Comodules of $U_q(sl_2)$ and modules of $SL_q(2)$ via quiver methods

Xiao-Wu Chena, Pu Zhangb,\,*

a Department of Mathematics, University of Science and Technology of China, Hefei 230026, Anhui, PR China
b Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China

Received 27 May 2005; received in revised form 28 April 2006; accepted 22 March 2007
Available online 5 May 2007
Communicated by I. Reiten

Dedicated to Professor Fred Van Oystaeyen on the occasion of his sixtieth birthday

Abstract

The aim of this paper is to construct comodules of $U_q(sl_2)$ and modules of $SL_q(2)$ via quiver methods, where q is not a root of unity.

By embedding $U_q(sl_2)$ into the path coalgebra kD^c, where D is the Gabriel quiver of $U_q(sl_2)$ as a coalgebra, we obtain a basis of $U_q(sl_2)$ in terms of combinations of paths of the quiver D; this special basis enables us to describe the category of $U_q(sl_2)$-comodules by certain representations of D; and this description further permits us to construct a class of modules of $SL_q(2)$, from certain representations of D, via the duality between $U_q(sl_2)$ and $SL_q(2)$.

© 2007 Elsevier B.V. All rights reserved.

MSC: 81R50; 16W30; 16G20

1. Introduction

Drinfeld [14] has established a duality, between the quantized enveloping algebra $U_q(sl_2)$ and the quantum deformation $SL_q(2)$ of the regular function ring on SL_2 (see [17], VII). This has been extended between $U_q(sl_n)$ and $SL_q(n)$ by Takeuchi [30]. Therefore, any $U_q(sl_n)$-comodule (resp. $SL_q(n)$-comodule) can be endowed with an $SL_q(n)$-module structure (resp. a $U_q(sl_n)$-module), in a canonical way (see e.g. (5.1) below). However, this duality does not give $U_q(sl_n)$-comodules (resp. $SL_q(n)$-comodules) from $SL_q(n)$-modules (resp. $U_q(sl_n)$-modules).

Modules of $U_q(g)$ have been extensively studied (see e.g. [18,27,16]), and they depend on q: when q is not a root of unity, any finite-dimensional module is semi-simple, and the finite-dimensional simple module is a deformation of a finite-dimensional simple g-module. In [8] the prime and primitive spectra of (Lusztig’s) quantized hyperalgebras (at roots of 1) are described. Another thing about $U_q(g)$ which depends on q is its coradical filtration [2,11,19,22]: when q is not a root of unity, the graded coalgebra $U_q(g)$ is coradically graded.

The study of $SL_q(n)$-comodules can also be found, e.g. in [24,7] (see also [15]). However there are few works on $U_q(sl_n)$-comodules. A possible reason for this lack might be that there are no proper tools to construct $U_q(sl_n)$-comodules. The aim of the present paper is to understand the $U_q(sl_2)$-comodules by using the quiver techniques.

* Corresponding author. Fax: +86 21 54743152.
E-mail addresses: xwchen@mail.ustc.edu.cn (X.-W. Chen), pzhang@sjtu.edu.cn (P. Zhang).
In the representation theory of algebras, quiver is a basic technique (see [1,26]). Recently, it has also shown powers in studying coalgebras and Hopf algebras. For example, one can construct path coalgebras of quivers, define the Gabriel quiver of a coalgebra, and embed a pointed coalgebra into the path coalgebra of its Gabriel quiver (see [9, 21,6]); after this embedding one can expect to study the comodules of the coalgebra by certain locally nilpotent representations of the quiver (see [4]); and this makes it possible to see the morphisms, the extensions, and even the Auslander–Reiten sequences (see e.g. [28]). One can also start from the Hopf quivers of groups to construct non-commutative, non-cocommutative pointed Hopf algebras (see [12]); this makes it possible to classify some Hopf algebras by quivers, whose bases can be explicitly given (see e.g. [5,23]).

