly, the injections are quasi-isomorphisms
since all the complexes compute HH∗(A,A). This proves the lemma. �

Let A be a dg k-algebra. Consider the B∞-algebra

(C∗(A,A), δ,−∪−;−{−, . . . ,−})
of the Hochschild cochain complex C∗(A,A); compare Section 6.1. Let Aop be the
opposite dg algebra of A.

Proposition 6.5. There is a B∞-isomorphism from the opposite B∞-algebra
C∗(A,A)opp to the B∞-algebra C∗(Aop, Aop).

Proof. Consider the swap isomorphism

T : C∗(A,A) −→ C∗(Aop, Aop)
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which sends f ∈ C∗(A,A) to

T (f)(sa1 ⊗ sa2 ⊗ · · · ⊗ sam) = (−1)εf(sam ⊗ · · · ⊗ sa2 ⊗ sa1),

for any a1, a2, . . . , am ∈ A, where ε = |f |+
∑m−1

i=1 (|ai|−1)(|ai+1|−1+· · ·+|am|−1).
Here, we use the identification Aop = A as dg k-modules.

We claim that T is a strict B∞-isomorphism from the transpose B∞-algebra
C∗(A,A)tr to C∗(Aop, Aop). By Lemma 5.15 it suffices to verify the following two
identities

T (g1 ∪tr g2) = T (g1) ∪ T (g2)

T (f{g1, . . . , gk}tr) = T (f){T (g1), . . . , T (gk)}.(6.3)

By definition, we have that

g1 ∪tr g2 = (−1)|g1|·|g2|g2 ∪ g1

f{g1, . . . , gk}tr = (−1)ε f{gk, . . . , g1}

where ε = k +
∑k−1

i=1 (|gi| − 1)((|gi+1| − 1) + (|gi+2| − 1) + · · · + (|gk| − 1)). By a
straightforward computation, we have

T (g1) ∪ T (g2) = (−1)|g1|·|g2| T (g2 ∪ g1)

T (f){T (g1), . . . , T (gk)} = (−1)ε T (f{gk, . . . , g1}).
This proves the claim.

By Theorem 5.10 there is a B∞-isomorphism between C∗(A,A)tr and
C∗(A,A)opp. Thus, we obtain a B∞-isomorphism between C∗(A,A)opp and
C∗(Aop, Aop). �

Remark 6.6. In a private communication (March 2019), Bernhard Keller
pointed out a proof of Proposition 6.5 using the intrinsic description of the B∞-
algebra structures on Hochschild cochain complexes; compare [54, Subsection 5.7].
We are very grateful to him for sharing his intuition on B∞-algebras, which essen-
tially leads to the general result Theorem 5.10.
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CHAPTER 7

A homotopy deformation retract
and the homotopy transfer theorem

In this chapter, we provide an explicit homotopy deformation retract for the
Leavitt path algebra. We begin by recalling a construction of homotopy deformation
retracts between resolutions.

7.1. A construction for homotopy deformation retracts

We will provide a general construction of homotopy deformation retracts be-
tween the bar resolution and a smaller projective resolution for a dg algebra. The
construction is inspired by [42,59].

The following notion is standard; see [63, Subsection 1.5.5].

Definition 7.1. Let (V, dV ) and (W,dW ) be two cochain complexes. A ho-
motopy deformation retract from V to W is a triple (ι, π, h), where ι : V → W and
π : W → V are cochain maps satisfying π ◦ ι = 1V , and h : W → W is a homotopy
of degree −1 between 1W and ι ◦ π, that is, 1W = ι ◦ π + dW ◦ h+ h ◦ dW .

The homotopy deformation retract (ι, π, h) is usually depicted by the following
diagram.

(V, dV )
ι �� (W,dW )
π

�� h
��

Let A be a dg algebra with a semisimple subalgebra E =
⊕n

i=1 kei ⊆ A0 ⊆ A
satisfying dA(ei) = 0 and eiej = δi,jei for any i, j ∈ I. We consider the (normalized)

E-relative bar resolution BarE(A), whose differential is denoted by d. The tensor-
length of a typical element y = a0 ⊗E sa1,n ⊗E b ∈ A⊗E (sA)⊗En ⊗E A is defined
to be n + 2, where sa1,n means sa1 ⊗E sa2 ⊗E · · · ⊗E san. The following natural
map

s : A⊗E (sA)⊗En ⊗E A −→ (sA)⊗En+1 ⊗E A(7.1)

y = a0 ⊗E sa1,n ⊗E b 	−→ s(y) = sa0,n ⊗E b

is of degree −1.
The inductive construction of homotopies given below is a well-known con-

struction; see [32, the proof of Theorem 2.1a]. The following result is inspired by
[59, Section 2] and [42, Proposition 3.3].

Proposition 7.2. Let A be a dg algebra with a semisimple subalgebra E =
⊕n

i=1 kei ⊆ A0 ⊆ A satisfying dA(ei) = 0 and eiej = δi,jei. Assume that

ω : BarE(A) → BarE(A)

41
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is a morphism of dg A-A-bimodules satisfying ω(a⊗E b) = a⊗E b for all a, b ∈ A.
Define a k-linear map h : BarE(A) → BarE(A) of degree −1 as follows

h(a0 ⊗E sa1,n ⊗E b)

=

{

0 if n = 0;
∑n

i=1(−1)εi+1a0 ⊗E sa1,i−1 ⊗E ω(1⊗E sai,n ⊗E b) if n > 0.

Here, εi = |a0|+ |a1|+ · · ·+ |ai−1|+ i− 1, and ω denotes the composition of ω with
the natural map s in (7.1). Then we have d ◦ h+ h ◦ d = 1BarE(A) − ω.

Proof. We use induction on the tensor-length. Let a ∈ A and y ∈ A ⊗E

(sA)⊗En ⊗E A. Then a⊗E s(y) lies in A⊗E (sA)⊗En+1 ⊗E A. To save the space,
we write a⊗E s(y) as a⊗E y.

Recall from Section 6.2 that d = din+dex, where din is the internal differential
and dex is the external differential. We observe that

din(a⊗E y) = dA(a)⊗E y + (−1)|a|+1a⊗E din(y)

and that dex(a⊗E y) = (−1)|a|(ay− a⊗E dex(y)). Here, ay denotes the left action
of a on y, and din (resp. dex) is the composition of din (resp. dex) with the map s
in (7.1). Then we have

d(a⊗E y) = dA(a)⊗E y + (−1)|a|+1a⊗E d(y) + (−1)|a|ay.(7.2)

From the very definition, we observe

h(a⊗E y) = (−1)|a|+1(a⊗E h(y) + a⊗E ω(1⊗E y)).

Using the above two identities, we obtain

d ◦ h(a⊗E y) = (−1)|a|+1dA(a)⊗E h(y) + a⊗E d ◦ h(y)− ah(y)

+ (−1)|a|+1dA(a)⊗E ω(1⊗E y)

+ a⊗E d ◦ ω(1⊗E y)− aω(1⊗E y),

and

h ◦ d(a⊗E y) = (−1)|a|dA(a)⊗E h(y) + (−1)|a|dA(a)⊗E ω(1⊗E y)

+ a⊗E h ◦ d(y) + a⊗E ω(1⊗E d(y)) + (−1)|a|h(ay).

Using the fact ah(y) = (−1)|a|h(ay), we infer the first equality of the following
identities

(d ◦ h+ h ◦ d)(a⊗E y)

= a⊗E (d ◦ h+ h ◦ d)(y) + a⊗E d ◦ ω(1⊗E y) + a⊗E ω(1⊗E d(y))− aω(1⊗E y)

= a⊗E y − a⊗E ω(y) + a⊗E d ◦ ω(1⊗E y) + a⊗E ω(1⊗E d(y))− aω(1⊗E y)

= a⊗E y − a⊗E ω(y) + a⊗E ω ◦ d(1⊗E y) + a⊗E ω(1⊗E d(y))− ω(a⊗E y)

= a⊗E y − ω(a⊗E y).

Here, the second equality uses the induction hypothesis, and the third one uses
the fact that ω respects the differentials and the left A-module structure. The last
equality uses the following special case of (7.2)

−y + d(1⊗E y) + 1⊗E d(y) = 0.

This completes the proof. �
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Remark 7.3. We observe that the obtained homotopy h respects the A-A-
bimodule structures. More precisely, h : BarE(A) → Σ−1BarE(A) is a morphism of
graded A-A-bimodules.

The following immediate consequence of Proposition 7.2 is a dg version of
[59, Lemma 2.5] and a slight generalization of [42, Proposition 3.3]. It might be a
useful tool in many fields to construct explicit homotopy deformation retracts. We
recall from (6.1) the quasi-isomorphism ε : BarE(A) → A.

Corollary 7.4. Let A be a dg algebra with a semisimple subalgebra E =
⊕n

i=1 kei ⊆ A0 ⊆ A satisfying dA(ei) = 0 and eiej = δi,jei for each i, j. Assume
that P is a dg A-A-bimodule and that there are two morphisms of dg A-A-bimodules

ι : P −→ BarE(A), π : BarE(A) −→ P

satisfying π ◦ ι = 1P and ι◦π|A⊗EA = 1A⊗EA. Then the pair (ι, π) can be extended
to a homotopy deformation retract (ι, π, h), where h : BarE(A) → BarE(A) is given
as in Proposition 7.2 with ω = ι ◦ π.

In particular, the composition

P
ι−→ BarE(A)

ε−→ A

is a quasi-isomorphism of dg A-A-bimodules. �

7.2. A homotopy deformation retract for the Leavitt path algebra

In this section, we apply the above construction to Leavitt path algebras. We
obtain a homotopy deformation retract between the normalized E-relative bar res-
olution and an explicit bimodule projective resolution.

Let Q be a finite quiver without sinks. Let L = L(Q) be the Leavitt path
algebra viewed as a dg algebra with trivial differential; see Chapter 4. Set E =
⊕

i∈Q0
kei ⊆ L0 ⊆ L. We write L = L/(E · 1L). In what follows, we will construct

an explicit homotopy deformation retract.

(7.1) (P, ∂)
ι �� (BarE(L), d)
π

�� h
��

Let us first describe the dg L-L-bimodule (P, ∂). As a graded L-L-bimodule,

P =
⊕

i∈Q0

(Lei ⊗ sk ⊗ eiL)⊕
⊕

i∈Q0

Lei ⊗ eiL.

The differential ∂ of P is given by

∂(x⊗ s⊗ y) = (−1)|x|x⊗ y − (−1)|x|
∑

{α∈Q1|s(α)=i}
xα∗ ⊗ αy,

∂(x⊗ y) = 0,

(7.2)

for x ∈ Lei, y ∈ eiL and i ∈ Q0. Here, sk is the 1-dimensional graded k-vector
space concentrated in degree −1, and the element s1k ∈ sk is abbreviated as s.

The homotopy deformation retract (7.1) is defined as follows.

(1) The injection ι : P → BarE(L) is given by

ι(x⊗ y) = x⊗E y,

ι(x⊗ s⊗ y) = −
∑

α∈Q1

xα∗ ⊗E sα⊗E y = −
∑

{α∈Q1|s(α)=i}
xα∗ ⊗E sα⊗E y,(7.3)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

44 7. HOMOTOPY DEFORMATION RETRACT, HOMOTOPY TRANSFER THEOREM

for x ∈ Lei, y ∈ eiL and i ∈ Q0.

(2) The surjection π : BarE(L) → P is given by

π(a′ ⊗E b′) = a′ ⊗ b′,

π(a⊗E sz ⊗E b) = aD(z)b,

π|L⊗E(sL)⊗E>1⊗EL = 0,

(7.4)

for a′ = a′ei and b′ = eib
′ for some i ∈ Q0, and any a, b, z ∈ L, where

D : L →
⊕

i∈Q0
(Lei ⊗ sk ⊗ eiL) is the graded E-derivation of degree −1

in Lemma 4.3. Here and also in the proof of Proposition 7.5, we use the
canonical identification

⊕

i∈Q0

Lei ⊗ eiL = L⊗E L, x⊗ y 	−→ x⊗E y.

(3) The homotopy h : BarE(L) → BarE(L) is given by

h(a0 ⊗E sa1 ⊗E · · · ⊗E san ⊗E b)

=

{

0 if n = 0;

(−1)εn+1a0 ⊗E sa1 ⊗E · · · ⊗E san−1 ⊗E ι ◦ π(1⊗E san ⊗E b) if n > 0,

where εn = |a0|+ |a1|+ · · ·+ |an−1|+ n− 1, and ι ◦ π is the composition
of ι ◦π with the canonical map L⊗E sL⊗E L → sL⊗E sL⊗E L of degree
−1.

Proposition 7.5. The above triple (ι, π, h) defines a homotopy deformation
retract in the abelian category of dg L-L-bimodules. In particular, the dg L-L-
bimodule P is a dg-projective bimodule resolution of L.

Proof. We first observe that ι and π are morphisms of L-L-bimodules. Recall
that the differential of BarE(L) is given by the external differential dex since the
internal differential din is zero; see Section 6.2. We claim that both ι and π respect
the differential. It suffices to prove the commutativity of the following diagram.

· · · �� 0

��

�� ⊕
i∈Q0

Lei ⊗ sk ⊗ eiL

ι

��

∂ �� L⊗E L

· · · �� L⊗E (sL)⊗E2 ⊗E L

��

dex �� L⊗E sL⊗E L

π

��

dex �� L⊗E L

· · · �� 0 �� ⊕
i∈Q0

Lei ⊗ sk ⊗ eiL
∂ �� L⊗E L

For the northeast square, we have

dex ◦ ι(x⊗ s⊗ y) = −
∑

{α∈Q1|s(α)=i}
dex(xα

∗ ⊗E sα⊗E y)

=
∑

{α∈Q1|s(α)=i}
−(−1)|x|+1xα∗α⊗E y − (−1)|x|xα∗ ⊗E αy

= ∂(x⊗ s⊗ y),

where the third equality follows from the second Cuntz-Krieger relations and (7.2).
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For the southwest square, we have

π ◦ dex(a⊗E sy ⊗E sz ⊗E b)

= (−1)|a|π(ay ⊗E sz ⊗E b) + (−1)|a|+|y|−1(π(a⊗E syz ⊗E b)− π(a⊗E sy ⊗E zb))

= (−1)|a|ayD(z)b+ (−1)|a|+|y|−1aD(yz)w − (−1)|a|+|y|−1aD(y)zb

= 0,

where the last equality follows from the graded Leibniz rule of D; see Lemma 4.3.
It remains to verify that the southeast square commutes, namely ∂ ◦ π = dex.

For this, we first note that

∂ ◦ π(a⊗E sα⊗E b) = ∂(−aα⊗ s⊗ b)

= − (−1)|a|+1aα⊗ b+ (−1)|a|+1
∑

{β∈Q1|s(β)=s(α)}
aαβ∗ ⊗ βb

= (−1)|a|aα⊗ b− (−1)|a|a⊗ αb

= dex(a⊗E sα⊗E b),

where α ∈ Q1 is an arrow, a ∈ Let(α) and b ∈ es(α)L. For the third equality, we use
the first Cuntz-Krieger relations αβ∗ = δα,βet(α), where δ is the Kronecker delta.
Similarly, we have ∂ ◦ π(a⊗E sα∗ ⊗E b) = dex(a⊗E sα∗ ⊗E b).

For the general case, we use induction on the length of the path w in a ⊗E

sw ⊗E b. By the length of a path w in L, we mean the number of arrows in w,
including the ghost arrows. We write w = γη such that the lengths of γ and η are
both strictly smaller than that of w. We have

∂ ◦ π(a⊗E sγη ⊗E b) = ∂
(

aD(γ)ηb+ (−1)|γ|aγD(η)b
)

= ∂ ◦ π
(

a⊗E sγ ⊗E ηb+ (−1)|γ|aγ ⊗E sη ⊗E b
)

= dex
(

a⊗E sγ ⊗E ηb+ (−1)|γ|aγ ⊗E sη ⊗E b
)

= dex(a⊗E sγη ⊗E b),

where the third equality uses the induction hypothesis, and the fourth one follows
from d2ex(a ⊗E sγ ⊗E sη ⊗E b) = 0. This proves the required commutativity and
the claim.

The fact π ◦ ι = 1P follows from the second Cuntz-Krieger relations. By
Corollary 7.4, it follows that (ι, π) extends to a homotopy deformation retract
(ι, π, h); moreover, the obtained h coincides with the given one. �

Remark 7.6. (1) From the L-L-bimodule resolution P above, it follows
that the Leavitt path algebra L is quasi-free in the sense of [28, Section 3];
this result can be also proved along the way of the proof of [28, Proposition
5.3(2)].

(2) The following comment is due to Bernhard Keller: the above explicit
projective bimodule resolution P might be used to give a shorter proof of
the computation of the Hochschild homology of L in [5, Theorem 4.4].

7.3. The homotopy transfer theorem for dg algebras

We recall the homotopy transfer theorem for dg algebras, which will be used in
Chapter 12. For details, we refer to [47], [73, Theorem 3.4] and [68, Theorem 5].
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Theorem 7.7. Let (A, dA, μA) be a dg algebra. Let

(V, dV )
ι �� (A, dA)
π

�� h
��

be a homotopy deformation retract between cochain complexes (cf. Definition 7.1).
Then there is an A∞-algebra structure (m1 = dV ,m2,m3, · · · ) on V , where mk

is depicted in Figure 7.1. Moreover, the map ι : V → A extends to an A∞-quasi-
isomorphism ι∞ = (ι1, ι2, · · · ), with ι1 = ι, from the resulting A∞-algebra V to the
dg algebra A, where ιk is depicted in Figure 7.1.

More precisely, we have the following formulae

mk = π ◦ λk ◦ ι⊗k and ιk = h ◦ λk ◦ ι⊗k,

for k ≥ 2, where λk : A
⊗k → A is given by the following recursive formula

λk =
k−1
∑

j=1

(−1)j μA ◦ (h ◦ λj ⊗ h ◦ λk−j).(7.1)

Here, by h ◦ λ1 we mean 1A.

ι ι ι ι ι ι

h

h

h

π

h
mk =

∑

BPT(k)

±

ι ι ι ι ι ι

h

ιk =
∑

BPT(k)

±
h

h

h

h

Figure 7.1. The A∞-product mk and the A∞-quasi-isomorphism
ιk obtained from the homotopy transfer theorem, where the sums
are taken over BPT(k), the set of all planar rooted binary trees
with k leaves.

In this paper, we only need the following special case of Theorem 7.7. Under
the assumption (7.2) below, the formulae for the resulting A∞-algebra and A∞-
morphism will be highly simplified.

Corollary 7.8. Let (A, dA, μA) be a dg algebra. Let

(V, dV )
ι �� (A, dA)
π

�� h
��

be a homotopy deformation retract between cochain complexes. We further assume
that

h ◦ μA ◦ (1A ⊗ h) = 0 = π ◦ μA ◦ (1A ⊗ h).(7.2)

Then the resulting A∞-algebra (V,m1 = dV ,m2,m3, · · · ) is simply given by (cf.
Figure 7.2)

m2(a1 ⊗ a2) = π(ι(a1)ι(a2)),

mk(a1 ⊗ · · · ⊗ ak) = π(h(· · · (h(h(ι(a1)ι(a2))ι(a3)) · · · )ι(ak)), k > 2,

where we simply write ι(a)ι(b) = μA(ι(a)⊗ ι(b)).
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Moreover, the A∞-quasi-isomorphism ι∞ is given by (cf. Figure 7.2)

ιk(a1 ⊗ · · · ⊗ ak) = (−1)
(k−1)k

2 h(h(· · · (h(h(ι(a1)ι(a2))ι(a3)) · · · )ι(ak)), k ≥ 2.

Proof. For any k ≥ 2, we first observe that

h ◦ λk =

k−1
∑

j=1

(−1)j h ◦ μA ◦ (h ◦ λj ⊗ h ◦ λk−j) = (−1)k−1 h ◦ μA ◦ (h ◦ λk−1 ⊗ 1A),

(7.3)

where the first equality follows from (7.1) and the second one follows from the
assumption (7.2). Here, by h ◦ λ1 we mean 1A.

Then for any k ≥ 2 we obtain

mk = π ◦ λk ◦ ι⊗k =

k−1
∑

j=1

(−1)j π ◦ μA ◦ (h ◦ λj ⊗ h ◦ λk−j) ◦ ι⊗k

= (−1)k−1 π ◦ μA ◦ (h ◦ λk−1 ⊗ 1A) ◦ ι⊗k

(7.4)

where the second equality uses (7.1) and the third one uses (7.2). Similarly, we
have

ιk = h ◦ λk ◦ ι⊗k = (−1)k−1 h ◦ μA ◦ (h ◦ λk−1 ⊗ 1A) ◦ ι⊗k(7.5)

where the second equality follows from (7.3). Applying (7.3) to the above two
identities (7.4) and (7.5) iteratively, we obtain the required identities. �

ι ι ι ι ι

mk =

h

h

π

ι ι ι ι ι

ιk =

h

h

h

Figure 7.2. Under the condition (7.2), the A∞-product mk and
A∞-quasi-isomorphism ιk in Figure 7.1 are given by the left comb
with k leaves, and all the other summands vanish.

We may reformulate the formulae for ιk and mk in Corollary 7.8. This refor-
mulation will be used in Section 12.2.

Remark 7.9. For k ≥ 2, from (7.5) we have the following recursive formula

ιk = (−1)k−1 h ◦ μA ◦ (ιk−1 ⊗ ι)

since ιk−1 = h ◦ λk−1 ◦ ι⊗k−1 by Theorem 7.7. Similarly, from (7.4) we have

mk = (−1)k−1 π ◦ μA ◦ (ιk−1 ⊗ ι).
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CHAPTER 8

The singular Hochschild cochain complexes

In this chapter, we recall the singular Hochschild cochain complexes and their
B∞-algebra structures. We describe explicitly the cup product and brace operation
on the singular Hochschild cochain complex and illustrate them with examples.

8.1. The left and right singular Hochschild cochain complexes

Let Λ be a finite dimensional k-algebra. Denote by Λe = Λ⊗Λop its enveloping
algebra. Let Dsg(Λ

e) be the singularity category of Λe. Following [11,55,88], the
singular Hochschild cohomology of Λ is defined as

HHn
sg(Λ,Λ) := HomDsg(Λe)(Λ,Σ

n(Λ)), for n ∈ Z.

Recall from [90, Section 3] that the singular Hochschild cohomology HH∗
sg(Λ,Λ)

can be computed by the singular Hochschild cochain complex.
There are two kinds of singular Hochschild cochain complexes: the left singu-

lar Hochschild cochain complex and the right singular Hochschild cochain complex,
which are constructed by using the left noncommutative differential forms and the
right noncommutative differential forms, respectively. We mention that only the
left one is considered in [90] with slightly different notation; see [90, Definition 3.2].
Throughout this section, we denote Λ = Λ/(k · 1Λ).

8.1.1. The right singular Hochschild cochain complex. Let us first de-

fine the right singular Hochschild cochain complex C
∗
sg,R(Λ,Λ).

Recall from [88] that the graded Λ-Λ-bimodule of right noncommutative differ-
ential p-forms is defined as

Ωp
nc,R(Λ) = (sΛ)⊗p ⊗ Λ.

Observe that Ωp
nc,R(Λ) is concentrated in degree −p and that its bimodule structure

is given by

a0 � (sa1,p ⊗ ap+1)b =

p−1
∑

i=0

(−1)isa0,i−1 ⊗ saiai+1 ⊗ sai+2,p ⊗ ap+1b

+ (−1)psa0,p−1 ⊗ apap+1b

(8.1)

for b, a0 ∈ Λ and sa1,p ⊗ ap+1 := sa1 ⊗ · · · ⊗ sap ⊗ ap+1 ∈ Ωp
nc,R(Λ). Note that

there is a k-linear isomorphism between Ωp
nc,R(Λ) and the cokernel of the (p+1)-st

differential

Λ⊗ (sΛ)⊗p+1 ⊗ Λ
dex−−→ Λ⊗ (sΛ)⊗p ⊗ Λ

in Bar(Λ) defined in Section 6.2. Then the above bimodule structure on Ωp
nc,R(Λ)

is inherited from this cokernel; compare [90, Lemma 2.5]. For ungraded noncom-
mutative differential forms, we refer to [28, Sections 1 and 3].

49
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By [28, Section 3, (27)], we have a short exact sequence of graded bimodules

0 −→ Σ−1Ωp+1
nc,R(Λ)

d′
−→ Λ⊗ (sΛ̄)⊗p ⊗ Λ

d′′
−→ Ωp

nc,R(Λ) −→ 0(8.2)

where d′(s−1x) = dex(1⊗x) for any x ∈ Ωp+1
nc,R(Λ), and d′′ = (�⊗1⊗p−1

sΛ
⊗1Λ)◦dex.

