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Abstract For an additive category with a Serre duality and a finite group action, we com-
pute explicitly the Serre duality on the category of equivariant objects. We prove that under
certain conditions, the equivarianzation of an additive category with a periodic Serre dual-
ity still has a periodic Serre duality. A similar result is proved for fractionally Calabi-Yau
triangulated categories.
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1 Introduction

Let k be a field, and let A be a k-linear additive category with a Serre duality [4]. We assume
that there is a k-linear action on A by a finite group G; see [8, 9, 14]. Then the category
AG of equivariant objects is additive and naturally k-linear. In case that the order of G is
invertible in k, it is known that the category AG has a Serre duality. However, it seems that
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an explicit description of the Serre duality on AG, in particular, the Serre functor on AG, is
not contained in any literature.

The first goal of this paper is to describe the Serre duality on AG explicitly. It turns out
that the commutator isomorphism for any k-linear auto-equivalence on A, studied in [11],
plays a central role.

The second goal is to study a fractionally Calabi-Yau triangulated category T , that is, a
triangulated category with a Serre duality such that a certain power of the Serre functor is
isomorphic to some power of the translation functor. We are indeed motivated by examples,
which arise as the bounded derived category of the category of coherent sheaves on weighted
projective lines of tubular type and the one on elliptic curves. These two categories are
related via some equivariantization; see [5, 10, 12].

We observe that a k-linear additive category with a periodic Serre duality, that is, a certain
power of its Serre functor is isomorphic to the identity functor, is similar to a fractionally
Calabi-Yau triangulated category. Indeed, examples arise as the category of finitely gen-
erated projective modules over a Frobenius algebra, whose Nakayama automorpihsm has
finite order.

We describe the content of the paper. In Section 2, we recall some notation on the equiv-
ariantization with respect to a finite group action on an additive category. In particular, the
comparison functor between the orbit category and the category of equivariant objects is
recalled. In Section 3, we recall the notation of a Serre dualiy on a k-linear additive category
A and the corresponding trace function. Following [11], we study the basic properties of
the commutator isomorphism for a k-linear auto-equivalence. In case that A has a periodic
Serre duality, we obtain a crossed homomorphism from the group of isoclasses of k-linear
auto-equivalences on A to the multiplicative group of invertible elements in the center of
A. These abstract consideration yields for any Frobenius algebra, the commutator map and
the induced map, both of which seem to be of interest; see Subsection 3.4.

In Section 4, we describe explicitly the Serre duality on both the orbit category
and the category AG of equivariant objects; see Proposition 4.2 and Theorem 4.5.
Here, the commutator isomorphisms play an important role. Under certain conditions
on the group action, if A has a periodic Serre duality, so does the category AG of
equivariant objects. However, the orders of their Serre functors may differ; see Propositions
4.6 and 4.9.

In Section 5, we consider a k-linear triangle action by a finite group on a fractionally
Calabi-Yau triangulated category T . This study is similar to the one on a category with
a periodic Serre duality. In particular, we introduce the induced map for T and also for
the given group action. Then we prove that under certain conditions, the category T G of
equivariant objects in T is fractionally Calabi-Yau; see Proposition 5.7. We end the paper
with a discussion on the above motivating examples, where we describe explicitly the Serre
functor on the category of equivariant sheaves on an elliptic plane curve, with respect to a
certain action by a cyclic group of order two.

2 Finite Group Actions and Equivariantization

In this section, we recall from [8, 9, 14] some notation on the category of equivariant objects
with respect to a finite group action. In particular, we recall the comparison functor from
the orbit category to the category of equivariant objects.

Let G be a finite group, which is written multiplicatively and whose unit is denoted by
e. Let A be an additive category.
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Equivariantization and Serre Duality I 541

2.1 The Finite Group Action

We recall the notion of a group action on a category; see [8, 9, 14]. A G-action on A consists
of the data {Fg, εg,h| g, h ∈ G}, where each Fg : A → A is an auto-equivalence and each
εg,h : FgFh → Fgh is a natural isomorphism such that the following 2-cocycle condition

εgh,l ◦ εg,hFl = εg,hl ◦ Fgεh,l (2.1)

holds for all g, h, l ∈ G.
The given G-action {Fg, εg,h| g, h ∈ G} is strict provided that each Fg : A → A is an

automorphism and each isomorphism εg,h is the identity transformation. Therefore, a strict
G-action on A coincides with a group homomorphism from G to the automorphism group
of A.

When the category A is k-linear over a field k, the above G-action is k-linear provided
that each auto-equivalence Fg is k-linear. Then a strict k-linear G-action on A coincides
with a group homomorphism from G to the group formed by k-linear automorphisms on A.

In what follows, we assume that there is a G-action {Fg, εg,h| g, h ∈ G} on the additive
category A. We observe that there exists a unique natural isomorphism u : Fe → IdA, called
the unit of the action, satisfying εe,e = Feu. Taking h = e in (2.1) we obtain that

εg,eFl = Fgεe,l . (2.2)

Taking g = e in (2.2) we infer that uFl = εe,l ; in particular, we have uFe = εe,e. Taking
l = e in (2.2) and using the identity εe,e = uFe, we infer that εg,e = Fgu.

For g ∈ G and each d ≥ 1, we define a natural isomorphism εd
g : Fd

g → Fgd as follows,

where Fd
g denotes the d-th power of Fg . We define ε1

g = IdFg and ε2
g = εg,g . If d > 2, we

define εd
g = εgd−1,g ◦ εd−1

g Fg . It follows from (2.1) and by induction on d that

εd
g = εg,gd−1 ◦ Fgε

d−1
g . (2.3)

We assume that gd = e for some d ≥ 1. Consider the following isomorphisms

θ : Fd
g

εd
g−→ Fgd = Fe

u−→ IdA.

We claim that θFg = Fgθ . Indeed, by uFg = εe,g = εgd ,g , we have θFg = εd+1
g . By

(2.3) we have εd+1
g = εg,gd ◦ Fgε

d
g = εg,e ◦ Fgε

d
g . Recall that εg,e = Fgu. It follows that

εd+1
g = Fgθ , proving the claim.

The following terminology will be convenient. An auto-equivalence F : A → A is peri-
odic if there exists a natural isomorphism η : Fd → IdA for some d ≥ 1. In this case
η is called a periodicity isomorphism for F of order d . The periodicity isomorphism η is
compatible provided that ηF = Fη.

The above claim on θ implies the following result.

Lemma 2.1 Let {Fg, εg,h| g, h ∈ G} be a G-action on A. Then each auto-equivalence
Fg : A → A has a compatible periodicity isomorphism. �

The following example is a partial converse of Lemma 2.1.

Example 2.2 Let F : A → A be an auto-equivalence with a compatible periodicity iso-
morphism θ : Fd → IdA of order d . We recall that the compatibility condition means
Fθ = θF .

Author's personal copy



542 X.-W. Chen

Denote by Cd = {e = g0, g, · · · , gd−1} the cyclic group of order d . Then we have
gigj = g[i+j ] for 0 ≤ i, j ≤ d − 1, where [i + j ] = i + j if i + j ≤ d − 1 and
[i + j ] = i + j − d otherwise.

We now construct a Cd -action on A, that is induced by F and θ . For each 0 ≤ i ≤ d −1,
we define Fgi = F i , where F 0 = IdA. For 0 ≤ i, j ≤ d − 1, we define the natural
isomorphism εgi ,gj : Fgi Fgj → Fgigj = Fg[i+j ] as follows: εgi ,gj = IdF i+j if i+j ≤ d −1,
and εgi ,gj = F i+j−dθ otherwise.

We claim that the following 2-cocycle condition

εg[i+j ],gl ◦ εgi ,gj Fgl = εgi ,g[j+l] ◦ Fgi εgj ,gl (2.4)

holds. Then we are done with the construction.
Indeed, we have to verify (2.4) according to the four cases depending on whether i + j

and j + l are less than d − 1 or not. Then for the two cases with i + j ≥ d , we have to use
the condition θF l = F lθ for any 0 ≤ l ≤ d − 1.

We observe that the constructed Cd -action on A is strict if and only if F : A → A is an
automorphism such that Fd = IdA and that θ is the identity transformation.

2.2 The Category of Equivariant Objects

Let {Fg, εg,h| g, h ∈ G} be a G-action on A. A G-equivariant object in A is a pair (X, α),
where X is an object in A and α assigns for each g ∈ G an isomorphism αg : X → Fg(X)

subject to the relations
αgg′ = (εg,g′)X ◦ Fg(αg′) ◦ αg. (2.5)

These relations imply that αe = u−1
X . A morphism f : (X, α) → (Y, β) between two G-

equivariant objects is a morphism f : X → Y in A such that βg ◦ f = Fg(f ) ◦ αg for
all g ∈ G. This gives rise to the category AG of G-equivariant objects, and the forgetful
functor U : AG → A defined by U(X, α) = X and U(f ) = f .

The process forming the category AG of equivariant objects is known as the equivari-
antization of A with respect to the G-action; see [9]. We refer to [5, Section 3] for another
well-known description of AG as the module category over a monad. We mention that AG

is an additive category and that the forgetful functor U is additive.
The following description of the Hom-group between two G-equivariant objects (X, α)

and (Y, β) will be useful. The Hom-group HomA(X, Y ) carries a G-action associated to
these two objects: for g ∈ G and f : X → Y , the action is given by g.f = β−1

g ◦Fg(f )◦αg .
We observe by (2.5) that g′.(g.f ) = (g′g).f . By the very definition, we have the following
isomorphism of abelian groups

HomAG((X, α), (Y, β))
∼−→ HomA(X, Y )G, (2.6)

which is induced by the forgetful functor U . Here, for any abelian group M with a G-action
we denote by MG the invariant subgroup.

The forgetful functor U admits a left adjoint Ind : A → AG, which is known
as the induction functor; see [9, Lemma 4.6]. For an object X, set Ind(X) =
(
⊕

h∈G Fh(X), ε(X)), where for each g ∈ G the isomorphism

ε(X)g :
⊕

h∈G

Fh(X) −→ Fg(
⊕

h∈G

Fh(X))

is diagonally induced by the isomorphism (εg,g−1h)
−1
X : Fh(X) → Fg(Fg−1h(X)). Here, to

verify that Ind(X) is indeed a G-equivariant object, we need the 2-cocycle condition (2.1).
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Equivariantization and Serre Duality I 543

The functor Ind sends a morphism θ : X → Y to Ind(θ) = ⊕
h∈G Fh(θ) : Ind(X) →

Ind(Y ).
For an object X in A and an object (Y, β) in AG, a morphism Ind(X) → (Y, β) is of

the form
∑

h∈G θh : ⊕
h∈G Fh(X) → Y satisfying Fg(θh) = βg ◦ θgh ◦ (εg,h)X for any

g, h ∈ G. The adjunction of (Ind, U) is given by the following natural isomorphism

HomAG(Ind(X), (Y, β))
∼−→ HomA(X,U(Y, β)) (2.7)

sending
∑

h∈G θh to θe ◦ u−1
X . The corresponding unit η : IdA → U Ind is given such that

ηX = (u−1
X , 0, · · · , 0)t , where ‘t’ denotes the transpose; the counit ε : IndU → IdAG is

given such that ε(Y,β) = ∑
h∈G β−1

h . We remark that the induction functor Ind is also right
adjoint to U .