Inspired by these ideas, in this paper, we construct comodules of $U_q(sl_2)$ and modules of $SL_q(2)$ via quiver methods, where q is not a root of unity. By embedding the quantized algebra $U_q(sl_2)$ into the path coalgebra kD^e, where D is the Gabriel quiver of $U_q(sl_2)$ as a coalgebra, we obtain a basis of $U_q(sl_2)$ in terms of combinations of paths of the quiver D (Theorem 3.5); this special basis enables us to describe the category of $U_q(sl_2)$-comodules by certain locally nilpotent representations of D (Theorem 4.3); in particular, we can list all the indecomposable Schurian comodules of $U_q(sl_2)$ (Theorem 4.7); and this description further permits us to construct a class of modules of the quantum special linear group $SL_q(2)$, from certain locally nilpotent representations of D, via the duality between $U_q(sl_2)$ and $SL_q(2)$ (Theorem 5.2).

Note that these results also relate to the ones in [3] and [10], where the representations and prime ideals of $SL_q(2)$ are studied.

2. Preliminaries

Throughout this paper, let k denote a field of characteristic zero, and q a non-zero element in k with $q^2 \neq 1$. For a k-space V, let V^* denote the dual space. Denote by \mathbb{Z} and \mathbb{N}_0 the sets of integers and of non-negative integers, respectively.

2.1

By definition $U_q(sl_2)$ is an associative k-algebra generated by E, F, K, K^{-1}, with relations (see e.g. [17], p. 122, or [16], p. 9)

$$KK^{-1} = K^{-1}K = 1, \quad KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F,$$

$$[E,F] = \frac{K - K^{-1}}{q - q^{-1}}.$$

Then $U_q(sl_2)$ has a Hopf structure with (see e.g. [17], p. 140)

$$\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1,$$

$$\Delta(K) = K \otimes K, \quad \Delta(K^{-1}) = K^{-1} \otimes K^{-1},$$

$$\varepsilon(E) = \varepsilon(F) = 0, \quad \varepsilon(K) = \varepsilon(K^{-1}) = 1,$$

$$S(K) = K^{-1}, \quad S(K^{-1}) = K, \quad S(E) = -EK^{-1}, \quad S(F) = -KF.$$

Note that $U_q(sl_2)$ is a Noetherian algebra without zero divisors, and it has a basis $\{K^iE^jF^l \mid i, j \geq 0, l \in \mathbb{Z}\}$ (see e.g. [17], p. 123).

By definition $SL_q(2)$ is an associative k-algebra generated by a, b, c, d, with relations (see e.g. [17], p. 84)

$$ba = qab, \quad db = qbd, \quad ca = qac, \quad dc = qcd, \quad bc = cb,$$

$$ad - da = (q^{-1} - q)bc, \quad da - qbc = 1.$$

Then $SL_q(2)$ has a Hopf structure with (see e.g. [17], p. 84)

$$\Delta(a) = a \otimes a + b \otimes c, \quad \Delta(b) = a \otimes b + b \otimes d,$$

$$\Delta(c) = c \otimes a + d \otimes c, \quad \Delta(d) = c \otimes b + d \otimes d,$$
\[\epsilon(a) = \epsilon(d) = 1, \quad \epsilon(b) = \epsilon(c) = 0, \]
\[S(a) = d, \quad S(b) = -qb, \quad S(c) = -q^{-1}c, \quad S(d) = a. \]

2.2

By definition a duality between two Hopf algebras \(U \) and \(H \) is an algebra map \(\psi : H \to U^* \), such that \(\phi : U \to H^* \) is also an algebra map and has the property
\[\psi(x)(S_U(u)) = \phi(u)(S_H(x)) \]
for all \(u \in U, x \in H \), where \(\phi \) is defined by
\[\phi(u)(x) = \psi(x)(u), \]
and \(S_U \) and \(S_H \) are respectively the antipodes of \(U \) and \(H \).

Suppose that there exists a duality between \(U \) and \(H \). Then there also exists a duality between \(H \) and \(U \); and each \(U \)-comodule can be endowed with an \(H \)-module structure, and also each \(H \)-comodule can be endowed with a \(U \)-module.

We have the following well known duality between \(U_q(sl_2) \) and \(SL_q(2) \). See Theorem VII.4.4 in [17].