Here,� : Λ → sΛ is the natural projection of degree−1. We observe that dex factors
as

Λ⊗ (sΛ̄)⊗p+1 ⊗ Λ
d′′
−→ Ωp+1

nc,R(Λ)
Σ(d′)−→ Λ⊗ (sΛ̄)⊗p ⊗ Λ,

and that

d′′(a⊗ sa1,p ⊗ ap+1) = a � (sa1,p ⊗ ap+1).

Let C
∗
(Λ,Ωp

nc,R(Λ)) be the normalized Hochschild cochain complex of Λ with co-

efficients in the graded bimodule Ωp
nc,R(Λ); see Section 6.2. Here, Λ is viewed as a

dg algebra concentrated in degree zero.
For each p ≥ 0, we define a morphism (of degree zero) of complexes

(8.3) θp,R : C
∗
(Λ,Ωp

nc,R(Λ)) −→ C
∗
(Λ,Ωp+1

nc,R(Λ)), f 	−→ 1sΛ ⊗ f.

Here, we recall that C
m
(Λ,Ωp

nc,R(Λ)) = Hom((sΛ)⊗m+p,Ωp
nc,R(Λ)), the Hom-space

between non-graded spaces. Then for f ∈ C
m
(Λ,Ωp

nc,R(Λ)), the map 1sΛ ⊗ f

naturally lies in C
m
(Λ,Ωp+1

nc,R(Λ)), using the following identification

Ωp+1
nc,R(Λ) = sΛ⊗ Ωp

nc,R(Λ).

We mention that when 1sΛ⊗f is applied to elements in (sΛ)⊗m+p+1, an additional

sign (−1)|f | appears due to the Koszul sign rule.

The right singular Hochschild cochain complex C
∗
sg,R(Λ,Λ) is defined to be the

colimit of the inductive system

(8.4) C
∗
(Λ,Λ)

θ0,R−−−→ C
∗
(Λ,Ω1

nc,R(Λ))
θ1,R−−−→ · · · θp−1,R−−−−→ C

∗
(Λ,Ωp

nc,R(Λ))
θp,R−−−→ · · · .

We mention that all the maps θp,R are injective.
The above terminology is justified by the following observation.

Lemma 8.1. For each n ∈ Z, we have an isomorphism

HHn
sg(Λ,Λ) � Hn(C

∗
sg,R(Λ,Λ)).

Proof. The proof is analogous to that of [90, Theorem 3.6] for the left singular
Hochschild cochain complex. For the convenience of the reader, we give a complete
proof.

Since the direct colimit commutes with the cohomology functor, we obtain that

Hn(C
∗
sg,R(Λ,Λ)) � lim−→

θ̃p,R

HHn(Λ,Ωp
nc,R(Λ)),

where the maps ˜θp,R are induced by the above cochain maps θp,R.
Applying the functor HH∗(Λ,−) to the short exact sequence (8.2), we obtain a

long exact sequence

· · · → HHn(Λ,Λ⊗ (sΛ̄)⊗p ⊗ Λ)

→ HHn(Λ,Ωp
nc,R(Λ))

c−→ HHn+1(Λ,Σ−1Ωp+1
nc,R(Λ)) → · · · .
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Since HHn+1(Λ,Σ−1Ωp+1
nc,R(Λ) is naturally isomorphic to HHn(Λ,Ωp+1

nc,R(Λ)), the con-
necting morphism c in the long exact sequence induces a map

̂θp,R : HHn(Λ,Ωp
nc,R(Λ)) −→ HHn(Λ,Ωp+1

nc,R(Λ)).

By [56, Subsection 2.3], we have a natural isomorphism

HHn
sg(Λ,Λ) � lim−→

θ̂p,R

HHn(Λ,Ωp
nc,R(Λ)).

It remains to show that ˜θp,R = ̂θp,R. Indeed, let f ∈ HHn(Λ,Ωp
nc,R(Λ)). Assume

that it is represented by a linear map f : (sΛ)⊗n+p → Ωp
nc,R(Λ). As f is a cocycle,

the induced map

f ′ : Ωn+p
nc,R(Λ) −→ Ωp

nc,R(Λ), x⊗ a 	→ f(x)a

is a bimodule homomorphism of degree n; here, we recall that Ωn+p
nc,R(Λ)=(sΛ)

⊗n+p⊗
Λ. We have the following commutative diagram of bimodules with exact rows.

0 �� Σ−1Ωn+p+1
nc,R (Λ)

d′
��

(−1)nΣ−1(1sΛ⊗f ′)

��

Λ⊗ (sΛ̄)⊗n+p ⊗ Λ

1Λ⊗f ′

��

d′′
�� Ωn+p

nc,R(Λ)

f ′

��

�� 0

0 �� Σ−1Ωp+1
nc,R(Λ)

d′
�� Λ⊗ (sΛ̄)⊗p ⊗ Λ

d′′
�� Ωp

nc,R(Λ)
�� 0

For the sign in the leftmost vertical arrow, we recall that Σ−1 acts on any morphism
of degree n by (−1)n. The bimodule homomorphism 1sΛ ⊗ f ′ corresponds to the
linear map

1sΛ ⊗ f : (sΛ)⊗n+p+1 −→ Ωp+1
nc,R(Λ).

By the construction of the connecting morphism, we infer that ̂θp,R(f) = 1sΛ ⊗ f .

In view of the very definition of θp,R, we deduce ˜θp,R = ̂θp,R. �

8.1.2. The left singular Hochschild cochain complex. We now recall

from [90] the left singular Hochschild cochain complex C
∗
sg,L(Λ,Λ). The graded

Λ-Λ-bimodule of left noncommutative differential p-forms is

Ωp
nc,L(Λ) = Λ⊗ (sΛ)⊗p,

whose bimodule structure is given by

b(a0 ⊗ sa1,p) � ap+1 = (−1)pba0a1 ⊗ sa2,p+1

+

p
∑

i=1

(−1)p−iba0 ⊗ sa1,i−1 ⊗ saiai+1 ⊗ sai+2,p+1

for b, ap+1 ∈ Λ and a0⊗sa1⊗· · ·⊗sap ∈ Ωp
nc,L(Λ). It follows from [90, Lemma 2.5]

that Ωp
nc,L(Λ) is also isomorphic, as a graded Λ-Λ-bimodule, to the cokernel of the

(p+ 1)-st differential

Λ⊗ (sΛ)⊗p+1 ⊗ Λ
dex−−→ Λ⊗ (sΛ)⊗p ⊗ Λ

in Bar(Λ). In particular, we infer that Ωp
nc,L(Λ) and Ωp

nc,R(Λ) are isomorphic as
graded Λ-Λ-bimodules.
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The left singular Hochschild cochain complex C
∗
sg,L(Λ,Λ) is defined as the col-

imit of the inductive system

C
∗
(Λ,Λ)

θ0,L−−−→ C
∗
(Λ,Ω1

nc,L(Λ))
θ1,L−−−→ · · · θp−1,L−−−−→ C

∗
(Λ,Ωp

nc,L(Λ))
θp,L−−−→ . . . ,

where

θp,L : C
∗
(Λ,Ωp

nc,L(Λ)) −→ C
∗
(Λ,Ωp+1

nc,L(Λ)), f 	−→ f ⊗ 1sΛ.

8.2. The B∞-algebra structures on the singular Hochschild cochain
complexes

An explicit B∞-algebra structure on the left singular Hochschild cochain com-
plex is constructed in [90], which consists of two basic operations: the cup product
− ∪L − and the brace operation −{−, · · · ,−}L.

In this section, similar to the left case, will define two basic operations: the cup
product −∪R− and the brace operation −{−, · · · ,−}R on the right singular Hochs-

child cochain complex C
∗
sg,R(Λ,Λ), so that (C

∗
sg,R(Λ,Λ),−∪R−;−{−, · · · ,−}R) is

a brace B∞-algebra. These might be carried over word by word from the left
case, studied in [90, Section 5], but with different graph presentations. In Subsec-
tion 8.2.3, we translate the graphical description for −{−, · · · ,−}R into a purely
algebraic formula.

8.2.1. The tree-like graphs and cactus-like graphs. Similar to [90, Fig-
ure 1], any element

f ∈ C
m−p

(Λ,Ωp
nc,R(Λ)) = Hom((sΛ)⊗m, (sΛ)⊗p ⊗ Λ)

can be depicted by a tree-like graph and a cactus-like graph (cf. Figure 8.1):
The tree-like presentation is the usual graphic presentation of morphisms in

tensor categories (cf. e.g. [46]). We read the graph from top to bottom and left to
right. We use the color blue to distinguish the special output Λ and the other black
outputs represent sΛ. The inputs (sΛ)⊗m are ordered from left to right at the top
but are labelled by 1, 2, . . . ,m from right to left. Similarly, the outputs (sΛ)⊗p ⊗Λ
are ordered from left to right at the bottom but are labelled by 0, 1, 2, . . . , p from
right to left. The above labelling is convenient when taking the colimit (8.1); see
Figure 8.2.

The cactus-like presentation is read as follows. The image of 0 ∈ R in the red
circle S1 = R/Z is decorated by a blue dot, called the zero point of S1. The center
of S1 is decorated by f . The blue radius represents the special output Λ. The
inputs (sΛ)⊗m are represented by m black radii (called inward radii) on the right
semicircle pointing towards the center in clockwise. Similarly, the outputs (sΛ)⊗p

are represented by p black radii (called outward radii) on the left semicircle pointing
outwards the center in counterclockwise. The cactus-like presentation is inspired
by the spineless cacti operad [48].

In both the tree-like graph and cactus-like graph, the 0 labelling the blue arrows
is omitted.
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f

12m . . .

12. . .p

f

1
2

1
2

mp

Figure 8.1. The tree-like and cactus-like presentations of f ∈ C
m−p

(Λ,Ωp
nc,R(Λ)).

Recall that the maps in the inductive system (8.4) of C
∗
sg,R(Λ,Λ) are given by

θp,R : C
∗
(Λ,Ωp

nc,R(Λ)) −→ C
∗
(Λ,Ωp+1

nc,R(Λ)), f 	−→ 1⊗ f.

That is, for any f ∈ C
∗
(Λ,Ωp

nc,R(Λ)) we have

f = 1⊗ f = 1⊗2 ⊗ f = · · · = 1⊗m ⊗ f = · · ·(8.1)

in C
∗
sg,R(Λ,Λ). Thus, any element f ∈ C

m−p

sg,R (Λ,Λ) is depicted by Figure 8.2, where

the straight line represents the identity map of sΛ. Thanks to (8.1), we can freely
add or remove the straight lines from the left side and from the top, respectively.

The tree-like and cactus-like presentations have their own advantages: it is
much easier to read off the corresponding morphisms from the tree-like presentation
(as we have seen from tensor categories), while it is more convenient to construct
the brace operation using the cactus-like presentation as we will see in the sequel.

f

12m . . .

12. . .p

. . .
f

1
2

1
2

mp

Figure 8.2. The colimit maps θ∗,R, where the straight line rep-

resents the identity map of sΛ.

8.2.2. The B∞-algebra structure on the right singular Hochschild
cochain complex. We first define the cup product

− ∪R − : C
∗
sg,R(Λ,Λ)⊗ C

∗
sg,R(Λ,Λ) −→ C

∗
sg,R(Λ,Λ)

as follows: for f ∈ C
m−p

(Λ,Ωp
nc,R(Λ)) and g ∈ C

n−q
(Λ,Ωq

nc,R(Λ)), we define

(8.2)

f ∪R g :=
(

1⊗p+q

sΛ
⊗ μ

)

◦
(

1⊗q

sΛ
⊗ f ⊗ 1Λ

)

◦
(

1⊗m

sΛ
⊗ g

)

∈ C
m+n−p−q

(Λ,Ωp+q
nc,R(Λ)),
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where μ denotes the multiplication of Λ. We refer to Figure 8.3 for the tree-like
illustration of the cup product. When f ∪R g is applied to elements in (sΛ)⊗m+n,
an additional sign (−1)mn+pq appears due to the Koszul sign rule. In particular,

if p = q = 0 we get the classical cup product on C
∗
(Λ,Λ). Note that − ∪R − is

compatible with the colimit, hence it is well-defined on C
∗
sg,R(Λ,Λ).

g

μ

f

Figure 8.3. The cup product f ∪R g on the right sin-

gular Hochschild cochain complex C
∗
sg,R(Λ,Λ). Here f ∈

Hom((sΛ)⊗3,Ω3
nc,R(Λ)) and g ∈ Hom((sΛ)⊗4,Ω5

nc,R(Λ)). Then

f ∪R g ∈ Hom((sΛ)⊗7,Ω8
nc,R(Λ)).

Let us define the brace operation −{−, . . . ,−}R on C
∗
sg,R(Λ,Λ). We mention

that, similar to the left case, the brace operation −{−, · · · ,−}R is induced from a
natural action of the cellular chain dg operad of the spineless cacti operad [48].

For any k ≥ 0, let us define the brace operation of degree −k

−{−, . . . ,−}R : C
∗
sg,R(Λ,Λ)⊗ C

∗
sg,R(Λ,Λ)

⊗k −→ C
∗
sg,R(Λ,Λ).

Definition 8.2. Let f ∈ C
m−p

(Λ,Ωp
nc,R(Λ)) and gi ∈ C

ni−qi
(Λ,Ωqi

nc,R(Λ)) for
1 ≤ i ≤ k. Then we define

f{g1, . . . , gk}R ∈ Hom((sΛ)⊗m+n1+n2+···+nk−k,Ωp+q1+···+qk
nc,R (Λ))

as follows: for k = 0, we set x{∅} = x; for k ≥ 1, we set

(8.3) f{g1, . . . , gk}R =
∑

0≤j≤k
1≤i1<i2<···<ij≤m
1≤l1≤l2≤···≤lk−j≤p

(−1)k−jB
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk),

where the summand B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk) is illustrated in Figure 8.4 below.

Here, the extra sign (−1)k−j is added in order to make sure that the brace operation
is compatible with the colimit maps θ∗,R.

When the operation B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk) applies to elements, an additional

sign (−1)ε appears due to Koszul sign rule, where

ε :=
(

m′ +
k

∑

i=1

n′
i

)(

p+

k
∑

i=1

qi

)

+m′p+
k

∑

i=1

n′
iqi

+

k−j
∑

r=1

(n′
1 + · · ·+ n′

r + lr − 1)n′
r +

j
∑

s=1

(n′
1 + · · ·+ n′

k−s+1 +m′ − is − 1)n′
k−s+1.

Here, we set m′ = m− p and n′
r = nr − qr − 1 for 1 ≤ r ≤ k.
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f

1

2

1

2

mp

l1

l2 = l3

lk−j ij

i2

i1

g1

g2

g3

gk−j

gk−j+1

gk−1

gk

Figure 8.4. The summand B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk) of

f{g1, . . . , gk}R. Here, we need to apply the natural projec-
tion π : Λ → sΛ when going from the blue arrows to the dashed
arrows.

Let us now describe Figure 8.4 in detail and how to read off

B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk).

(i) We start with the cell of the spineless cacti operad, depicted in Figure 8.5
below. As in Figure 8.1, we use the element f to decorate the circle 1 of
Figure 8.5 and similarly use the element gi to decorate the circle i+1 for
1 ≤ i ≤ k.

1

2

3

4

k

k + 1

Figure 8.5. A cell in the spineless cacti operad.
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(ii) The left semicircle of the circle 1 is divided into p+1 arcs by the outward
radii of f . For each 1 ≤ r ≤ k− j, the red curve of the circle r (decorated
by gr) intersects with the circle 1 at the open arc between the (lr − 1)-st
and lr-th outward radii of f . The red curves are not allowed to intersect
with each other.

(iii) On the right semicircle of the circle 1, we have m intersection points of
the m inward radii of f with the circe 1. Unlike (ii), for each 1 ≤ r ≤ j
the red curve of the circle k− r+1 (decorated by gk−r+1) intersects with
the circle 1 exactly at the ir-th intersection point.

(iv) We connect some inputs with outputs using the following rule.
• For each 1 ≤ r ≤ j, connect the blue output of gk−r+1 with the ir-th
inward radius of the circle 1 on the right semi-circle of the circle 1.
Then starting from the blue dot (i.e. the zero point) of circle 1,
walk counterclockwise along the red path (i.e. the outside of the red
circles and the red curves) and record the inward and outward radii
(including the blue radii) in order as a sequence S. When an outward
radius is found closely behind an inward radius in S, we call this pair
in-out.

• Let us define the following operation.

Deletion Process: Once the in-out pair appears in the sequence S,
we connect the outward radius with the inward radius via a dashed
arrow in Figure 8.4. Delete this pair and renew the sequence S. Then
repeat the above operations iteratively until no in-out pair is left in S.

(v) After applying the above Deletion Process, we obtain a final sequence S
with all outward radii preceding all inward radii. Finally, we translate the
updated cactus-like graph into a tree-like graph by putting the inputs (in
the final sequence) on the top and outputs on the bottom. We therefore
get the k-linear map

B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk) : (sΛ)

⊗u −→ (sΛ)⊗v ⊗ Λ,

where u and v are respectively the numbers of the inward radii and out-
ward radii in the final sequence S. See Example 8.3 below.

Similar to the brace operation on the left singular Hochschild cochain complex,
see [90, Lemma 5.11], we may show that f{g1, . . . , gk}R is compatible with the col-
imit maps θ∗,R. This may be also seen from the algebraic formula in Lemma 8.5 be-
low. Therefore, it induces a well-defined operation (still denoted by −{−, . . . ,−}R)
on C

∗
sg,R(Λ,Λ). When p = q1 = · · · = qk = 0, the above f{g1, . . . , gk}R coincides

with the usual brace operation on C
∗
(Λ,Λ); compare (6.1).

Example 8.3. Let

f ∈ C
2
(Λ,Ω3

nc,R(Λ)) = Hom((sΛ)⊗5, (sΛ)⊗3 ⊗ Λ)

g1 ∈ C
2
(Λ,Ω1

nc,R(Λ)) = Hom((sΛ)⊗3, sΛ⊗ Λ)

g2 ∈ C
0
(Λ,Ω3

nc,R(Λ)) = Hom((sΛ)⊗3, (sΛ)⊗3 ⊗ Λ)

g3 ∈ C
−1

(Λ,Ω3
nc,R(Λ)) = Hom((sΛ)⊗2, (sΛ)⊗3 ⊗ Λ).
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Then the operation B
(2,4)
(2) (f ; g1, g2, g3) is depicted in Figure 8.6. It is represented

by the following composition of maps (here, we ignore the identity map 1⊗6

sΛ
on the

left)

(1sΛ ⊗ g1 ⊗ 1sΛ ⊗ 1Λ)(1
⊗2

sΛ
⊗ f)(g2 ⊗ 1⊗3

sΛ
)(1sΛ ⊗ g3 ⊗ 1sΛ) : (sΛ)

⊗4 −→ (sΛ)⊗4 ⊗Λ

where g : (sΛ)⊗m g−→ (sΛ)⊗p ⊗ Λ
1⊗p

sΛ
⊗π

−−−−→ (sΛ)⊗p+1 and π : Λ → sΛ is the natural
projection a 	→ sa of degree −1.

f

1

2

3

4

5

1

2

3

g1
g2

g3

⇒

π
π

π

g3

g2

f

g1

Figure 8.6. An example of B
(2,4)
(2) (f ; g1, g2, g3).

8.2.3. An algebraic formula for the brace operation. We translate the
above graphical description for the brace operation −{−, . . . ,−}R into an explicit
algebraic formula. This is new compared to [90].

Definition 8.4. Let m,n1, . . . , nk, q1, . . . , qk be positive integers. Let gi ∈
C

ni
(Λ,Ωqi

nc(Λ)) for 1 ≤ i ≤ k. For any 1 ≤ i1, i2, . . . , ik ≤ m (not necessarily
distinct), we define

Om
(i1,...,ik)

(g1, . . . , gk) : (sΛ)
⊗m+n1+n2+···+nk−k → (sΛ)⊗m+q1+···+qk

as the following composition of maps

(1⊗i′1 ⊗ g1 ⊗ 1⊗i1−1) ◦ (1⊗i′2 ⊗ g2 ⊗ 1⊗i2−1) ◦ · · · ◦ (1⊗i′k ⊗ gk ⊗ 1⊗ik−1),

where for 1 ≤ t ≤ k we denote

i′t := m+ (n1 − 1) + · · ·+ (nt−1 − 1)− it + qt+1 + · · ·+ qk.

In particular, i′1 = m− i1+q2+ · · ·+qk and i′k = m+(n1−1)+ · · ·+(nk−1−1)− ik.

Here, we denote gt = (1⊗qt ⊗ π) ◦ gt and π : Λ → sΛ is the natural projection as
above. For convenience, we write Om

∅ = 1⊗m : (sΛ)⊗m → (sΛ)⊗m.

Lemma 8.5. Let f ∈ C
m
(Λ,Ωp

nc(Λ)) and gi ∈ C
ni
(Λ,Ωqi

nc(Λ)) for 1 ≤ i ≤ k.

Then the operation B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk) equals the following composition

(−1)εj
(

1
⊗bj

sΛ
⊗ Op

(l1,...,lk−j)
(g1, . . . , gk−j) ⊗ 1Λ

)

(1
⊗aj+bj

sΛ
⊗ f)

(

1
⊗aj

sΛ
⊗ Om

(ij ,...,i1)
(gk−j+1, . . . , gk)

)

,
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where εj = |f |(|g1|+ |g2|+ · · ·+ |gk−j | − k + j),

aj = n1 + n2 + · · ·+ nk−j − k + j and bj = qk−j+1 + · · ·+ qk.

In particular, b0 = 0 = ak.

Proof. This follows by observing that the composition of maps may be illus-
trated by the same cactus-like diagram in Figure 8.4; see Example 8.3. In particular,

the Deletion Process, which is the key operation for defining B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . ,

gk), corresponds to taking the composition of maps. We mention that the sign
(−1)εj above is due to the Koszul sign rule, since f permutes with g1, . . . , gk−j . �

Remark 8.6. If j = k then we have

B∅
(i1,...,ik)

(f ; g1, . . . , gk) = (−1)εk
(

Op
(i1,...,ik)

(g1, . . . , gk) ⊗ 1Λ

)

◦ (1⊗ak

sΛ
⊗ f).

If j = 0 then we have

B
(i1,...,ik)
∅ (f ; g1, . . . , gk) = (1⊗bk

sΛ
⊗ f) ◦

(

Om
(i1,...,ik)

(g1, . . . , gk)
)

.

From the above algebraic formula in Lemma 8.5 we may see that f{g1, . . . , gk}R
is compatible with the colimit maps θ∗,R. For instance, for each 1 ≤ t ≤ k we have

B
(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . ,1sΛ ⊗ gt, . . . , gk) = 1sΛ ⊗B

(i1,...,ij)

(l1,...,lk−j)
(f ; g1, . . . , gk).

Therefore, it induces a well-defined operation on C
∗
sg,R(Λ,Λ).

8.2.4. Comparing the B∞-algebra structures on the two complexes.
Let us compare the B∞-algebra structures on the left and right singular Hochschild
cochain complexes.

Recall that the cup product − ∪L − and brace operation −{−, . . . ,−}L on

C
∗
sg,L(Λ,Λ) are defined in [90, Subsections 4.1 and 5.2].

Theorem 8.7 ([90, Theorem 5.1]). The left singular Hochschild cochain com-

plex C
∗
sg,L(Λ,Λ), equipped with the mentioned cup product − ∪L − and brace op-

eration −{−, . . . ,−}L, is a brace B∞-algebra. Consequently, (HH∗
sg(Λ,Λ),− ∪L

−, [−,−]L) is a Gerstenhaber algebra. �

The following result is a right-sided version of the above theorem.

Theorem 8.8. The right singular Hochschild cochain complex C
∗
sg,R(Λ,Λ),

equipped with ∪R and −{−, . . . ,−}R defined above, is a brace B∞-algebra. Conse-
quently, (HH∗

sg(Λ,Λ),− ∪R −, [−,−]R) is a Gerstenhaber algebra. �

The above two Gerstenhaber algebra structures on HH∗
sg(Λ,Λ) are actually the

same.

Proposition 8.9. The above two Gerstenhaber algebras (HH∗
sg(Λ,Λ),− ∪L

−, [−,−]L) and (HH∗
sg(Λ,Λ),− ∪R −, [−,−]R) coincide.