An idempotent a = a2 : X → X in an additive category A splits provided that there are
morphisms u : X → Y and v : Y → X with a = v ◦ u and IdY = u ◦ v, in which case Y is
called a retract of X. The category A is idempotent-complete provided that each idempotent
splits.

Lemma 2.3 Let A be an idempotent-complete category with a G-action. Then the category
AG of equivariant objects is also idempotent-complete.

Proof For an idempotent a : (X, α) → (X, α) in AG, consider the splitting X
u→ Y

v→ X

in A. We observe that u◦a = u and a◦v = v. Then the morphism βg = Fg(u)◦αg◦v : Y →
Fg(Y ) is an isomorphism, whose inverse equals u ◦ (αg)

−1 ◦ Fg(v). This gives rise to a

G-equivariant object (Y, β), and then the required splitting (X, α)
u→ (Y, β)

v→ (X, α).

For any additive category A, there is a standard construction of an idempotent-complete
category A�, known as the idempotent completion. The objects of A� are pairs (X, a) with
X an object in A and a : X → X an idempotent. The morphism f : (X, a) → (Y, b) is a
morphism f : X → Y in A satisfying f = b ◦ f ◦ a, while the composition is induced
by the one in A. We have a fully faithful functor ıA : A → A� by ıA(X) = (X, IdX) and
ıA(f ) = f . Then the category A is idempotent-complete if and only if ıA is dense, and
thus an equivalence.

Any additive functor F : A → B extends naturally to an additive functor F� : A� → B�

between their completions. More precisely, F�(X, a) = (F (X), F (a)) and F�(f ) = F(f ).
We say that F is an equivalence up to retracts provided that F� is an equivalence. Indeed,
this is equivalent to the following condition: the functor F is fully faithful such that each
object B is a retract of F(A) for some object A in A; see [7, Lemma 3.4(2)].

2.3 Comparison with the Orbit Category

The above adjunction (2.7) allows us to compare the category AG with the orbit category.
Let {Fg, εg,h| g, h ∈ G} be a G-action on A. The orbit category A/G is defined as

follows; compare [14, Subsection 3.1] and [11]. The objects of A/G are the same with A.
For two objects X and Y , the Hom-group is given by

HomA/G(X, Y ) =
⊕

g∈G

HomA(X, Fg(Y )),

whose elements are denoted by (fg)g∈G : X → Y with fg ∈ HomA(X, Fg(Y )) for each
g ∈ G. The composition of two morphisms (fg)g∈G : X → Y and (f ′

g)g∈G : Y → Z is
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544 X.-W. Chen

given by (f ′′
g )g∈G : X → Z, where f ′′

g = ∑
h∈G(εh,h−1g)Z ◦ Fh(f

′
h−1g

) ◦ fh. The orbit

category A/G is additive. We refer to [1, Section 2] for various descriptions of the orbit
category.

We have an additive functor K : A/G → AG, called the comparison functor, as follows.
For an object X, we set K(X) = Ind(X). For a morphism (fg)g∈G : X → Y in A/G, we
have the morphism

K((fg)g∈G) : Ind(X) = (
⊕

h∈G

Fh(X), ε(X)) −→ Ind(Y ) = (
⊕

h′∈G

Fh′(Y ), ε(Y )),

whose entries are given by (εh,h−1h′)Y ◦ Fh(fh−1h′) : Fh(X) → Fh′(Y ).
The following result is well known, which might be deduced from [7, Section 4]. Recall

that a natural number n is said to be invertible in A provided that for any morphism f : X →
Y there exists a unique morphism g : X → Y such that f = ng. This unique morphism is
denoted by 1

n
f ; see [14, Subsection 3.1].

Proposition 2.4 The comparison functor K : A/G → AG is fully faithful. If the order
|G| of G is invertible in A, then K is an equivalence up to retracts. If in addition A is
idempotent-complete, then K induces an equivalence (A/G)�

∼−→ AG.

We mention that the idempotent completion (A/G)� of the orbit category is called the
skew group category of A by G; see [14, Section 3].

Proof The fully-faithfulness of K follows from the following observation: the composition

HomA/G(X, Y )
K−→ HomAG(K(X),K(Y ))

∼−→ HomA(X,
⊕

h′∈G

Fh′(Y ))

equals the identity, where the right isomorphism is given by the adjunction (2.7). For the
observation, we use (εe,h′)Y = uFh′ (Y ) in Subsection 2.1 to obtain the identity fh′ =
(εe,h′)Y ◦ Fe(fh′) ◦ u−1

X for each h′ ∈ G.
Recall the counit ε of the adjoint pair (Ind, U). If |G| is invertible in A, the counit

ε(X,α) : Ind(X) = (
⊕

h∈G Fh(X), ε(X)) → (X, α) admits a section s = 1
|G|

∏
h∈G αh. It

follows that (X, α) is a retract of K(X) = Ind(X); compare [7, Lemma 4.4(1)]. We infer
that K is an equivalence up to retracts.

For the final statement, we apply Lemma 2.3 and then identify AG with its idempotent
completion (AG)�.

Example 2.5 Let F : A → A be a periodic auto-equivalence. We assume that there is a
compatible periodicity isomorphism θ : Fd → IdA for some d ≥ 1. Recall the cyclic group
Cd = {e = g0, g, · · · , gd−1} of order d . We consider the Cd -action on A induced by F and
θ in Example 2.2.

The corresponding orbit category A/Cd is usually denoted by A/F . In case that d is
invertible in A, we will denote the category ACd of Cd -equivariant objects by A//F . The
notation is justified by Proposition 2.4. We emphasize that both the categories A/F and
A//F depend on θ .

We observe that a Cd -equivariant object (X, α) is completely determined by the isomor-
phism αg : X → Fg(X) = F(X), which satisfies Fd−1(αg) ◦ · · · ◦ F(αg) ◦ αg = θ−1

X ;
a morphism f : (X, α) → (Y, β) of Cd -equivariant objects is a morphism f : X → Y

satisfying βg ◦ f = F(f ) ◦ αg .
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Equivariantization and Serre Duality I 545

Let k be a field, and let A be a finite dimensional k-algebra. We denote by A-mod the
category of finite dimensional left A-modules, and by A-proj the full subcategory formed
by projective modules. For a left A-module M = AM , we sometimes denote the A-action
on M by “.”.

We denote by Autk(A) the group of k-algebra automorphisms on A. We say that G acts
on A by k-algebra automorphisms, if there is a group homomorphism G → Autk(A). In this
case, with slight abuse of notation, we identify elements in G with their images under this
homomorphism. The corresponding skew group algebra AG is defined as follows: AG =⊕

g∈G Aug is a free left A-module with basis {ug | g ∈ G} and the multiplication is given
by (aug)(buh) = ag(b)ugh. We view A as a subalgebra of AG by sending a to aue.

The following classic example is treated in a slightly different manner in [14, Sub-
section 3.1].

Example 2.6 For a k-algebra automorphism g on A and an A-module M , the twisted module
gM is defined such that gM = M as a vector space and that the new A-action “◦” is given
by a◦m = g(a).m. This gives rise to a k-linear automorphism g(−) : A-mod → A-mod,
called the twisting functor, which acts on morphisms by the identity. We observe that for
two k-algebra automorphisms g and h on A, h(gM) = ghM for any A-module M .

Let G act on A by k-algebra automorphisms. Then we have a strict k-linear G-action on
A-mod by setting Fg = g−1

(−). There is an isomorphism of categories

(A-mod)G
∼−→ AG-mod, (2.8)

by sending a G-equivariant object (X, α) to the AG-module X, where the AG-module
structure is given by (aug)x = a.αg−1(x), where “.” means the original A-action on X, not
the one on Fg−1(X) = gX. Using this isomorphism, the induction functor Ind : A-mod →
(A-mod)G is identified with the functor AG ⊗A −: A-mod → AG-mod. Recall from
Proposition 2.4 that the orbit category A-mod/G is equivalent to the essential image of Ind.
Therefore, A-mod/G is equivalent to the essential image of AG ⊗A −. In particular, if |G|
is invertible in k, we have an equivalence (A-mod/G)�

∼−→ AG-mod.
The above G-action restricts to a G-action on A-proj. We have full subcategories

(A-proj)G ⊆ (A-mod)G and A-proj/G ⊆ A-mod/G. By the isomorphism (2.8), we have
AG-proj ⊆ (A-proj)G. By the identification of Ind with AG⊗A−, we infer that the compar-
ison functor K : A-mod/G → (A-mod)G induces an equivalence K� : (A-proj/G)�

∼−→
AG-proj. If in addition |G| is invertible in k, we have following equivalences

(A-proj/G)�
K�−→ (A-proj)G

∼−→ AG-proj,

where the right one is restricted from (2.8).

3 The Serre Duality on an Additive Category

In this section, we recall from [4, 6, 15] some notation on Serre duality. Following [11], we
study basic properties of the commutator isomorphisms. For a Frobenius algebra, these com-
mutator isomorphisms correspond to the commutator map. We study an additive category
with a periodic Serre functor.

We will work on a fixed field k. We denote by D = Homk(−, k) the duality on finite
dimensional k-spaces. All functors and categories in this section are k-linear.
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546 X.-W. Chen

3.1 The Trace Function

Let A be a k-linear additive category. We assume that A is Hom-finite, that is, the Hom-
space HomA(X, Y ) between any objects is finite dimensional.

Recall that by definition a Serre duality on A is a bifunctorial k-linear isomorphism

φX,Y : DHomA(X, Y )
∼−→ HomA(Y, S(X)), (3.1)

where S : A → A is a k-linear auto-equivalence. The functor S is called the Serre functor
on A.

The Serre duality (3.1) yields a non-degenerate bilinear pairing

(−,−)X,Y : HomA(X, Y ) × HomA(Y, S(X)) → k

such that (f, f ′)X,Y = φ−1
X,Y (f ′)(f ). The functorialness of φX,Y in Y is equivalent to the

following identity
(a ◦ x, f1)X,Y ′ = (x, f1 ◦ a)X,Y , (3.2)

with arbitrary morphisms x : X → Y , a : Y → Y ′ and f1 : Y ′ → S(X). The functorialness
in X is equivalent to

(x ◦ b, f2)X′,Y = (x, S(b) ◦ f2)X,Y , (3.3)

with arbitrary b : X′ → X and f2 : Y → S(X′).
Following [15, Subsection 1.1], the trace function, defined for each object X,

TrX : HomA(X, S(X)) → k

is given by TrX(f ) = (IdX, f )X,X. Indeed, to describe the Serre duality formula (3.1), it
suffices to describe the trace function because of the following identity

φ−1
X,Y (f ′)(f ) = (f, f ′)X,Y = TrX(f ′ ◦ f ) (3.4)

for any morphisms f : X → Y and f ′ : Y → S(X), where the right equality uses (3.2) for
x = IdX .

The following facts are well known. The statement (2) is due to [11, Lemma 2.1 b)].

Lemma 3.1 Keep the notation as above. Then the following statements hold.

