Equivariantization and weighted projective lines

Xiao-Wu Chen, USTC

2018 Workshop on Representation Theory of Algebras Xiamen, 2018.5.4-5.7

Our goals:

Our goals:

• some results in [Lenzing, 1986]; [Geigle-Lenzing 1987/1991]

Our goals:

- some results in [Lenzing, 1986]; [Geigle-Lenzing 1987/1991]
- group actions related to weighted projective lines

Theorem (Beilinson 1978, a very special case)

There is a derived equivalence

$$\mathbf{D}^b((\mathbb{C}\cdot \Rightarrow \cdot)\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh-}\mathbb{P}^1).$$

Theorem (Beilinson 1978, a very special case)

There is a derived equivalence

$$\mathbf{D}^b((\mathbb{C}\cdot
ightlefteq \cdot)\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh-}\mathbb{P}^1).$$

ullet the original version: derived equivalence between the Beilinson algebra and \mathbb{P}^n

Theorem (Beilinson 1978, a very special case)

There is a derived equivalence

$$\mathbf{D}^b((\mathbb{C}\cdot \Longrightarrow \cdot)\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh-}\mathbb{P}^1).$$

- ullet the original version: derived equivalence between the Beilinson algebra and \mathbb{P}^n
- derived equivalence between the *n*-Kronecker quiver and the graded algebra $\mathbb{C}\langle x_1,\cdots,x_n\rangle/(\sum_i x_i^2)$; [Lenzing, 1986; Minamoto 2008].

Polyhedral groups

• $\operatorname{Aut}(\mathbb{P}^1) \simeq PGL(2,\mathbb{C}) = SL(2,\mathbb{C})/(\pm 1)$

Polyhedral groups

- $\operatorname{Aut}(\mathbb{P}^1) \simeq \operatorname{PGL}(2,\mathbb{C}) = \operatorname{SL}(2,\mathbb{C})/(\pm 1)$
- Finite subgroups $G \subseteq PGL(2,\mathbb{C})$ are known as polyhedral groups:

$$G_{p,q,r} = \langle a,b,c \mid a^p = b^q = c^r = abc = 1 \rangle$$

where
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$$
.

Polyhedral groups

- $\operatorname{Aut}(\mathbb{P}^1) \simeq PGL(2,\mathbb{C}) = SL(2,\mathbb{C})/(\pm 1)$
- Finite subgroups $G \subseteq PGL(2,\mathbb{C})$ are known as polyhedral groups:

$$G_{p,q,r} = \langle a, b, c \mid a^p = b^q = c^r = abc = 1 \rangle$$

where $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$.

ullet Their preimage $ilde{G}$ are binary polyhedral groups

$$\tilde{G}_{p,q,r} = \langle a,b,c \mid a^p = b^q = c^r = abc \rangle$$

The central element $Z=a^p$ has order exactly two in \tilde{G} ; [Coxeter 1940]

Let G be a finite group acting on an abelian category A.

Let G be a finite group acting on an abelian category A.

• The *G*-equivariant objects (X, α) , where $\alpha_g : X \to {}^g X$ are compatible isomorphisms.

Let G be a finite group acting on an abelian category A.

- The *G*-equivariant objects (X, α) , where $\alpha_g : X \to {}^g X$ are compatible isomorphisms.
- ullet The abelian category $\mathcal{A}^{\mathcal{G}}$ of \mathcal{G} -equivariant objects.

Let G be a finite group acting on an abelian category A.

- The *G*-equivariant objects (X, α) , where $\alpha_g : X \to {}^g X$ are compatible isomorphisms.
- ullet The abelian category $\mathcal{A}^{\mathcal{G}}$ of \mathcal{G} -equivariant objects.
- Example:

Let G be a finite group acting on an abelian category A.

- The *G*-equivariant objects (X, α) , where $\alpha_g : X \to {}^g X$ are compatible isomorphisms.
- ullet The abelian category $\mathcal{A}^{\mathcal{G}}$ of \mathcal{G} -equivariant objects.
- ullet Example: if G acts on an algebra A, then

$$(A\operatorname{-mod})^G = (A * G)\operatorname{-mod}.$$

• Example:

Let G be a finite group acting on an abelian category A.