Proof. By [90, Proposition 4.7], both − ∪L − and − ∪R − coincide with the
Yoneda product on HH∗

sg(Λ,Λ). Then we have − ∪L − = − ∪R −.
It follows from [91, Corollary 5.10] that the graded Lie algebra

(HH∗+1
sg (Λ,Λ), [−,−]R)
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is isomorphic to the graded Lie algebra

Lie(GΛ) =
⊕

p∈Z

Ker(GΛ(k[εp])
GΛ(πp)−−−−−→ GΛ(k))

associated to the subgroup GΛ of the (algebraic) singular derived Picard group of
Λ; compare [53]. Here, k[εp] is the graded algebra k[x]/(x2) with |x| = p and
πp : k[εp] → k is the augmentation. By a similar proof to the one of [91, Corollary

5.10], we may show that (HH∗+1
sg (Λ,Λ), [−,−]L) is also isomorphic to Lie(GΛ). As

a result, we obtain [−,−]R = [−,−]L on HH∗+1
sg (Λ,Λ). �

Let Λop be the opposite algebra of Λ. Consider the following two B∞-algebras

(C
∗
sg,L(Λ,Λ), δ,− ∪L −;−{−, . . . ,−}L)

and

(C
∗
sg,R(Λ

op,Λop), δ,− ∪R −;−{−, . . . ,−}R).
The following result is analogous to Proposition 6.5.

Proposition 8.10. Let Λ be a k-algebra, and Λop be the opposite algebra of Λ.

Then there is a B∞-isomorphism between the opposite B∞-algebra C
∗
sg,L(Λ,Λ)

opp

and the B∞-algebra C
∗
sg,R(Λ

op,Λop).

Proof. Consider the swap isomorphism (note that Λ = Λop as k-modules)

T : C
∗
sg,L(Λ,Λ) −→ C

∗
sg,R(Λ

op,Λop)(8.4)

which sends f ∈ Hom((sΛ)⊗m,Λ ⊗ (sΛ)⊗p) to T (f) ∈ Hom((sΛ)⊗m, (sΛ)⊗p ⊗ Λ)
with

T (f)(sa1 ⊗ sa2 ⊗ · · · ⊗ sam) = (−1)m−p+m(m−1)
2 τp(f(sam ⊗ · · · ⊗ sa2 ⊗ sa1)).

Here, the k-linear map τp : Λ⊗ (sΛ)⊗p → (sΛ)⊗p ⊗ Λ is defined as

τp(b0 ⊗ sb1 ⊗ sb2 ⊗ · · · ⊗ sbp) = (−1)
p(p−1)

2 sbp ⊗ · · · ⊗ sb2 ⊗ sb1 ⊗ b0.

We may verify the following two identities from the definitions

T (g1) ∪R T (g2) = (−1)|g1|·|g2|T (g2 ∪L g1),

T (f){T (g1), . . . , T (gk)}R = (−1)ε T (f{gk, . . . , g1}L),

where ε = k+
∑k−1

i=1 (|gi| − 1)((|gi+1| − 1)+ (|gi+2| − 1)+ · · ·+(|gk| − 1)). Precisely,
by comparing Figure 8.3 with [90, Figure 3], we may obtain the first identity, and
by comparing Figure 8.4 with [90, Figure 8], we obtain the second one. By the
definitions in (5.1) we have

T (g1 ∪tr
L g2) = (−1)|g1|·|g2|T (g2 ∪L g1),

T (f{g1, . . . , gk}trL ) = (−1)ε T (f{gk, . . . , g1}L).
Combining the above identities, from Lemma 5.15 we obtain that T is a strict

B∞-isomorphism from C
∗
sg,L(Λ,Λ)

tr to C
∗
sg,R(Λ

op,Λop).

By Theorem 5.10 there is a B∞-isomorphism between C
∗
sg,L(Λ,Λ)

tr and

C
∗
sg,L(Λ,Λ)

opp. We obtain a B∞-isomorphism between C
∗
sg,L(Λ,Λ)

opp and

C
∗
sg,R(Λ

op,Λop). �
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Remark 8.11. By Proposition 8.10 there is a (non-strict) B∞-isomorphism

C
∗
sg,L(Λ,Λ)

∼= C
∗
sg,R(Λ

op,Λop)opp.

In particular, this B∞-isomorphism induces an isomorphism of Gerstenhaber alge-
bras

(HH∗
sg(Λ,Λ),− ∪L −, [−,−]L) � (HH∗

sg(Λ
op,Λop),− ∪R −, [−,−]oppR ),

where [f, g]oppR = −[f, g]R.
In contrast to Proposition 8.9, we do not know whether the B∞-algebras

C
∗
sg,L(Λ,Λ) and C

∗
sg,R(Λ,Λ) are isomorphic in Ho(B∞). Actually, it seems that

there is even no obvious natural quasi-isomorphism of complexes between them,
although both of them compute the same HH∗

sg(Λ,Λ).

8.3. The relative singular Hochschild cochain complexes

We will need the relative version of the singular Hochschild cochain complexes.
Let E =

⊕n
i=1 kei ⊆ Λ be a semisimple subalgebra of Λ with a decomposition

e1+ · · ·+en = 1Λ of the unity into orthogonal idempotents. Assume that ε : Λ � E
is a split surjective algebra homomorphism such that the inclusion map E ↪→ Λ is
a section of ε.

The following notion is slightly different from the one in Section 8.1. We will
denote the quotient E-E-bimodule Λ/(E · 1Λ) by Λ. The quotient k-module Λ/(k ·
1Λ) will be temporarily denoted by Λ in this section. Identifying Λ with Ker(ε), we
obtain a natural injection

ξ : Λ −→ Λ, x+ (E · 1Λ) 	−→ x+ (k · 1Λ)

for each x ∈ Ker(ε).
Consider the graded Λ-Λ-bimodule of E-relative right noncommutative differ-

ential p-forms

Ωp
nc,R,E(Λ) = (sΛ)⊗Ep ⊗E Λ.

Similarly, Ωp
nc,R,E(Λ) is isomorphic to the cokernel of the differential in BarE(Λ)

Λ⊗E (sΛ)⊗Ep+1 ⊗E Λ
dex−−→ Λ⊗E (sΛ)⊗Ep ⊗E Λ.

The E-relative right singular Hochschild cochain complex C
∗
sg,R,E(Λ,Λ) is defined

to be the colimit of the inductive system

C
∗
E(Λ,Λ)

θ0,R,E−−−−→ C
∗
E(Λ,Ω

1
nc,R,E(Λ))

θ1,R,E−−−−→ · · · → C
∗
E(Λ,Ω

p
nc,R,E(Λ))

θp,R,E−−−−→ . . . ,

where

θp,R,E : C
∗
E(Λ,Ω

p
nc,R,E(Λ)) −→ C

∗
E(Λ,Ω

p+1
nc,R,E(Λ)), f 	−→ 1sΛ ⊗E f.(8.1)

We have the natural (k-linear) projections

�m : (sΛ)⊗m −→ (sΛ)⊗Em, for all m ≥ 0.

Denote by tp the natural injection

Ωp
nc,R,E(Λ) ↪−→ Ωp

nc,R(Λ),
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induced by ξ. We have inclusions

HomE-E((sΛ)
⊗Em+p,Ωp

nc,R,E(Λ)) ↪−→ Hom((sΛ)⊗m+p,Ωp
nc,R,E(Λ))

↪−→ Hom((sΛ)⊗m+p,Ωp
nc,R(Λ)),

where the first inclusion is induced by the projection �m+p, and the second one is

given by Hom((sΛ)⊗m+p, tp). Therefore, we have the injection

C
m

E (Λ,Ωp
nc,R,E(Λ)) ↪−→ C

m
(Λ,Ωp

nc,R(Λ)).

For any m ∈ Z, we have the following commutative diagram.

C
m

E (Λ,Λ)
θ0,R,E��

� �

��

C
m

E (Λ,Ω1
nc,R,E(Λ))� �

��

θ1,R,E�� · · · �� C
m

E (Λ,Ωp
nc,R,E(Λ))� �

��

θp,R,E�� · · ·

C
m
(Λ,Λ)

θ0,R �� C
m
(Λ,Ω1

nc,R(Λ))
θ1,R �� · · · �� C

m
(Λ,Ωp

nc,R(Λ))
θp,R �� · · ·

It gives rise to an injection of complexes

ι : C
∗
sg,R,E(Λ,Λ) ↪−→ C

∗
sg,R(Λ,Λ).

We observe that the cup product and the brace operation on C
∗
sg,R(Λ,Λ) restrict

to C
∗
sg,R,E(Λ,Λ). Thus C

∗
sg,R,E(Λ,Λ) inherits a brace B∞-algebra structure.

Lemma 8.12. The injection ι : C
∗
sg,R,E(Λ,Λ) ↪→ C

∗
sg,R(Λ,Λ) is a strict B∞-

quasi-isomorphism.

Proof. Since ι preserves the cup products and brace operations, it follows
from Lemma 5.15 that ι is a strict B∞-morphism.

It remains to prove that ι is a quasi-isomorphism of complexes. The injection

ξ : Λ → Λ induces an injection of complexes of Λ-Λ-bimodules

BarE(Λ) ↪−→ Bar(Λ) =
⊕

n≥0

Λ⊗ (sΛ)⊗n ⊗ Λ.

Recall that Ωp
nc,R(Λ) is isomorphic to the cokernel of the external differential dex

in Bar(Λ) and that Ωp
nc,R,E(Λ) is isomorphic to the cokernel of dex in BarE(Λ).

We infer that both C
∗
sg,R,E(Λ,Λ) and C

∗
sg,R(Λ,Λ) compute HH∗

sg(Λ,Λ); compare
[90, Theorem 3.6]. Therefore, the injection ι is a quasi-isomorphism. �

Similarly, we define the E-relative left singular Hochschild cochain complex

C
∗
sg,E,L(Λ,Λ) as the colimit of the inductive system

C
∗
E(Λ,Λ)

θ0,L,E−−−−→ C
∗
E(Λ,Ω

1
nc,L,E(Λ))

θ1,L,E−−−−→ · · · θp−1,L,E−−−−−−→ C
∗
E(Λ,Ω

p
nc,L,E(Λ))

θp,L−−−→ . . . ,

where Ωp
nc,L,E(Λ) = Λ ⊗E (sΛ)⊗Ep is the graded Λ-Λ-bimodule of E-relative left

noncommutative differential p-forms and the maps

θp,L,E : C
∗
E(Λ,Ω

p
nc,L,E(Λ)) −→ C

∗
E(Λ,Ω

p+1
nc,L,E(Λ)), f 	−→ f ⊗E 1sΛ.(8.2)

We have an analogous result of Lemma 8.12.
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Lemma 8.13. There is a natural injection C
∗
sg,L,E(Λ,Λ) ↪→ C

∗
sg,L(Λ,Λ), which

is a strict B∞-quasi-isomorphism. �
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CHAPTER 9

B∞-quasi-isomorphisms induced by one-point
(co)extensions and bimodules

In this chapter, we prove that the (relative) singular Hochschild cochain com-
plexes, as B∞-algebras, are invariant under one-point (co)extensions of algebras
and singular equivalences with levels.

These invariance results are analogous to the ones in Section 2.2. However,
the proofs here are much harder, since the colimit construction of the singular
Hochschild cochain complex is involved.

Throughout this chapter, Λ and Π will be finite dimensional k-algebras.

9.1. Invariance under one-point (co)extensions

Let E =
⊕n

i=1 kei ⊆ Λ be a semisimple subalgebra of Λ. Set Λ = Λ/(E · 1Λ).
We have the B∞-algebra C

∗
sg,R,E(Λ,Λ) of the E-relative right singular Hochschild

cochain complex of Λ.
Consider the one-point coextension

Λ′ =

(

k M
0 Λ

)

in Section 2.2. Set

e′ =

(

1 0
0 0

)

,

and identify Λ with (1Λ′ − e′)Λ′(1Λ′ − e′). We take E′ = ke′ ⊕ E, which is a
semisimple subalgebra of Λ′. Set Λ′ = Λ′/(E′ · 1Λ′).

To consider the E′-relative right singular Hochschild cochain complex

C
∗
sg,R,E′(Λ′,Λ′), we naturally identify Λ′ with Λ ⊕ M . Then we have a natural

isomorphism for each m ≥ 1

(sΛ′)⊗E′m � (sΛ)⊗Em ⊕
(

sM ⊗E (sΛ)⊗Em−1
)

,(9.1)

where we use the fact that sΛ′ ⊗E′ sM = 0. The following decomposition follows
immediately from (9.1).

HomE′-E′((sΛ′)⊗E′m, (sΛ′)⊗E′p ⊗E′ Λ′)

� HomE-E((sΛ)
⊗Em, (sΛ)⊗Ep ⊗E Λ)

⊕Homk-E(sM ⊗E (sΛ)⊗Em−1, sM ⊗E (sΛ)⊗Ep−1 ⊗E Λ)

We take the colimits along θp,R,E′ for Λ′, and along θp,R,E for Λ in (8.1). Then the
above decomposition yields a restriction of complexes

C
∗
sg,R,E′(Λ′,Λ′) � C

∗
sg,R,E(Λ,Λ).

63
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It is routine to check that the above restriction preserves the cup products and
brace operations, i.e. it is a strict B∞-morphism.

The following two lemmas show the invariance of the left and right singular
Hochschild cochain complexes under one-point coextensions.

Lemma 9.1. Let Λ′ be the one-point coextension as above. Then the restriction
map

C
∗
sg,R,E′(Λ′,Λ′) � C

∗
sg,R,E(Λ,Λ)

is a strict B∞-isomorphism.

Proof. The crucial fact is that sΛ′ ⊗E′ sM = 0. Then by the very definition,
θp,R,E′ vanishes on the following component

Homk-E(sM ⊗E (sΛ)⊗Em−1, sM ⊗E (sΛ)⊗Ep−1 ⊗E Λ).

It follows that taking the colimits, the restriction becomes an actual isomorphism.
�

We now consider the E-relative left singular Hochschild cochain complex

C
∗
sg,L,E(Λ,Λ), and the E′-relative left singular Hochschild cochain complex

C
∗
sg,L,E′(Λ′,Λ′). Using the natural isomorphism (9.1), we have a decomposition

HomE′-E′((sΛ′)⊗E′m,Λ′ ⊗E′ (sΛ′)⊗E′p)

� HomE-E((sΛ)
⊗Em,Λ ⊗E (sΛ)⊗Ep)

⊕Homk-E(sM ⊗E (sΛ)⊗Em−1, ke′ ⊗ sM ⊗E (sΛ)⊗Ep−1)

⊕Homk-E(sM ⊗E (sΛ)⊗Em−1,M ⊗E (sΛ)⊗Ep).(9.2)

Similar to above, the decomposition will give rise to a restriction of complexes

C
∗
sg,L,E′(Λ′,Λ′) � C

∗
sg,L,E(Λ,Λ),

which is a strict B∞-morphism.
Unlike the isomorphism in Lemma 9.1, this restriction is only a quasi-isomor-

phism.

Lemma 9.2. Let Λ′ be the one-point coextension. Then the above restriction
map

C
∗
sg,L,E′ (Λ′,Λ′) � C

∗
sg,L,E(Λ,Λ)

is a strict B∞-quasi-isomorphism.

Proof. It suffices to show that the kernel of the restriction map is acyclic. For
this, we observe that the decomposition (9.2) induces a decomposition of graded
vector spaces

C
∗
sg,L,E′(Λ′,Λ′) � C

∗
sg,L,E(Λ,Λ)⊕X∗ ⊕ Y ∗.(9.3)

Here, the (m− p)-th component Xm−p of X∗ is the colimit along the maps

Homk-E(sM ⊗E (sΛ)⊗Em−1, ke′ ⊗ sM ⊗E (sΛ)⊗Ep−1)

→ Homk-E(sM ⊗E (sΛ)⊗Em, ke′ ⊗ sM ⊗E (sΛ)⊗Ep)
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which sends f to f ⊗E 1sΛ. Similarly, the (m − p)-th component Y m−p of Y ∗ is
the colimit along the maps

Homk-E(sM ⊗E (sΛ)⊗Em−1,M ⊗E (sΛ)⊗Ep)

→ Homk-E(sM ⊗E (sΛ)⊗Em,M ⊗E (sΛ)⊗Ep+1)

sending f to f ⊗E 1sΛ.
We observe that X∗ is, as a graded vector space, isomorphic to the 1-shift of

Y ∗ by identifying ke′ ⊗ sM with sM . Then we have

(9.4) X∗ � Σ(Y ∗).

The differential of C
∗
sg,L,E′(Λ′,Λ′) induces a differential on the decomposition

(9.3). Namely we have the following commutative diagram.
(9.5)

HomE′-E′ (sΛ′⊗E′m,Λ′ ⊗E′ sΛ′⊗E′p)

δ
Λ′

��

∼ ��
HomE-E((sΛ)

⊗Em
,Λ ⊗E (sΛ)

⊗Ep
)

⊕Homk-E(sM⊗E (sΛ)⊗Em−1, ke′⊗sM⊗E (sΛ)⊗Ep−1)

⊕Homk-E(sM ⊗E (sΛ)
⊗Em−1

,M ⊗E (sΛ)
⊗Ep

)

⎛

⎜
⎝

δΛ 0 0
0 Σ(δY ) 0

δ̃ θ δY

⎞

⎟
⎠

��

HomE′-E′ (sΛ′⊗E′m+1
,Λ′ ⊗E′ sΛ′⊗E′p)

∼ ��
HomE-E((sΛ)⊗Em+1,Λ ⊗E (sΛ)⊗Ep)

⊕Homk-E(sM ⊗E (sΛ)⊗Em, ke′⊗sM ⊗E (sΛ)⊗Ep−1)

⊕Homk-E(sM ⊗E (sΛ)
⊗Em

,M ⊗E (sΛ)
⊗Ep

)

Here, we write elements in the decomposition (9.3) as 3-dimensional column vec-
tors.

Let us explain the entries of the 3× 3-matrix in (9.5).

(i) We observe that δΛ′ restricts to a differential, denoted by δY , of Y ∗.
That is, (Y ∗, δY ) is a cochain complex. The differential on the second
component X∗ is given by Σ(δY ) under the natural isomorphism X∗ �
Σ(Y ∗) in (9.4).

(ii) The differential δΛ is the external differential of C
∗
E(Λ,Λ⊗E sΛ

⊗Ep
).

(iii) The map ˜δ is given as follows: for any f ∈ HomE-E((sΛ)
⊗Em,Λ ⊗E

(sΛ)⊗Ep), the element ˜δ(f) ∈ Homk-E(sM ⊗E (sΛ)⊗Em,M ⊗E (sΛ)⊗Ep) is
defined by

˜δ(f)(sx⊗E sa1,m) = −(−1)m−px⊗Λ f(sa1,m).

(iv) The map θ is given as follows: for any f ∈ Homk-E(sM⊗E(sΛ)
⊗Em−1, ke′⊗

sM ⊗E (sΛ)⊗Ep−1), the corresponding element θ(f) ∈ Homk-E(sM ⊗E

(sΛ)⊗Em,M ⊗E (sΛ)⊗Ep) is defined by

θ(f)(sx⊗E sa1,m) = f(sx⊗E sa1,m−1)⊗E sam.

Here, we use the natural isomorphism ke′ ⊗ sM → M of degree one, and
thus θ is a map of degree one. We observe that after taking the colimits,
θ becomes the identity map

1 : X∗ → Y ∗, Σ(y) 	→ y
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using the identification (9.4).

Thus, the kernel of the restriction map is identified with the subcomplex
(

X∗ ⊕ Y ∗,
(

Σ(δY ) 0
1 δY

))

,

which is exactly the mapping cone of the identity of the complex (Y ∗, δY ). It follows
that this kernel is acyclic, as required. �

Remark 9.3. The decomposition (9.3) induces an embedding of graded vector
spaces

C
∗
sg,L,E(Λ,Λ) −→ C

∗
sg,L,E′(Λ′,Λ′).

However, it is in general not a cochain map, since the differential ˜δ in the matrix
of (9.5) is nonzero.

Let us consider the one-point extension

Λ′′ =

(

Λ N
0 k

)

in Section 2.2. We set

e′′ =

(

0 0
0 1

)

and E′′ = E ⊕ ke′′ ⊆ Λ′′. Set Λ′′ = Λ′′/(E′′ · 1Λ′′), which is identified with Λ⊕N .
We first consider the E-relative left singular Hochschild cochain complex

C
∗
sg,L,E(Λ,Λ) and E′′-relative left singular Hochschild cochain complex

C
∗
sg,L,E′′(Λ′′,Λ′′).

The following result is analogous to Lemma 9.1.

Lemma 9.4. Let Λ′′ be the one-point extension as above. Then we have a strict
B∞-isomorphism

C
∗
sg,L,E′′(Λ′′,Λ′′) −→ C

∗
sg,L,E(Λ,Λ).

Proof. The proof is completely similar to that of Lemma 9.1. We have a
similar decomposition

HomE′′-E′′((sΛ′′)⊗E′′m,Λ′′ ⊗E′′ (sΛ′′)⊗E′′p)

� HomE-E((sΛ)
⊗Em,Λ ⊗E (sΛ)⊗Ep)

⊕HomE-k((sΛ)
⊗Em−1 ⊗E sN,Λ ⊗E (sΛ)⊗Ep−1) ⊗E sN).

We observe the crucial fact sN⊗E′′ sΛ′′ = 0. Then taking the colimit along θp,L,E′′

in (8.2), the above rightmost component will vanish. This gives rise to the desired
B∞-isomorphism. �

The following result is analogous to Lemma 9.2. We omit the same argument.

Lemma 9.5. Let Λ′′ be the one-point extension as above. Then the obvious
restriction

C
∗
sg,R,E′′(Λ′′,Λ′′) −→ C

∗
sg,R,E(Λ,Λ)

is a strict B∞-quasi-isomorphism. �
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9.2. B∞-quasi-isomorphisms induced by a bimodule

We will prove that the B∞-algebra structures on singular Hochschild cochain
complexes are invariant under singular equivalences with levels. Indeed, a slightly
stronger statement will be established in Theorem 9.6.

We fix a Λ-Π-bimodule M , over which k acts centrally. Therefore, M is also
viewed a left Λ⊗Πop-module. We require further that the underlying left Λ-module

ΛM and the right Π-module MΠ are both projective.
Denote by Dsg(Λ

e), Dsg(Π
e) and Dsg(Λ ⊗ Πop) the singularity categories of

the algebras Λe, Πe and Λ⊗Πop, respectively. The projectivity assumption on M
guarantees that the following two triangle functors are well-defined.

−⊗Λ M : Dsg(Λ
e) −→ Dsg(Λ⊗Πop)

M ⊗Π − : Dsg(Π
e) −→ Dsg(Λ⊗Πop)

(9.1)

The functor − ⊗Λ M sends Λ to M , and M ⊗Π − sends Π to M . Consequently,
they induce the following maps

HHi
sg(Λ,Λ)

αi
sg−→ HomDsg(Λ⊗Πop)(M,Σi(M))

βi
sg←− HHi

sg(Π,Π)(9.2)

for all i ∈ Z. Here, we recall that the singular Hochschild cohomology groups are
defined as

HHi
sg(Λ,Λ) = HomDsg(Λe)(Λ,Σ

i(Λ)) and HHi
sg(Π,Π) = HomDsg(Πe)(Π,Σi(Π)).

Moreover, these groups are computed by the right singular Hochschild cochain

complexes C
∗
sg,R(Λ,Λ) and C

∗
sg,R(Π,Π), respectively; see Section 8.1 for details.

Under reasonable conditions, the bimodule M induces an isomorphism between
the above two right singular Hocschild cochain complexes.

Theorem 9.6. Let M be a Λ-Π-bimodule such that it is projective both as a
left Λ-module and as a right Π-module. Suppose that the two maps in (9.2) are
isomorphisms for each i ∈ Z. Then we have an isomorphism

C
∗
sg,R(Λ,Λ) � C

∗
sg,R(Π,Π)

in the homotopy category Ho(B∞) of B∞-algebras.

We postpone the proof of Theorem 9.6 until the end of this chapter, whose
argument is adapted from the one developed in [52]; see also [65]. We will con-
sider a triangular matrix algebra Γ, using which we construct two strict B∞-quasi-

isomorphisms connecting C
∗
sg,R(Λ,Λ) to C

∗
sg,R(Π,Π).

We now apply Theorem 9.6 to singular equivalences with levels, in which case
the two maps in (9.2) are indeed isomorphisms for each i ∈ Z.

Proposition 9.7. Assume that (M,N) defines a singular equivalence with level
n between Λ and Π. Then the maps αi

sg and βi
sg in (9.2) are isomorphisms for

all i ∈ Z. Consequently, there is an isomorphism C
∗
sg,R(Λ,Λ) � C

∗
sg,R(Π,Π) in

Ho(B∞).

It follows that a singular equivalence with level gives rise to an isomorphism of
Gerstenhaber algebras

HH∗
sg(Λ,Λ) � HH∗

sg(Π,Π).

We refer to [91] for an alternative proof of this isomorphism. We mention that
[14] also accounts for the B∞-algebra structures on singular Hochschild cochain
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complexes. Using a similar argument as [52], it is shown that the above isomor-
phism preserves the Gerstenhaber structures, as well as the p-power structures; see
[14, Theorem 3 and Remark 2].