(1) TrX(f ′ ◦ f ) = TrY (S(f ) ◦ f ′) for any morphism f : X → Y and f ′ : Y → S(X);
(2) TrX(f ) = TrS(X)(S(f )) = (f, IdS(X))X,S(X) for each morphism f : X → S(X);
(3) two morphisms f, f ′ : Y → S(X) equal if TrX(f ◦a) = TrX(f ′ ◦a) for each a : X →

Y .

Proof (1) follows by combining (3.3) and (3.4), by taking x = IdX , while (2) follows
from (1). The last statement follows from (3.4) and the non-degeneration of the pairing
(−, −)X,Y .

Remark 3.2 We assume that for each object X, the trace function TrX is already given. We
have the pairing (−, −)X,Y according to (3.4). Suppose that this pairing is non-degenerate.
Then we also have the linear isomorphism φX,Y , which is automatically functorial in Y .
Then its functorialness in X is equivalent to the property of the trace functions in Lemma
3.1(1).

The following uniqueness result for the Serre duality will be useful.
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Equivariantization and Serre Duality I 547

Lemma 3.3 Assume that A has the Serre duality (3.1). Suppose that there is another Serre
duality φ′

X,Y : DHomA(X, Y ) → HomA(Y, S′(X)) on A with the corresponding trace

function denoted by Tr′. Then there is a unique natural isomorphism δ : S
∼−→ S′ with the

property TrX(f ) = Tr′
X(δX ◦ f ) for each f : X → S(X).

Proof We apply Yoneda Lemma to the bifunctorial isomorphism

φ′
X,Y ◦ φ−1

X,Y : HomA(Y, S(X)) −→ HomA(Y, S′(X)),

and obtain the isomorphism δX : S(X) → S′(X) with the property

φ′
X,Y = HomA(Y, δX) ◦ φX,Y .

From this and (3.4), we deduce the required equation on trace functions. The uniqueness of
δX follows from Lemma 3.1(3) for the trace function Tr′.

For a k-linear Hom-finite category A, its idempotent completion A� is naturally k-linear
and Hom-finite. We observe that the Serre duality behaves well with the idempotent com-
pletion. Recall that the Serre functor S on A extends to a functor S� : A� → A�, which is a
k-linear auto-equivalence.

Lemma 3.4 Assume that A has the Serre duality (3.1). Then we have an induced Serre
duality

DHomA� ((X, a), (Y, a′)) ∼−→ HomA� ((Y, a′), S�(X, a)).

In particular, S� is the Serre functor on A� and the corresponding trace function
Tr(X,a) : HomA� ((X, a), S�(X, a)) → k is given by Tr(X,a)(f ) = TrX(f ).

Proof Recall that S�(X, a) = (S(X), s(a)). By the construction of A�, we might identify
HomA� ((X, a), (Y, a′)) with the subspace a′◦HomA(X, Y )◦a of HomA(X, Y ). We identify
HomA� ((Y, a′), S�(X, a)) with the subspace S(a)◦HomA(Y, S(X))◦a′ of HomA(Y, S(X)).
Recall the non-degenerate pairing (−,−)X,Y given by φX,Y . By (3.2) and (3.3), the pairing
(−, −)X,Y restricts to a non-degenerate pairing between these two subspaces. Then we have
the induced bifunctorial duality.

3.2 The Commutator Isomorphism

Let A have the Serre duality (3.1) and the Serre functor S. The following result is essentially
contained in [11, Subsection 2.3]; compare [13, Section 3].

Lemma 3.5 Let F : A → A be a k-linear auto-equivalence. Then there is a unique natural
isomorphism σF : FS → SF satisfying

TrX(f ) = TrF(X)((σF )X ◦ F(f )) (3.5)

for each object X and f : X → S(X).

This unique isomorphism σF : FS → SF is called the commutator isomorphism for F .
For example, Lemma 3.1(2) implies that σS = IdS2 .

Proof Take a quasi-inverse F−1 of F . Indeed, we assume that (F, F−1) is an adjoint pair
with the unit η : IdA → F−1F and the counit ε : FF−1 → IdA.
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Consider the following composition of natural isomorphisms

where η∗
Y = HomA(ηY , F−1SF(X)).

We set S′ = F−1SF and denote the above composition by φ′
X,Y . This yields a new

Serre duality on A. We denote by the corresponding pairing by 〈−, −〉X,Y . For f : X → Y

and f ′ : Y → S′(X), it follows by tracking the above isomorphisms that 〈f, f ′〉X,Y =
(F (f ), f ′′)F(X),F (Y ), where the morphism f ′′ : F(Y ) → SF(X) is uniquely determined
the condition F−1(f ′′) = f ′ ◦ η−1

Y . Consider the corresponding new trace function Tr′. We
apply Lemma 3.1(2) and (3.4) to obtain the following identity

Tr′X(f ) = 〈f, IdS′(X)〉X,S′(X) = (F (f ), f ′′)F(X),FS′(X) = TrF(X)(f
′′ ◦ F(f )),

where f ′′ : FS′(X) → SF(X) is uniquely determined by the condition F−1(f ′′) =
(ηS′(X))

−1 = (ηF−1SF(X))
−1. We apply the well-known fact (ηF−1)−1 = F−1ε. It follows

that f ′′ = εSF(X).
In summary, we have proved Tr′X(f ) = TrF(X)(εSF(X) ◦ F(f )) for each morphism

f : X → S′(X). Applying Lemma 3.3, we obtain an isomorphism δ : S → S′ such that
TrX(a) = Tr′X(δX ◦ a) for each a : X → S(X). Set σF = εSF ◦ Fδ. This is the required
isomorphism, whose uniqueness might be deduced from Lemma 3.1(3).

The dependence of the commutator isomorphism σF on the auto-equivalence F is shown
in the following result, where the first statement is due to [11, Lemma 2.1 b)] in a slightly
different setup.

Lemma 3.6 Keep the notation as above. Let F1, F2 be two k-linear auto-equivalences on
A. Then the following two statements hold.

(1) We have σF = (σF1F2) ◦ (F1σF2), where F = F1F2.
(2) Let θ : F1 → F2 be a natural isomorphism. Then we have σF2 ◦ θS = Sθ ◦ σF1 .

Proof Write σF1 = σ1 and σF2 = σ2. For (1), by the uniqueness of σF it suffices to prove
that TrX(f ) = TrF(X)(((σ1)F2(X) ◦ F1((σ2)X)) ◦ F(f )) for each morphism f : X → S(X).
Indeed, the right hand side equals TrF1F2(X)((σ1)F2(X) ◦F1((σ2)X ◦F2(f ))). Applying (3.5)
for both F1 and F2, we are done.

For (2), we consider any morphism f : F2(X) → F1S(X). There is a unique morphism
f ′ : X → S(X) with F2(f

′) = θS(X) ◦ f . We claim that F1(f
′) = f ◦ θX . Indeed,

θS(X) ◦ F1(f
′) = F2(f

′) ◦ θX = (θS(X) ◦ f ) ◦ θX . The claim follows, since θS(X) is an
isomorphism.

We will prove that (σ2)X ◦ θS(X) = S(θX) ◦ (σ1)X . By Lemma 3.1(3), it suffices to
prove that TrF2(X)(((σ2)X ◦ θS(X)) ◦ f ) = TrF2(X)((S(θX) ◦ (σ1)X) ◦ f ) for any morphism
f : F2(X) → F1S(X). Applying (3.5) for F2, the left hand side equals TrX(f ′). Apply
Lemma 3.1(1), we infer that the right hand side equals TrF1(X)(((σ1)X ◦ f ) ◦ θX), which
equals, by the above claim, TrF1(X)((σ1)X ◦ F1(f

′)). Then we are done by applying (3.5)
for F1.
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We now extend Lemma 3.6 slightly. Let F : A → A be a k-linear auto-equivalence. For
each d ≥ 1, we define a natural isomorphism σd

F : FSd → SdF inductively as follows:
σ 1

F = σF and σd+1
F = Sσd

F ◦ σF Sd for d ≥ 1. Here, Sd denotes the d-th power of S. We
refer to the isomorphism σd

F as the d-th commutator isomorphism for F .

Proposition 3.7 Let A have the Serre duality (3.1) and let d ≥ 1. Let F1, F2 be two k-linear
auto-equivalences on A. Then the following two statements hold.

(1) We have σd
F = (σ d

F1
F2) ◦ (F1σ

d
F2

), where F = F1F2.

(2) Let θ : F1 → F2 be a natural isomorphism. Then we have σd
F2

◦ θSd = Sdθ ◦ σd
F1

.

Proof The case that d = 1 is due to Lemma 3.6. Write σF1 = σ1 and σF2 = σ2.
We assume by induction that (1) holds for d − 1. We have the following identity

(σ d
1 F2) ◦ (F1σ

d
2 ) = (Sσd−1

1 F2) ◦ (σ1S
d−1F2) ◦ (F1Sσd−1

2 ) ◦ (F1σ2S
d−1)

= (Sσd−1
1 F2) ◦ (SF1σ

d−1
2 ) ◦ (σ1F2S

d−1) ◦ (F1σ2S
d−1)

= Sσd−1
F ◦ σF Sd−1

= σd
F ,

where the second equality uses the naturalness of σ1 and the third uses the induction hypoth-
esis and Lemma 3.6(1). Then we are done with (1). By a similar argument, we prove
(2).

3.3 The Periodic Serre Duality and Induced Map

The Serre duality (3.1) is said to be periodic provided that the Serre functor S is periodic. As
an extreme case, we say that the Serre functor S is trivial if it is isomorphic to the identity
functor.

Corollary 3.8 Let A have a periodic Serre duality. Then any periodicity isomorphism
η : Sd → IdA for S is compatible.

The above corollary allows us to construct a k-linear Cd -action on A, that is induced by
S and η. Then we have the orbit category A/S and the category A//S of Cd -equivariant
objects; see Example 2.5.

Proof We recall that σS = IdS2 . By iterating Lemma 3.6(1) we infer that σSd equals the
identity transformation on Sd+1. We apply Lemma 3.6(2) to the periodicity isomorphisms
η : Sd → IdA and deduce ηS = ηS, that is, the periodicity isomorphism η is compatible.

We denote by Z(A) the center of A, which is by definition the set consisting of all
natural transformations λ : IdA → IdA. It is a commutative k-algebra with multiplication
given by the composition of natural transformations.

For a morphism f : X → Y and λ ∈ Z(A), we have f ◦λX = λY ◦f , both of which will
be denoted by λf . In this manner, the Hom space HomA(X, Y ) is naturally a Z(A)-module;
moreover, the composition of morphisms is Z(A)-bilinear. In other words, the category A
is naturally Z(A)-linear. We observe that an endofunctor F : A → A is Z(A)-linear if and
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only if it is k-linear satisfying that F(λX) = λFX for each object X in A and λ ∈ Z(A), or
equivalently, Fλ = λF for each λ ∈ Z(A).

The following observation is well known.

Lemma 3.9 Let A have the Serre duality (3.1). Then the Serre functor S is Z(A)-linear.

