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For a positively graded artin algebra A = ⊕
n�0 An we introduce

its Beilinson algebra b(A). We prove that if A is well-graded self-
injective, then the category of graded A-modules is equivalent to
the category of graded modules over the trivial extension algebra
T (b(A)). Consequently, there is a full exact embedding from the
bounded derived category of b(A) into the stable category of
graded modules over A; it is an equivalence if and only if the 0-th
component algebra A0 has finite global dimension.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let R be a commutative artinian ring and let A = ⊕
n�0 An be a positively graded artin R-algebra.

Set c = max{n � 0 | An �= 0}. Throughout we will assume that A is nontrivially graded, that is, c � 1.
We define the Beilinson algebra b(A) of the graded algebra A to be the following upper triangular matrix
algebra

b(A) =

⎛
⎜⎜⎜⎜⎝

A0 A1 · · · Ac−2 Ac−1
0 A0 · · · Ac−3 Ac−2
...

...
. . .

...
...

0 0 · · · A0 A1
0 0 · · · 0 A0

⎞
⎟⎟⎟⎟⎠

.
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Here the multiplication of b(A) is induced from the one of A. This concept originates from the fol-
lowing example: let A be the exterior algebra over a field with the usual grading, then its Beilinson
algebra b(A) appeared in Beilinson’s study on the bounded derived category of projective spaces
(see [3], also see the algebras in [2, Example 4.1.2], [11, p. 90] and [15, Corollary 2.8]); note that the
algebra b(A) is different from the Beilinson algebra in [13] (also see [4] and [2, p. 332, Remark]), while
they are derived equivalent.

Denote by A-gr the category of finitely generated graded left A-modules with morphisms preserv-
ing degrees. It is well known that the algebra A is self-injective (as an ungraded algebra) if and only
if every projective object in A-gr is injective (by [14, Theorem 2.8.7] or [9]). In this case, we say that
the graded artin algebra A is graded self-injective (compare [17]).

Let T (b(A)) = b(A)⊕ D(b(A)) be the trivial extension algebra of b(A), where D is the Matlis duality
on finitely generated R-modules [1, Chapter II, §3]. Note that T (b(A)) is a graded algebra such that
deg b(A) = 0 and deg D(b(A)) = 1, and that T (b(A)) is graded self-injective ([1, p. 128, Proposition
3.9] and [11, p. 62, Lemma 2.2]).

We say that the graded artin algebra A is left well-graded if for each nonzero idempotent e ∈ A0,
e Ac �= 0. Dually one has the notion of right well-graded algebras. We say that the graded algebra A is
well-graded provided that it is both left and right well-graded. For example if the 0-th component
algebra A0 is local, then A is well-graded. Note that for a graded self-injective algebra A it is left
well-graded if and only if it is right well-graded, thus well-graded, see Lemma 2.2. Clearly the trivial
extension algebra T (b(A)) is well-graded, since D(b(A)) is a faithful (left and right) b(A)-module.

The following result is inspired by [11, Chapter II, Example 5.1] and [10], and it somehow justifies
the title.

Theorem 1.1. Let A = ⊕
n�0 An be a well-graded self-injective algebra. Then we have an equivalence of cate-

gories A-gr � T (b(A))-gr.

Note that the equivalence above may not be the graded equivalence of algebras in the sense of [9]
(compare [6,18]), that is, in general it does not commute with the degree-shift automorphisms.

Denote by A-gr the stable category with respect to projective modules. It has a natural triangulated
structure [11, Chapter I, Section 2]. Denote by b(A)-mod the category of finitely generated left b(A)-
modules, Db(b(A)-mod) its bounded derived category. The following generalizes a result by Orlov [15,
Corollary 2.8], which might be traced back to [3–5] (consult [2,7,10]).

Corollary 1.2. Let A = ⊕
n�0 An be a well-graded self-injective algebra. Then we have a full exact embed-

ding of triangulated categories Db(b(A)-mod) ↪→ A-gr. Moreover, it is an equivalence if and only if the 0-th
component algebra A0 has finite global dimension.