Proof of Proposition 9.7. By Theorem 9.6, it suffices to prove that both
αi
sg and βi

sg are isomorphisms. We only prove that the maps βi
sg are isomorphisms,

since a similar argument works for αi
sg.

Indeed, we will prove a slightly stronger result. Let X (resp. Y) be the full sub-
category of Dsg(Π

e) (resp. Dsg(Λ⊗Πop)) consisting of those complexes X, whose
underlying complexes XΠ of right Π-modules are perfect. The triangle functors

M ⊗Π − : X −→ Y and N ⊗Λ − : Y −→ X
are well-defined. We claim that they are equivalences. This claim clearly implies
that βi

sg are isomorphisms.
For the proof of the claim, we observe that for a bounded complex P of pro-

jective Πe-modules and an object X in X , the complex P ⊗Π X is perfect, that is,
isomorphic to zero in X . There is a canonical exact triangle in Db(Πe-mod)

Σn−1Ωn
Πe(Π) −→ P −→ Π −→ ΣnΩn

Πe(Π),

where P is a bounded complex of projective Πe-modules with length precisely n.
Applying −⊗Π X to this triangle, we infer a natural isomorphism

X � ΣnΩn
Πe(Π)⊗Π X

in X . By the second condition in Definition 2.12, we have

N ⊗Λ (M ⊗Π X) � Ωn
Πe(Π)⊗Π X � Σ−n(X).

Similarly, we infer that M ⊗Π (N ⊗Λ Y ) � Σ−n(Y ) for any object Y ∈ Y . This
proves the claim. �

9.3. A non-standard resolution and liftings

In this section, we make preparation for the proof of Theorem 9.6. We study
a non-standard resolution of the Λ-Π-bimodule M , and lift certain maps between
cohomological groups to cochain complexes.

Recall from Section 6.2 the normalized bar resolution Bar(Λ). It is well-known
that Bar(Λ) ⊗Λ M ⊗Π Bar(Π) is a projective Λ-Π-bimodule resolution of M , even
without the projectivity assumption on M . However, we will need another non-
standard resolution of M ; this resolution requires the projectivity assumption on
the Λ-Π-bimodule M .

We denote by ˜Bar(Λ) the augmented bar resolution, which is acyclic,

· · · → Λ⊗ (sΛ)⊗m ⊗ Λ
dex−−→ · · · dex−−→ Λ⊗ (sΛ)⊗ Λ

dex−−→ Λ⊗ Λ
μ−→ s−1Λ → 0,(9.1)

where μ is the multiplication and dex is the external differential; see Section 6.2.
Here, we use s−1Λ to emphasize that it is of cohomological degree one. Similarly,

we have the augmented bar resolution ˜Bar(Π) for Π.
Consider the following complex of Λ-Π-bimodules

B = B(Λ,M,Π) := ˜Bar(Λ)⊗Λ sM ⊗Π
˜Bar(Π).

We observe that B is acyclic. By using the natural isomorphisms

s−1Λ⊗Λ sM � M, and sM ⊗Π s−1Π � M,
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we obtain that the (−p)-th component of B is given by

B−p =
⊕

i+j=p−1
i,j≥0

Λ⊗(sΛ)⊗i⊗sM⊗(sΠ)⊗j⊗Π
⊕

Λ⊗(sΛ)⊗p⊗M
⊕

M⊗(sΠ)⊗p⊗Π

for any p ≥ 0, and that B1 = s−1Λ ⊗Λ sM ⊗Π s−1Π � s−1M . In particular, we
have

B0 � (Λ ⊗ M)
⊕

(M ⊗ Π),

B−1 = (Λ ⊗ sM ⊗ Π)
⊕

(Λ ⊗ sΛ ⊗ M)
⊕

(M ⊗ sΠ ⊗ Π).

The differential ∂−p : B−p → B−(p−1) is induced by the differentials of ˜Bar(Λ) and
˜Bar(Π) in (9.1) via tensoring with sM . For instance, the differential ∂0 : B0 −→ B1

is given by

Λ⊗M
⊕

M ⊗ Π −→ M, (a⊗ x 	−→ ax, x′ ⊗ b 	−→ x′b);

the differential ∂−1 : B−1 −→ B0 is given by the maps

Λ⊗ sM ⊗ Π −→ (Λ⊗M)
⊕

(M ⊗Π), (a⊗ sx⊗ b 	−→ −a⊗ xb+ ax⊗ b)

Λ⊗ sΛ⊗M −→ Λ⊗M, (a⊗ sa1 ⊗ x 	−→ aa1 ⊗ x− a⊗ a1x)

M ⊗ sΠ⊗ Π −→ M ⊗Π, (x⊗ sb1 ⊗ b 	−→ xb1 ⊗ b− x⊗ b1b).

Since M is projective as a left Λ-module and as a right Π-module, it follows
that all the direct summands of B−p are projective as Λ-Π-bimodules for p ≥ 0.
We infer that B is an augmented Λ-Π-bimodule projective resolution of M .

Lemma 9.8. For each p ≥ 1, the cokernel Cok(∂−p−1) is isomorphic to

Ωp
Λ-Π(M) :=

⊕

i+j=p−1
i,j≥0

(sΛ)⊗i ⊗ sM ⊗ (sΠ)⊗j ⊗Π
⊕

(sΛ)⊗p ⊗M.

In particular, Ωp
Λ-Π(M) inherits a Λ-Π-bimodule structure from Cok(∂−p−1).

Proof. We have a k-linear map

γ−p : Ωp
Λ-Π(M)

1⊗1−−−→ B−p −→ Cok(∂−p−1),

where the unnamed arrow is the natural projection and the first map 1⊗1 is given
by

sa1,i ⊗ sx⊗ sb1,j ⊗ bj+1 	−→ 1⊗ sa1,i ⊗ sx⊗ sb1,j ⊗ bj+1

sa1,p ⊗ x 	−→ 1⊗ sa1,p ⊗ x.
(9.2)

We claim that γ−p is surjective. Indeed, under the projection B−p�Cok(∂−p−1),
the image of a typical element a0⊗sa1,i⊗y ∈ B−p equals the image of the following
element

z :=

i−1
∑

k=0

(−1)k1⊗ sa0,k−1 ⊗ sakak+1 ⊗ sak+2,i ⊗ y + (−1)i1⊗ sa0,i−1 ⊗ aiy ∈ B−p,

where y lies in sM⊗(sΠ)⊗j⊗Π or M , since ∂−p−1(1⊗sa0⊗sa1,i⊗y) = a0⊗sa1,i⊗
y− z. Similarly, the image of a typical element x⊗ sb1,p ⊗ bp+1 ∈ M ⊗ (sΠ)⊗p ⊗Π
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equals the image of

z′ := 1⊗ s(xb1)⊗ sb2,p

⊗ bp+1 +

p−1
∑

k=1

(−1)k1⊗ sx⊗ sb1,k−1 ⊗ sbkbk+1 ⊗ sbk+2,p ⊗ bp+1

+ (−1)p1⊗ sx⊗ sb1,p−1 ⊗ bpbp+1 ∈ B−p,

since ∂−p−1(1 ⊗ sx ⊗ sb1,p ⊗ bp+1) = x ⊗ sb1,p ⊗ bp+1 − z′. In both cases, the
latter elements z and z′ lie in the image of the map 1⊗ 1. This shows that γ−p is
surjective.

On the other hand, we have a projection of degree −1

�−p+1 : B−p+1 � Ωp
Λ-Π(M)

given by

a0 ⊗ sa1,i ⊗ sm⊗ sb1,j ⊗ bj+1 	−→ sa0 ⊗ sa1,i ⊗ sm⊗ sb1,j ⊗ bj+1

a0 ⊗ sa1,p−1 ⊗m 	−→ sa0 ⊗ sa1,p−1 ⊗m

m⊗ sb1,p−1 ⊗ bp 	−→ sm⊗ sb1,p−1 ⊗ bp

We define a k-linear map

η̃−p = �−p+1 ◦ ∂−p : B−p −→ Ωp
Λ-Π(M).

In view of η̃−p ◦ ∂−p−1 = 0, we have a unique induced map

η−p : Cok(∂−p−1) −→ Ωp
Λ-Π(M).

One checks easily that η−p ◦ γ−p equals the identity. By the surjectivity of γ−p, we
infer that γ−p is an isomorphism. �

Remark 9.9. The right Π-module structure on Ωp
Λ-Π(M) is induced by the

right action of Π on M and Π. The left Λ-module structure is given by

a0 � (sa1,i ⊗ sx⊗ sb1,j ⊗ bj+1) := (π ⊗ 1⊗p) ◦ ∂−p(a0 ⊗ sa1,i ⊗ sx⊗ sb1,j ⊗ bj+1),

a0 � (sa1,p ⊗ x) := (π ⊗ 1⊗p) ◦ ∂−p(a0 ⊗ sa1,p ⊗ x),

where π : Λ → sΛ is the natural projection a 	→ sa of degree −1; compare (8.1).
We have a short exact sequence of Λ-Π-modules

0 −→ Σ−1Ωp+1
Λ-Π(M)

∂−p−1◦(1⊗1)−−−−−−−−−→ B−p η̃−p

−−−−−→ Ωp
Λ-Π(M) −→ 0,(9.3)

where the map 1⊗1 is given in (9.2); compare (8.2). Here, we always view Ωp
Λ-Π(M)

as a graded Λ-Π-bimodule concentrated in degree −p. By convention, we have
Ω0

Λ-Π(M) = M .

Fix p ≥ 0. Applying the functor HomΛ-Π(−,Ωp
Λ-Π(M)) to the resolution

Bar(Λ)⊗Λ M ⊗Π Bar(Π) of M ; see the proof of [26, Proposition 4.1], we obtain a
cochain complex

C
∗
(M,Ωp

Λ-Π(M))

computing Ext∗Λ-Π(M,Ωp
Λ-Π(M)). The space C

m
(M,Ωp

Λ-Π(M)) in degree m is as
follows:

⊕

i+j=m+p
i,j≥0

Hom

⎛

⎜⎜⎝(sΛ)⊗i⊗M⊗(sΠ)⊗j ,
⊕

k+l=p−1
k,l≥0

(sΛ)⊗k⊗sM⊗(sΠ)⊗l ⊗Π
⊕

(sΛ)⊗p ⊗M

⎞

⎟⎟⎠ .
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Recall that Ωp
nc,R(Λ) = (sΛ)⊗p ⊗ Λ is the graded Λ-Λ-bimodule of right non-

commutative differential p-forms. We have a natural identification

HH∗(Λ,Ωp
nc,R(Λ)) � Ext∗Λe(Λ,Ω

p
nc,R(Λ)).

Consider the following triangle functor

−⊗Λ M : D(Λe) −→ D(Λ⊗Πop).

Then we have a map

α∗
p : HH∗(Λ,Ωp

nc,R(Λ))

−⊗ΛM−−−−−→ Ext∗Λ-Π(M,Ωp
nc,R(Λ)⊗Λ M) −→ Ext∗Λ-Π(M,Ωp

Λ-Π(M)),

where the second map is induced by the natural inclusion

Ωp
nc,R(Λ)⊗Λ M

�−→ (sΛ)⊗p ⊗M ↪→ Ωp
Λ-Π(M).(9.4)

Here, the inclusion is a morphism of Λ-Π-bimodules; compare Remark 9.9.
We define a cochain map

α̃p : C
∗
(Λ,Ωp

nc,R(Λ)) −→ C
∗
(M,Ωp

Λ-Π(M))(9.5)

as follows: for any f ∈ Hom((sΛ)⊗m, (sΛ)⊗p ⊗ Λ) with m ≥ 0, the corresponding

map α̃p(f) ∈ C
m−p

(M,Ωp
Λ-Π(M)) is given by

α̃p(f)|(sΛ)⊗m−i⊗M⊗(sΠ)⊗i = 0 if i �= 0

α̃p(f)(sa1,m ⊗ x) = f(sa1,m)⊗Λ x

for any sa1,m ⊗ x ∈ (sΛ)⊗m ⊗M .

Recall that the cochain complexes C
∗
(Λ,Ωp

nc,R(Λ)) and C
∗
(M,Ωp

Λ-Π(M)) com-

pute HH∗(Λ,Ωp
nc,R(Λ)) and Ext∗Λ-Π(M,Ωp

Λ-Π(M)), respectively.

Lemma 9.10. The cochain map α̃p is a lifting of α∗
p.

Proof. Since M is projective as a right Π-module, it follows that the tensor
functor−⊗ΛM sends the projective resolution Bar(Λ) of Λ to a projective resolution
Bar(Λ)⊗Λ M of M .

Denote Ωp
nc,R(M) = Ωp

nc,R(Λ)⊗Λ M . Consider the complex

C
∗
k-Π(M,Ωp

nc,R(M)) =
∏

m≥0

Homk-Π((sΛ)
⊗m ⊗M,Ωp

nc,R(M)),

whose differential is induced by the differential of HomΛ-Π(Bar(Λ)⊗ΛM,Ωp
nc,R(M))

under the natural isomorphism

HomΛ-Π(Λ⊗ (sΛ)⊗m ⊗M,Ωp
nc,R(M))

�−→ Homk-Π((sΛ)
⊗m ⊗M,Ωp

nc,R(M))

f 	−→ (sa1,m⊗x 	−→ f(1Λ ⊗ sa1,m ⊗ x)).

Note that C
∗
k-Π(M,Ωp

nc,R(M)) also computes Ext∗Λ-Π(M,Ωp
nc,R(M)). The first

map

HH∗(Λ,Ωp
nc,R(Λ))

−⊗ΛM−−−−−→ Ext∗Λ-Π(M,Ωp
nc,R(M))

in defining α∗
p has the following lifting

α′
p : C

∗
(Λ,Ωp

R(Λ)) −→ C
∗
k-Π(M,Ωp

nc,R(M)),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

72 9. B∞-QUASI-ISOMORPHISMS INDUCED BY 1-PT (CO)EXTENSIONS, BIMODULES

which sends f ∈Hom((sΛ)⊗m,Ωp
nc,R(Λ)) to α

′(f)∈Homk-Π((sΛ)
⊗m⊗M,Ωp

nc,R(M))
given by

α′
p(f)(sa1,m ⊗ x) = f(sa1,m)⊗Λ x.

The second map Ext∗Λ-Π(M,Ωp
nc,R(M)) → Ext∗Λ-Π(M,Ωp

Λ-Π(M)) in defining α∗
p

has the following lifting

ι : C
∗
k-Π(M,Ωp

nc,R(M)) ↪→ C
∗
(M,Ωp

Λ-Π(M))

which is induced by the natural inclusion

Homk-Π((sΛ)
⊗m ⊗M,Ωp

nc,R(M)) ↪→Hom((sΛ)⊗m ⊗ M,Ωp
nc,R(M))

↪→Hom((sΛ)⊗m ⊗ M,Ωp
Λ-Π(M)).

Observe that α̃p = ι ◦ α′
p. It follows that α̃p is a lifting of α∗

p. �

Similarly, we have the following triangle functor

M ⊗Π − : D(Πe) −→ D(Λ⊗Πop),

and the corresponding map

β∗
p : HH∗(Π,Ωp

nc,R(Π))
M⊗Π−−−−−−→ Ext∗Λ⊗Πop(M,M ⊗Π Ωp

nc,R(Π))

−→ Ext∗Λ⊗Πop(M,Ωp
Λ-Π(M)),

where the second map is induced by the following bimodule homomorphism

M ⊗Π Ωp
nc,R(Π) ↪→ Ωp

Λ-Π(M), x⊗Π (sb1,p ⊗ bp+1) 	−→ x � (sb1,p ⊗ bp+1).(9.6)

Here, in comparison with (8.1), the action � is given by

x � (sb1,p ⊗ bp+1) = s(xb1)⊗ sb2,p ⊗ bp+1

+

p−1
∑

i=1

(−1)isx⊗ sb1,i−1 ⊗ sbibi+1 ⊗ sbi+2,p ⊗ bp+1

+ (−1)psx⊗ sb1,p−1 ⊗ bpbp+1.(9.7)

Remark 9.11. We emphasize that the injection (9.6) differs from the natural
inclusion (9.4). This actually leads to a tricky argument in the proof of Proposition
9.14; For more explanations, see Remark 9.15.

We define a cochain map

(9.8) ˜βp : C
∗
(Π,Ωp

nc,R(Π)) −→ C
∗
(M,Ωp

Λ-Π(M))

as follows: for any map g ∈ Hom((sΠ)⊗m, (sΠ)⊗p ⊗ Π), the corresponding map
˜βp(g) ∈ C

m−p
(M,Ωp

Λ-Π(M)) is given by

˜βp(g)|(sΛ)⊗i⊗M⊗(sΠ)⊗m−i = 0 if i �= 0;

˜βp(g)(x⊗ sb1,m) = x � g(sb1,m)(9.9)

for any x⊗ sb1,m ∈ M ⊗ (sΠ)⊗m, where the action � is defined in (9.7).
We have the following analogous result of Lemma 9.10.

Lemma 9.12. The map ˜βp is a lifting of β∗
p .
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Proof. The tensor functor M ⊗Π− sends the projection resolution Bar(Π) of
Π to the projective resolution M ⊗Π Bar(Π) of M .

Consider the complex

C
∗
Λ-k(M,M ⊗Π Ωp

nc,R(Π)) =
∏

m≥0

HomΛ-k(M ⊗ (sΠ)⊗m,M ⊗Π Ωp
nc,R(Π)),

which is naturally isomorphic to HomΛ-Π(M⊗ΠBar(Π),M⊗ΠΩ
p
nc,R(Π)). Therefore,

both complexes compute Ext∗Λ-Π(M,M ⊗Π Ωp
nc,R(Π)). Then the map

HH∗(Π,Ωp
nc,R(Π))

M⊗Π−−−−−−→ Ext∗Λ-Π(M,M ⊗Π Ωp
nc,R(Π))

has a lifting

β′
p : C

∗
(Π,Ωp

nc,R(Π)) −→ C
∗
Λ-k(M,M ⊗Π Ωp

nc,R(Π)),

which sends g ∈ Hom((sΠ)⊗m,Ωp
nc,R(Π)) to β′

p(g) ∈ HomΛ-k(M ⊗ (sΠ)⊗m,M ⊗Π

Ωp
nc,R(Π)) given by

β′
p(g)(x⊗ sb1,m) = x⊗Π g(sb1,m).

We have an injection of complexes

ι : C
∗
Λ-k(M,M ⊗Π Ωp

nc,R(Π)) −→ C
∗
(M,Ωp

Λ-Π(M))

induced by the injection (9.6). By ˜βp = ι ◦ β′
p, we conclude that ˜βp is a lifting of

β∗
p . �

9.4. A triangular matrix algebra and colimits

Denote by Γ =

(

Λ M
0 Π

)

the upper triangular matrix algebra. Set e1 =
(

1Λ 0
0 0

)

and e2 =

(

0 0
0 1Π

)

. Then we have the following natural identifications:

e1Γe1 � Λ, e2Γe2 � Π, e1Γe2 � M, and e2Γe1 = 0.(9.1)

Denote by E = ke1 ⊕ ke2 the semisimple subalgebra of Γ. Set Γ = Γ/(E · 1Γ).
Consider the E-relative right singular Hochschild cochain complex C

∗
sg,R,E(Γ,Γ).

Using (9.1), we identify Γ with Λ⊕Π⊕M . Here, we agree that Λ = Λ/(k · 1Λ)
and Π = Λ/(k · 1Π). Then we have

sΓ
⊗Em ∼= sΛ

⊗m ⊕

sΠ
⊗m ⊕

⎛

⎜

⎜

⎝

⊕

i,j≥0
i+j=m−1

sΛ
⊗i ⊗ sM ⊗ sΠ

⊗j

⎞

⎟

⎟

⎠

.

For each m, p ≥ 0, we have the following natural decomposition of vector spaces

HomE-E((sΓ)⊗Em, (sΓ)⊗Ep ⊗E Γ)

� Hom((sΛ)⊗m, (sΛ)⊗p ⊗ Λ)
⊕

Hom((sΠ)⊗m, (sΠ)⊗p ⊗ Π)
⊕

⊕

i,j,≥0
i+j=m−1

Hom
(
(sΛ)⊗i ⊗ sM ⊗ (sΠ)⊗j ,

⊕

i′,j′≥0
i′+j′=p−1

(sΛ)⊗i′ ⊗ sM ⊗ (sΠ)⊗j′ ⊗ Π
⊕

(sΛ)⊗p ⊗ M
)
,

(9.2)
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which induces the following decomposition of graded vector spaces

C
∗
E(Γ,Ω

p
nc,R,E(Γ)) � C

∗
(Λ,Ωp

nc,R(Λ))⊕ C
∗
(Π,Ωp

nc,R(Π))⊕ Σ−1C
∗
(M,Ωp

Λ-Π(M)).

(9.3)

We write elements on the right hand side of (9.3) as 3-dimensional column

vectors. The differential δΓ of C
∗
E(Γ,Ω

p
nc,R,E(Γ)) induces a differential δ on the

right hand side of (9.3). Similar to (9.5), we obtain that δ has the following form

(9.4) δ =

⎛

⎝

δΛ 0 0
0 δΠ 0

−s−1 ◦ α̃p s−1 ◦ ˜βp Σ−1(δM )

⎞

⎠ ,

where δΛ, δΠ and δM are the Hochschild differentials of the complexes

C
∗
(Λ,Ωp

nc,R(Λ)), C
∗
(Π,Ωp

nc,R(Π)) and C
∗
(M,Ωp

Λ-Π(M)),

respectively. The entry

s−1 ◦ α̃p : C
∗
(Λ,Ωp

nc,R(Λ)) −→ Σ−1C
∗
(M,Ωp

Λ-Π(M))

is a map of degree one, which is the composition of α̃p with the natural identification

s−1 : C
∗
(M,Ωp

Λ-Π(M)) → Σ
−1

C∗(M,Ωp
Λ-Π(M))

of degree one. A similar remark holds for s−1 ◦ ˜βp.
The decomposition (9.3) induces a short exact sequence of complexes

(9.5) 0 −→ Σ−1C
∗
(M,Ωp

Λ-Π(M))

inc−→ C
∗
E(Γ,Ω

p
nc,R,E(Γ))

( res1res2 )−→ C
∗
(Λ,Ωp

nc,R(Λ))

⊕ C
∗
(Π,Ωp

nc,R(Π))
−→ 0.

Here, “resi” denotes the corresponding projection.
In what follows, letting p vary, we will take colimits of (9.5). Recall that

the colimits, along the maps θp,R,E or θp,R in (8.3), of the middle and the right

hand terms of (9.5) are C
∗
sg,R,E(Γ,Γ) and C

∗
sg,R(Λ,Λ)⊕ C

∗
sg,R(Π,Π), respectively.

Similarly, we define

θMp : C
∗
(M,Ωp

Λ-Π(M)) −→ C
∗
(M,Ωp+1

Λ-Π(M))

as follows: for any f ∈ C
∗
(M,Ωp

Λ-Π(M)), we set

θMp (f)(sa1,i ⊗ x⊗ sb1,j) = (−1)|f |sa1 ⊗ f(sa2,i ⊗ x⊗ sb1,j),

if i ≥ 1; otherwise, we set

θMp (f)(x⊗ sb1,j) = 0.

We observe that θMp is indeed a morphism of cochain complexes for each p ≥ 0.
Similar to the definition of right singular Hochschild cochain complex in Section 8.1,
we have an induction system of cochain complexes

C
∗
(M,M)

θM
0−−→ · · · −→ C

∗
(M,Ωp

Λ-Π(M))
θM
p−−→ C

∗
(M,Ωp+1

Λ-Π(M))
θM
p+1−−−→ · · · .

Denote its colimit by C
∗
sg(M,M).
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We have the following commutative diagram of cochain complexes with rows
being short exact.
(9.6)

Σ−1C
∗
(M,Ωp

Λ-Π(M))
inc ��

θMp

��

C
∗
E(Γ,Ωp

nc,R,E(Γ))

θΓp

��

(
res1
res2

)

�� C∗
(Λ,Ωp

nc,R(Λ))⊕ C
∗
(Π,Ωp

nc,R(Π))

θΛp ⊕θΠp

��
Σ−1C

∗
(M,Ωp+1

Λ-Π(M))
inc �� C∗

E(Γ,Ωp+1
nc,R,E(Γ))

(
res1
res2

)

�� C∗
(Λ,Ωp+1

nc,R(Λ))⊕ C
∗
(Π,Ωp+1

nc,R(Π))

The following lemma is analogous to Lemma 8.1.

Lemma 9.13. The cochain map θMp is a lifting of the following connecting map

̂θMp : Ext∗Λ-Π(M,Ωp
Λ-Π(M)) −→ Ext∗Λ-Π(M,Ωp+1

Λ-Π(M))

in the long exact sequence obtained by applying the functor Ext∗Λ-Π(M,−) to (9.3).
Consequently, for any n ∈ Z we have an isomorphism

Hn(C
∗
sg(M,M)) � HomDsg(Λ⊗Πop)(M,ΣnM).