Proof For any λ ∈ Z(A) and any object X, we will show that S(λX) = λS(X). By Lemma
3.1(3), it suffices to show that TrX(S(λX)◦a) = TrX(λS(X)◦a) for each morphism a : X →
S(X). Indeed, by Lemma 3.1(1), the left hand side equals TrX(a ◦ λX). Then we are done
by the identity a ◦ λX = λS(X) ◦ a.

We will use the following standard fact.

Lemma 3.10 Let F : A → A be an auto-equivalence. Then any natural transformation
F → F is of the form λF = Fλ′ for unique λ, λ′ ∈ Z(A). In case that F is Z(A)-linear,
we have λ = λ′.

We denote by Autk(A) the set consisting of isomorphism classes [F ] of k-linear auto-
equivalences F on A, which is a group by the composition of functors.

We assume that A has a periodic Serre duality. Take a periodicity isomorphism η : Sd →
IdA for some d ≥ 1. Let F : A → A be a k-linear auto-equivalence. Consider the following
natural isomorphisms

tF : F
Fη−1

−→ FSd
σd

F−→ SdF
ηF−→ F. (3.6)

By Lemma 3.10 there exists a unique κ(F ) ∈ Z(A)× with tF = κ(F )F . We claim that
κ(F ) = κ(F ′) for any given natural isomorphism θ : F → F ′. Then this gives rise to a
well-defined map

κ : Autk(A) −→ Z(A)×, [F ] �→ κ(F ), (3.7)

called the induced map of the periodicity isomorphism η. Here, we denote by Z(A)×
the group consisting of invertible elements in Z(A), that is, natural automorphisms of
IdA.

For the claim, we apply Proposition 3.7(2) to infer that θ ◦ tF = tF ′ ◦ θ ; here, we also use
the naturalness of θ and η. Then we have θ ◦ (κ(F )F ) = (κ(F ′)F ′) ◦ θ . Since κ(F ) lies in
Z(A), we have θ ◦(κ(F )F ) = (κ(F )F ′)◦θ , and thus (κ(F )F ′)◦θ = (κ(F ′)F ′)◦θ . Recall
that θ is an isomorphism and that F ′ is an auto-equivalence. It follows that κ(F ) = κ(F ′).

For a group G and an abelian group M , by a G-action on M we mean a group homo-
morphism from G to the automorphism group of M . For a given G-action on M , a map
f : G → M is called a crossed homomorphism with respect to the action, provided that
f (gh) = f (g)(g.f (h)) for any g, h ∈ G. Here, the dot denotes the G-action on M . For
details, see [17, Section 6.4].

We recall that there is a canonical Autk(A)-action on Z(A)×: for a k-linear auto-
equivalence F : A → A and λ ∈ Z(A)×, there is a unique λ′ ∈ Z(A)× satisfying
Fλ = λ′F ; see Lemma 3.10. We then put [F ].λ = λ′. This is a well-defined group action.

Proposition 3.11 Let A have a periodic Serre duality. Keep the notation as above. Then
the induced map κ : Autk(A) → Z(A)× is a crossed homomorphism with respect to the
canonical Autk(A)-action on Z(A)×.
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Proof Let F1 and F2 be two k-linear auto-equivalences on A. Set F = F1F2. For the result,
it suffices to claim that κ(F ) = κ(F1)([F1].κ(F2)). By Proposition 3.7(1) we have the first
equality of the following identity

tF = (tF1F2) ◦ (F1tF2)

= (κ(F1)F1F2) ◦ (F1κ(F2)F2)

= (κ(F1)F ) ◦ (([F1].κ(F2))F )

= (κ(F1)([F1].κ(F2)))F,

where the third equality uses the definition of the canonical action. Recall that tF = κ(F )F

and that F is an auto-equivalence. By the uniqueness statement in Lemma 3.10, we infer
the claim.

3.4 The Commutator Map of a Frobenius Algebra

Let A be a finite dimensional k-algebra. We denote by A-inj the full subcategory of
A-mod formed by injective A-modules. Recall that DA = Homk(A, k), as the dual
of the regular bimodule, has a canonical A-bimodule structure. The Nakayama functor
DA ⊗A −: A-mod → A-mod restricts to an equivalence A-proj

∼−→ A-inj. Moreover, we
have a bifunctorial k-linear isomorphism

DHomA(P,X)
∼−→ HomA(X,DA ⊗A P ) (3.8)

for a projective module P and an arbitrary module X.

Example 3.12 Recall that the algebra A is selfinjective if and only if A-proj = A-inj. It
follows immediately that the isomorphism (3.8) yields a Serre duality on A-proj, where the
Serre functor is the Nakayama functor.

For a better description of the trace function on A-proj, we assume now that A is Frobe-
nius, which means that there is an isomorphism φ : D(AA) � AA of right A-modules. The
trace on A is given by tr = φ−1(1A) : A → k, which induces a non-degenerate bilinear
form (−, −) : A × A → k by (a, b) = tr(ab). There is a unique k-algebra automorphism
ν : A → A such that

tr(ba) = tr(ν(a)b), (3.9)

which is called the Nakayama automorphism of A. We observe that tr(a) = tr(ν(a)) for all
a ∈ A.

We observe that φ−1(a) = (a, −) for a ∈ A. Then φ is indeed an isomorphism DA
∼−→

νA of A-bimodules, where the left A-module structure on νA is twisted from the regular
left A-module AA. It follows that the Nakayama functor is isomorphic to νA ⊗A −, which
is further isomorphic to the twisting functor ν(−). In summary, the Serre duality on A-proj
for a Frobenius algebra A is given by

DHomA(P, P ′) ∼−→ HomA(P ′, νP ). (3.10)

The corresponding trace function is given by TrAn(f ) = ∑n
i=1 tr(aii), where f : An →

ν(An) is given by an n × n matrix (aij ) with entries in A. More generally, let P be a
projective A-module. Take morphisms u : P → An and v : An → P with v ◦ u = IdP .
Then by Lemma 3.1(1) we have TrP (f ) = TrAn(ν(u) ◦ f ◦ v).

We mention that if ν ∈ Autk(A) has finite order, A-proj has a periodic Serre duality.
Recall that A is symmetric if there is an A-bimodule isomorphism DA � A. Then the
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bilinear form (−,−) might chosen to be symmetric. The corresponding Nakayama auto-
morphism ν = IdA. In particular, the Serre functor on A-proj is trivial, that is, isomorphic
to the identity functor.

The following observation is a partial converse to Example 3.12. In particular, it shows
that if A-proj has a Serre duality, the algebra A is selfinjective. Here, we recall that the
selfinjective property is invariant up to Morita equivalences.

Lemma 3.13 Let A have the Serre duality (3.1). Suppose that X is an object satisfying
S(X) � X. Then the endomorphism algebra EndA(X) is Frobenius.

Proof Take an isomorphism t : S(X) → X. Composing the isomorphism φX,X and the
isomorphism HomA(X, t), we have an isomorphism DHomA(X,X) � HomA(X,X).
It is routine to verify that this isomorphism respects the right EndA(X)-module
structures.

Let A be a Frobenius algebra with the trace tr : A → k and its Nakayama automorphism
ν. The above explicit trace functions allow us to compute the commutator isomorphism for
some automorphisms on A-proj.

We make some preparation. For each g ∈ Autk(A), there is a unique invertible element
σ(g) ∈ A such that

tr(a) = tr(σ (g)−1g(a)) (3.11)

for each a ∈ A. Here, we use implicitly that both tr and tr ◦ g are generators of the cyclic
right A-module D(AA).

Definition 3.14 Let A be a Frobenius algebra. We define its commutator map

σ : Autk(A) −→ A×, g �→ σ(g),

where A× denotes the multiplicative group of invertible elements in A. �

The following lemma summarizes basic properties of the commutator map. Recall that
each invertible element x ∈ A gives rise to an inner automorphism cx ∈ Autk(A) by cx(a) =
xax−1. For g, h ∈ Autk(A), we recall their commutator [g, h] = ghg−1h−1.

Lemma 3.15 Keep the notation as above. Then the following statements hold:

(1) [ν, g](x) = σ(g)−1xσ(g) for each g ∈ Autk(A) and x ∈ A;
(2) σ(gh) = g(σ (h))σ (g) for each g, h ∈ Autk(A);
(3) σ(cx) = xν(x)−1 for each x ∈ A×;
(4) σ(νn) = 1 for each n ∈ Z.

In the proof, we sometimes use the central dot “·” to denote the multiplication of elements
in A.

Proof We will often use the following fact, which is analogous to Lemma 3.1(3). Two
elements x and y in A are equal if tr(xa) = tr(ya) for each a ∈ A.

Author's personal copy



Equivariantization and Serre Duality I 553

For (1), we will show that [ν, g](x)σ (g)−1 = σ(g)−1x. For each a ∈ A, we have the
following identity

tr([ν, g](x)σ (g)−1a) = tr(σ (g)−1a · gν−1g−1(x))

= tr(σ (g)−1g(g−1(a) · ν−1g−1(x)))

= tr(g−1(a) · ν−1g−1(x))

= tr(g−1(x) · g−1(a))

= tr(g−1(xa))

= tr(σ (g)−1xa),

where the first and fourth equalities uses (3.9), the third and last equalities uses (3.11). Then
we are done by the above fact.

For (2), we apply (3.11) twice to obtain that tr(σ (g)−1g(σ (h)−1)gh(a)) = tr(a), while
the latter equals tr(σ (gh)−1gh(a)). Then (2) follows from the above fact.

We observe by (3.11) and (3.9) that tr(σ (cx)
−1a) = tr(x−1ax) = tr(ν(x)x−1a). Then

we infer (3) from the above fact.
By the identity tr(a) = tr(ν(a)), we infer that σ(ν) = 1. Then (4) follows from (2) by

induction on n.

We recall the following elementary fact.

Lemma 3.16 Assume that g, h ∈ Autk(A) and that θ : g(−) → h(−) is a natural
transformation with θA(1) = x. Then the following statements hold:

(1) θA(a) = hg−1(a)x = xa for each a ∈ A;
(2) if θ is an isomorphism, then x is invertible in A and hg−1(a) = xax−1 for each a ∈ A;
(3) for any g′ ∈ Autk(A) and each a ∈ A, θ

(g
′
A)

(a) = (h2g−1g′−1
)(a) · h(x) = h(x) ·

hg′−1
(a).

Proof Recall the following standard fact: any morphism f : gA → hA satisfies f (a) =
hg−1(a)f (1A) for each a ∈ A. Then to prove (1), it remains to show that θA(a) = xa.
Consider the left A-module morphism ra : A → A sending y to ya. Then we are done by
applying the naturalness of θ to ra . The statement (2) follows from (1).

For (3), consider the isomorphism π : A → g′
A of A-modules with π(y) = g′(y).

Applying the naturalness of θ to π , the required identity follows from (1).

The following result justifies the terminology of the commutator map.

Proposition 3.17 Let A be a Frobenius algebra. Keep the assumption as above. For
g ∈ Autk(A), we consider the twisting functor F = g(−) on A-proj and its commutator iso-
morphism σF . Recall that the Serre functor equals ν(−). Then the commutator isomorphism
σF : g(ν(−)) = νg(−) → gν(−) = ν(g(−)) satisfies (σF )A(1) = σ(g).