Proof. Note that by [1, p. 78, Proposition 2.7], the algebra A0 has finite global dimension if and only if
so does the Beilinson algebra b(A). Theorem 1.1 implies the natural equivalence A-gr � T (b(A))-gr of
triangulated categories (by [11, Chapter I, 2.8]). Thus the corollary follows immediately from a result
by Happel [12, Theorem 2.5]. �
2. The proof of Theorem 1.1

Let R be a commutative artinian ring, and let D = HomR(−, E) be the Matlis duality with E the
minimal injective R-cogenerator [1, pp. 37–39]. Let B be an artin R-algebra and let B XB be a B-
bimodule such that R acts on X centrally and X is finitely generated both as a left and right B-
module. The trivial extension B � X of B by the bimodule X is defined as follows: as an R-module
B � X = B ⊕ X , and the multiplication is given by (b,m)(b′,m′) = (bb′,bm′ + mb′) [1, p. 78]. Then
B � X is a positively graded R-algebra such that deg B = 0 and deg X = 1. We will denote by B � X-gr
the category of finitely generated graded left B � X-modules.

Consider the regular B-bimodule B B B and its dual B-bimodule D(B) = D(B B B), and thus the B-
bimodule structure on D(B) is given such that for each b ∈ B and f ∈ D(B) = HomR(B, E), (bf )(x) =
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f (xb) and ( f b)(x) = f (bx) for all x ∈ B . The trivial extension T (B) = B � D(B) is simply referred as the
trivial extension algebra of B . It is a symmetric algebra, thus self-injective [1, p. 128, Proposition 3.9].
More generally, given an automorphism σ : B −→ B of R-algebras, consider the twisted B-bimodule
B Bσ

B such that the left B-module structure is given by the multiplication as usual and the right
B-module structure is given by xb := xσ(b), for all b ∈ B and x ∈ B Bσ

B . Note that since σ is an R-
algebra automorphism, R acts on the B-bimodule B Bσ

B centrally. Denote by D(Bσ ) = D(B Bσ
B ) the dual

B-bimodule and the corresponding trivial extension T (Bσ ) = B � D(Bσ ) is called the twisted trivial
extension algebra of B with respect to σ . Note that T (Bσ ) is self-injective, in general not symmetric (see
Example (4) in [8]).

We observe the following result.

Lemma 2.1. Use the notation above. We have an isomorphism of categories T (B)-gr � T (Bσ )-gr.

Proof. Note that as R-modules T (Bσ ) = B ⊕ D(B), and its multiplication is given by (b, f ) � (b′, f ′) =
(bb′, σ (b) f ′ + f b′). Given a graded T (B)-module M = ⊕

n∈Z
Mn , we endow a T (Bσ )-action on it as

follows: given a homogeneous element m ∈ M , define

(b, f ) � m = σ |m|(b)m + (
f ◦ σ−|m|)m,

where |m| denotes the degree of m, and f ◦ σ−|m| : B
σ−|m|−→ B

f−→ E ∈ D(B) means the composite.
It is direct to check that “�” gives M a graded T (Bσ )-module structure. Furthermore this gives an
isomorphism (more than an equivalence) of categories T (B)-gr � T (Bσ )-gr. �

Let A = ⊕
n�0 An be a positively graded artin algebra and let c = max{n � 0 | An �= 0}. As in the

introduction we always assume that c � 1. Consider the category A-gr of finitely generated graded
left A-modules. For a graded A-module M = ⊕

n∈Z
Mn , its width w(M) is defined to be max{n |

Mn �= 0} − min{n | Mn �= 0} + 1 (for M = 0, set w(M) = 0). For example w(A) = c + 1, here we regard
A as a graded A-module via the multiplication such that the identity 1A is at the 0-th component.
For a graded A-module M = ⊕

n∈Z
Mn , denote by M(1) its shifted module which is the same as M as

ungraded modules, and which is graded such that M(1)n = Mn+1. This gives rise to the degree-shift
automorphism (1) : A-gr −→ A-gr. Denote by (d) the d-th power of (1) for each d ∈ Z [14]. Recall
that each indecomposable projective object in A-gr is of the form Ae(d), where e ∈ A0 is a primitive
idempotent and d ∈ Z; dually each indecomposable injective object is of the form D(e A)(d), where
D(e A) is graded such that D(e A)n = D(e A−n). For details, see [9, Section 5].

Lemma 2.2. Let A = ⊕
n�0 An be a graded self-injective algebra. Assume that it is left well-graded. Then it is

right well-graded.