Proof. The proof is similar to that of Lemma 8.1. Since the direct colimit
commutes with the cohomology functor, we have an isomorphism

Hn(C
∗
sg(M,M)) � lim−→̃

θM
p

ExtnΛ-Π(M,Ωp
Λ-Π(M)),

where the colimit map ˜θMp is induced by θMp . Applying the functor ExtnΛ-Π(M,−)
to (9.3), we obtain a long exact sequence.

· · · → ExtnΛ-Π(M,B−p)→ExtnΛ-Π(M,Ωp
Λ-Π(M)) → Extn+1

Λ-Π (M,Σ−1Ωp+1
Λ-Π(M)) → · · ·

Since Extn+1
Λ-Π (M,Σ−1Ωp+1

Λ-Π(M)) is naturally isomorphic to ExtnΛ-Π(M,Ωp+1
Λ-Π(M)),

the connecting morphism in the long exact sequence induces a map

̂θMp : ExtnΛ-Π(M,Ωp
Λ-Π(M)) −→ ExtnΛ-Π(M,Ωp+1

Λ-Π(M)).

We now show that ˜θMp = ̂θMp using a similar argument as the proof of Lemma 8.1.

We write down the definition of the connecting morphism ̂θMp . Apply the

functor HomΛ-Π(Bar(Λ) ⊗Λ M ⊗Π Bar(Π),−) to the short exact sequence (9.3).
Then we have the following short exact sequence of complexes with induced maps

(9.7) 0 → Σ−1C
∗
(M,Ωp+1

Λ-Π(M))

−→ HomΛ-Π(Bar(Λ)⊗ΛM⊗ΠBar(Π),B−p)−→C
∗
(M,Ωp

Λ-Π(M)) → 0.

Take f ∈ ExtnΛ-Π(M,Ωp
Λ-Π(M)). It may be represented by an element f ∈

C
n
(M,Ωp

Λ-Π(M)) such that δ′(f) = 0 with δ′ the differential of C
∗
(M,Ωp

Λ-Π(M)).
Define

f ∈
⊕

i,j≥0
i+j=n+p

Hom
(

sΛ
⊗i ⊗M ⊗ sΠ

⊗j
,B−p

)

such that

f(sa1,i ⊗ x⊗ sb1,j) = 1Λ ⊗ f(sa1,i ⊗ x⊗ sb1,j).

We have that f = η̃−p ◦ f , where η̃−p is given in (9.3).
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We define ˜f ∈ C
n
(M,Ωp+1

Λ-Π(M)) such that

˜f(sa1,i ⊗ x⊗ sb1,j) = (−1)nsa1 ⊗ f(sa2,i ⊗ x⊗ sb1,j)

for i ≥ 1, j ≥ 0 and i+j = n+p+1; otherwise for i = 0, we set ˜f(x⊗sb1,n+p+1) = 0.
We observe that

(9.8) ∂−p−1 ◦ (1⊗ 1) ◦ ˜f = δ′′(f),

where (1⊗ 1) is defined in (9.2) and δ′′ is the differential of the middle complex in

(9.7). Actually for i = 0, we have ˜f(x⊗ sb1,n+p+1) = 0 and

(δ′′(f))(1Λ ⊗ x⊗ sb1,n+p+1 ⊗ 1Π)

= (−1)n1Λ ⊗ (f(1Λ ⊗ x⊗Π dex(1Λ ⊗ sb1,n+p+1 ⊗ 1Π)))

= 1Λ ⊗ (δ′(f)(1Λ ⊗ x⊗ sb1,n+p+1 ⊗ 1Π))

= 0,(9.9)

where f , f , δ′′(f) and δ′(f) are identified as Λ-Π-bimodule morphisms; compare
(6.2). For i �= 0, one can check directly that (9.8) holds. By the general construction

of the connecting morphism, we have ̂θMp (f) = ˜f . Note that we also have ˜θMp (f) =
˜f . This shows that ˜θMp = ̂θMp .

Since ˜Bar(Λ) ⊗Λ M ⊗Π
˜Bar(Π) is a projective resolution of M , by Lemma 9.8

and [55, Lemma 2.4], we have the following isomorphism

lim−→̂
θM
p

ExtiΛ-Π(M,Ωp
Λ-Π(M)) � HomDsg(Λ⊗Πop)(M,ΣiM).

Combining the above two isomorphisms we obtain the desired isomorphism. �

Recall from (9.2) the maps αi
sg and βi

sg. Analogous to [52, Lemma 4.5], we
have the following result.

Proposition 9.14. Assume that the Λ-Π-bimodule M is projective on each
side. Then there is an exact sequence of cochain complexes

0 −→ Σ−1C
∗
sg(M,M)

inc−→ C
∗
sg,R,E(Γ,Γ)

( res1res2 )−→ C
∗
sg,R(Λ,Λ)⊕ C

∗
sg,R(Π,Π) −→ 0,

(9.10)

which yields a long exact sequence

· · · → HHi
sg(Γ,Γ)

( res1res2 )−−−−→ HHi
sg(Λ,Λ)⊕HHi

sg(Π,Π)

(−αi
sg,β

i
sg)−−−−−−−→ HomDsg(Λ⊗Πop)(M,ΣiM) → · · · .

Proof. The exact sequence of cochain complexes follows immediately from
(9.6), since the three maps inc and resi (i = 1, 2) are compatible with the colimits.
Then taking cohomology, we have an induced long exact sequence. However, it is
tricky to prove that the maps αi

sg and βi
sg do appear in the induced sequence. For
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this, we have to analyze the following induced long exact sequence of (9.5).

(9.11) · · · → HHi(Γ,Ωp
nc,R,E(Γ))

( res1res2 )−−−−→ HHi(Λ,Ωp
nc,R(Λ))

⊕HHi(Π,Ωp
nc,R(Π))

(−αi
p,β

i
p)−−−−−−→ ExtiΛ-Π(M,Ωp

Λ-Π(M)) → · · · .
Here, to see that the connecting morphism is indeed (−αi

p, β
i
p), we use the explicit

description (9.4) of the differential, and apply Lemmas 9.10 and 9.12.
Note that we have the following commutative diagram

Db(Λe)

��

−⊗ΛM �� Db(Λ⊗Πop)

��

Db(Πe)
M⊗Π−��

��
Dsg(Λ

e)
−⊗ΛM �� Dsg(Λ⊗Πop) Dsg(Π

e),
M⊗Π−��

where the vertical functors are the natural quotients. This induces the following
commutative diagram for each p ≥ 0.

HHi(Π,Ωp
nc,R(Π))

βi
p ��

��

ExtiΛ⊗Πop(M,Ωp
Λ-Π(M))

��

HHi(Λ,Ωp
nc,R(Λ))

αi
p��

��
HHi

sg(Π,Π)
βi
sg �� HomDsg(Λ⊗Πop)(M,ΣiM) HHi

sg(Λ,Λ)
αi

sg��

Thus, by Lemmas 8.1 and 9.13 we have that

αi
sg = lim−→

p

αi
p and βi

sg = lim−→
p

βi
p(9.12)

for any i ∈ Z.
Recall the standard fact that the connecting morphism in the long exact se-

quence induced from a short exact sequence of complexes is canonical, and thus is
compatible with colimits of short exact sequences of complexes. We infer that the
long exact sequence induced from (9.10) coincides with the colimit of (9.11). Then
the required statement follows from (9.12) immediately. �

Remark 9.15. We would like to stress that, unlike [52, Lemma 4.5], the short
exact sequence (9.10) does not have a canonical splitting. In other words, there is
no canonical homotopy cartesian square as in [52, Lemma 4.5].

The reason is as follows. Note that for each p ≥ 0, (9.5) splits canonically as an
exact sequence of graded modules, where the sections are given by the inclusions

inc1 : C
∗
(Λ,Ωp

nc,R(Λ)) −→ C
∗
E(Γ,Ω

p
nc,R,E(Γ))

inc2 : C
∗
(Π,Ωp

nc,R(Π)) −→ C
∗
E(Γ,Ω

p
nc,R,E(Γ)).

We observe that θΓp ◦ inc1 = inc1 ◦ θΛp . Taking the colimit, we obtain an inclusion
of graded modules

C
∗
sg,R(Λ,Λ) −→ C

∗
sg,R,E(Γ,Γ),

which is generally not compatible with the differentials. We also have θMp ◦ α̃p =

α̃p+1 ◦ θΛp . Taking the colimit, we obtain a lifting at the cochain complex level

α̃ : C
∗
sg,R(Λ,Λ) −→ C

∗
sg(M,M)
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of the maps αi
sg.

However, the situation for inc2 and ˜βp is different from inc1. In general, we
have

θΓp ◦ inc2 �= inc2 ◦ θΠp and θMp ◦ ˜βp �= ˜βp+1 ◦ θΠp .
Indeed, for any f ∈ C

∗
(Π,Ωp

nc,R(Π)), we have

(θΓp ◦ inc2 − inc2 ◦ θΠp )(f) = 1sM ⊗ f.

For f ∈ C
m−p

(Π,Ωp
nc,R(Π)), we have

(

(θMp ◦ ˜βp)(f)
)

(x⊗ sb1,m+1) = 0
(

(˜βp+1 ◦ θΠp )(f)
)

(x⊗ sb1,m+1) = (−1)m−px � (b1 ⊗ f(sb2,m+1)) �= 0,

where x ⊗ sbm+1 belongs to M ⊗ sΠ
⊗m+1

and � is defined in (9.7). This means
that the section

(

inc1
inc2

)

of (9.5) is not compatible with θΓp and θΛp ⊕θΠp , so we cannot
take the colimit.

The above analysis also shows that we cannot lift the maps βi
sg at the cochain

complex level canonically. This forces us to use the tricky argument in the proof of
Proposition 9.14.

We are now in a position to prove Theorem 9.6.

Proof of Theorem 9.6. Since both the maps αi
sg and βi

sg are isomorphisms, the
long exact sequence in Proposition 9.14 yields a family of short exact sequences

0 −→ HHi
sg(Γ,Γ)

( res1res2 )−−−−→ HHi
sg(Λ,Λ)⊕HHi

sg(Π,Π)

(−αi
sg,β

i
sg)−−−−−−−→ HomDsg(Λ⊗Πop)(M,ΣiM) −→ 0.

In other words, we have the following commutative diagram

HHi
sg(Γ,Γ)

res1 ��

res2

��

HHi
sg(Λ,Λ)

αi
sg

��
HHi

sg(Π,Π)
βi
sg �� HomDsg(Λ⊗Πop)(M,ΣiM),

which is a pullback diagram and pushout diagram, simultaneously. We infer that
both resi are isomorphisms. Then both projections

res1 : C
∗
sg,R,E(Γ,Γ) −→ C

∗
sg,R(Λ,Λ) and res2 : C

∗
sg,R,E(Γ,Γ) −→ C

∗
sg,R(Π,Π)

are quasi-isomorphisms. It is clear that they are both strict B∞-morphisms, and
thus B∞-quasi-isomorphisms. This yields the required isomorphism in Ho(B∞). �
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CHAPTER 10

Algebras with radical square zero
and the combinatorial B∞-algebra

Let Q be a finite quiver without sinks. Let Λ = kQ/J2 be the corresponding
algebra with radical square zero. We will give a combinatorial description of the
singular Hochschild cochain complex of Λ; see Section 10.1. For its B∞-algebra

structure, we describe it as the combinatorial B∞-algebra C
∗
sg,R(Q,Q) of Q; see

Section 10.2.

10.1. A combinatorial description of the singular
Hochschild cochain complex

Set E = kQ0, viewed as a semisimple subalgebra of Λ. Then Λ = Λ/(E · 1Λ)
is identified with kQ1. We will give a description of the E-relative right singular

Hochschild cochain complex C
∗
sg,R,E(Λ,Λ) by parallel paths in the quiver Q. We

mention that the construction below is a generalization of the one in [25, Section 2].
For two subsets X and Y of paths in Q, we denote

X//Y := {(γ, γ′) ∈ X × Y | s(γ) = s(γ′) and t(γ) = t(γ′)}.
An element in Qm//Qp is called a parallel path in Q. We will abbreviate a path
βm · · ·β2β1 ∈ Qm as βm,1. Similarly, a path αp · · ·α2α1 ∈ Qp is denoted by αp,1.

For a set X, we denote by k(X) the k-vector space spanned by elements in X.
We will view k(Qm//Qp) as a graded k-space concentrated in degree m− p. For a
graded k-space A, let s−1A be the (−1)-shifted graded space such that (s−1A)i =
Ai−1 for i ∈ Z. For an element a in A, the corresponding element in s−1A is denoted
by s−1a with |s−1a| = |a| + 1. Roughly speaking, we have |s−1| = 1. Therefore,
s−1k(Qm//Qp) is concentrated in degree m− p+ 1.

We will define a k-linear map (of degree zero) between graded spaces

κm,p : k(Qm//Qp)⊕ s−1k(Qm//Qp+1) −→ HomE-E((sΛ)
⊗Em, (sΛ)⊗Ep ⊗E Λ).

See Figure 10.1 below for an illustration of this map. For y = (αm,1, βp,1) ∈
Qm//Qp and any monomial x = sα′

m ⊗E · · · ⊗E sα′
1 ∈ (sΛ)⊗Em with α′

j ∈ Q1 for
any 1 ≤ j ≤ m, we set

κm,p(y)(x) =

{

(−1)εsβp ⊗E · · · ⊗E sβ1 ⊗E 1 if αj = α′
j for all 1 ≤ j ≤ m,

0 otherwise.

For s−1y′ = s−1(αm,1, βp,0) ∈ s−1k(Qm//Qp+1), we set

κm,p(s
−1y′)(x) =

{

(−1)εsβp ⊗E · · · ⊗E sβ1 ⊗E β0 if αj = α′
j for all 1 ≤ j ≤ m,

0 otherwise.

Here, we denote ε = (m− p)p+ (m−p)(m−p+1)
2 .

79
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Lemma 10.1 ([89, Lemma 3.3]). For any m, p ≥ 0, the above map κm,p is an
isomorphism of graded vector spaces. �

We define a graded vector space for each p ≥ 0,

k(Q//Qp) :=
∏

m≥0

k(Qm//Qp),

where the degree of (γ, γ′) in Qm//Qp is m−p. Here,
∏

means the infinite product
in the category of graded spaces, which will correspond to the infinite product ap-

pearing in the Hochschild cochain complexes C
∗
E(Λ,Ω

p
nc,R,E(Λ)). We mention that

k(Q//Qp) is isomorphic to the corresponding infinite coproduct
∐

m≥0 k(Qm//Qp).
We define a k-linear map of degree zero

θp,R : k(Q//Qp) −→ k(Q//Qp+1), (γ, γ′) 	−→
∑

{α∈Q1|s(α)=t(γ)}
(αγ, αγ′).

Denote by C
∗
sg,R,0(Q,Q) the colimit of the inductive system of graded vector spaces

k(Q//Q0)
θ0,R−−−→ k(Q//Q1)

θ1,R−−−→ k(Q//Q2)
θ2,R−−−→ · · · θp−1,R−−−−→ k(Q//Qp)

θp,R−−−→ · · · .
Therefore, for any m ∈ Z, we have

C
m

sg,R,0(Q,Q) = lim−→
θp,R

k(Qm+p//Qp).(10.1)

We define a complex

C
∗
sg,R(Q,Q) = C

∗
sg,R,0(Q,Q)⊕ s−1C

∗
sg,R,0(Q,Q),(10.2)

whose differential δ is induced by

(10.3)
(

0 Dm,p

0 0

)

: k(Qm//Qp)⊕ s−1k(Qm//Qp+1)

−→ k(Qm+1//Qp)⊕ s−1k(Qm+1//Qp+1).

For (γ, γ′) ∈ Qm//Qp, we have

Dm,p((γ, γ
′)) =

∑

{α∈Q1 | s(α)=t(γ)}
s−1(αγ, αγ′)− (−1)m−p(10.4)

×
∑

{β∈Q1 | t(β)=s(γ)}
s−1(γβ, γ′β).

We implicitly use the identity s−1θp+1,R ◦Dm,p = Dm+1,p+1 ◦ θp,R. Here if the set
{β ∈ Q1 | t(β) = s(γ)} is empty then we define

∑

{β∈Q1 | t(β)=s(γ)} s
−1(γβ, γ′β) =

0.
Recall from Section 8.3 that Ωp

nc,R,E(Λ) = (sΛ)⊗Ep⊗E Λ. Recall from (8.1) the
left Λ-action � . Note that we have

βp+1 � (sβp ⊗E · · · ⊗E sβ1 ⊗E β0)

=

{

0 if β0 ∈ Q1;

(−1)psβp+1 ⊗E · · · ⊗E sβ2 ⊗E β1β0 if β0 ∈ Q0;

where βi ∈ Q1 = Λ for 1 ≤ i ≤ p+ 1. Then it is not difficult to show that the map

(10.3) is compatible with the differential δex of C
∗
E(Λ,Ω

p
nc,R,E(Λ)). More precisely,
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the following diagram is commutative.

HomE-E((sΛ)
⊗Em, (sΛ)⊗Ep ⊗E Λ)

δex �� HomE-E((sΛ)
⊗Em+1, (sΛ)⊗Ep ⊗E Λ)

k(Qm//Qp)⊕ s−1k(Qm//Qp+1)

∼=κm,p

		

(
0 Dm,p

0 0

)

�� k(Qm+1//Qp)⊕ s−1k(Qm+1//Qp+1)

∼=κm+1,p

		

Here, we recall that the formula for δex is given in Section 6.1.
The above commutative diagram allows us to take the colimit along the iso-

morphisms κm,p in Lemma 10.1. Therefore, we have the following result.

Lemma 10.2. The isomorphisms κm,p induce an isomorphism of complexes

κ : C
∗
sg,R(Q,Q)

∼−→ C
∗
sg,R,E(Λ,Λ).

We illustrate the isomorphism κ in the following figure.

κ(
β0−→ β1−→ · · · βp−→ αm←−− · · · α1←−) =

α1α2αm . . .

β0β1. . .βp

κ(
β1−→ · · · βp−→ αm←−− · · · α1←−) =

α1α2αm . . .

β1. . .βp

Figure 10.1. The map κ : C
∗
sg,R(Q,Q)

∼−→ C
∗
sg,R,E(Λ,Λ) in

Lemma 10.2. We use the non-standard sequences in (10.1) and
(10.2) below.

10.2. The combinatorial B∞-algebra

In this section, we will transfer, via the isomorphism κ, the cup product −∪R−
and brace operation−{−, . . . ,−}R of C

∗
sg,R,E(Λ,Λ) to C

∗
sg,R(Q,Q). We will provide

an example for illustration.
By abuse of notation, we still denote the cup product and brace operation on

C
∗
sg,R(Q,Q) by − ∪R − and −{−, . . . ,−}R.

We will use the following non-standard sequences to depict parallel paths.
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(i) We write s−1x = s−1(αm,1, βp,0) ∈ s−1C
∗
sg,R,0(Q,Q) as

β0−→ β1−→ · · · βp−→ αm←−− · · · α2←− α1←− .(10.1)

(ii) We write x = (αm,1, βp,1) ∈ C
∗
sg,R,0(Q,Q) as

β1−→ · · · βp−→ αm←−− · · · α2←− α1←−,(10.2)

Here, all α1, . . . , αm, β0, β1, . . . , βp are arrows in Q.

The above sequences have the following feature: the left part consists of rightward
arrows, and the right part consists of leftward arrows. Recall that

Ωp
nc,R,E(Λ) = (sΛ)⊗Ep ⊗E Λ = (sΛ)⊗Ep ⊗E Λ⊕ (sΛ)⊗Ep ⊗E E,

and that the leftmost arrow β0 in (i) is an element in the tensor factor Λ. To
emphasize this fact, we color the arrow blue. These sequences will be quite con-

venient to express the cup product and brace operation on C
∗
sg,R(Q,Q), as we will

see below.
Let us first describe − ∪R − on C

∗
sg,R(Q,Q). Let

s−1x = s−1(αm,1, βp,0) = (
β0−→ β1−→ · · · βp−→ αm←−− · · · α1←−)

s−1y = s−1(α′
n,1, β

′
q,0) = (

β′
0−→ β′

1−→ · · ·
β′
q−→ α′

n←−− · · · α′
1←−)

(10.3)

be two elements in s−1C
∗
sg,R,0(Q,Q). Let

z = (αm,1, βp,1) = (
β1−→ · · · βp−→ αm←−− · · · α1←−)

w = (α′
n,1, β

′
q,1) = (

β′
1−→ · · ·

β′
q−→ α′

n←−− · · · α′
1←−)

(10.4)

be two elements in C
∗
sg,R,0(Q,Q). The cup product − ∪R − is given by (C1)-(C4).

In what follows, we denote by δ the Kronecker delta.

(C1) (s−1x) ∪R (s−1y) = 0;
(C2) The cup product z ∪R w is given by the following parallel path

β1−→ · · · βp−→ αm←−− · · · α1←−
︸ ︷︷ ︸

z

β′
1−→ · · ·

β′
q−→ α′

n←−− · · · α′
1←−

︸ ︷︷ ︸

w

.

Here, we replace the subsequence
α←− β−→ by δα,β iteratively, until obtaining

a parallel path, that is, the left part consists of rightward arrows and the
right part consists of leftward arrows. More precisely, we have

z ∪R w =

{

(
∏q

i=1 δβ′
i,αi

) (αm,q+1α
′
n,1, βp,1) if q < m,

(
∏m

i=1 δβ′
i,αi

) (α′
n,1, β

′
q,m+1βp,1) if q ≥ m.

(C3) (s−1x) ∪R w is obtained by replacing
α←− β−→ with δα,β , iteratively

(
β0−→ β1−→ · · · βp−→ αm←−− · · · α1←−
︸ ︷︷ ︸

s−1x

β′
1−→ · · ·

β′
q−→ α′

n←−− · · · α′
1←−

︸ ︷︷ ︸

w

).
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Therefore, we have

(s−1x) ∪R w =

{

(
∏q

i=1 δβ′
i,αi

) s−1(αm,q+1α
′
n,1, βp,0) if q < m,

(
∏m

i=1 δβ′
i,αi

) s−1(α′
n,1, β

′
q,m+1βp,0) if q ≥ m.

(C4) z ∪R (s−1y) is obtained by replacing
α←− β−→ with δα,β , iteratively

(
β′
0−→ β1−→ · · · βp−→ αm←−− · · · α1←−

︸ ︷︷ ︸

z

β′
1−→ · · ·

β′
q−→ α′

n←−− · · · α′
1←−).

Therefore, we have

z ∪R (s−1y) =

{

(
∏q

i=1 δβ′
i,αi

) s−1(αm,q+1α
′
n,1, βp,1β

′
0) if q < m,

(
∏m

i=1 δβ′
i,αi

) s−1(α′
n,1, β

′
q,m+1βp,1β

′
0) if q ≥ m.

(10.5)

The above formulae are obtained from (8.2) along κ; see Figure 8.3. Figure 10.2
below illustrates that κ(z) ∪R κ(s−1y) = κ(z ∪R (s−1y)), and explains why β′

0 is
placed before β1 in z ∪R (s−1y).

α′
1

. . .α′
n

α1αq

β′
1β′

q

αq+1αm . . .

β1βp . . . β′
0

α′
1

. . .α′
n

α1αm

β′
1β′

m

β′
m+1β′

q
. . . β1βp . . . β′

0

Figure 10.2. The map κ is compatible with the cup products.
Let z = (αm,1, βp,1) and s−1y = s−1(α′

n,1, β
′
q,0). The left graph

represents κ(z) ∪R κ(s−1y) for the case q < m, by using Figures
10.1 and 8.3. It is nonzero only if the two elements in each internal
edge coincide (i.e. β′

1 = α1, . . . , β
′
q = αq). Then comparing with

the cup product (C4), we have κ(z) ∪R κ(s−1y) = κ(z ∪R (s−1y)).
Similarly the right graph is for the case q ≥ m.

Let us describe the brace operation −{−, . . . ,−}R on C
∗
sg,R(Q,Q) in the fol-

lowing cases (B1)-(B3).