More generally, for d ≥ 1, the d-th commutator isomorphism σd
F : g(ν

d
(−)) → νd

(g(−))

satisfies (σ d
F )A(1) = σ(g)ν(σ (g)) · · · νd−1(σ (g)).

Proof We only prove the case d = 1. The general case follows immediately from the
definition of σd

F and Lemma 3.16(3).
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Recall that TrA(f ) = tr(f (1)) for each morphism f : A → νA. Consider the iso-
morphism π : A → gA by π(a) = g(a). It follows from Lemma 3.1 that TrgA(f ) =
TrA(ν(π−1)◦f ◦π). We compute that TrgA(f ) = tr(g−1(f (1))) for each f : gA → ν(gA).

Set (σF )A(1) = x, which is an invertible element in A. For each b ∈ A, we have a unique
morphism f : A → νA with f (1) = b. Recall from (3.5) that TrA(f ) = TrgA((σF )A ◦
g(f )). We observe by Lemma 3.16(1) that ((σF )A ◦ g(f ))(1) = xb. Then we have tr(b) =
tr(g−1(xb)). Set a = g−1(xb) and thus b = x−1g(a). Then we have tr(a) = tr(x−1g(a)).
Since a runs over A, we infer that x = σ(g) in view of (3.11).

By the additivity, the commutator isomorphism σF is completely determined by (σF )A.
By combing Lemma 3.16(1) and Proposition 3.17, we have the following description of
(σ d

F )A for each d ≥ 1. In particular, we reobtain Lemma 3.15(1).

Corollary 3.18 Keep the assumption as above. For d ≥ 1, we set t (g) =
σ(g)ν(σ (g)) · · · νd−1(σ (g)). Then for each a ∈ A, we have

(σ d
F )A(a) = [g, νd ](a) · t (g) = t (g)a. (3.12)

In particular, if νd = IdA, we infer that t (g) is a central element.

Let us consider the case νd = IdA. We obtain a well-defined map

κ : Autk(A) −→ Z(A)×, g �→ g(t (g−1)), (3.13)

called the induced map for A. Here, Z(A)× denotes the multiplicative group of invertible
central elements in A.

The category A = A-proj has a periodic Serre duality, where we take the periodicity
isomorphism of order d to be the identity transformation. Then the above induced map is
compatible with the one in (3.7). More precisely, we have a commutative diagram

where the left vertical homomorphism sending g ∈ Autk(A) to the twisting functor F =
g−1

(−) on A, and the right one is restricted from the well-known isomorphism Z(A)
∼−→

Z(A). Here, we use (3.12) to infer κ(g)F = σd
F .

By Proposition 3.11, the above identification of these two induced maps implies that the
map in (3.13) is a crossed homomorphism with respect to the obvious Autk(A)-action on
Z(A)×, that is, κ(gh) = κ(g)g(κ(h)) for any g, h ∈ Autk(A).

4 The Serre Functors on Orbit Categories and Equivariant Objects

In this section, we give explicit formulas on the Serre duality for the orbit category and
the category of equivariant objects. The commutator isomorphisms play an important role.
It turns out that under certain conditions, the constructions of the orbit category and the
equivariantization preserve periodic Serre duality.

Throughout, A is a k-linear additive category with the Serre duality (3.1) and the Serre
functor S. We assume that there is a k-linear G-action {Fg, εg,h| g, h ∈ G} on A, where G
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is a finite group. The commutator isomorphism σFg : FgS → SFg for Fg will be denoted
by σg .

The following fact will be used.

Lemma 4.1 Keep the notation as above. Then the following identity of natural transforma-
tions holds

εg,hS ◦ Fg(σh)
−1 ◦ (σg)

−1Fh = (σgh)
−1 ◦ Sεg,h. (4.1)

Proof Indeed, by Lemma 3.16(1) we have σgFh ◦ Fgσh = σFgFh
. Applying Lemma 3.6(2)

to εg,h, we have σgh ◦ εg,hS = Sεg,h ◦ σFgFh
. Putting these two identities together, we infer

the required one.

4.1 The Serre Duality on the Orbit Category

We define a k-linear functor S̄ : A/G → A/G on the orbit category by setting S̄(X) =
S(X). For a morphism (fg)g∈G : X → Y , the g-th component of S̄((fg)g∈G) is given by
(σg)

−1
Y ◦ S(fg) : S(X) → FgS(Y ). Consider two arbitrary morphisms (fg)g∈G : X → Y

and (f ′
g)g∈G : Y → Z. To show that S̄ preserves the composition of morphisms, we use the

following identity

(σhg)
−1
Z ◦ S((εh,g)Z ◦ Fh(f

′
g) ◦ fh) = (εh,g)Z ◦ Fh((σg)

−1
Z ◦ S(f ′

g)) ◦ ((σh)
−1
Y ◦ S(fh)).

The above identity follows from the naturalness of σ−1
h and the identity (4.1) for h and g on

the object Z. We observe that the functor S̄ is an auto-equivalence.
Recall the bilinear pairing (−, −)X,Y induced by the Serre duality (3.1). We define a new

bilinear pairing

〈−, −〉X,Y : HomA/G(X, Y ) × HomA/G(Y, S̄(X)) → k (4.2)

by 〈(fg)g∈G, (f ′
g)g∈G〉X,Y = ∑

g∈G (fg, uS(X) ◦ (εg,g−1)S(X) ◦ Fg(f
′
g−1))X,Fg(Y ). Here,

u : Fe → IdA is the unit of the G-action.
We claim that the bilinear pairing 〈−, −〉X,Y is non-degenerate. Indeed, we recall

that HomA/G(X, Y ) = ⊕
g∈G HomA(X, Fg(Y )) and that HomA/G(Y, S̄(X)) =⊕

g∈G HomA(Y, FgS(X)). We observe an isomorphism HomA(Y, Fg−1S(X)) �
HomA(Fg(Y ), S(X)), which is induced by the functor Fg and the natural isomorphism
u ◦ εg,g−1 . Via this isomorphism, the pairing (−,−)X,Fg(Y ) induces a non-degenerate
pairing between HomA(X, Fg(Y )) and HomA(Y, Fg−1S(X)) for each g ∈ G. These
non-degenerated pairings yield the non-degeneration of 〈−, −〉X,Y .

The following result is analogous to [11, Lemma 2.1 a)].

Proposition 4.2 Assume that A has the Serre duality (3.1). Then we have the following
Serre duality for the orbit category

φ̄X,Y : DHomA/G(X, Y )
∼−→ HomA/G(Y, S̄(X)),

such that 〈x, y〉X,Y = φ̄−1
X,Y (y)(x). In particular, we have the Serre functor S̄ : A/G →

A/G.

The corresponding trace function is given by

T̄rX : HomA/G(X, S̄(X)) −→ k
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with T̄rX((fg)g∈G) = TrX(uS(X) ◦ fe).

Proof The non-degenerate pairing 〈−, −〉X,Y defines the k-linear isomorphism φ̄X,Y as
above. We observe that 〈x, y〉X,Y = T̄rX(y ◦ x). It follows that φ̄X,Y is functorial in Y . For
the functorialness in X, we have to show that T̄rX(S̄(a)◦b) = T̄rX′(b◦a) for any morphism
a : X′ → X and b : X → S̄(X′); compare Remark 3.2.

Write a = (ag)g∈G and b = (bg)g∈G. In particular, we have morphisms ag−1 : X′ →
Fg−1(X) and bg : X → FgS(X′) for each g ∈ G. We claim that the following identity holds

bg ◦ uX ◦ (εg,g−1)X = Fg(uS(X′) ◦ (εg−1,g)S(X′) ◦ Fg−1(bg)). (4.3)

Indeed, using that u◦εg,g−1 is a natural isomorphism, the left hand side equals uFgS(X′) ◦
(εg,g−1)FgS(X′) ◦ FgFg−1(bg). Recall from Subsection 2.1 that uFg = εe,g and εg,e = Fgu.
Then (2.1) implies that uFg ◦ εg,g−1Fg = εg,e ◦ Fgεg−1,g . Combining these equations, we
are done with the claim.

The above required identity on trace functions follows immediately from the following
identity.

TrX(uS(X) ◦ (εg,g−1)S(X) ◦ Fg((σg−1)
−1
X ◦ S(ag−1)) ◦ bg)

= TrX(uS(X) ◦ ((σe)
−1
X ◦ S(εg,g−1)X ◦ (σg)F

g−1 (X)) ◦ FgS(ag−1) ◦ bg)

= TrX(S(uX) ◦ S(εg,g−1)X ◦ (σg)F
g−1 (X) ◦ FgS(ag−1) ◦ bg)

= TrFgF
g−1 (X)((σg)F

g−1 (X) ◦ FgS(ag−1) ◦ bg ◦ uX ◦ (εg,g−1)X)

= TrFgF
g−1 (X)((σg)F

g−1 (X) ◦ Fg(S(ag−1) ◦ uS(X′) ◦ (εg−1,g)S(X′) ◦ Fg−1(bg)))

= TrF
g−1 (X)(S(ag−1) ◦ uS(X′) ◦ (εg−1,g)S(X′) ◦ Fg−1(bg))

= TrX′(uS(X′) ◦ (εg−1,g)S(X′) ◦ Fg−1(bg) ◦ ag−1)

The first equality uses (4.1) applied to g and g−1. The second equality uses Su◦σe = uS,
which follows from Lemma 3.6(2). The fourth equality uses (4.3). The third and the last
equalities use Lemma 3.1(1). The fifth equality uses (3.5) for Fg .

We apply Lemma 3.4 to obtain an explicit Serre duality on the idempotent completion
(A/G)�. We assume that |G| is invertible in k and that A is idempotent-complete. It follows
from the equivalence in Proposition 2.4 that AG has a Serre duality. However, it seems to
be nice to have a more explicit Serre duality formula for AG.

4.2 An Explicit Serre Duality on Equivariant Objects

We will give an explicit Serre duality formula on the category AG of equivariant objects, if
|G| is invertible in k. We observe that AG is Hom-finite.

We assume that A has a Serre duality and the Serre functor S. We recall the notation
σg = σFg : FgS → SFg . Let (X, α) be a G-equivariant object. For each g ∈ G, we consider
the following isomorphism

α̃g = (σg)
−1
X ◦ S(αg) : S(X) −→ FgS(X).

Lemma 4.3 Keep the notation as above. Then the isomorphisms α̃g’s satisfy the identity
α̃gh = (εg,h)S(X) ◦Fg(α̃h)◦ α̃g . In other words, the pair (S(X), α̃) is a G-equivariant object
in A.
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Proof We have the following identity

(εg,h)S(X) ◦ Fg(α̃h) ◦ α̃g = (εg,h)S(X) ◦ Fg((σh)
−1
X ) ◦ FgS(αh) ◦ (σg)

−1
X ◦ S(αg)

= (εg,h)S(X) ◦ Fg((σh)
−1
X ) ◦ (σg)

−1
Fh(X) ◦ SFg(αh) ◦ S(αg)

= (σgh)
−1
X ◦ S((εg,h)X) ◦ SFg(αh) ◦ S(αg)

= (σgh)
−1
X ◦ S((εg,h)X ◦ Fg(αh) ◦ αg)

= (σgh)
−1
X ◦ S(αgh) = α̃gh,

where the second equality uses the naturalness of (σg)
−1, the third uses (4.1) and the fifth

uses (2.5).