- The *G*-equivariant objects (X, α) , where $\alpha_g : X \to {}^g X$ are compatible isomorphisms.
- ullet The abelian category $\mathcal{A}^{\mathcal{G}}$ of \mathcal{G} -equivariant objects.
- Example: if G acts on an algebra A, then

$$(A\operatorname{-mod})^G = (A*G)\operatorname{-mod}.$$

Example: if G acts on the homogeneous coordinate algebra A
 of X, then

$$\cosh^{\mathsf{G}} - \mathbb{X} = \operatorname{qgr-}(A * \mathsf{G}).$$

Theorem

Let $G \subseteq PGL(2,\mathbb{C})$ and $\Delta = \mathbb{T}_{p,q,r}$ the extended Dynkin quiver of the bipartite orientation. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh}^G\operatorname{-}\mathbb{P}^1).$$

Theorem

Let $G \subseteq PGL(2,\mathbb{C})$ and $\Delta = \mathbb{T}_{p,q,r}$ the extended Dynkin quiver of the bipartite orientation. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh}^G\operatorname{-}\mathbb{P}^1).$$

• By [McKay, 1981], there is a Morita equivalence

$$\mathbb{C}\Delta \overset{\operatorname{Morita}}{\sim} (\mathbb{C}\cdot
ightrightarrows \cdot) * G.$$

Theorem

Let $G \subseteq PGL(2,\mathbb{C})$ and $\Delta = \mathbb{T}_{p,q,r}$ the extended Dynkin quiver of the bipartite orientation. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh}^G\operatorname{-}\mathbb{P}^1).$$

• By [McKay, 1981], there is a Morita equivalence

$$\mathbb{C}\Delta \overset{ ext{Morita}}{\sim} (\mathbb{C}\cdot
ightrightarrows \cdot) * G.$$

• By the very definition, the quotient stack $[\mathbb{P}^1/G]$ appears:

$$\operatorname{coh}^G\operatorname{-}\!\mathbb{P}^1=\operatorname{coh-}\![\mathbb{P}^1/G].$$

Theorem

Let $G \subseteq PGL(2,\mathbb{C})$ and $\Delta = \mathbb{T}_{p,q,r}$ the extended Dynkin quiver of the bipartite orientation. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh}^G\operatorname{-}\mathbb{P}^1).$$

• By [McKay, 1981], there is a Morita equivalence

$$\mathbb{C}\Delta \overset{ ext{Morita}}{\sim} (\mathbb{C}\cdot
ightrightarrows \cdot) * G.$$

• By the very definition, the quotient stack $[\mathbb{P}^1/G]$ appears:

$$\operatorname{coh}^G\operatorname{-}\!\mathbb{P}^1=\operatorname{coh-}\![\mathbb{P}^1/G].$$

Lenzing's theorem

Lenzing's theorem

Theorem (Lenzing 1986)

Let Δ be a quiver of infinite representation type. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{gqr-}\Gamma_\Delta),$$

where Γ_{Δ} is the preprojective algebra.

Lenzing's theorem

Theorem (Lenzing 1986)

Let Δ be a quiver of infinite representation type. Then there is a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{gqr-}\Gamma_\Delta),$$

where Γ_{Δ} is the preprojective algebra.

 For the tame case, by [Reiten-Van den Bergh 1989], there is a graded Morita equivalence

$$\Gamma_{\Delta} \stackrel{\text{Morita}}{\sim} \mathbb{C}[x,y] * G.$$

 Lenzing's theorem implies the previous equivalence, up to subtle gradings on Γ_Λ!