(B1) For any x ∈ C
∗
sg,R(Q,Q), we have

x{y1, . . . , yk}R = 0

if there exists some 1 ≤ j ≤ k with yj ∈ C
∗
sg,R,0(Q,Q) ⊂ C

∗
sg,R(Q,Q).
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(B2) If s−1yj ∈ s−1C
∗
sg,R,0(Q,Q) is such that yj is a parallel path for each

1 ≤ j ≤ k, and s−1x = s−1(αm,1, βp,0) ∈ s−1C
∗
sg,R,0(Q,Q), then

(s−1x){s−1y1, . . . , s
−1yk}R

=
∑

a+b=k, a,b≥0
1≤i1<i2<···<ia≤m
1≤l1≤l2≤···≤lb≤p

(−1)a+ε b
(i1,...,ia)
(l1,...,lb)

(s−1x; s−1y1, . . . , s
−1yk),

where b
(i1,...,ia)
(l1,...,lb)

(s−1x; s−1y1, . . . , s
−1yk) is illustrated as follows

β0−→ β1−→ · · ·
βl1−1−−−→ y1

βl1−−→ · · ·
βlb−1−−−→ yb

βlb−−→ · · · βp−→ αm←−− · · · αia←−− yb+1
αia−1←−−−− · · ·

αi1←−− yk · · ·
α1←− .

To save the space, we just use the symbol yj to indicate the sequence of
the parallel path yj as in (10.2) for 1 ≤ j ≤ k. We replace any subsequence
α←− β−→ by δα,β iteratively, and then arrive at a well-defined parallel path.

Let us explain the sign (−1)a+ε appeared above. The sign

ε =
b

∑

r=1

(|s−1yr| − 1)(m+ p− lr + 1) +
a

∑

r=1

(|s−1yk−r+1| − 1)(ir − 1)

is obtained via the Koszul sign rule by reordering the positions (β∗
i and

αj are of degree one) of the elements

β∗
0 , β

∗
1 , . . . β

∗
p , αm, . . . α1, y1, y2, · · · , yk;

and the extra sign (−1)a is to make sure that the brace operation is
compatible with the colimit maps θ∗,R.

(B3) If s−1yj ∈ s−1C
∗
sg,R,0(Q,Q) is such that yj is a parallel path for each

1 ≤ j ≤ k, and x = (αm,1, βp,1) ∈ C
∗
sg,R,0(Q,Q), then

x{s−1y1, . . . , s
−1yk}R =

∑

a+b=k, a,b≥0
1≤i1<i2<···<ia≤m
1≤l1≤l2≤···≤lb≤p

(−1)a+ε
b
(i1,...,ia)
(l1,...,lb)

(x; s−1y1, . . . , s
−1yk),

where b
(i1,...,ia)
(l1,...,lb)

(x; s−1y1, . . . , s
−1yk) is obtained from the following se-

quence by replacing
α←− β−→ with δα,β iteratively

β1−→ · · · y1
βl1−−→ · · · y2

βl2−−→ · · · yb
βlb−−→ · · · βp−→ αm←−− · · · αia←−− yb+1 · · ·

αi2←−− yk−1 · · ·
αi1←−− yk · · ·

α1←−,

and ε is the same as in (B2).

Remark 10.3. In both cases (B2) and (B3), the elements yi’s are not allowed

to lie between βp and αm since lb ≤ p and ia ≤ m. That is, this shape · · · βp−→ yi
αm←−−

· · · is not allowed. Note that if a = 0, then all yi’s lie between βj ’s. Similarly, if
b = 0 then all yi’s lie between αj ’s.
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Theorem 10.4. The complex C
∗
sg,R(Q,Q), equipped with the cup product −∪R

− and brace operation −{−, . . . ,−}R, is a brace B∞-algebra. Moreover, the iso-

morphism κ : C
∗
sg,R(Q,Q) → C

∗
sg,R,E(Λ,Λ) is a strict B∞-isomorphism.

The resulting B∞-algebra C
∗
sg,R(Q,Q) is called the combinatorial B∞-algebra

of Q.

Proof. The above cup product − ∪R − and brace operation −{−, . . . ,−}R
on C

∗
sg,R(Q,Q) are transferred from C

∗
sg,R,E(Λ,Λ) via the isomorphism κ; compare

Theorem 8.8 and Lemma 10.2. More precisely, for any x, y, y1, . . . , yk ∈ C
∗
sg,R(Q,Q)

we may check

κ(x ∪R y) = κ(x) ∪R κ(y)

(−1)a+ε κ
(

b
(i1,...,ia)
(l1,...,lb)

(x; y1, . . . , yk)
)

= (−1)b B
(i1,...,ia)
(l1,...,lb)

(κ(x);κ(y1), . . . , κ(yk)),

(10.6)

where ε is defined as in (B2) above. We refer to Definition 8.2 and Figure 8.4 for

B
(i1,...,ia)
(l1,...,lb)

(κ(x);κ(y1), . . . , κ(yk)).

We may check the first identity in (10.6) case by case. But here, let us only check
for the case (C4), which may be less trivial than other cases. We omit the routine
verification for the other three cases, according to (C1), (C2) and (C3).

Let z = (αm,1, βp,1) and s−1y = s−1(α′
n,1, β

′
q,0). Suppose first that q < m.

Then for x ∈ sΛ
⊗Em+n−q

we have

κ(z ∪R (s−1y))(x)

=
(

q
∏

i=1

δβ′
i,αi

)

κ(s−1(αm,q+1α
′
n,1, βp,1β

′
0))(z)

=

{

(−1)ε1
(∏q

i=1 δβ′
i,αi

)

sβp ⊗· · ·⊗ sβ1⊗β
′
0, if z =sαm⊗· · ·⊗sαq+1⊗sα

′
n⊗· · ·⊗sα′

1,

0, otherwise,

where

ε1 = (m+ n− p− q)p+
(m+ n− p− q)(m+ n− p− q + 1)

2
.

Here, the first equality follows from (C4) and the second one follows from the
definition of κ; see Figure 10.2 for an illustration.

Note that

κ(z) ∈ HomE-E(sΛ
⊗Em

,Ωp
nc,R,E(Λ)) and κ(s−1y) ∈ HomE-E(sΛ

⊗En
,Ωq

nc,R,E(Λ)).

By the definition of the cup product of C
∗
sg,R,E(Λ,Λ) in (8.2), we have

κ(x) ∪R κ(y) ∈ HomE-E(sΛ
⊗Em+n

,Ωp+q
nc,R,E(Λ)).

One may check that

κ(x) ∪R κ(y) = (θp+q−1,R,E ◦ · · · ◦ θp+1,R,E ◦ θp,R,E)(κ(x ∪R y))

by noting that both sides may be illustrated by Figure 10.2. Thus we have κ(x ∪R

y) = κ(x) ∪R κ(y) in C
∗
sg,R,E(Λ,Λ). Similarly, we may check the identity for the

case q ≥ m.
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The second identity in (10.6) follows from the observation that the Deletion
Process in Definition 8.2 exactly corresponds to the iterative replacement in (B2)
and (B3). See Example 10.5 below for a detailed illustration. �

Example 10.5. Consider the following four monomial elements in C
∗
sg,R(Q,Q)

s−1x = s−1(α5α4α3α2α1, β3β2β1β0)

s−1y1 = s−1(α′
3α

′
2α

′
1, β

′
1β

′
0)

s−1y2 = s−1(α′′
3α

′′
2α

′′
1 , β

′′
3β

′′
2β

′′
1β

′′
0 )

s−1y3 = s−1(α′′′
2 α′′′

1 , β′′′
3 β′′′

2 β′′′
1 β′′′

0 ).

According to (10.1), they may be depicted in the following way

s−1x = (
β0−→ β1−→ β2−→ β3−→ α5←− α4←− α3←− α2←− α1←−)

s−1y1 = (
β′
0−→ β′

1−→ α′
3←− α′

2←− α′
1←−)

s−1y2 = (
β′′
0−−→ β′′

1−−→ β′′
2−−→ β′′

3−−→ α′′
3←−− α′′

2←−− α′′
1←−−)

s−1y3 = (
β′′′
0−−→ β′′′

1−−→ β′′′
2−−→ β′′′

3−−→ α′′′
2←−− α′′′

1←−−).

In view of (B2), the operation b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3) is depicted by

(
β0−→ β1−→ β′

0−→ . . .
α′

1←−
︸ ︷︷ ︸

y1

β2−→ β3−→ α5←− α4←− β′′
0−−→ . . .

α′′
1←−−

︸ ︷︷ ︸

y2

α3←− α2←− β′′′
0−−→ . . .

α′′′
1←−−

︸ ︷︷ ︸

y3

α1←−).

After replacing
α←− β−→ with δα,β iteratively, we get

λ(
β0−→ β1−→ β′

0−→ β′
1−→ β′′

3−−→ α′′
3←−− α′′′

2←−− α′′′
1←−− α1←−),(10.7)

where

λ = δα′
1,β2

δα′
2,β3

δα4,β′′
0
δα5,β′′

1
δα′

3,β
′′
2
δα2,β′′′

0
δα3,β′′′

1
δα′′

1 ,β
′′′
2
δα′′

2 ,β
′′′
3

∈ {0, 1}.
Hence,

b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3) = λs−1(α′′

3α
′′′
2 α′′′

1 α1, β
′′
3β

′
1β

′
0β1β0).(10.8)

Let us check that κ preserves the brace operations. Note that

• f := κ(s−1x) ∈ C
2

E(Λ,Ω
3
nc,R(Λ)) is uniquely determined by

sα5 ⊗ sα4 ⊗ sα3 ⊗ sα2 ⊗ sα1 	→ −sβ3 ⊗ sβ2 ⊗ sβ1 ⊗ β0,

i.e. sending any other monomial to zero;

• g1 := κ(s−1y1) ∈ C
2
(Λ,Ω1

nc,R(Λ)) is uniquely determined by

sα′
3 ⊗ sα′

2 ⊗ sα′
1 	→ −sβ′

1 ⊗ β′
0;

• g2 := κ(s−1y2) ∈ C
0
(Λ,Ω3

nc,R(Λ)) is uniquely determined by

sα′′
3 ⊗ sα′′

2 ⊗ sα′′
1 	→ sβ′′

3 ⊗ sβ′′
2 ⊗ sβ′′

1 ⊗ β′′
0 ;

• g3 := κ(s−1y3) ∈ C
−1

(Λ,Ω3
nc,R(Λ)) is uniquely determined by

sα′′′
2 ⊗ sα′′′

1 	→ −sβ′′′
3 ⊗ sβ′′′

2 ⊗ sβ′′′
1 ⊗ β′′′

0 .
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By Figure 8.6, we have that the element

B
(2,4)
(2) (κ(s−1x);κ(s−1y1), κ(s

−1y2), κ(s
−1y3)) = B

(2,4)
(2) (f ; g1, g2, g3)

is depicted by the graph in Figure 10.3, which is uniquely determined by

sα′′
3 ⊗ sα′′′

2 ⊗ sα′′′
1 ⊗ sα1 	→ λ(sβ′′

3 ⊗ sβ′
2 ⊗ sβ′

1 ⊗ sβ′
0 ⊗ sβ1 ⊗ β0).

Here λ is the same as the one in (10.7).

By (10.8) we have that κ(b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3)) is uniquely deter-

mined by

sα′′
3 ⊗ sα′′′

2 ⊗ sα′′′
1 ⊗ sα1 	→ −λ(sβ′′

3 ⊗ sβ′
2 ⊗ sβ′

1 ⊗ sβ′
0 ⊗ sβ1 ⊗ β0).

Therefore, we have

κ(b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3))

= −B
(2,4)
(2) (κ(s−1x);κ(s−1y1), κ(s

−1y2), κ(s
−1y3)).

This verifies that κ preserves the brace operations.

α′′
3 α′′′

2 α′′′
1 α1

g3

g2

f

g1

β′′
3 β′

1 β′
0

β1 β0

β′′′
3

β′′′
2

β′′′
1

β′′′
0

β′′
2

β′′
1

β′′
0

α′′
1

α′′
2

α2α3

α4

α5

β3

β2

α′
1

α′
2

α′
3

Figure 10.3. The graph represents B
(2,4)
(2) (f ; g1, g2, g3), where

f, g1, g2, g3 are given in Example 10.5; compare Figure 8.6. It is
nonzero only if the two elements in each internal edge coincide
(i.e. α′′

2 = β′′′
3 , α′′

1 = β′′′
2 , α2 = β′′′

0 and so on). By (10.8), we have

κ(b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3)) = −B

(2,4)
(2) (f ; g1, g2, g3).
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CHAPTER 11

The Leavitt B∞-algebra as an intermediate object

Let Q be a finite quiver without sinks. Let L = L(Q) be the Leavitt path alge-

bra of Q. In this chapter, we introduce the Leavitt B∞-algebra ( ̂C∗(L,L), δ′,− ∪′

−;−{−, · · · ,−}′), which is an intermediate object connecting the singular Hochs-
child cochain complex of kQ/J2 to the Hochschild cochain complex of L. More pre-

cisely, we will show that the Leavitt B∞-algebra ̂C∗(L,L) is strictly B∞-isomorphic

to C
∗
sg,R(Q,Q); see Proposition 11.4 below.
In Chapters 12 and 13, we will show that there is an explicit non-strict B∞-

quasi-isomorphism between the two B∞-algebras ̂C∗(L,L) and C
∗
E(L,L). Namely,

we have

C
∗
sg,R,E(Λ,Λ)

κ←− C
∗
sg,R(Q,Q)

ρ−→ ̂C∗(L,L)
(Φ1,Φ2,··· )−−−−−−−→ C

∗
E(L,L),

where the first two maps on the left are strict B∞-isomorphisms and the rightmost
one is a non-strict B∞-quasi-isomorphism. Recall that the leftmost map κ is already
given in Theorem 10.4.

11.1. An explicit complex

We define the following graded vector space

̂C∗(L,L) =
⊕

i∈Q0

eiLei ⊕
⊕

i∈Q0

s−1eiLei,

where we recall that the degree |s−1| = 1. The differential ̂δ of ̂C∗(L,L) is given
by

(

0 δ′

0 0

)

, where

δ′(x) = s−1x− (−1)|x|
∑

{α∈Q1|t(α)=i}
s−1α∗xα

for any x = eixei ∈ eiLei and i ∈ Q0. Note that we have ̂δ(s−1y) = 0 for

y ∈
⊕

i∈Q0
eiLei. This defines the complex ( ̂C∗(L,L), ̂δ).

Recall the complex C
∗
sg,R(Q,Q) from (10.2). We claim that there is a morphism

of complexes

(11.1) ρ : C
∗
sg,R(Q,Q) −→ ̂C∗(L,L)

given by

ρ((γ, γ′)) = γ′∗γ for (γ, γ′) ∈ Qm//Qp;

ρ(s−1(γ, γ′)) = s−1γ′∗γ for s−1(γ, γ′) ∈ s−1k(Qm//Qp+1).

Indeed, we observe that for (γ, γ′) ∈ Qm//Qp,

ρ(θp,R(γ, γ
′)) =

∑

α∈Q1

(αγ′)∗αγ = γ′∗γ = ρ((γ, γ′)),

89
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where the second equality follows from the second Cuntz-Krieger relations
∑

{α∈Q1|s(α)=i}
α∗α = ei.

Similarly, we have
ρ(θp,R(s

−1(γ, γ′))) = ρ(s−1(γ, γ′)).

This shows that ρ is well-defined. Comparing Dm,p in (10.4) and δ′, it is easy to
check that ρ commutes with the differentials. This proves the claim. Moreover, we
have the following result.

Lemma 11.1. The above morphism ρ is an isomorphism of complexes.

Proof. This follows immediately from the definition of C
∗
sg,R,0(Q,Q) in (10.1)

and Lemma 4.1. �

11.2. The Leavitt B∞-algebra

We will define the cup product − ∪′ − and brace operation −{−, . . . ,−}′ on
̂C∗(L,L).

Recall from (4.1) that each element in eiLei ⊂ ̂C∗(L,L) can be written as a
linear combination of the following monomials

(11.1) β∗
1β

∗
2 · · ·β∗

pαmαm−1 · · ·α1,

where βp · · ·β2β1 and αmαm−1 · · ·α1 are paths in Q with lengths p and m, respec-
tively. In particular, all βj and αk belong to Q1. Moreover, we require that p ≥ 1
and m ≥ 0, and that t(αm) = s(β∗

p) = t(βp). In the case where m = 0, these αi’s
do not appear. The monomial (11.1) has degree m− p.

Similarly, we write any element in s−1eiLei ⊂ ̂C∗(L,L) as a linear combination
of the following monomials

(11.2) s−1β∗
0β

∗
1 · · ·β∗

pαmαm−1 · · ·α1

where αk, βj ∈ Q1 for 1 ≤ k ≤ m and 0 ≤ j ≤ p. The monomial (11.2) also has
degree m − p. The difference here is that we require p ≥ 0 and m ≥ 0, since the
βj ’s are indexed from zero.

The cup product − ∪′ − on ̂C∗(L,L) is defined by the following (C1’)-(C4’).

(C1’) For any s−1u ∈ s−1eiLei and s−1v ∈ s−1ejLej with i, j ∈ Q0, we have

s−1u ∪′ s−1v = 0;

(C2’) For any u ∈ eiLei and v ∈ ejLej with i, j ∈ Q0, we have

u ∪′ v = uv;

(C3’) For any s−1u ∈ s−1eiLei and v ∈ ejLej with i, j ∈ Q0, we have

(s−1u) ∪′ v = s−1uv;

(C4’) For any u ∈ eiLei and s−1v = s−1β∗
0β

∗
1 · · ·β∗

pαmαm−1 · · ·α1 ∈ s−1ejLej
with i, j ∈ Q0, we have

u ∪′ s−1v =
∑

α∈Q1

s−1α∗uαv = s−1β∗
0uβ

∗
1β

∗
2 · · ·β∗

pαmαm−1 · · ·α1.

Here, we use the relations αβ∗ = δα,βet(α). Note that there is no Koszul

sign caused by swapping s−1β∗
0 with u, as the degree of s−1β∗

0 is zero.
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Then ̂C∗(L,L) becomes a dg algebra with this cup product.

Remark 11.2.

(1) It seems that we cannot extend the cup product naturally to L ⊕ s−1L.
For instance, take u ∈ eiLej and v ∈ ejLei with i, j ∈ Q0, i �= j. When
we define u∪′ v = uv and extend the differential δ′ : L −→ s−1L by δ′(u) =
s−1u and δ′(v) = s−1v, then we have

δ′(u ∪′ v) = s−1uv − (−1)|uv|
∑

{α∈Q1|t(α)=i}
s−1α∗uvα.

But on the other hand, we have

δ′(u) ∪′ v + (−1)|u|u ∪′ δ′(v) = s−1u ∪′ v + (−1)|u|u ∪′ s−1v

= s−1uv + (−1)|u|
∑

α∈Q1

s−1α∗uαv

= s−1uv.

So we may have that δ′(u ∪′ v) �= δ′(u) ∪′ v + (−1)|u|u ∪′ δ′(v). In other
words, we do not obtain a dg algebra with the cup product and the dif-
ferential.

(2) By (C3’) and (C4’), we may view
⊕

i∈Q0
s−1eiLei as a bimodule over

⊕

i∈Q0
eiLei. According to (C1’), ̂C∗(L,L) is a trivial extension algebra;

see [8, p.78].

Let v, u1, . . . , uk be monomials in ̂C∗(L,L). The brace operation v{u1, . . . , uk}′
is defined by the following (B1’)-(B3’).

(B1’) If uj ∈
⊕

i∈Q0
eiLei ⊂ ̂C∗(L,L) for some 1 ≤ j ≤ k, then

v{u1, . . . , uk}′ = 0.(11.3)

(B2’) If s−1uj ∈
⊕

i∈Q0
s−1eiLei ⊂ ̂C∗(L,L) for each 1 ≤ j ≤ k, and

s−1v = s−1β∗
0β

∗
1 · · ·β∗

pαmαm−1 · · ·α1 ∈
⊕

i∈Q0

s−1eiLei ⊂ ̂C∗(L,L)

then we define

(11.4) s−1v{s−1u1, . . . , s
−1uk}′

=
∑

a+b=k, a,b≥0
1≤i1<i2<···<ia≤m
1≤l1≤l2≤···≤lb≤p

(−1)a+ε b(i1,...,ia)
(l1,...,lb)

(s−1v; s−1u1, . . . , s
−1uk),

where b(i1,...,ia)
(l1,...,lb)

(s−1v; s−1u1, . . . , s
−1uk) ∈

⊕

i∈Q0
s−1eiLei is defined as

s−1β∗
0β

∗
1 · · ·β∗

l1−1u1β
∗
l1 · · ·β

∗
l2−1u2β

∗
l2 · · ·β

∗
lb−1ubβ

∗
lb
· · ·β∗

p−1β
∗
pαmαm−1

· · ·αiaub+1αia−1 · · ·αi2uk−1αi2−1 · · ·αi1ukαi1−1 · · ·α2α1,

and the sign

ε =

b
∑

r=1

(|s−1ur| − 1)(m+ p− lr + 1) +

a
∑

r=1

(|s−1uk−r+1| − 1)(ir − 1)
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is obtained via the Koszul sign rule by reordering the elements (β∗
i and

αi are of degree one)

β∗
0 , β

∗
1 , . . . , β

∗
p ;αm, αm−1, . . . , α1;u1, . . . , uk.

(B3’) If s−1uj ∈
⊕

i∈Q0
s−1eiLei ⊂ ̂C∗(L,L) for each 1 ≤ j ≤ k, and v =

β∗
1 · · ·β∗

pαm · · ·α1 ∈
⊕

i∈Q0
eiLei ⊂ ̂C∗(L,L), then

v{s−1u1, . . . , s
−1uk}′ =

∑

a+b=k, a,b≥0
1≤i1<i2<···<ia≤m
1≤l1≤l2≤···≤lb≤p

(−1)a+ε b(i1,...,ia)
(l1,...,lb)

(v; s−1u1, . . . , s
−1uk),

(11.5)

where b(i1,...,ia)
(l1,...,lb)

(v; s−1u1, . . . , s
−1uk) ∈

⊕

i∈Q0
eiLei is defined as

β∗
1β

∗
2 · · ·β∗

l1−1u1β
∗
l1 · · ·β

∗
l2−1u2β

∗
l2 · · ·β

∗
lb−1ubβ

∗
lb
· · ·β∗

p−1β
∗
pαmαm−1

· · ·αiaub+1αia−1 · · ·αi2uk−1αi2−1 · · ·αi1ukαi1−1 · · ·α2α1

and ε is the same as in (B2’).

Let us give more explanations on the operations b(i1,...,ia)
(l1,...,lb)

; compare Remark 10.3.

Remark 11.3. The following remarks apply both to (B2’) and (B3’). We only
write those for (B2’) in details.

(1) Each summand b(i1,...,ia)
(l1,...,lb)

(s−1v;s−1u1,. . . ,s
−1uk) is an insertion of u1, . . . , uk

(from left to right) into s−1v = s−1β∗
0β

∗
1 · · ·β∗

pαmαm−1 · · ·α1 as follows

s−1β∗
0 · · ·β∗

l1−1 u1
︸︷︷︸

β∗
l1 · · ·

β∗
l2−1 u2

︸︷︷︸

β∗
l2 · · ·β

∗
lb−1 ub

︸︷︷︸

β∗
lb
· · ·β∗

pαm · · ·αiaub+1
︸︷︷︸

· · ·αi1 uk
︸︷︷︸

αi1−1 · · ·α1.

We are not allowed to insert any ui between β∗
p and αm; in the case where m = 0,

the insertion on the right of β∗
p is not allowed. If a = 0, there is no insertions into

αj ’s. Similarly, if b = 0, there is no insertions into β∗
j ’s.

Since 1 ≤ l1 ≤ l2 ≤ · · · ≤ lb ≤ p, we are allowed to insert more than one ui into
s−1v at the same position between β∗

j−1 and β∗
j for some 1 ≤ j ≤ p. For example,

we might have the following insertion with l2 = l3

s−1β∗
0β

∗
1 · · ·β∗

l1−1 u1
︸︷︷︸

β∗
l1 · · ·β

∗
l2−1u2u3

︸︷︷︸

β∗
l3 · · ·β

∗
lb−1 ub

︸︷︷︸

β∗
lb

· · ·β∗
pαm · · ·αiaub+1

︸︷︷︸

· · ·αi1 uk
︸︷︷︸

· · ·α1.

As 1 ≤ i1 < i2 < · · · < ij ≤ m, we are not allowed to insert more than one ui into
s−1v at the same position between αj−1 and αj for some 1 ≤ j ≤ m. For example,
the following insertion is not allowed

s−1β∗
0β

∗
1 · · · u1

︸︷︷︸

β∗
l1 · · · ub

︸︷︷︸

β∗
lb
· · ·β∗

pαm · · ·αiaub+1
︸︷︷︸

· · ·αisuk−s+1uk−s+2
︸ ︷︷ ︸

· · ·α1.

(2) The brace operation is well-defined, that is, it is compatible with the second
Cuntz-Krieger relations or (4.1). For the proof, one might use the following relation
to swap the insertion of ub into s−1v

∑

{α∈Q1 | s(α)=i}
α∗αub =

∑

{α∈Q1 | s(α)=i}
ubα

∗α,
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where both sides are equal to δi,jub for ub ∈ ejLej . Proposition 11.4 will provide
an alternative proof for the well-definedness.