We define a functor SG : AG → AG by sending (X, α) to (S(X), α̃), a mor-
phism f : (X, α) → (Y, β) to S(f ) : (S(X), α̃) → (S(Y ), β̃). Since S is a k-linear
auto-equivalence on A, it follows that SG is a k-linear auto-equivalence on AG.

We mention that the auto-equivalence SG on AG extends the Serre functor S̄ on A/G

via the comparison functor K in Subsection 2.3. More precisely, we have a commutative
diagram up to a natural isomorphism

Indeed, for an object X in A/G, we have the following natural isomorphism
⊕

h∈G

(σh)X : KS̄(X) = (
⊕

h∈G

FhS(X), ε(SX)) −→ SGK(X) = (
⊕

h∈G

SFh(X), ε̃(X)).

We use (4.1) to verify that it is indeed a morphism of equivariant objects.
Let (X, α) and (Y, β) be two objects in AG. Consider the following map

ψ : HomAG((Y, β), SG(X, α)) −→ DHomAG((X, α), (Y, β))

defined by ψ(f ′)(f ) = TrX(U(f ′ ◦ f )) for any morphism f : (X, α) → (Y, β) and
f ′ : (Y, β) → SG(X, α), where U : AG → A is the forgetful functor. We observe that
ψ(f ′)(f ) = φ−1

X,Y (U(f ′))(U(f )). It follows that ψ is functorial in both (X, α) and (Y, β).
The following fact is standard. For a kG-module V , we denote by DV = Homk(V , k)

the kG-module with the contragredient action.

Lemma 4.4 Assume that |G| is invertible in k. Then there is a k-linear isomorphism
(DV )G

∼−→ D(V G), sending a linear function on V to its restriction on the invariant
subspace V G.

The following result describes explicitly the Serre duality on AG.

Theorem 4.5 Let G be a finite group acting k-linearly on A. Assume that the order |G| of
G is invertible in k. Then the above map ψ is an isomorphism. Consequently, the category
AG has a Serre duality given by

ψ−1 : DHomAG((X, α), (Y, β))
∼−→ HomAG((Y, β), SG(X, α)),

where SG : AG → AG is the Serre functor.
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The trace function corresponding to the above Serre duality is given by

Tr(X,α) : HomAG((X, α), SG(X, α)) −→ k

such that Tr(X,α)(f ) = TrX(U(f )).

Proof We recall that associated to G-equivariant objects (X, α) and (Y, β), the G-action on
HomA(X, Y ) is given by g.f = β−1

g ◦Fg(f ) ◦αg . Then DHomA(X, Y ) has the contragre-
dient G-action. The G-action on HomA(Y, S(X)) associated to the G-equivariant objects
(Y, β) and SG(X, α) is given by g.f ′ = α̃−1

g ◦Fg(f
′)◦βg = S(α−1

g )◦ (σg)X ◦Fg(f
′)◦βg .

We claim that the isomorphism

φ−1 = φ−1
X,Y : HomA(Y, S(X)) −→ DHomA(X, Y )

is compatible with these G-actions. Recall that φ−1(f ′)(f ) = TrX(f ′ ◦ f ). Take g ∈ G.
There is a unique morphism f ′′ : X → Y with

Fg(f
′′) = βg ◦ f ◦ α−1

g . (4.4)

It follows from the definition that g.(f ′′) = f and thus g−1.f = f ′′. The above claim
amounts to the equation φ−1(g.f ′) = g.φ−1(f ′).

The following identity proves the claim:

φ−1(g.f ′)(f ) = TrX((g.f ′) ◦ f )

= TrX(S(α−1
g ) ◦ (σg)X ◦ Fg(f

′) ◦ βg ◦ f )

= TrFg(X)((σg)X ◦ Fg(f
′) ◦ βg ◦ f ◦ α−1

g )

= TrFgX((σg)X.Fg(f
′ ◦ f ′′))

= TrX(f ′ ◦ f ′′)
= φ−1(f ′)(g−1.f ) = (g.φ−1(f ′))(f ).

Here, for the third equality we use Lemma 3.1(1), for the fourth we use (4.4), and for the
fifth we apply (3.5) to Fg . The last equality follows from the definition of the contragredient
G-action.

It follows from the claim that the isomorphism φ−1 induces the left k-linear isomorphism

HomA(Y, S(X))G
∼−→ (DHomA(X, Y ))G

∼−→ D(HomA(X, Y )G),

where the right one uses Lemma 4.4. Applying (2.6), we have the desired isomorphism.
We observe that the above obtained isomorphism is identified with the map ψ , which is
bifunctorial. Then we are done.

4.3 The Periodic Serre functor

We will give a sufficient condition such that the functor SG is trivial, that is, isomorphic to
the identity functor on AG. We keep the notation as above. In particular, {Fg, εg,h| g, h ∈
G} is a k-linear G-action on A, and S denotes the Serre functor on A.

Setup A: There is a central element g ∈ G with Fg = S, the Serre functor on A. Moreover,
for each h ∈ G we have ε−1

g,h ◦ εh,g = σh.

Here, we recall that σh = σFh
: FhS → SFh denotes the commutator isomorphism for

Fh.
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We recall from Subsection 4.2 that the auto-equivalence SG on AG extends, via the
comparison functor, the Serre functor S̄ on the orbit category A/G. The following result
implies that in Setup A, the Serre functor S̄ is trivial. By Theorem 4.5, if the order |G| of G

is invertible in k, the Serre functor on AG is also trivial.

Proposition 4.6 Assume that we are in Setup A. Then the auto-equivalence SG on AG is
isomorphic to the identity functor.

Proof We construct an explicit isomorphism δ : IdAG → SG. For an object (X, α), we
define δ(X,α) = αg : (X, α) → (S(X), α̃). We claim that δ(X,α) is a morphism of equivariant
objects, that is, for each h ∈ G we have α̃h ◦ αg = Fh(αg) ◦ αh.

Indeed, we have the following identity

α̃h ◦ αg = σ−1
h ◦ S(αh) ◦ αg = ε−1

h,g ◦ εg,h ◦ S(αh) ◦ αg

= ε−1
h,g ◦ αgh = ε−1

h,g ◦ αhg = Fh(αg) ◦ αh,

where the second and fourth equalities use the assumptions in Setup A, and the third and
final ones use (2.5). The functorialness of δ in (X, α) is direct to verify.

We consider a special case of Proposition 4.6, which will justify a statement in [12]:
factoring out the Serre functor yields a category with a trivial Serre functor; compare [11,
Subsection 2.4].

We assume that A has a periodic Serre duality. Take any periodicity isomorphism
η : Sd → IdA for some d ≥ 1. By Corollary 3.8 η is compatible. Then we have the induced
Cd -action on A as in Example 2.2. Here, Cd = {e = g0, g, · · · , gd−1} denotes the cyclic
group of order d . Recall the notation A/S = A/Cd . If d is invertible in k, we have the
notation A//S = ACd ; see Example 2.5.

Corollary 4.7 Let A have a periodic Serre duality. Keep the notation as above. Then the
orbit category A/S has a trivial Serre functor. If in addition d is invertible in k, the category
A//S also has a trivial Serre functor.

Proof By the construction in Example 2.2, the conditions in Setup A are trivially satisfied.
Then the results follow from Proposition 4.6.

We now apply Corollary 4.7 to Example 3.12.

Example 4.8 Let A be a finite dimensional Frobenius algebra with its trace tr : A → k and
the Nakayama automorphism ν. We assume that νd = 1 for some d ≥ 1. This induces a Cd -
action on A by algebra automorphisms, which sends g to ν−1. We denote by B = ACd =⊕d−1

i=0 Augi the skew group algebra. It is well known that the algebra B is Frobenius. Indeed,
B is even symmetric with its trace tr′ : B → k given by tr′(augi ) = δi,1tr(a), where δ

denotes the Kronecker delta.
By Example 3.12, the Serre functor on A-proj is given by the twisting functor ν(−), thus

is periodic. By Corollary 4.7, the orbit category A-proj/ν(−) has a trivial Serre functor. We
identify the idempotent completion (A-proj/ν(−))� with B-proj; see Example 2.6. Then
using Lemma 3.4, we infer that B-proj has a trivial Serre functor. However, this is not
surprising, since the algebra B is symmetric.
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We observe that the given G-action on A yields a group homomorphism G → Autk(A),
sending g to the isomorphism class [Fg] of the auto-equivalence Fg . Then using the
canonical Autk(A)-action on Z(A)×, we obtain a G-action on Z(A)×.

We recall a general fact, which slightly generalizes the consideration in [9, Subsection
4.1.3]. Let ρ : G → Z(A)× be a crossed homomorphism respect to the above G-action on
Z(A)×. In other words, ρ(gh) = ρ(g)(g.ρ(h)) for any g, h ∈ G. Here, from the G-action,
we have Fgρ(h) = (g.ρ(h))Fg .

For an object (X, α) in AG, we define another G-equivariant object (X, ρ ⊗α) such that
(ρ ⊗ α)g = ρ(g)−1αg for each g ∈ G. Observe that it is indeed a G-equivariant object.
This gives rise to an automorphism on AG

ρ ⊗ −: AG −→ AG,

which sends (X, α) to (X, ρ ⊗ α) and acts on morphisms by the identity.
Let A have a periodic Serre duality. We take a periodicity isomorphism η : Sd → IdA

for some d ≥ 1. We recall from Subsection 3.3 the induced map κ : Autk(A) →
Z(A)×, which is a crossed homomorphism with respect to the canonical action. We hav
e a map

κ : G −→ Z(A)×, g �→ κ(g) = κ(Fg),

which is referred as the induced map of the G-action. Indeed, this map κ is a crossed
homomorphism with respect to the G-action on Z(A)×. By the above fact, we have the
automorphism κ ⊗ −: AG → AG.

Setup B: We assume that we are given the periodicity isomorphism η. We assume that
in the k-linear G-action, Fgκ(h) = κ(h)Fg for any g, h ∈ G. This condition is satis-
fied if each auto-equivalence Fg : A → A is Z(A)-linear, or if κ(h) lies in k× for each
h ∈ G.

Proposition 4.9 Let A have a periodic Serre duality with a periodicity isomorphism
η : Sd → IdA. Then we have an isomorphism of endofunctors on AG

(SG)d
∼−→ κ ⊗ −.

In particular, in Setup B the auto-equivalence SG on AG is periodic.

We observe that in Setup B, the induced map κ is indeed a group homomorphism, since
g.κ(h) = κ(h). In this case, the orbit category A/G has a periodic Serre duality; if in
addition |G| is invertible in k, Theorem 4.5 implies that AG also has a periodic Serre
duality.