Proof. Note that A is left well-graded if and only if w(Ae) = c + 1 for each primitive idempotent
e ∈ A0, thus if and only if w(P ) = c + 1 for each indecomposable projective object P in A-gr. Since
A is graded self-injective, the indecomposable injective graded module D(e A) is projective, and thus
by above w(D(e A)) = c + 1. Note that w(D(e A)) = w(e A), where e A is considered as a graded right
A-module. Hence for each primitive idempotent e ∈ A0 we have w(e A) = c + 1, and this shows that
A is right well-graded. �

We will divide the proof of Theorem 1.1 into several easy results. Let A = ⊕
n�0 An be a graded

artin algebra and let b(A) be its Beilinson algebra. Consider the following R-module

x(A) =

⎛
⎜⎜⎜⎜⎝

Ac 0 · · · 0 0
Ac−1 Ac · · · 0 0

...
...

. . .
...

...

A2 A3 · · · Ac 0

⎞
⎟⎟⎟⎟⎠

.

A1 A2 · · · Ac−1 Ac
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Note that there is a natural b(A)-bimodule structure on x(A), induced from matrix multiplication
and the multiplication of A; moreover, R acts on x(A) centrally. Consider the trivial extension t(A) =
b(A) ⊕ x(A), which is a graded algebra as above.

Lemma 2.3. There is an equivalence of categories A-gr � t(A)-gr. Moreover, A is left well-graded if and only
if t(A) is.

Proof. Define a functor Φ : A-gr −→ t(A)-gr as follows: for M = ⊕
n∈Z

Mn ∈ A-gr, set Φ(M) =⊕
n∈Z

Φ(M)n with Φ(M)n = ⊕(n+1)c−1
i=nc Mi , and there is a natural graded t(A)-module structure on

Φ(M) (using the multiplication rule of matrices on column vectors; here the elements in Φ(M)n

are viewed as column vectors (m(n+1)c−1, . . . ,mnc+1,mnc)
t of size c, here t means the transpose,

and note that c � 1); the action of Φ on morphisms is the identity. To construct the inverse, for
each 0 � r � c − 1, set err ∈ b(A) to be the elementary matrix having the (r + 1, r + 1) entry 1 and
elsewhere 0. Define a functor Ψ : t(A)-gr −→ A-gr sending a graded t(A)-module N = ⊕

n∈Z
Nn to

Ψ (N) = ⊕
n∈Z

Ψ (N)n such that Ψ (N)ic+r = err Ni for i ∈ Z and 0 � r � c − 1; on Ψ (N) there is a
natural graded A-module structure. Then it is direct to check that Φ and Ψ are mutually inverse
to each other. Note that one may have a more conceptual proof of the equivalence above by [16,
Theorem 2.12] (compare [18, Example 3.10] and [6]).

For the second statement, take 1A0 = ∑l
i=1 ei to be a decomposition of unity into primitive idem-

potents, and thus every primitive idempotent of A0 is conjugate to one of ei ’s. Hence A is left
well-graded if and only if ei Ac �= 0 for each 1 � i � l. However 1b(A) = ∑c−1

r=0
∑l

i=1 errei is a decom-
position of unity in b(A) into primitive idempotents, and hence t(A) is left well-graded if and only if
erreix(A) �= 0 for each 0 � r � c − 1 and 1 � i � l. Note that erreix(A) = ⊕r

i=0 ei Ac−i and then we are
done. �

Consider the trivial extension T = B � X of an artin R-algebra B by a (nonzero) B-bimodule X as
above. Take e ∈ B to be an idempotent such that eBe is the basic algebra associated to B [1, p. 35].
Thus e Xe has the induced eBe-bimodule structure and we have an identification of (graded) algebras
eT e = eBe � e Xe. Then we have the following result.

Lemma 2.4. Use the notation above. We have an equivalence of categories T -gr � eT e-gr. Moreover T is left
well-graded if and only if so is eT e.