(3) We observe that v{s−1u1, . . . , s
−1uk} in (11.5) is also defined for any v ∈ L,

not necessarily v ∈
⊕

i∈Q0
eiLei. However, due to (2), it seems to be essential to

require that all the uj ’s belong to
⊕

i∈Q0
eiLei.

It seems to be very nontrivial to verify directly that the above data define a B∞-

algebra structure on ̂C∗(L,L). Instead, we use the isomorphism ρ in Lemma 11.1

to show that the above data are transferred from those in C
∗
sg,R(Q,Q).

Proposition 11.4. The isomorphism ρ : C
∗
sg,R(Q,Q) −→ ̂C∗(L,L) preserves

the cup products and the brace operations. In particular, the complex ̂C∗(L,L),
equipped with the cup product −∪′ − and the brace operation −{−, . . . ,−}′ defined
as above, is a B∞-algebra.

The obtained B∞-algebra ̂C∗(L,L) is called the Leavitt B∞-algebra, due to its
close relation to the Leavitt path algebra. Combining this result with Theorem 10.4,

we infer that ̂C∗(L,L) and C
∗
sg,R,E(Λ,Λ) are strictly B∞-isomorphic.

Proof. By a routine computation, we verify that ρ sends the formulae (C1)-
(C4) to (C1’)-(C4’), respectively. The key point in the verification is the fact that

replacing
α←− β−→ by δα,β in (C2)-(C4) corresponds to the first Cuntz-Krieger relations

αβ∗ = δα,βet(α), which are implicitly used in the multiplication of L in (C2’)-(C4’).
Here, let us only check that ρ sends (C4) to (C4’) in detail. Let z = (αm,1, βp,1)

and s−1y = s−1(α′
n,1, β

′
q,0) be as in (10.4) and (10.3). Assume that q < m. Then

we have

ρ(z ∪R s−1y) = (

q
∏

i=1

δβ′
i,αi

) ρ(s−1(αm,q+1α
′
n,1, βp,1β

′
0))

= (

q
∏

i=1

δβ′
i,αi

) s−1β′
0
∗
β∗
1,pαm,q+1α

′
n,1

where the first equality follows from (10.5), and the second one follows from the
definition (11.1) of ρ. Here, β∗

1,p = β∗
1β

∗
2 . . . β

∗
p . On the other hand, we have

ρ(z) ∪′ ρ(s−1y) = β∗
1,pαm,1 ∪′ s−1β′

0
∗
β′∗

1,qα
′
n,1

= s−1β′
0
∗
β∗
1,pαm,1β

′∗
1,qα

′
n,1

= (

q
∏

i=1

δβ′
i,αi

) s−1β′
0
∗
β∗
1,pαm,q+1α

′
n,1.

where the first equality uses the definition (11.1) of ρ, the second one uses (C4’), and
the third one uses the first Cuntz-Krieger relations. This shows that ρ(z∪Rs−1y) =
ρ(z) ∪′ ρ(s−1y) for q < m. We leave the other cases to the reader as exercises.

It remains to check that ρ is compatible with the brace operations. That is, ρ
sends the formulae in (B1)-(B3) to the ones in (B1’)-(B3’), respectively.

Let x, y1, . . . , yk be parallel paths either in C
∗
sg,R,0(Q,Q) or in s−1C

∗
sg,R,0(Q,Q).

If there exists some yj belonging to C
∗
sg,R,0(Q,Q), then x{y1, . . . , yk}R = 0. Thus,

we have

ρ(x{y1, . . . , yk}R) = 0 = ρ(x){ρ(y1), . . . , ρ(yk)}′.
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This shows that ρ sends the formula in (B1) to the one in (B1’).

Let x = s−1(αm,1, βp,0) ∈ s−1C
∗
sg,R,0(Q,Q) and y1, . . . , yk ∈ s−1C

∗
sg,R,0(Q,Q).

Using the first Cuntz-Krieger relations αβ∗ = δα,βet(α), we infer that ρ sends the
summand

b
(i1,...,ij)

(l1,...,lk−j)
(x; y1, . . . , yk)

of x{y1, . . . , yk} in (B2) of Section 10.2 to the one

b(i1,...,ij)

(l1,...,lk−j)
(ρ(x); ρ(y1), · · · , ρ(yk))

of ρ(x){ρ(y1), . . . , ρ(yk)}′ in (11.4). See Example 11.5 below for a detailed illustra-
tion. Thus we have

ρ(x{y1, . . . , yk}R) = ρ(x){ρ(y1), . . . , ρ(yk)}′.
This shows that the formula in (B2) corresponds to the one in (B2’) under ρ.

Similarly, if x = (αm,1, βp,1) ∈ C
∗
sg,R,0(Q,Q) and y1, . . . , yk ∈ s−1C

∗
sg,R,0(Q,Q),

we have

ρ
(

b
(i1,...,ij)

(l1,...,lk−j)
(x; y1, . . . , yk)

)

= b(i1,...,ij)

(l1,...,lk−j)
(ρ(x); ρ(y1), · · · , ρ(yk))

and thus ρ(x{y1, . . . , yk}R) = ρ(x){ρ(y1), . . . , ρ(yk)}′. This shows that ρ sends (B3)
to (B3’). �

Example 11.5. Consider the following monomial elements in C
∗
sg,R(Q,Q) as

in Example 10.5

s−1x = s−1(α5α4α3α2α1, β3β2β1β0)

s−1y1 = s−1(α′
3α

′
2α

′
1, β

′
1β

′
0)

s−1y2 = s−1(α′′
3α

′′
2α

′′
1 , β

′′
3β

′′
2β

′′
1β

′′
0 )

s−1y3 = s−1(α′′′
2 α′′′

1 , β′′′
3 β′′′

2 β′′′
1 β′′′

0 ).

Let us check that ρ preserves the brace operations. Note that

ρ(s−1x) = s−1β∗
0β

∗
1β

∗
2β

∗
3α5α4α3α2α1

ρ(s−1y1) = s−1β′∗
0 β′∗

1 α′
3α

′
2α

′
1

ρ(s−1y2) = s−1β′′∗
0 β′′∗

1 β′′∗
2 β′′∗

3 α′′
3α

′′
2α

′′
1

ρ(s−1y3) = s−1β′′′∗
0 β′′′∗

1 β′′′′∗
2 β′′′∗

3 α′′′
2 α′′′

1 .

Then in view of (B2’), we have that

b(2,4)
(2) (ρ(s−1x); ρ(s−1y1), ρ(s

−1y2), ρ(s
−1y3))

= s−1β∗
0β

∗
1 β

′∗
0 β′∗

1 α′
3α

′
2α

′
1

︸ ︷︷ ︸

β∗
2β

∗
3α5α4 β

′′∗
0 β′′∗

1 β′′∗
2 β′′∗

3 α′′
3α

′′
2α

′′
1

︸ ︷︷ ︸

α3α2

× β′′′∗
0 β′′′∗

1 β′′′′∗
2 β′′′∗

3 α′′′
2 α′′′

1
︸ ︷︷ ︸

α1

= λs−1β∗
0β

∗
1β

′∗
0 β′∗

1 β′′∗
3 α′′

3α
′′′
2 α′′′

1 α1

= ρ(b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3)),

where the second identity follows from the second Cuntz-Krieger relations, the
coefficient λ ∈ {0, 1} is defined in Example 10.5, and the last equality uses (10.8).
Therefore we have

ρ(b
(2,4)
(2) (s−1x; s−1y1, s

−1y2, s
−1y3)) = b(2,4)

(2) (ρ(s−1x); ρ(s−1y1), ρ(s
−1y2), ρ(s

−1y3)).
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11.3. A recursive formula for the brace operation

We have the following recursive formula for the brace operation of the Leavitt

B∞-algebra ̂C∗(L,L). The formula will be used in the proof of Proposition 12.8.

Proposition 11.6. Let v = β∗
1 · · ·β∗

pαm · · ·α1 ∈ L be a monomial with βi, αj ∈
Q1 for 1 ≤ i ≤ p and 1 ≤ j ≤ m, and let s−1u1, . . . , s

−1uk ∈
⊕

i∈Q0
s−1eiLei for

k ≥ 1. Then we have

v{s−1u1, . . . , s
−1uk}′

(11.1)

=

p−1
∑

j=0

∑

γ∈Q1

(−1)(j+|v|+1)εk+|uk|
(

(β∗
1,jγ

∗){s−1u1, . . . , s
−1uk−1}′

)

· (γukβ
∗
j+1,pαm,1)

−
m−1
∑

j=0

(−1)(j+1)εk+|uk|
(

(β∗
1,pαm,j+2){s−1u1, . . . , s

−1uk−1}′
)

· (αj+1ukαj,1),

where εk = |u1|+ · · ·+ |uk|, and the central dot · indicates the multiplication of L.

For the brace operation v{s−1u1, . . . , s
−1uk}′ with v ∈ L, we refer to Re-

mark 11.3(3). Here, we write αj,i = αjαj−1 · · ·αi, β∗
i,j = β∗

i β
∗
i+1 · · ·β∗

j for any
i ≤ j. The above proposition also works for v = β∗

1 . . . β
∗
p and v = αm . . . α1.

Recall that the summands b(i1,...,ia)
(l1,...,lb)

(v;s−1u1, . . . , s
−1uk)inv{s−1u1, . . . , s

−1uk}′
are defined by the insertions of u1, . . . , uk into v in order; see Remark 11.3. We
have two ways to carry out these assertions. Namely, either we insert them simulta-
neously, or we first insert u1, · · · , uk−1 into v and then insert uk afterwards. These
two ways yield the same summands, and essentially lead to the recursive formula.

Proof. We only prove the identify for the cases m, p > 0. The cases where
m = 0 or p = 0 can be proved in a similar way.

We will compare the summands on the right hand side of (11.1) with the
summands

b(i1,...,ia)
(l1,...,lb)

(v; s−1u1, . . . , s
−1uk)

in (11.5). We analyze the position in v = β∗
1β

∗
2 · · ·β∗

pαmαm−1 · · ·α1, where uk is
inserted according to Remark 11.3(1).

For any fixed 0 ≤ j ≤ p− 1, the first term on the right hand side of (11.1)
∑

γ∈Q1

(−1)(j+|v|+1)εk+|uk|
(

(β∗
1,jγ

∗){s−1u1, . . . , s
−1uk−1}′

)

· (γukβ
∗
j+1,pαm,1)

is illustrated by
∑

γ∈Q1

∑

1≤l1≤···≤lk−1≤lk=j+1

±β∗
1 · · ·β∗

l1−1 u1
︸︷︷︸

β∗
l1 · · ·β

∗
lk−1−1uk−1

︸ ︷︷ ︸

β∗
lk−1

· · ·β∗
j γ

∗γukβ
∗
j+1 · · ·β∗

pαm,1.

Using the first Cuntz-Krieger relations we note that the above equals
∑

1≤l1≤l2≤···≤lk−1≤lk=j+1

(−1)|v|εk+
∑k−1

r=1 (lr−1)|ur|+j|uk|

× b∅
(l1,l2,...,lk−1,j+1)(v; s

−1u1, . . . , s
−1uk).
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To complete the proof, we assume that the insertion of uk into v is at the position
between αj+1 and αj for any fixed 0 ≤ j ≤ m− 1. That is, we are concerned with
the following summand

∑

a+b=k, a,b≥0
j+1=i1<i2<···<ia≤m

1≤l1≤l2≤···≤lb≤p

(−1)a+ε b(j+1,i2,...,ia)
(l1,...,lb)

(v; s−1u1, . . . , s
−1uk).(11.2)

Here, ε is the same as in (11.5). We observe that

b(j+1,i2,...,ia)
(l1,...,lb)

(β∗
1,pαm,1; s

−1u1, . . . , s
−1uk)

= b(i2,...,ia)
(l1,...,lb)

(β∗
1,pαm,j+2; s

−1u1, . . . , s
−1uk−1) · (αj+1ukαj,1),

where the insertion of u1, . . . , uk−1 into β∗
1 · · ·β∗

pαm · · ·αj+2 is involved in the latter
term. It is illustrated as follows

β∗
1 · · ·β∗

lb−1 ub
︸︷︷︸

β∗
lb
· · ·β∗

pαm · · ·αiaub+1
︸︷︷︸

αia−1 · · ·αi2uk−1
︸ ︷︷ ︸

αi2−1 · · ·αj+1 uk
︸︷︷︸

αj · · ·α1.

It follows that for each 0 ≤ j ≤ m− 1, (11.2) equals

−(−1)(j+1)εk+|uk|
(

(β∗
1,pαm,j+2){s−1u1, . . . , s

−1uk−1}′
)

· (αj+1ukαj,1).

This is the second term on the right hand side of (11.1). Then the required identity
follows immediately. �
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CHAPTER 12

An A∞-quasi-isomorphism
for the Leavitt path algebra

In this chapter, we use the homotopy transfer theorem for dg algebras to ob-

tain an explicit A∞-quasi-isomorphism between the two dg algebras ̂C∗(L,L) and

C
∗
E(L,L); see Propositions 12.7 and 12.8.

12.1. An induced homotopy deformation retract

In what follows, we apply the functor HomL-L(−, L) to the homotopy defor-
mation retract (7.1) to obtain the one (12.2). We recall from Section 7.2 the dg-
projective bimodule resolution P of L.

Recall from Chapter 11 the Leavitt B∞-algebra ̂C∗(L,L). We will use the
identification

HomL-L(P,L) = ( ̂C∗(L,L), ̂δ)

by the following natural isomorphisms

HomL-L(Lei ⊗ eiL,L)
∼=−→ eiLei, φ 	−→ φ(ei ⊗ ei);

HomL-L(Lei ⊗ sk ⊗ eiL,L)
∼=−→ s−1eiLei, φ 	−→ (−1)|φ|s−1φ(ei ⊗ s⊗ ei).

(12.1)

It is straightforward to verify that the above isomorphisms are compatible with the
differentials.

Recall that E =
⊕

i∈Q0
kei and that the E-relative Hochschild cochain complex

C
∗
E(L,L) is naturally identified with HomL-L(BarE(L), L); compare (6.2). Under

the above identifications, (7.1) yields the following homotopy deformation retract

(12.2) ( ̂C∗(L,L), ̂δ)
Φ1 �� (C

∗
E(L,L), δ)

Ψ1

�� H
��

with Φ1 = HomL-L(π, L),Ψ1 = HomL-L(ι, L) and H = HomL-L(h, L) satisfying

Ψ1 ◦ Φ1 = 1Ĉ∗(L,L) and 1C
∗
E(L,L) = Φ1 ◦Ψ1 + δ ◦H +H ◦ δ.

As in Section 6.1, we denote the following subspaces of C
∗
E(L,L) for any k ≥ 0

C
∗,k
E (L,L) = HomE-E((sL)

⊗Ek, L)

C
∗,≥k

E (L,L) =
∏

i≥k

HomE-E((sL)
⊗Ei, L)

C
∗,≤k

E (L,L) =
∏

0≤i≤k

HomE-E((sL)
⊗Ei, L).

In particular, we have C
∗,0
E (L,L) = HomE-E(E,L) =

⊕

i∈Q0
eiLei.

97



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

98 12. AN A∞-QUASI-ISOMORPHISM FOR THE LEAVITT PATH ALGEBRA

Let us describe the above homotopy deformation retract (12.2) in more detail.

(1) The surjection Ψ1 is given by

Ψ1(x) = x for x ∈ C
∗,0
E (L,L) =

⊕

i∈Q0

eiLei;

Ψ1(f) = −
∑

α∈Q1

s−1α∗f(sα) for f ∈ C
∗,1
E (L,L);(12.3)

Ψ1(g) = 0 for g ∈ C
∗,≥2

E (L,L).

(2) The injection Φ1 is given by

Φ1(u) = u for u ∈
⊕

i∈Q0

eiLei ⊂ ̂C∗(L,L);

Φ1(s
−1u) ∈ C

∗,1
E (L,L) for s−1u ∈

⊕

i∈Q0

s−1eiLei ⊂ ̂C∗(L,L).
(12.4)

Here, in the first identity we use the identification

C
∗,0
E (L,L) =

⊕

i∈Q0

eiLei.

The explicit formula of Φ1(s
−1u) will be given in Lemma 12.2 below.

(3) The homotopy H is given by

H|
C

∗,≤1
E (L,L)

= 0

H(f)(sa1,n) = (−1)ε f̌(1⊗E sa1,n−1 ⊗E ι ◦ π(1⊗E san ⊗E 1))
(12.5)

for any f ∈ C
∗,n+1

E (L,L) with n ≥ 1, where ε = 1 + |f |+
∑n−1

i=1 (|ai| − 1)

and f̌ is the image of f under the natural isomorphism (compare (6.2))

C
∗,n+1

E (L,L)
�−→ HomL-L(L⊗E (sL̄)⊗En+1 ⊗E L,L), f 	→ f̌(12.6)

Remark 12.1. To compute H(f)(sa1,n) in (12.5), we recall from Section 7.2
that ι ◦ π is the composition of ι ◦ π with the natural map

L⊗E sL⊗E L −→ sL⊗E sL⊗E L, a⊗E sb⊗E c 	→ sa⊗E sb⊗E c
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of degree −1. Assume that an = β∗
1β

∗
2 · · ·β∗

pαm · · ·α2α1 ∈ eiLej is a monomial
with each αi, βj ∈ Q1. Then we have

ιπ(1⊗E san ⊗E 1) = ιD(an)

= −ι(es(β1) ⊗ s⊗ an)−
p−1
∑

l=1

(−1)lι(β∗
1 · · ·β∗

l ⊗ s⊗ β∗
l+1 · · ·β∗

pαm · · ·α1)

+

m−1
∑

l=1

(−1)m+p−l ι(β∗
1 · · ·β∗

pαm · · ·αl+1 ⊗ s⊗ αl · · ·α1)

+ (−1)m+pι(an ⊗ s⊗ es(α1))

=
∑

γ∈Q1

p−1
∑

l=0

(−1)lβ∗
1 · · ·β∗

l γ
∗ ⊗E sγ ⊗E β∗

l+1 · · ·β∗
pαm · · ·α1

−
m−1
∑

l=0

(−1)m+p−l β∗
1 · · ·β∗

pαm · · ·αl+2 ⊗E sαl+1 ⊗ αl · · ·α1.

Here, the first equality uses the definition of π in (7.4), the second one uses Re-
mark 4.4, and the third one uses the definition of ι in (7.3) and the first Cuntz-
Krieger relations in L. As a degenerate case, we have

ιπ(1⊗E sα1 ⊗E 1) = et(α1) ⊗E sα1 ⊗E es(α1).(12.7)

The following lemma provides the formula of Φ1(s
−1u) in (12.4).

Lemma 12.2. For any s−1u ∈
⊕

i∈Q0
s−1eiLei ⊂ ̂C∗(L,L), we have

Φ1(s
−1u)(sv) = (−1)(|v|−1)|u| v{s−1u}′,

where v ∈ L and v{s−1u}′ is given by (11.5).

Proof. Let v = β∗
1 · · ·β∗

pαm · · ·α1 ∈ eiLej be a monomial, where i, j ∈ Q0.

We first assume that m, p > 0. Under the identification (12.1), the element s−1u
corresponds to a morphism of L-L-bimodules of degree |u| − 1

φs−1u : Lei ⊗ sk ⊗ eiL −→ L, a⊗ s⊗ b 	−→ (−1)(|a|+1)(|u|−1)aub.

Then we have Φ1(s
−1u)(sv) = (φs−1u ◦ π)(1⊗ sv ⊗ 1). By Remark 4.4, we have

Φ1(s
−1u)(sv) = (φs−1u ◦ π)(1⊗ sv ⊗ 1) = φs−1u(D(v))

= (−1)|u|uv +

p−1
∑

l=1

(−1)|u|(l+1)β∗
1 · · ·β∗

l uβ
∗
l+1 · · ·β∗

pαm · · ·α1

+

m−1
∑

l=1

(−1)|u|(m+p−l−1)+1β∗
1 · · ·β∗

pαm · · ·αl+1uαl · · ·α1

+ (−1)(|v|+1)|u|+1vu.
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It follows from the definition of the brace operation in (11.5) that

v{s−1u}′ = (−1)|v|·|u|uv +

p−1
∑

l=1

(−1)|v|·|u|+|u|l β∗
1 · · ·β∗

l uβ
∗
l+1 · · ·β∗

pαm · · ·α1

+

m−1
∑

l=1

(−1)|v|·|u|+1+|u|(|v|−l) β∗
1 · · ·β∗

pαm · · ·αl+1uαl · · ·α1 − vu.

By comparing the signs of the above two formulae, we infer

Φ1(s
−1u)(sv) = (−1)(|v|−1)|u| v{s−1u}′.

Similarly, one can prove the statement for either p = 0 or m = 0. �
Remark 12.3. Note that for α ∈ Q1 we have

Φ1(s
−1u)(sα) = α{s−1u}′ = −αu,

where the second identity is due to Remark 11.3(3). The formula of Φ1 will be
generalized to Φk for k > 1 by using −{−, . . . ,−

︸ ︷︷ ︸

k

}′; see Proposition 12.8 below.

The following simple lemma on the homotopy H will be used in Lemma 12.5
below.

Lemma 12.4. Let α ∈ Q1 and f ∈ C
∗,n+1

E (L,L) with n ≥ 1. Then we have

H(f)(sa1 ⊗E · · · ⊗E san−1 ⊗E sα) = 0

for any a1, . . . , an−1 ∈ L.

Proof. By (12.5) we have

H(f)(sa1,n−1 ⊗E sα) = (−1)εf̌(1⊗E sa1,n−1 ⊗E ιπ(1⊗E sα⊗E 1))

= (−1)ε+1f(sa1,n−1 ⊗E set(α) ⊗E sα)

= 0,

where the second equality uses (12.7) and the last one uses the fact that et(α) = 0

in L = L/(E · 1). �
The following lemma shows that the homotopy deformation retract (12.2) sat-

isfies the assumption (7.2) of Corollary 7.8.

Lemma 12.5. For any g1, g2 ∈ C
∗
E(L,L), we have

H(g1 ∪H(g2)) = 0 = Ψ1(g1 ∪H(g2)).

Proof. Throughout the proof, we assume without loss of generality that

g1 ∈ C
∗,m
E (L,L) and g2 ∈ C

∗,n
E (L,L) for some m,n ≥ 0.

Note that if n ≤ 1 then H(g2) = 0 by (12.5) and the desired identities hold. So in
the following we may further assume that n ≥ 2.

Let us first verify Ψ1(g1∪H(g2)) = 0. Since Ψ1(g) = 0 for any g ∈ C
∗,≥2

E (L,L)
by (12.3), we only need to verify Ψ1(g1 ∪H(g2)) = 0 when m = 0 and n = 2. In

this case, g1 ∈ C
∗,0
E (L,L) =

⊕

i∈Q0
eiLei is viewed as an element in

⊕

i∈Q0
eiLei.

Then we have

Ψ1(g1 ∪H(g2)) = −
∑

α∈Q1

s−1(α∗g1) ·
(

H(g2)(sα)
)

= 0,
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where the second equality follows from Lemma 12.4 since α ∈ Q1. In order to avoid
confusion, we sometimes use the dot · to emphasize the multiplication of L.

It remains to verify H(g1 ∪H(g2)) = 0. For this, we set f = g1 ∪H(g2). Then
we have

H(g1 ∪H(g2))(sa1,m+n−2)

= (−1)εf̌(sa1,m+n−3 ⊗E ι ◦ π(1⊗E sam+n−2 ⊗E 1))

= (−1)ε+ε′+1
∑

i

∑

α∈Q1

g1(sa1,m) ·H(g2)(sam+1,m+n−3 ⊗E sxiα∗ ⊗E sα) · yi

= 0,

where we simply write π(1⊗E sam+n−2 ⊗E 1) =
∑

i xi ⊗ s⊗ yi; compare (7.4), and
the last equality follows from Lemma 12.4 as α ∈ Q1. Here, the signs are given by

ε = |g1|+ |g2|+
m+n−3
∑

i=1

(|ai| − 1) and ε′ = (|g2| − 1)

(

m
∑

i=1

(|ai| − 1)

)

.

This completes the proof. �

12.2. An explicit A∞-quasi-isomorphism between dg algebras

Thanks to Lemma 12.5, we can apply Corollary 7.8 to the homotopy defor-

mation retract (12.2). We obtain an A∞-algebra structure (m1 = ̂δ,m2, · · · ) on
̂C∗(L,L) and an A∞-quasi-isomorphism (Φ1,Φ2, · · · ) from ( ̂C∗(L,L),m1,m2, · · · )
to (C

∗
E(L,L), δ,−∪−). More precisely, thanks to Remark 7.9, we have the following

recursive formulae for k ≥ 2:

Φk(a1 ⊗ · · · ⊗ ak) = (−1)k−1 H(Φk−1(a1 ⊗ · · · ⊗ ak−1) ∪ Φ1(ak));(12.1)

mk(a1 ⊗ · · · ⊗ ak) = (−1)k−1 Ψ1(Φk−1(a1 ⊗ · · · ⊗ ak−1) ∪ Φ1(ak)).(12.2)

The following lemma provides some basic properties of Φk.