Proof Let (X, α) be an arbitrary object in AG. We observe that (SG)d(X, α) =
(Sd(X), α̃d), where α̃d

g = (σ d
g )−1

X ◦ Sd(αg) for each g ∈ G. Here, σd
g = σd

Fg
: FgS

d →
SdFg is the d-th commutator isomorphism for Fg . On the other hand, (κ ⊗ −)(X, α) =
(X, κ ⊗ α), where (κ ⊗ α)g = κ(g)−1αg with κ(g) = κ(Fg). We claim that

ηX : (Sd(X), α̃d) −→ (X, κ ⊗ α)

is a morphism, and thus an isomorphism, in AG.

Author's personal copy



Equivariantization and Serre Duality I 561

It suffices to show that Fg(ηX) ◦ α̃d
g = (κ(g)−1αg) ◦ ηX . By (3.6) we have Fg(ηX) ◦

(σ d
Fg

)−1
X = (tFg )

−1 ◦ ηFg(X) = κ(g)−1ηFg(X). Then we have the first equality of the
following identity

Fg(ηX) ◦ α̃d
g = κ(g)−1ηFg(X) ◦ Sd(αg)

= ηFg(X) ◦ κ(g)−1Sd(αg)

= ηFg(X) ◦ Sd(κ(g)−1αg)

= (κ(g)−1αg) ◦ ηX.

Here, the second the last equalities uses the naturalness of κ(g)−1 and η, respectively. The
third equality uses Lemma 3.9. We are done with the claim.

We observe that the above isomorphism ηX is natural in (X, α). This proves the required
isomorphism of functors.

As mentioned above, in Setup B, the induced map κ : G → Z(A)× is a group homo-
morphism. Since the |G|-th power of the automorphism κ ⊗ − equals the identity functor,
the above isomorphism implies that SG is periodic.

5 Fractionally Calabi-Yau Categories

In this section, we show that under certain assumptions, the category of equivariant objects
in a fractionally Calabi-Yau triangulated category is also fractionally Calabi-Yau. We first
recall standard facts on triangle functors.

5.1 Triangle Functors and Actions

Let T and T ′ be two triangulated categories with the translation functors � and �′, respec-
tively. Recall that a triangle functor (F, ω) : T → T ′ consists of an additive functor
F : T → T ′ and a natural isomorphism ω : F� → �′F such that each exact trian-

gle X → Y → Z
a→ �(X) in T is sent to an exact triangle F(X) → F(Y ) →

F(Z)
ωX◦F(a)−→ �′F(X) in T ′. We call ω the connecting isomorphism for F . In the sequel,

if ω is understood, we write the triangle functor F instead of (F, ω).
The connecting isomorphism ω is trivial provided that F� = �′F and that ω is the

identity transformation on F�. For example, if T = T ′, then the identity functor IdT is
a triangle functor, which is understood as the pair (IdT , Id�). The translation functor � is
also a triangle functor, which is understood as the pair (�, (−1)Id�2). Here, the minus sign
arises because of the minus sign in the rotation axiom.

A natural transformation between two triangle functors (F, ω) and (F1, ω1) means a
natural transformation η : F → F1 satisfying ω1 ◦ η� = �′η ◦ ω. Let (F ′, ω′) : T ′ → T ′′
be another triangle functor. The composition of (F ′, ω′) with (F, ω), denoted by (F ′, ω′) ·
(F, ω), means the triangle functor (F ′F,ω′F ◦ F ′ω). This composition is also denoted by
F ′F for simplicity. For example, for each d ≥ 1, (�, −Id�2)d = (�d, (−1)d Id�d+1).

Lemma 5.1 Let (F, ω), (F1, ω1) and (F2, ω2) be triangle endofunctors on T . Assume that
η : F1 → F2 is a natural transformation of triangle functors. Then both Fη : FF1 → FF2
and ηF : F1F → F2F are natural transformations of triangle functors.
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Proof It is routine to verify that Fη and ηF respect the connecting isomorphisms for the
compositions FFi and FiF , respectively.

Recall that a triangle equivalence means a triangle functor (F, ω) with F an equivalence
of categories. In this case, the quasi-inverse F−1 is also a triangle functor such that the unit
and the counit are isomorphisms of triangle functors.

Recall that Z(T ) denotes the center of T , which consists of natural transformations
λ : IdT → IdT . We denote by Z�(T ) its subring formed by natural transformations
λ : IdT → IdT between triangle functors, or equivalently, by those λ satisfying λ� = �λ.

Lemma 5.2 Let (F, ω) : T → T be a triangle auto-equivalence. Then any natural trans-
formation η : (F, ω) → (F, ω) is of the form λF = Fλ′ for some uniquely determined
λ, λ′ ∈ Z�(T ).

Proof The existence of λ and λ′ in Z(T ) is claimed in Lemma 3.10. We apply �η ◦ ω =
ω ◦ η� to have �λF ◦ ω = ω ◦ λF�, which equals λ�F ◦ ω by the naturalness of λ. It
follows that �λ = λ�, that is, λ lies in Z�(T ). Similarly, we have λ′ ∈ Z�(T ).

For a triangle endofunctor (F, ω) on T , we define the natural isomorphism ωd : F�d →
�dF as follows. We set ω0 = IdF and ω1 = ω. For d ≥ 2, we define ωd = �ωd−1◦ω�d−1.

Lemma 5.3 The above defined ωd is an isomorphism of triangle functors

ωd : (F, ω) · (�,−Id�2)
d ∼−→ (�,−Id�2)

d · (F, ω).

Proof The statement follows from the fact that ωd+1 = �dω ◦ ωd�, which will be proved
by induction on d . By the definition of ωd , the right hand side equals �dω ◦ �ωd−1� ◦
ω�d = �(�d−1ω ◦ ωd−1�) ◦ ω�d , which equals by induction �ωd ◦ ω�d = ωd+1.

Let T be a triangulated category and G a finite group. A triangle G-action
{(Fg, ωg), εg,h| g, h ∈ G} consists of triangle auto-equivalences (Fg, ωg) on T and natural
isomorphisms εg,h : FgFh → Fgh of triangle functors subject to the condition (2.1). Since
the isomorphism εg,h respects the connecting isomorphisms, we have the condition

ωgh ◦ εg,h� = �εg,h ◦ (ωgFh ◦ Fgωh). (5.1)

We consider the category T G of G-equivariant objects in T . The translation functor
� extends to an auto-equivalence �G : T G → T G as follows: for a given equivariant
object (X, α), we set �G(X, α) = (�(X),�(α)), where for each g ∈ G the isomorphism
�(α)g : �(X) → Fg�(X) equals (ωg)

−1
X ◦ �(αg). The pair (�(X),�(α)) is indeed a

G-equivariant object by using (5.1). The functor �G acts on morphisms by �.
The following basic result is essentially due to [2, Corollary 4.3], which is made explicit

in [7, Lemma 4.4]. By a pre-triangulated category, we mean a triangulated category which
might not satisfy the octahedral axiom.

Lemma 5.4 Assume that the (pre-)triangulated category T has a triangle G-action as
above. Suppose that T is idempotent-complete and that |G| is invertible in T . Then
T G is a pre-triangulated category with �G its translation functor. Moreover, a triangle
(X, α) → (Y, β) → (Z, γ ) → �G(X, α) is exact if and only if the corresponding triangle
of underlying objects is exact in T . �
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5.2 The Fractionally Calabi-Yau Property

Let k be a field, and let T be a Hom-finite k-linear triangulated category. Assume that T
has a Serre duality

φX,Y : DHomT (X, Y )
∼−→ HomT (Y, S(X))

with S its Serre functor. Recall that σ� : �S → S� denotes the commutator isomorphism
for the translation functor �. Set s = −(σ�)−1. Then we have

TrX(f ) = −Tr�(X)((sX)−1 ◦ �(f )) (5.2)

for each object X and f : X → S(X). By [3, Theorem A.4.4], the pair (S, s) is a triangle
functor. In other words, s is a connecting isomorphism for S.

We observe the following triangle version of Lemma 3.3.

Lemma 5.5 We assume that T has another Serre duality φ′
X,Y : DHomT (X, Y ) →

HomT (Y, S′(X)). Set s′ = −(σ ′
�)−1, where σ ′

� : �S′ → S′� denotes the commutator
isomorphism. Then the unique natural isomorphism δ in Lemma 3.3 is an isomorphism
δ : (S, s) → (S′, s′) of triangle functors.

Proof We observe that the required statement is equivalent to δ� ◦ σ� = σ ′
� ◦ �δ. Indeed,

we will show that δ�(X) ◦ (σ�)X = (σ ′
�)X ◦ �(δX). By Lemma 3.1(3), it suffices to prove

Tr′�(X)(δ�(X) ◦ (σ�)X ◦ f ) = Tr′�(X)((σ
′
�)X ◦ �(δX) ◦ f ) (5.3)

for each morphism f : �(X) → �S(X). We may assume that f = �(f ′) for some
morphism f ′ : X → S(X).

Recall the identity on the two trace functions Tr and Tr′ in Lemma 3.3. Then the left
hand side of (5.3) equals Tr�(X)((σ�)X ◦ �(f ′)), which equals TrX(f ′) by (3.5). A similar
argument shows that the right hand side also equals TrX(f ′). Then we are done.

Lemma 5.6 Let (F, ω) be a triangle auto-equivalence on T . For each d ≥ 1, the d-th
commutator isomorphism σd

F : FSd → SdF for F is an isomorphism of triangle functors.
In other words, we have the following isomorphism of triangle functors

σd
F : (F, ω) · (S, s)d

∼−→ (S, s)d · (F, ω).

Proof We only prove the result for d = 1. The general case follows from the definition of
σd

F and Lemma 5.1. The required statement is equivalent to sF ◦Sω◦σF � = �σF ◦ωS◦Fs.
By the definition of s, we are done by the following identity

Sω ◦ σF � ◦ Fσ� = Sω ◦ σF�

= σ�F ◦ ωS

= σ�F ◦ �σF ◦ ωS.

Here, the first and last equalities use Lemma 3.6(1), and the second uses Lemma 3.6(2) for
the isomorphism ω.

Let m ≥ 0 and d ≥ 1. The triangulated category T is fractionally m
d

-Calabi-Yau
provided that there is a natural isomorphism

η : (S, s)d −→ (�, (−1)Id�2)
m (5.4)
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of triangle functors. We mention that the integers m and d are not uniquely determined.
A fractionally m

1 -Calabi-Yau category is said to be m-Calabi-Yau. These notions are also
applied to pre-triangulated categories.

We assume now that T is fractionally m
d

-Calabi-Yau with the isomorphism η. Let
(F, ω) : T → T be a k-linear triangle auto-equivalence. There is a unique κ = κ(F, ω) in
Z�(T ) satisfying the following identity

ηF ◦ σd
F = κ�mF ◦ ωm ◦ Fη. (5.5)

Indeed, by Lemmas 5.1, 5.3 and 5.6, the composition ηF ◦ σd
F ◦ (ωm ◦ Fη)−1 is an

automorphism of the triangle functor (�, (−1)Id�2)m · (F, ω). Then we apply Lemma 5.2.
We claim that for any isomorphism θ : (F, ω) → (F ′, ω′) of triangle auto-equivalences,

we have κ(F, ω) = κ(F ′, ω′). Then we have a well-defined map

κ : Aut�k (T ) −→ Z�(T )×, [(F, ω)] �→ κ(F, ω),

called the induced map of the isomorphism η. Here, we denote by Aut�k (T ) the group of
isomorphism classes [(F, ω)] of k-linear triangle auto-equivalences (F, ω) on T , whose
multiplication is given by the composition of triangle functors.