Proof. Recall that the Morita equivalence between the algebras B and eBe is given by the functors
F := HomB(Be,−) : B-mod −→ eBe-mod and its quasi-inverse G := Be ⊗eBe − : eBe-mod −→ B-mod;
moreover note that for each B-module M , F (M) = eM and there is a natural isomorphism θM : M −→
Be ⊗eBe eM of B-modules [1, p. 36, Corollary 2.6]. One may apply similar constructions on the graded
module categories: define a functor F ′ : T -gr −→ eT e-gr sending a graded T -module M = ⊕

n∈Z
Mn

to a graded eT e-module F ′(M) = eM = ⊕
n∈Z

eMn; conversely, define a functor G ′ : eT e-gr −→ T -gr
sending N = ⊕

n∈Z
Nn to G ′(N) = ⊕

n∈Z
Be ⊗eBe Nn . Here one needs to note that for each n ∈ Z there

is a natural composite morphism of B-modules as follows

X ⊗B (Be ⊗eBe Nn) � Xe ⊗eBe Nn � Be ⊗eBe e Xe ⊗eBe Nn −→ Be ⊗eBe Nn+1,

where from the left, the first isomorphism is induced by the isomorphism X ⊗B Be � Xe, the second
is induced by the isomorphism θXe and the last morphism is induced from the action of e Xe on
the n-th component Nn of N . The above composite morphism gives a graded T -module structure
on G ′(N). Then it is direct to check that the functors F ′ and G ′ are mutually inverse to each other,
and we are done with the first statement. Note that one may deduce this equivalence by applying
[16, Theorem 2.12] (compare [18, Example 3.10] and [6]), since in this case the graded projective
T -module T e = Be ⊕ Xe is a generator in the category T -gr up to degree-shift automorphisms.
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Note that the equivalence just constructed preserves the widths of modules, and as we noted in
the proof of Lemma 2.2, the graded algebras T and eT e are well-graded if and only if every inde-
composable projective object in the corresponding graded module categories has width 2. Hence the
second statement follows immediately. �

The key observation is as follows.

Lemma 2.5. Let T = B � X be a trivial extension as above. Assume that B is a basic algebra and T is well-
graded self-injective. Then there is an isomorphism of B-bimodules X � D(Bσ ) for some R-automorphism σ
on B. In particular, there is an isomorphism T � T (Bσ ) of graded algebras.

Proof. Take 1B = ∑l
i=1 ei to be a decomposition of unity into primitive idempotents. Since B is basic,

the set {T ei(d) | 1 � i � l, d ∈ Z} forms a complete set of pairwise non-isomorphic indecomposable
projective objects in T -gr. Dually, {D(ei T )(d) | 1 � i � l, d ∈ Z} forms a complete set of pairwise
non-isomorphic indecomposable injective objects in T -gr. Since T is well-graded, all these mod-
ules have width 2. Since T is graded self-injective, we have an isomorphism of graded T -modules
T ei � D(es(i)T )(−1), where s : {1, . . . , l} −→ {1, . . . , l} forms a permutation. In particular, we have
isomorphisms Xei � D(es(i)B) of left B-modules for each 1 � i � l. Since B is basic, we deduce an
isomorphism of left B-modules B X � D(B B). Similarly we have an isomorphism XB � D(B B) of right
B-modules.

Consider the dual B-bimodule M = D(B XB). We have isomorphisms B M � B B and MB � B B . It
is a good exercise to deduce from these isomorphisms that there is an isomorphism of B-bimodules
M � B Bσ

B for some R-automorphism σ on B , and thus X � D(M) � D(Bσ ). We are done. �
Remark 2.6. The same argument as in the proof above yields the following result immediately, which
we will not use, and which seems to be of independent interest. Let A = ⊕

n�0 An be a graded artin
algebra with A0 basic. Set c = max{n � 0 | An �= 0}. Then the following statements are equivalent:

(1) A is graded Frobenius, that is, A A � D(A A)(−c) as graded left A-modules.
(2) A is graded self-injective and Ac is a faithful left A0-module.
(3) A is well-graded self-injective.

Proof of Theorem 1.1. By Lemma 2.3 we have an equivalence A-gr � t(A)-gr, and thus the algebra
t(A) is well-graded self-injective. Set B = eb(A)e to be the basic algebra associated to the Beilinson
algebra b(A). Thus by Lemma 2.4 t(A)-gr � (B � X)-gr for some (nonzero) B-bimodule X , moreover,
the trivial extension T = B � X is well-graded self-injective. By Lemma 2.5, we have an isomorphism
of graded algebras T � T (Bσ ), and thus combining it with Lemma 2.1 we deduce that T -gr � T (B)-gr.
Now applying Lemma 2.4 again we have T (B)-gr � T (b(A))-gr (note that B = eb(A)e and we have a
natural B-bimodule isomorphism D(B) � eD(b(A))e), and thus we get the desired equivalence A-gr �
T (b(A))-gr. �
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