• $R = \mathbb{C}[x, y]$ and R^G its invariant subalgebra

- ullet $R=\mathbb{C}[x,y]$ and R^G its invariant subalgebra
- $R^G = e(R*G)e$, where $e = \frac{1}{|G|} \sum_{g \in G} g$ is an idempotent

- $R = \mathbb{C}[x, y]$ and R^G its invariant subalgebra
- ullet $R^G=e(R*G)e$, where $e=rac{1}{|G|}\sum_{g\in G}g$ is an idempotent

Table 1: [Klein 1884]: $G = \tilde{G}_{p,q,r}$ and $R^G = \mathbb{C}[x,y,z]/(f)$

the Dynkin types (p, q, r)	the singularity f
(1, n, n)	$z^n + xy$
(2,2,n)	$z^2 + x(y^2 + x^n)$
(2,3,3)	$z^2 + x^4 + y^3$
(2, 3, 4)	$z^2 + x(y^3 + x^2)$
(2,3,5)	$z^2 + x^3 + y^5$

• $R^G \subseteq R^{\mathrm{rel},G} = R^{[G,G]}$: a homogeneous f is a relative invariant if $g.f = \chi(g)f$ for a character χ of G. Hence, \widehat{G} -graded!

- $R^G \subseteq R^{\mathrm{rel},G} = R^{[G,G]}$: a homogeneous f is a relative invariant if $g.f = \chi(g)f$ for a character χ of G. Hence, \widehat{G} -graded!
- Each G-orbit on \mathbb{P}^1 yields a relative invariant.

- $R^G \subseteq R^{\mathrm{rel},G} = R^{[G,G]}$: a homogeneous f is a relative invariant if $g.f = \chi(g)f$ for a character χ of G. Hence, \widehat{G} -graded!
- Each G-orbit on \mathbb{P}^1 yields a relative invariant.
- Exceptional G-orbits correspond to Grundformen, which generate R^{rel,G}.

- $R^G \subseteq R^{\mathrm{rel},G} = R^{[G,G]}$: a homogeneous f is a relative invariant if $g.f = \chi(g)f$ for a character χ of G. Hence, \widehat{G} -graded!
- Each G-orbit on \mathbb{P}^1 yields a relative invariant.
- Exceptional G-orbits correspond to Grundformen, which generate $R^{\mathrm{rel},G}$.

Theorem (Klein 1884)

Set $G = \widetilde{G}_{p,q,r}$. Then the relative invariant subalgebra $R^{\mathrm{rel},G}$ is isomorphic to $\mathbb{C}[x,y,z]/(x^p+y^q+z^r)$, which is $\mathbb{Z}\times\widehat{G}$ -graded!

Weighted projective lines: three weighted points

Weighted projective lines: three weighted points

• for $p, q, r \ge 1$, the rank-one abelian group $\mathbb{L} = \langle \vec{x}, \vec{y}, \vec{z} \mid p\vec{x} = q\vec{y} = r\vec{z} := \vec{c} \rangle.$

Weighted projective lines: three weighted points

- for $p, q, r \ge 1$, the rank-one abelian group $\mathbb{L} = \langle \vec{x}, \vec{y}, \vec{z} \mid p\vec{x} = q\vec{y} = r\vec{z} := \vec{c} \rangle.$
- the homogeneous coordinate algebra

$$S = \mathbb{C}[x, y, z]/(x^p + y^q + z^r)$$
, \mathbb{L} -graded by $\deg(x) = \vec{x}$...

Weighted projective lines: three weighted points

- for $p, q, r \ge 1$, the rank-one abelian group $\mathbb{L} = \langle \vec{x}, \vec{y}, \vec{z} \mid p\vec{x} = q\vec{y} = r\vec{z} := \vec{c} \rangle.$
- the homogeneous coordinate algebra $S = \mathbb{C}[x, y, z]/(x^p + y^q + z^r)$, \mathbb{L} -graded by $\deg(x) = \vec{x}$...
- the weighted projective line $\mathbb{X}(p,q,r)$ in [Geigle-Lenzing 1987]: $\operatorname{coh-}\mathbb{X} = \operatorname{qgr}^{\mathbb{L}}$ -S