Lemma 2.3. There is a unique algebra map \(\psi : SL_q(2) \to U_q(sl_2)^* \) such that
\[\psi(a)(K^l E^i F^j) = \delta_{i,0} \delta_{j,0} q^l + \delta_{i,1} \delta_{j,1} q^l, \quad \psi(b)(K^l E^i F^j) = \delta_{i,1} \delta_{j,0} q^l, \]
\[\psi(c)(K^l E^i F^j) = \delta_{i,0} \delta_{j,1} q^{-l}, \quad \psi(d)(K^l E^i F^j) = \delta_{i,1} \delta_{j,0} q^{-l}, \]
where \(\delta_{i,j} \) is the Kronecker symbol. This \(\psi \) is a duality between \(U_q(sl_2) \) and \(SL_q(2) \).

Note that such a \(\psi \) is not injective. This duality was essentially introduced in [14], and has been extended to be a duality between \(U_q(sl_n) \) and \(SL_q(n) \) in [30].

2.4

A quiver \(Q = (Q_0, Q_1, s, t) \) is a datum, where \(Q \) is an oriented graph with \(Q_0 \) the set of vertices and \(Q_1 \) the set of arrows, \(s \) and \(t \) are two maps from \(Q_1 \) to \(Q_0 \), such that \(s(a) \) and \(t(a) \) are respectively the starting vertex and terminating vertex of \(a \in Q_1 \). A path \(p \) of length \(l \) in \(Q \) is a sequence \(p = a_1 \cdots a_l \) of arrows \(a_i, 1 \leq i \leq l \), such that \(t(a_i) = s(a_{i+1}) \) for \(1 \leq i \leq l - 1 \). A vertex is regarded as a path of length 0. Denote by \(s(p) \) and \(t(p) \) the starting vertex and terminating vertex of \(p \), respectively. Then \(s(p) = s(a_1) \) and \(t(p) = t(a_l) \). If both \(Q_0 \) and \(Q_1 \) are finite sets, then \(Q \) is called a finite quiver. We will not restrict ourselves to finite quivers, but we assume the quivers considered are countable (i.e., both \(Q_0 \) and \(Q_1 \) are countable sets). For the quiver method to representations of algebras we refer to [1] and [26].

Given a quiver \(Q \), we define the path coalgebra \(kQ^e \) (see [9]) as follows: the underlying space has as basis the set of all paths in \(Q \), and the coalgebra structure is given by
\[\Delta(p) = \sum_{\beta\alpha = p} \beta \otimes \alpha \]
and
\[\epsilon(p) = 0 \quad \text{if} \quad l \geq 1, \quad \text{and} \quad \epsilon(p) = 1 \quad \text{if} \quad l = 0 \]
for each path \(p \) of length \(l \).

2.5

By a graded coalgebra we mean a coalgebra \(C \) with decomposition \(C = \bigoplus_{n \geq 0} C(n) \) of \(k \)-spaces such that
\[\Delta(C(n)) \subseteq \sum_{i+j=n} C(i) \otimes C(j), \quad \epsilon(C(n)) = 0, \quad \forall n \geq 1. \]
Let C be a coalgebra. Following [29], the wedge of two subspaces V and W of C is defined to be the subspace

$$V \wedge W := \{ c \in C \mid \Delta(c) \in V \otimes C + C \otimes W \}.$$

Let C_0 be the coradical of C, i.e., C_0 is the sum of all simple subcoalgebras of C. Define $C_n := C_0 \wedge C_{n-1}$ for $n \geq 1$. Then $\{C_n\}_{n \geq 0}$ is called the coradical filtration of C.

Recall that a graded coalgebra $C = \bigoplus_{n \geq 0} C(n)$ is said to be coradically graded, provided that $\{C_n := \bigoplus_{i \leq n} C(i)\}_{n \geq 0}$ is exactly the coradical filtration of C. It was proved in [11], 2.2, that a graded coalgebra $C = \bigoplus_{n \geq 0} C(n)$ is coradically graded if and only if $C_0 = C(0)$ and $C_1 = C(0) \oplus C(1)$.

2.6

Let M be a C–C–bicomodule over a coalgebra C. Denote by $\text{Cot}_C(M)$ the corresponding cotensor coalgebra (see e.g. [13] for the definition and basic properties). This is a graded coalgebra with zeroth component C and first component M. By Proposition 11.1.1 in [29], the coradical of $\text{Cot}_C(M)$ is contained in C. It follows that $\text{Cot}_C(M)$ is coradically graded if and only if C is cosemisimple.