Lemma 12.6. The maps Φk : ̂C∗(L,L)⊗k → C
∗
E(L,L) satisfy the following

properties.

(1) For k ≥ 1, we have

(12.3) Φk(s
−1u1 ⊗ · · · ⊗ s−1uk) ∈ C

∗,1
E (L,L)

if s−1uj ∈
⊕

i∈Q0
s−1eiLei ⊂ ̂C∗(L,L) for all 1 ≤ j ≤ k;

(2) For k ≥ 2, we have

(12.4) Φk(a1 ⊗ · · · ⊗ ak) = 0

if there exists some 1 ≤ j ≤ k such that aj ∈
⊕

i∈Q0
eiLei ⊂ ̂C∗(L,L).

Proof. Let us prove the first assertion by induction on k. For k = 1 it follows
from (12.4). For k > 1, by (12.1) we have the following recursive formula

Φk(s
−1u1 ⊗ · · · ⊗ s−1uk) = (−1)k−1H(Φk−1(s

−1u1 ⊗ · · · ⊗ s−1uk−1) ∪Φ1(s
−1uk)).

By the induction hypothesis, we have that

Φk−1(s
−1u1 ⊗ · · · ⊗ s−1uk−1) ∈ C

∗,1
E (L,L) and Φ1(s

−1uk) ∈ C
∗,1
E (L,L).
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Then we obtain Φk−1(s
−1u1 ⊗ · · · ⊗ s−1uk−1) ∪Φ1(s

−1uk) ∈ C
∗,2
E (L,L). It follows

from (12.5) that Φk(s
−1u1⊗· · ·⊗s−1uk) ∈ C

∗,1
E (L,L), since H decreases the second

grading by one.
Similarly, we may prove the second assertion by induction on k. For k = 2 we

have
Φ2(a1 ⊗ a2) = H(Φ1(a1) ∪ Φ1(a2)).

By (12.5) we have H|
C

∗,≤1
E (L,L)

= 0. It follows from (12.4) that Φ2(a1 ⊗ a2) = 0 if

either a1 or a2 lies in
⊕

i∈Q0
eiLei ⊂ ̂C∗(L,L).

Now we consider the case for k > 2. If there exists 1 ≤ j ≤ k − 1 such that
aj lies in

⊕

i∈Q0
eiLei, then by the induction hypothesis, we have that Φk−1(a1 ⊗

· · · ⊗ ak−1) = 0 and thus by (12.1) we obtain Φk(a1 ⊗ · · · ⊗ ak) = 0. If all the
elements a1, . . . , ak−1 are in

⊕

i∈Q0
s−1eiLei then by assumption ak must lie in

⊕

i∈Q0
eiLei. By the first assertion we obtain Φk−1(a1 ⊗ · · · ⊗ ak−1) ∈ C

∗,1
E (L,L)

and Φ1(ak) ∈ C
∗,0
E (L,L). By (12.1) again, we infer Φk(a1 ⊗ · · · ⊗ ak) = 0. �

A priori, the higher A∞-products mk for k ≥ 3 might be nonzero; see (12.2).
From Lemma 12.6 we have seen that the maps Φk satisfy a nice degree condition,

i.e. for each k ≥ 2, the image of Φk only lies in C
∗,1
E (L,L). This actually will lead

to the fact that mk = 0 for k ≥ 3. Moreover, we will show that m2 = − ∪′ −.

Recall from Section 11.2 the cup product − ∪′ − on ̂C∗(L,L).

Proposition 12.7. The product m2 on ̂C∗(L,L) coincides with the cup product
− ∪′ −, and the higher products mk vanish for all k > 2.

Consequently, the collection of maps Φ∞ = (Φ1,Φ2, · · · ) is an A∞-quasi-iso-

morphism from the dg algebra ( ̂C∗(L,L), δ′,− ∪′ −) to the dg algebra (C
∗
E(L,L),

δ,− ∪ −).

Proof. Let us first prove thatm2 coincides with−∪′−. Let u, v∈
⊕

i∈Q0
eiLei.

Then we view s−1u, s−1v as elements in
⊕

i∈Q0
s−1eiLei. We need to consider the

following four cases corresponding to (C1’)-(C4’); see Section 11.2.

(1) For (C1’), since Φ1(s
−1u),Φ1(s

−1v) ∈ C
∗,1
E (L,L) and Ψ1|C∗,2

E (L,L)
= 0,

we have

m2(s
−1u⊗ s−1v) = Ψ1(Φ1(s

−1u) ∪ Φ1(s
−1v)) = 0 = s−1u ∪′ s−1v.

(2) For (C2’), since Ψ1(u) = u and Ψ1(v) = v, we have

m2(u⊗ v) = Ψ1(Φ1(u) ∪ Φ1(v)) = Ψ1(uv) = uv = u ∪′ v.

(3) For (C3’), we have

m2(s
−1v ⊗ u) = Ψ1(Φ1(s

−1v) ∪ Φ1(u))

= −
∑

α∈Q1

s−1α∗Φ1(s
−1v)(sα) · u

=
∑

α∈Q1

s−1α∗αvu

= s−1v ∪′ u,

where the third equality follows from Remark 12.3, and the last one is due
to the second Cuntz-Krieger relations.
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(4) Similarly, for (C4’) we have

m2(u⊗ s−1v) = Ψ1(Φ1(u) ∪ Φ1(s
−1v))

= −
∑

α∈Q1

s−1α∗(u ∪ Φ1(s
−1v))(sα)

=
∑

α∈Q1

s−1α∗uαv

= u ∪′ (s−1v),

where the third equality follows from Remark 12.3.

This shows that m2 coincides with − ∪′ −.
Now let us prove mk = 0 for k > 2. Assume by way of contradiction that

mk(a1 ⊗ · · · ⊗ ak) �= 0 for some a1, . . . , ak ∈ ̂C∗(L,L). By (12.2), we have

mk(a1 ⊗ · · · ⊗ ak) = (−1)k−1Ψ1(Φk−1(a1 ⊗ · · · ⊗ ak−1) ∪ Φ1(ak)),(12.5)

It follows from Lemma 12.6 that Φk−1(a1 ⊗ · · · ⊗ ak−1) ∈ C
∗,1
E (L,L). Since

Ψ1|C∗,≥2
E (L,L)

= 0, we infer that Φ1(ak) must be in C
∗,0
E (L,L) =

⊕

i∈Q0
eiLei.

Thus, we have

mk(a1 ⊗ · · · ⊗ ak)

= − (−1)k−1
∑

α∈Q1

s−1α∗Φk−1(a1 ⊗ · · · ⊗ ak−1)(sα) · Φ1(ak)

= − (−1)2k−3
∑

α∈Q1

s−1α∗H
(

Φk−2(a1 ⊗ · · · ⊗ ak−2) ∪ Φ1(ak−1)
)

(sα) · Φ1(ak)

= 0

where the first equality uses (12.5) and (12.3), the second one uses (12.1), and the
third one follows from Lemma 12.4. We obtain a contradiction. This shows that
mk(a1 ⊗ · · · ⊗ ak) = 0 for k > 2. �

12.3. The A∞-quasi-isomorphism via the brace operation

It follows from Proposition 12.7 that we have an A∞-quasi-isomorphism

Φ∞ = (Φ1,Φ2, · · · ) : ( ̂C∗(L,L), ̂δ,− ∪′ −) −→ (C
∗
E(L,L), δ,−∪ −)

between the two dg algebras. In this section, we will give an explicit formula for
Φk; compare Lemma 12.6.

Proposition 12.8. Let k ≥ 1. For any s−1u1, . . . , s
−1uk ∈

⊕

i∈Q0
s−1eiLei ⊂

̂C∗(L,L), we have

Φk(s
−1u1 ⊗ · · · ⊗ s−1uk)(sv) = (−1)

(|v|−1)εk+
k−1∑

i=1

(|ui|−1)(k−i)
v{s−1u1, . . . , s

−1uk}′,

where v ∈ L and v{s−1u1, . . . , s
−1uk}′ is given by (11.5). Here, we denote εk =

∑k
i=1 |ui|.

Proof. We prove this identity by induction on k. By Lemma 12.2 this holds
for k = 1.
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Assume that k > 1 and that v = β∗
1β

∗
2 · · ·β∗

pαm · · ·α2α1 ∈ L is a monomial

with each αi, βj ∈ Q1. We write Φk−1(s
−1u1,k−1) = Φk−1(s

−1u1 ⊗ · · · ⊗ s−1uk−1).
Moreover, we set f = Φk−1(s

−1u1,k−1) ∪ Φ1(s
−1uk). Then we have

Φk(s
−1u1 ⊗ · · · ⊗ s−1uk)(sv)(12.1)

= (−1)k−1H(f)(sv)

= (−1)1+εk+(k−1) f̌(1⊗E ι ◦ π(1⊗E sv ⊗E 1))

= −
∑

γ∈Q1

p−1
∑

j=0

(−1)εk+|uk|j+(k−1)
(

Φk−1(s
−1u1,k−1)(sβ∗

1,jγ
∗)
)

·
(

Φ1(s
−1uk)(sγ)

)

·
(

β∗
j+1,pαm,1

)

+

m−1
∑

j=0

(−1)εk+|uk|(m+p−j)+(k−1)
(

Φk−1(s
−1u1,k−1)(sβ∗

1,pαm,j+2)
)

·
(

Φ1(s
−1uk)(sαj+1)

)

·
(

αj,1

)

,

where the first equality follows from (12.1), the second one from (12.5), and the
third one from Remark 12.1. Here, for simplicity we write αj,i = αjαj−1 · · ·αi and
β∗
i,j = β∗

i β
∗
i+1 · · ·β∗

j for any i < j.
By Remark 12.3, for any arrow α ∈ Q1 we have

Φ1(s
−1uk)(sα) = −αuk.(12.2)

Then we may further simplify (12.1) as follows

Φk(s
−1u1 ⊗ · · · ⊗ s−1uk)(sv)

=
∑

γ∈Q1

p−1
∑

j=0

(−1)

k−1∑

i=1

(|ui|−1)(k−i)+jεk+|uk| (
(β∗

1,jγ
∗){s−1u1,k−1}′

)

· (γukβ
∗
j+1,pαm,1)

−
m−1
∑

j=0

(−1)

k−1∑

i=1

(|ui|−1)(k−i)+(p+m−j)εk+|uk| (
(β∗

1,pαm,j+2){s−1u1,k−1}′
)

·
(

αj+1ukαj,1

)

= (−1)

k−1∑

i=1

(|ui|−1)(k−i)+(|v|−1)εk
v{s−1u1, . . . , s

−1uk}′.
Here, to save the space, we simply write {s−1u1, s

−1u2, . . . , s
−1uk−1}′ as

{s−1u1,k−1}′. The first equality uses (12.2) and the induction hypothesis, and
the second one is exactly due to the identity in Proposition 11.6. �
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CHAPTER 13

Verifying the B∞-morphism

This chapter is devoted to proving that the A∞-quasi-isomorphism Φ∞ =
(Φ1,Φ2, . . . ) obtained in the previous chapter is indeed a B∞-morphism. The proof

relies on the higher pre-Jacobi identity of the Leavitt B∞-algebra ̂C∗(L,L); see Re-
mark 5.13. For the opposite B∞-algebra Aopp of a B∞-algebra A, we refer to
Definition 5.7.

Theorem 13.1. The A∞-morphism Φ∞ is a B∞-quasi-isomorphism from the

B∞-algebra ̂C∗(L,L) to the opposite B∞-algebra C
∗
E(L,L)

opp.

Proof. By Lemma 5.16 it suffices to verify the identity (5.3). That is, for any

x = u1 ⊗ u2 ⊗ · · · ⊗ up ∈ ̂C∗(L,L)⊗p and y = v1 ⊗ v2 ⊗ · · · ⊗ vq ∈ ̂C∗(L,L)⊗q, we
need to verify

(13.1)
∑

r≥1

∑

i1+···+ir=p

(−1)ε ˜Φq(sv1,q){˜Φi1(su1,i1),
˜Φi2(sui1+1,i1+i2), . . . ,

˜Φir (sui1+···+ir−1+1,p)}

=
∑

(−1)η ˜Φt(sv1,j1 ⊗ s(u1{vj1+1,j1+l1}′) ⊗ svj1+l1+1,j2

⊗ s(u2{vj2+1,j2+l2}′) ⊗ vj2+l2+1

⊗ · · · ⊗ svjp ⊗ s(up{vjp+1,jp+lp}′) ⊗ svjp+lp+1,q),

where the sum on the right hand side is over all nonnegative integers (j1, . . . , jp;
l1, . . . , lp) such that

0 ≤ j1 ≤ j1 + l1 ≤ j2 ≤ j2 + l2 ≤ · · · ≤ jp ≤ jp + lp ≤ q,

and t = p+ q− l1 − · · · − lp. Here, ˜Φk is defined by (5.2) and the signs are given by

ε = (|u1|+ · · ·+ |up| − p)(|v1|+ · · ·+ |vq| − q),

η =

p
∑

i=1

(|ui| − 1)((|v1| − 1) + (|v2| − 1) + · · ·+ (|vji | − 1)).

To verify (13.1), we observe that if there exists 1 ≤ j ≤ p (or 1 ≤ l ≤ q)

such that uj (or vl) lies in
⊕

i∈Q0
eiLei ⊂ ̂C∗(L,L), then by (12.4) and (11.3)

both the left and right hand sides of (13.1) vanish. So we may and will assume

that all uj ’s and vl’s are in
⊕

i∈Q0
s−1eiLei ⊂ ̂C∗(L,L). Here, we recall that

̂C∗(L,L) =
⊕

i∈Q0
eiLei ⊕

⊕

i∈Q0
s−1eiLei.

It follows from (5.2) and Proposition 12.8 that for any

v1, . . . , vq ∈
⊕

i∈Q0

s−1eiLei,
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˜Φq(sv1,q)(sa) := (−1)|v1|(q−1)+|v2|(q−2)+···+|vq−1| Φq(v1 ⊗ · · · ⊗ vq)(sa)

= (−1)(|a|−1)(|v1|+···+|vq |−q)a{v1, v2, . . . , vq}′.(13.2)

Here, we emphasize that the elements sv1, . . . , svq in ˜Φq(sv1,q) are viewed in the

second component s(
⊕

i∈Q0
s−1eiLei) of s ̂C∗(L,L), rather than in the first com-

ponent s(
⊕

i∈Q0
eiLei) ⊂ s ̂C∗(L,L).

It follows from (12.3) that ˜Φq(sv1,q) ∈ C
∗,1
E (L,L) = HomE-E(sL, L). Thus, by

(6.1) we note that

˜Φq(sv1,q){˜Φi1(su1,i1),
˜Φi2(sui1+1,i1+i2), . . . ,

˜Φir(sui1+···+ir−1+1,p)} = 0

if r �= 1. Therefore, the left hand side of (13.1), denoted by LHS, equals

LHS = (−1)ε ˜Φq(sv1,q){˜Φp(su1,p)}.

Applying the above to an arbitrary element sa ∈ sL, we have

LHS(sa) = (−1)ε ˜Φq(sv1,q)(s˜Φp(su1,p)(sa))

= (−1)ε+(|a|−1)(|u1|+···+|up|−p)
˜Φq(sv1,q)

(

s(a{u1, . . . , up}′)
)

= (−1)ε1(a{u1, . . . , up}′){v1, . . . , vq}′,
(13.3)

where ε1 = (|a| − 1)(|u1|+ · · ·+ |up| − p+ |v1|+ · · ·+ |vq| − q), and the second and
third equalities follow from (13.2).

For the right hand side of (13.1), denoted by RHS, we use (13.2) again and
obtain that

RHS(sa) =
∑

(−1)η+η1a{v1,j1 , u1{vj1+1,j1+l1}′, vj1+l1+1,j2 , u2{vj2+1,j2+l2}′,
vj2+l2+1, . . . , vjp , up{vjp+1,jp+lp}′, vjp+lp+1,q}′,(13.4)

where η1 = (|a| − 1)(|u1|+ · · ·+ |up| − p+ |v1|+ · · ·+ |vq| − q).
Comparing (13.3) and (13.4) with the higher pre-Jacobi identity in Remark 5.13

for the Leavitt B∞-algebra ̂C∗(L,L), we obtain

LHS(sa) = RHS(sa).

This verifies the identity (13.1), completing the proof. �
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CHAPTER 14

Keller’s conjecture and the main results

Let k be a field, and Λ be a finite dimensional k-algebra. Denote by Λ0 =
Λ/ rad(Λ) the semisimple quotient algebra of Λ by its Jacobson radical. Recall
from Example 2.9 that Sdg(Λ) denotes the dg singularity category of Λ.

Recently, Keller proved the following remarkable result.

Theorem 14.1 ([55]). Assume that Λ0 is separable over k. Then there is a
natural isomorphism of graded algebras between HH∗

sg(Λ
op,Λop) and HH∗(Sdg(Λ),

Sdg(Λ)). �

The following natural conjecture is proposed by Keller.

Conjecture 14.2 ([55]). Assume that Λ0 is separable over k. There is an
isomorphism in the homotopy category Ho(B∞) of B∞-algebras

C
∗
sg,L(Λ

op,Λop) −→ C∗(Sdg(Λ),Sdg(Λ)).(14.1)

Consequently, there is an induced isomorphism of Gerstenhaber algebras between
HH∗

sg(Λ
op,Λop) and HH∗(Sdg(Λ),Sdg(Λ)).

Remark 14.3. Indeed, there is a stronger version of Keller’s conjecture: the

natural isomorphism in Theorem 14.1 lifts to an isomorphism between C
∗
sg,L(Λ

op,
Λop) and C∗(Sdg(Λ),Sdg(Λ)) in Ho(B∞). Here, we treat only the above weaker
version.

We say that an algebra Λ satisfies Keller’s conjecture, provided that there is
such an isomorphism (14.1) for Λ. It is not clear whether Keller’s conjecture is
left-right symmetric. More precisely, we do not know whether Λ satisfies Keller’s
conjecture even assuming that Λop does so; compare Remark 8.11.

The following invariance theorem provides useful reduction techniques for
Keller’s conjecture. We recall from Section 2.2 the one-point coextension

Λ′ =

(

k M
0 Λ

)

and the one-point extension

Λ′′ =

(

Λ N
0 k

)

of Λ.

Theorem 14.4. The following statements hold.

(1) The algebra Λ satisfies Keller’s conjecture if and only if so does Λ′.
(2) The algebra Λ satisfies Keller’s conjecture if and only if so does Λ′′.
(3) Assume that the algebras Λ and Π are linked by a singular equivalence

with a level. Then Λ satisfies Keller’s conjecture if and only if so does Π.
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Proof. For (1), we combine Lemmas 2.10 and 6.1 to obtain an isomorphism

C∗(Sdg(Λ
′),Sdg(Λ

′)) � C∗(Sdg(Λ),Sdg(Λ))

in the homotopy category Ho(B∞). Note that Λ′op is the one-point extension of
Λop. Recall from Lemma 9.4 the strict B∞-quasi-isomorphism

C
∗
sg,L,E′(Λ′op,Λ′op) −→ C

∗
sg,L,E(Λ

op,Λop).

Now applying Lemma 8.13 to both Λop and Λ′op, we obtain an isomorphism

C
∗
sg,L(Λ

′op,Λ′op) � C
∗
sg,L(Λ

op,Λop).

Then (1) follows immediately.
The argument for (2) is very similar. We apply Lemmas 2.11 and 6.1 to Λ′′.

Then we apply Lemma 9.2 to the opposite algebras of Λ and Λ′′.
For (3), we observe that by the isomorphism (1.1), Keller’s conjecture is equiv-

alent to the existence of an isomorphism

C
∗
sg,R(Λ,Λ)

opp −→ C∗(Sdg(Λ),Sdg(Λ)).

By Lemmas 2.14 and 6.1, we have an isomorphism

C∗(Sdg(Λ),Sdg(Λ)) � C∗(Sdg(Π),Sdg(Π)).

Then we are done by Proposition 9.7. �
The following result confirms Keller’s conjecture for an algebra Λ with radical

square zero. Moreover, it relates, at the B∞-level, the singular Hochschild cochain
complex of Λ to the Hochschild cochain complex of the Leavitt path algebra.

Theorem 14.5. Let Q be a finite quiver without sinks. Denote by Λ = kQ/J2

the algebra with radical square zero, and by L = L(Q) the Leavitt path algebra .
Then we have the following isomorphisms in Ho(B∞)

C
∗
sg,L(Λ

op,Λop)
Υ−→ C∗(L,L)

Δ−→ C∗(Sdg(Λ),Sdg(Λ)).

In particular, there are isomorphisms of Gerstenhaber algebras

HH∗
sg(Λ

op,Λop) −→ HH∗(L,L) −→ HH∗(Sdg(Λ),Sdg(Λ)).

Proof. The isomorphism Δ is obtained as the following composite

C∗(L,L)
Lem.6.2−−−−−→ C∗(perdg(L

op),perdg(L
op))

Lem.6.1+Prop.4.2−−−−−−−−−−−−→ C∗(Sdg(Λ),Sdg(Λ)).

Similarly, the isomorphism Υ is obtained by the following diagram.

C
∗
sg,L(Λ

op,Λop)

Υ

��

Prop.8.10 �� C
∗
sg,R(Λ,Λ)

opp C
∗
sg,R,E(Λ,Λ)

oppLem.8.12
ιopp

��

C
∗
sg,R(Q,Q)opp

Thm.10.4κopp

		

Prop.11.4ρopp

��
C∗(L,L) C

∗
E(L,L)

Lem.6.4�� ̂C∗(L,L)opp
Thm.13.1

Φ∞
��

(14.2)
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Here, we recall that Proposition 8.10 verifies the isomorphism (1.1). The combi-

natorial B∞-algebra C
∗
sg,R(Q,Q) of Q is introduced in Chapter 10. The Leavitt

B∞-algebra ̂C∗(L,L) is introduced in Chapter 11. Both of them are brace B∞-
algebras. For the last statement, we apply the second assertion in Lemma 5.18. �

Denote by X the class of finite dimensional algebras Λ with the following prop-
erty: there exists some finite quiver Q without sinks, such that Λ is connected to
kQ/J2 by a finite zigzag of one-point (co)extensions and singular equivalences with
levels. For example, if Q′ is any finite quiver possibly with sinks, then kQ′/J2

clearly lies in X .
We have the following immediate consequence of Theorems 14.4 and 14.5.

Corollary 14.6. Any algebra belonging to the class X satisfies Keller’s con-
jecture. �

By [22, Theorem 6.3], there is a singular equivalence with level between any
given Gorenstein quadratic monomial algebra and its associated algebra with radical
square zero. It follows that X contains all Gorenstein quadratic monomial algebras,
and thus Keller’s conjecture holds for them. By [35], all finite dimensional gentle
algebras are Gorenstein quadratic monomial. We conclude that Keller’s conjecture
holds for all finite dimensional gentle algebras. Let us mention the connection
between gentle algebras and Fukaya categories [40].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Bibliography

[1] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005),
no. 2, 319–334, DOI 10.1016/j.jalgebra.2005.07.028. MR2172342

[2] G. Abrams, A. Louly, E. Pardo, and C. Smith, Flow invariants in the classification of
Leavitt path algebras, J. Algebra 333 (2011), 202–231, DOI 10.1016/j.jalgebra.2011.01.022.
MR2785945

[3] A. Alahmadi, H. Alsulami, S. K. Jain, and E. Zelmanov, Leavitt path algebras of fi-
nite Gelfand-Kirillov dimension, J. Algebra Appl. 11 (2012), no. 6, 1250225, 6, DOI
10.1142/S0219498812502258. MR2997464

[4] H. Abbaspour, On algebraic structures of the Hochschild complex, Free loop spaces in geom-
etry and topology, IRMA Lect. Math. Theor. Phys., vol. 24, Eur. Math. Soc., Zürich, 2015,
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1578 Raphaël Danchin, Matthias Hieber, Piotr Bogus�law Mucha, and Patrick
Tolksdorf, Free Boundary Problems via Da Prato–Grisvard Theory, 2025
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Series Stops: A Comprehensive Study for Braid Groups and Their Relatives, 2025

1562 Paolo Piazza, Thomas Schick, and Vito Felice Zenobi, Mapping Analytic Surgery
to Homology, Higher Rho Numbers and Metrics of Positive Scalar Curvature, 2025

1561 Bahar Acu, Orsola Capovilla-Searle, Agnès Gadbled, Aleksandra Marinković,
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