Weighted projective lines: three weighted points

- for $p, q, r \ge 1$, the rank-one abelian group $\mathbb{L} = \langle \vec{x}, \vec{y}, \vec{z} \mid p\vec{x} = q\vec{y} = r\vec{z} := \vec{c} \rangle.$
- the homogeneous coordinate algebra $S = \mathbb{C}[x, y, z]/(x^p + y^q + z^r)$, \mathbb{L} -graded by $\deg(x) = \vec{x}$...
- the weighted projective line $\mathbb{X}(p,q,r)$ in [Geigle-Lenzing 1987]: $\operatorname{coh-}\mathbb{X} = \operatorname{qgr}^{\mathbb{L}}$ -S
- derived equivalent to Ringel's canonical algebra [Ringel 1984]

For a Dynkin type (p, q, r), we have the domestic weighted projective line.

For a Dynkin type (p, q, r), we have the domestic weighted projective line.

Theorem (Geigle-Lenzing 1987/1991)

For a Dynkin type (p,q,r) and $G=G_{p,q,r}$, we have an equivalence

$$\operatorname{coh}^{G}$$
- $\mathbb{P}^{1} \xrightarrow{\sim} \operatorname{coh-}\mathbb{X}$.

For a Dynkin type (p, q, r), we have the domestic weighted projective line.

Theorem (Geigle-Lenzing 1987/1991)

For a Dynkin type (p, q, r) and $G = G_{p,q,r}$, we have an equivalence

$$\operatorname{coh}^{\mathsf{G}}$$
- $\mathbb{P}^1 \xrightarrow{\sim} \operatorname{coh}$ - \mathbb{X} .

Therefore, we have a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh-}\mathbb{X}).$$

For a Dynkin type (p, q, r), we have the domestic weighted projective line.

Theorem (Geigle-Lenzing 1987/1991)

For a Dynkin type (p, q, r) and $G = G_{p,q,r}$, we have an equivalence

$$\mathrm{coh}^G\text{-}\mathbb{P}^1\stackrel{\sim}{\longrightarrow}\mathrm{coh}\text{-}\mathbb{X}.$$

Therefore, we have a derived equivalence

$$\mathbf{D}^b(\mathbb{C}\Delta\operatorname{-mod}) \stackrel{\sim}{\longrightarrow} \mathbf{D}^b(\operatorname{coh-}\mathbb{X}).$$

Um, the key steps are

• G acts a graded algebra A, and $H \subseteq G$ a normal subgroup with G/H abelian;

- G acts a graded algebra A, and H ⊆ G a normal subgroup with G/H abelian;
- $e_G = \frac{1}{|G|} \sum_{g \in G} g : \operatorname{qgr-}A * G \to \operatorname{qgr-}A^G$ in general is a quotient functor; it is an equivalence if and only if $A * G/(e_G)$ is finite dimensional

- G acts a graded algebra A, and H ⊆ G a normal subgroup with G/H abelian;
- $e_G = \frac{1}{|G|} \sum_{g \in G} g : \operatorname{qgr-}A * G \to \operatorname{qgr-}A^G$ in general is a quotient functor; it is an equivalence if and only if $A * G/(e_G)$ is finite dimensional
- The invariant subalgebra A^H is graded by $\widehat{G/H}$.

- G acts a graded algebra A, and H ⊆ G a normal subgroup with G/H abelian;
- $e_G = \frac{1}{|G|} \sum_{g \in G} g : \operatorname{qgr-}A * G \to \operatorname{qgr-}A^G$ in general is a quotient functor; it is an equivalence if and only if $A * G/(e_G)$ is finite dimensional
- The invariant subalgebra A^H is graded by $\widehat{G/H}$.

Theorem

The functor $e_G: \operatorname{qgr-}A * G \to \operatorname{qgr-}A^G$ is an equivalence if and only if both $e_H: \operatorname{qgr-}A * H \to \operatorname{qgr-}A^H$ and the natural functor $\operatorname{qgr}^{\mathbb{Z} \times \widehat{G/H}} - A^H \to \operatorname{qgr-}A^G$ are equivalences.