Note that a path coalgebra $k Q^e$ is graded with the length grading, and it is coradically graded, and $k Q^e \simeq \text{Cot}_{kO_0}(k Q_1)$ (see [9], or [12]).

We need the following observation.

Proposition 2.7. Let $C = \bigoplus_{n \geq 0} C(n)$ be a graded coalgebra. Then

(i) There is a unique graded coalgebra map $\theta : C \to \text{Cot}_{C(0)}(C(1))$ such that $\theta |_{C(i)} = \text{Id}$ for $i = 0, 1$.

(ii) $\theta(x) = \pi^{\otimes n+1} \circ \Delta^n(x)$ for all $x \in C(n+1)$ and $n \geq 1$, where $\pi : C \to C(1)$ is the projection, and $\Delta^n = (\text{Id} \otimes \Delta^{n-1}) \circ \Delta$ for all $n \geq 1$, with $\Delta^0 = \text{Id}$.

(iii) If C is coradically graded, then θ is injective.

(iv) If $C(0)$ is cosemisimple, and θ is injective, then C is coradically graded.

Proof. Clearly, $C(0)$ is a subcoalgebra and $C(1)$ is naturally a $C(0)$–$C(0)$–bicomodule, and hence we have the corresponding cotensor coalgebra $\text{Cot}_{C(0)}(C(1))$. The statements (i) and (ii) follow from the universal property of a cotensor coalgebra (see e.g. [25], or [12]).

For statement (iii), if C is coradically graded, then $C_1 = C(0) \oplus C(1)$. It follows that $\theta |_{C_1}$ is injective, and hence θ is injective, by a theorem due to Heynemann and Radford (see e.g. [20], 5.3.1).

If $C(0)$ is cosemisimple, then $\text{Cot}_{C(0)}(C(1))$ is coradically graded. The injectivity of θ implies that C is a graded subcoalgebra of $\text{Cot}_{C(0)}(C(1))$. Thus C is also coradically graded.

2.8

Consider a special case of Proposition 2.7 where $C(0)$ is a group-like coalgebra (i.e., it has a basis consisting of group-like elements; or equivalently, $C(0)$ is cosemisimple and pointed). In this case we have $C(0) = k G(C)$, where

$$G(C) := \{ g \in C \mid \Delta(g) = g \otimes g, \epsilon(g) = 1 \}.$$

Since $C(1)$ is a $C(0)$–$C(0)$–bicomodule, it follows that

$$C(1) = \bigoplus_{g,h \in G} \hat{h} C(1)^g,$$

where $\hat{h} C(1)^g = \{ c \in C(1) \mid \Delta(c) = c \otimes g + h \otimes c \}$. Define a quiver $Q = Q(C)$ as follows: the set of vertices is G, and there are exactly t_{gh} arrows from vertex g to vertex h, where $t_{gh} = \dim_k \hat{h} C(1)^g$. Then by the universal property of a cotensor coalgebra (and hence of a path coalgebra), there is a coalgebra isomorphism $\text{Cot}_{C(0)}(C(1)) \simeq k Q^e$, by identifying the elements of $G(C)$ with the vertices of Q and a basis of $\hat{h} C(1)^g$ with the arrows from g to h.

Note that the quiver $Q(C)$ is in general not the Gabriel quiver of C. If the graded coalgebra $C = \bigoplus_{n \geq 0} C(n)$ is coradically graded, then $Q(C)$ is exactly the Gabriel quiver of C. For the equivalent definitions of the Gabriel quiver of a coalgebra we refer to [6], Section 2 (see also [9,21,28]). By Proposition 2.7 we have
Corollary 2.9. Assume that $C = \bigoplus_{n \geq 0} C(n)$ is a graded coalgebra with $C(0)$ group-like. Let $Q(C)$ be the quiver associated with C defined as above. Then

(i) There is a graded coalgebra map $\theta : C \rightarrow kQ(C)^c$.

(ii) θ is injective if and only if C is coradically graded. In this case, $Q(C)$ is exactly the Gabriel quiver of C.

3. $U_q(sl_2)$ as a subcoalgebra of a path coalgebra

In this section, we embed $U_q(sl_2)$ into the path coalgebra of the Gabriel quiver D of $U_q(sl_2)$, and then give a new basis of $U_q(sl_2)$ in terms of combinations of paths in D, where q is not a root of unity.