Indeed, by Proposition 3.17(2) we have �mθ ◦ ηF ◦ σd
F = ηF ′ ◦ σd

F ′ ◦ θSd . By (5.5) this
equals �mθ ◦ κ(F, ω)�mF ◦ ωm ◦ Fη = κ(F, ω)�mF ′ ◦ (�mθ ◦ ωm ◦ Fη). We observe
that �mθ ◦ ωm = ω′m ◦ θ�m, which is a consequence of the condition �θ ◦ ω = ω′ ◦ θ�.
Then we have �mθ ◦ωm ◦Fη = ω′m ◦ θ�m ◦Fη = ω′m ◦F ′η ◦ θSd , where the naturalness
of θ is used. We combine these identities to have

ηF ′ ◦ σd
F ′ ◦ θSd = κ(F, ω)�mF ′ ◦ ω′m ◦ F ′η ◦ θSd .

Since θ is an isomorphism, we infer that ηF ′ ◦ σd
F ′ = κ(F, ω)�mF ′ ◦ ω′m ◦ F ′η. In view

of (5.5) for (F ′, ω′), we have κ(F, ω) = κ(F ′, ω′).
Recall the canonical Aut�k (T )-action on Z�(T )×: for a triangle auto-equivalence (F, ω)

on T and λ ∈ Z�(T )×, by Lemmas 5.1 and 5.2 there is a unique λ′ ∈ Z�(T )× satisfying
Fλ = λ′F . We put [(F, ω)].λ = λ′. This is a well-defined group action.

We observe that the above induced map κ is a crossed homomorphism with respect to
the canonical action, which is a triangle analogue of Proposition 3.11, with a similar proof.
Here, we use the following fact: for a given composition (F, ω) = (F1, ω1) · (F2, ω2) of
triangle functors, we have ωm = ωm

1 F2 ◦ F1ω
m
2 .

We now consider a k-linear triangle G-action {(Fg, ωg), εg,h| g, h ∈ G} on T and the
category T G of equivariant objects. We observe a group homomorphism G → Aut�k (T ),
sending g to the isomorphism class [(Fg, ωg)] of the triangle auto-equivalence (Fg, ωg).
Therefore, we have a G-action on Z�(T )×.

We assume that T is fractionally m
d

-Calabi-Yau with the isomorphism η. Then we have
a map

κ : G −→ Z�(T )×, g �→ κ(g) = κ(Fg, ωg),

which is called the induced map of the triangle G-action. We observe that κ is a crossed
homomorphism with respect to the G-action on Z�(T )×. Then it yields the automorphism
κ ⊗ −: T G → T G; compare Subsection 4.3. Moreover, since each κ(g) lies in Z�(T ),
the automorphism κ ⊗ − commutes with the translation functor �G. In other words, κ ⊗ −
is a triangle automorphism with the trivial connecting isomorphism, provided that |G| is
invertible in k and thus T G is pre-triangulated.

Setup C: Assume that we are given the isomorphism η in (5.4). In the triangle G-action
above, we assume that Fgκ(h) = κ(h)Fg for any g, h ∈ G. This condition holds if each Fg

is Z�(T ) -linear, or if each κ(h) lies in k×.
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We have the following triangle version of Proposition 4.9.

Proposition 5.7 Let T be a fractionally m
d

-Calabi-Yau (pre-)triangulated category. Assume
that |G| is invertible in k. Then we have an isomorphism of triangle functors

(SG, sG)d
∼−→ κ ⊗ − · (�G, (−1)Id(�G)2)

m.

In particular, in Setup C the pre-triangulated category T G is fractionally m|G|
d|G| -Calabi-Yau.

Let us explain the notation sG. Recall from Theorem 4.5 and Lemma 5.4 that SG is the
Serre functor on the pre-triangulated category T G. Then we have

sG = −(σG)�G : SG�G −→ �GSG,

where (σG)�G denotes the commutator isomorphism for the translation functor �G with
respect to the Serre functor SG. By [3, Theorem A.4.4] the pair (SG, sG) is a triangle
functor.

Lemma 5.8 Keep the notation as above. For a G-equivariant object (X, α), we have
sG
(X,α) = sX .

Proof Write sG
(X,α) = t . Then it is uniquely determined by

Tr(X,α)(f ) = −Tr�G(X,α)(t
−1 ◦ �G(f ))

for any morphism f : (X, α) → SG(X, α).
We claim that sX : SG�G(X, α) → �GSG(X, α) is a morphism, and thus an iso-

morphism. Recall that the trace function on T G is given by the composition of the
forgetful functor with the trace function on T . In view of (5.2) we have Tr(X,α)(f ) =
−Tr�G(X,α)((sX)−1 ◦�G(f )) for each f : (X, α) → SG(X, α). Then by Lemma 3.1(3) we
infer that t = sX .

For the claim, we observe SG�G(X, α) = (S�(X), β) with βg = (σ−1
g )�(X) ◦

S((ωg)
−1
X )◦S�(αg) for each g ∈ G. Here, σg = σFg denotes the commutator isomorphism

for Fg . We have �GSG(X, α) = (�S(X), γ ) with γg = (ωg)
−1
�(X) ◦ �((σg)

−1
X ) ◦ �S(αg).

The above claim is equivalent to γg◦sX = Fg(sX)◦βg for each g ∈ G. Recall that s = −σ� .
We infer that the desired identity follows from the following one on natural transformations

Sωg ◦ σg� ◦ Fgσ� = σ�Fg ◦ �σg ◦ ωgS. (5.6)

We apply Lemma 3.6(1) to have σg� ◦ Fgσ� = σFg� and σ�Fg ◦ �σg = σ�Fg . Then (5.6)
follows from Lemma 3.6(2) applied to the isomorphism ωg .

We now prove Proposition 5.7.

Proof We observe that in Setup C, the induced map κ : G → Z(T )× is a group homo-
morphism, since [(Fg, ωg)].κ(h) = κ(h). Then the |G|-th power of the automorphism
κ ⊗ − equals the identity functor. Since the two triangle auto-equivalences κ ⊗ − and
(�G, (−1)Id(�G)2) commute, the last statement follows immediately.

For a G-equivariant object (X, α), we have (SG)d(X, α) = (Sd(X), α̃d), where α̃d
g =

(σ d
g )−1

X ◦ Sd(αg) for each g ∈ G. Here, σd
g = σd

Fg
: FgS

d → SdFg is the d-th commutator
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isomorphism for Fg . On the other hand, (κ ⊗ −) (�G)m(X, α) = (�m(X), κ ⊗ �m(α)),
where (κ ⊗ �m(α))g = κ(g)−1(ωm

g )−1
X ◦ �m(αg).

We claim that

η′
(X,α) = ηX : (Sd(X), α̃d) −→ (�m(X), κ ⊗ �m(α))

is a morphism, and thus an isomorphism, in T G. Indeed, it suffices to show that Fg(ηX) ◦
α̃d

g = (κ(g)−1(ωm
g )−1

X ◦ �m(αg)) ◦ ηX , which follows immediately from (5.5) and the
naturalness of η.

The naturalness of η′ in (X, α) is obvious. In other words, we have an isomorphism
η′ : (SG)d → (κ ⊗ −) (�G)m of functors.

By the isomorphism η of triangle functors in (5.4), we have �η ◦ sd = (−1)mη�. In
view of Lemma 5.8, we have (sG)d(X,α) = sd

X . It follows that �Gη′ ◦ (sG)d = (−1)mη′�G.
This means that η′ is a natural transformation of triangle functors. We are done with the
proof.

5.3 A Corollary and an Example

Let A be a Hom-finite k-linear abelian category. Let d ≥ 1 and m ≥ 0. The category A
is called fractionally m

d
-Calabi-Yau provided that its bounded derived category Db(A) is

Hom-finite and fractionally m
d

-Calabi-Yau; compare [16].
Let G be a finite group. Assume that there is a k-linear G-action {Fg, εg,h| g, h ∈ G} on

A. Then the category AG of G-equivariant objects in A is abelian. Moreover, a sequence
(X, α) → (Y, β) → (Z, γ ) of equivariant objects is exact if and only if the corresponding
sequence X → Y → Z of underlying objects is exact in A.

Recall that any exact endofunctor F : A → A extends to a triangle functor
Db(F ) : Db(A) → Db(A), which has a trivial connecting isomorphism. Any natural trans-
formation ε : F → F ′ between exact endofunctors extends to a natural transformation
Db(ε) : Db(F ) → Db(F ′) of triangle functors. Consequently, the above G-action on A
extends to a k-linear triangle G-action {Db(Fg), Db(εg,h)| g, h ∈ G} on Db(A). We then
have the category Db(A)G of G-equivariant objects.

Corollary 5.9 Keep the notation as above. Assume that A is fractionally m
d

-Calabi-Yau.
Assume further that |G| is invertible in k and that the above triangle G-action on Db(A)

satisfies Setup C. Then AG is fractionally m|G|
d|G| -Calabi-Yau.

Proof We recall from [7, Proposition 4.5] that there is a triangle equivalence between
Db(AG) and Db(A)G. We mention that by [7, Remark 4.6(1)] the quoted proposition holds
for non-strict actions. Then the statement follows from Proposition 5.7.

We end this paper with our motivating example; see [5, 10, 12].

Example 5.10 Let k be a field whose characteristic is not 2, and let λ ∈ k which is not 0 or
1. Denote by C2 = {e = g0, g} the cyclic group of order 2.

We denote by X the weighted projective line in the sense of [10] with weight sequence
(2, 2, 2, 2) and parameter sequence (∞, 0, 1, λ). We denote by E the projective plane curve
defined by the equation y2z = x(x − z)(x − λz), which is a smooth elliptic curve. Recall
that the category coh-E of coherent sheaves on E is 1-Calabi-Yau.
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The category coh-X of coherent sheaves on X is fractionally 2
2 -Calabi-Yau, and is not 1-

Calabi-Yau. Indeed, the Serre functor is induced from the degree-shift functor given by the
dualizing element.

We observe an automorphism σ of order 2 on E such that σ(x) = x, σ(y) = −y

and σ(z) = z. This gives rise to a strict k-linear C2-action such that Fg = σ∗, the direct
image functor, on coh-E. We may apply Corollary 5.9. Here, we recall that Z�(Db(coh-E))

is isomorphic to k, and then we are in Setup C. It follows that (coh-E)C2 is fractionally
2
2 -Calabi-Yau. However, this is not surprising, since we have from [10, Example 5.8] and
[5, Theorem 7.7] the equivalence

(coh-E)C2 ∼−→ coh-X.

It follows that (coh-E)C2 is not 1-Calabi-Yau. We identify Db((coh-E)C2) with Db(coh-E)C2

by [7, Proposition 4.5]. By Proposition 5.7 applied to Db(coh-E), this implies that the
induced map κ : C2 → k× is non-trivial, that is, κ(g) = −1. Then Proposition 5.7 allows
us to describe explicitly the Serre functor on Db((coh-E)C2), where d = m = 1.
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