Although bases of $U_q(sl_2)$ are already available, this new basis of $U_q(sl_2)$ given here, which is in terms of combinations of paths in D, will enable us to describe the category of $U_q(sl_2)$-comodules, in terms of k-representations of the quiver D.

3.1

For each non-negative integer n, let $C(n)$ be the subspace of $U_q(sl_2)$ with basis the set $\{K^l E^i F^j \mid i, j \in \mathbb{N}_0, i + j = n, l \in \mathbb{Z}\}$. Then

$$U_q(sl_2) = \bigoplus_{n \geq 0} C(n)$$

is a graded coalgebra (see for example Proposition VII.1.3 in [17]) with

$$G(U_q(sl_2)) = \{K^l \mid l \in \mathbb{Z}\}, \quad \text{and} \quad C(0) = \bigoplus_{l \in \mathbb{Z}} kK^l.$$ We have in $C(1)$

$$\Delta(K^{l-1-1} E) = K^{l-1} \otimes K^{l-1} E + K^{l-1} E \otimes K^l,$$

$$\Delta(K^l F) = K^{l-1} \otimes K^l F + K^l F \otimes K^l.$$

Note that $C(1)$ has a basis $\{K^l E, K^l F \mid l \in \mathbb{Z}\}$;

$$k_{l_2} C(1)^{k_{l_1}} = 0 \quad \text{for} \quad (l_1, l_2) \neq (l, l - 1), l \in \mathbb{Z},$$

and that for each $l \in \mathbb{Z}$ we have

$$k^{l-1} C(1)^{k^l} = kK^{l-1} E \oplus kK^l F, \quad l \in \mathbb{Z}.$$ Therefore, the quiver of $U_q(sl_2)$ as defined in 2.8 is of the form

$$\cdots \xrightarrow{a_2} \xrightarrow{a_1} \cdots$$

We will denote this quiver by D in this paper.

3.2

We fix some notations. Index the vertices of D by integers, i.e., $D_0 = \{e_l \mid l \in \mathbb{Z}\}$; there are two arrows from e_l to e_{l-1} for each integer l. Put $I = \{1, -1\}$ and let I^n be the Cartesian product (understand $I^0 := \{0\}$). Define $I = \bigcup_{n \geq 0} I^n$. For each $v \in I$, define $|v| = n$ if $v \in I^n$. Write v as $v = (v_1, \ldots, v_n)$, where $v_j = 1$ or -1 for each j. For any integer l and $v \in I$, define

$$P_l^{(v)} = a_{|v|} \cdots a_2 a_1$$

to be the concatenated path in D starting at e_l of length $|v|$, where the arrow a_j is the upper arrow if $v_j = 1$, and the lower one otherwise, $1 \leq j \leq |v|$.
Corollary 2.9

The existence of U and D is the set of all paths in D.

As an application of Corollary 2.9 we have

Lemma 3.3. There is a unique graded coalgebra map $\theta : U_q(sl_2) \longrightarrow kD^c$ such that $\theta(K^l) = e_l$, $\theta(K^{l-1}E) = P_l^{(1)}$, and $\theta(K^lF) = P_l^{(-1)}$, for each integer l.

Moreover, if q is not a root of unity, then θ is injective. In this case, D is the Gabriel quiver of the coalgebra $U_q(sl_2)$.

Proof. The existence of θ follows directly from Corollary 2.9, and the uniqueness follows from the universal property of a path coalgebra. Note that if q is not a root of unity, then the graded coalgebra $U_q(sl_2) = \bigoplus_{n \geq 0} C(n)$ is coradically graded (see [11]).

3.4

For $v \in I^n \subset I$, put

$$T_v := \{t \mid 1 \leq t \leq n, v_t = 1\}, \quad \chi(v) := \sum_{l \in T_v} t,$$

$$\chi(v) := 1, \quad \text{otherwise.}$$

For each $l \in \mathbb{Z}$, $n \in \mathbb{N}_0$, $0 \leq i \leq n$, set

$$b(l, n, i) := \sum_{v \in I^n, \|T_v\|=i} \chi(v)P_l^{(v)} \in kD^c.$$

For example, we have

$$b(l, 0, 0) = e_l, \quad b(l, 1, 0) = P_l^{(1)} = q^{2l}P_l^{(1)}, \quad b(l, 1, 1) = q^{2l}P_l^{(1)},$$

$$b(l, 2, 0) = P_l^{(-1)}, \quad b(l, 2, 1) = q^{2l}P_l^{(-1)}, \quad b(l, 2, 2) = q^{2l}P_l^{(-1)},$$

$$b(l, 2, 1) = q^{2l}P_l^{(-1)} + q^4P_l^{(-1)}.$$
Lemma 3.6. Put $E' := K^{-1} E \in U_q(sl_2)$. Then for any non-negative integers i and j, with $n := i + j \geq 1$, we have

$$\Delta^{n-1}(K^l E'^i F^j) = \sum_{s,t} c(s, r) K^{l-s_1-r_1} E'^{s_0-s_1} F^{r_0-r_1} \otimes \ldots \otimes K^{l-s_n-1-r_n-1} E'^{s_{n-2}-s_{n-1}} F^{r_{n-2}-r_{n-1}} \otimes K^l E'^{s_{n-1}} F^{r_{n-1}}$$

where the sum runs over all the r and s with $s_0 = i$ and $r_0 = j$.

Proof. It suffices to prove the formula for $n \geq 2$. Note that

$$\Delta(E'^i) = \Delta(E')^i = (K^{-1} \otimes E' + E' \otimes 1)^i$$

$$= \sum_{s_1=0}^{i} \binom{i}{s_1} K^{-s_1} E'^{i-s_1} \otimes E'^{s_1}.$$

So

$$\Delta^{n-1}(E'^i) = (Id \otimes \Delta^{n-2}) \left(\sum_{s_1=0}^{i} \binom{i}{s_1} K^{-s_1} E'^{i-s_1} \otimes E'^{s_1} \right)$$

$$= \sum_{s_1=0}^{i} \binom{i}{s_1} K^{-s_1} E'^{i-s_1} \otimes \Delta^{n-2}(E'^{s_1}).$$

By induction we have

$$\Delta^{n-1}(E'^i) = \sum_{0 \leq s_{n-1} \leq s_{n-2} \leq \ldots \leq s_1 \leq i} \binom{i}{s_1} \binom{s_1}{r_1} \binom{s_2}{r_2} \ldots \binom{r_{n-2}}{r_{n-1}} q^2$$

$$\times K^{-s_1} E'^{i-s_1} \otimes K^{-s_2} E'^{s_1-s_2} \otimes \ldots \otimes K^{-s_{n-1}} E'^{s_{n-2}-s_{n-1}} \otimes E'^{s_{n-1}}.$$

Similarly, we have

$$\Delta^{n-1}(F^j) = \sum_{0 \leq r_{n-1} \leq r_{n-2} \leq \ldots \leq r_1 \leq j} \binom{j}{r_1} \binom{r_1}{r_2} \binom{r_2}{r_3} \ldots \binom{r_{n-1}}{r_{n-2}} q^2$$

$$\times K^{-r_1} F^j \otimes K^{-r_2} F^{i-r_2} \otimes \ldots \otimes K^{-r_{n-1}} F^{r_{n-2}-r_{n-1}} \otimes F^{r_{n-1}}.$$

Now the formula follows from $\Delta^{n-1}(K^l E'^i F^j) = \Delta^{n-1}(K^l) \Delta^{n-1}(E'^i) \Delta^{n-1}(F^j)$ and the identity

$$E'^m K^{-t} = q^{2mt} K^{-t} E'^m, \quad m, t \in \mathbb{N}_0.$$

3.7. Proof of Theorem 3.5

Since q is not a root of unity, it follows from Lemma 3.3 that there is a coalgebra embedding $\theta : U_q(sl_2) \hookrightarrow kD^c$. Put $E' := K^{-1} E$. Then $\{K^l E'^i F^j \mid i, j \in \mathbb{N}_0, l \in \mathbb{Z}\}$ is a basis of $U_q(sl_2)$. Note that

$$\theta(K^l) = e_l, \quad \theta(K^l E') = P^1_l, \quad \theta(K^l F) = P^1_l.$$

Denote by π the projection $U_q(sl_2) \longrightarrow C(1) \cong kD_1$. Then

$$\pi(K^{-l-1} E') = P^1_l, \quad \pi(K^l F) = P^1_{l-1}, \quad \pi(K^l E'^i F^j) = 0 \quad \text{for} \quad i + j \geq 2.$$

By Proposition 2.7(ii) we have

$$\theta(K^l E'^i F^j) = \pi \otimes \Delta^{n-1}(K^l E'^i F^j)$$

where $n = i + j$, and both i and j are positive integers. By Lemma 3.6 and the definition of π we have

$$\theta(K^l E'^i F^j) = \sum_{s,t} c(s, r) \pi(K^{l-s_1-r_1} E'^{s_0-s_1} F^{r_0-r_1}) \ldots \pi(K^{l-s_{n-1}-r_{n-1}} E'^{s_{n-2}-s_{n-1}} F^{r_{n-2}-r_{n-1}}) \cdot \pi(K^l E'^{s_{n-1}} F^{r_{n-1}})$$

where $n = i + j$, and both i and j are positive integers.
where the dot means the concatenation of paths, and the sum runs over all the vectors $s = (s_0, s_1, \ldots, s_{n-1}), r = (r_0, r_1, \ldots, r_{n-1}) \in \mathbb{N}_0^n$, with

$$i = s_0 \geq s_1 \geq \cdots \geq s_{n-1}, \quad j = r_0 \geq r_1 \geq \cdots \geq r_{n-1},$$

such that for each $t, 1 \leq t \leq n$, either

$$s_{t-1} - s_t = 1, \quad r_{t-1} - r_t = 0,$$

or

$$s_{t-1} - s_t = 0, \quad r_{t-1} - r_t = 1,$$

where s_0 and r_n are understood to be zero.

Now, for such a pair (s, r), define $v = (v_1, \ldots, v_n) \in I^n$ as follows:

$$v_{n-t+1} = 1, \quad \text{if } s_{t-1} - s_t = 1, r_{t-1} - r_t = 0;$$

and

$$v_{n-t+1} = -1, \quad \text{if } s_{t-1} - s_t = 0, r_{t-1} - r_t = 1,$$

for $1 \leq t \leq n$. Write (s, r) as $(s, r) = (s_v, r_v)$.

Since $(s_{t-1} + r_{t-1}) - (s_t + r_t) = 1$ and $s_n + r_n = 0$, it follows that $s_t + r_t = n - t$ for $1 \leq t \leq n - 1$. Therefore, we have

$$\theta(K^t E^q F^j) = \sum_{s_v, r_v} c(s_v, r_v) P_l^{(v)}$$

$$= \sum_{v \in I^n : |T_v| = i} c(s_v, r_v) P_l^{(v)}.$$

Note that for $s_v = (i = s_0, s_1, \ldots, s_{n-1})$, any number in the sequence $i - s_1, \ldots, s_{n-2} - s_{n-1}, s_{n-1}$ is either 1 or 0, and that the number of 1s in the sequence is exactly i. This implies

$$\binom{i}{s_1} q^{s_2} \cdots \binom{s_{n-2}}{s_{n-1}} q^{s_{n-1}} = i! q^i.$$

In order to compute $c(s_v, r_v)$, let $T_v = \{t_1, \ldots, t_i\}$, with $1 \leq t_1 < \cdots < t_i \leq n$. By an analysis on the components of $r_v = (j = r_0, \ldots, r_{n-t_i}, r_{n-t_i+1}, \ldots, r_{n-(-i-1)}, \ldots, r_{t_i}, \ldots, r_{n-1})$,

we observe that $r_{n-t_i} = r_{n-t_i+1}$ since $v_{t_i} = 1$, and $j = r_0, \ldots, r_{n-t_i}$ are pairwise different. It follows that

$$r_{n-t_i} = j - n + t_i.$$

A similar analysis shows that

$$r_{n-t_x} = j - n + t_x + (i - x), \quad x = 1, \ldots, i.$$

It follows that

$$\sum_{t=1}^{n-1} r_t (s_{t-1} - s_t) = \sum_{1 \leq t \leq n-1, v_{n-t+1} = 1} r_t$$

$$= r_{n-t_1} + \cdots + r_{n-t_i}$$

$$= (t_1 + \cdots + t_i) - \frac{i(i+1)}{2}.$$

This shows

$$c(s_v, r_v) = i! q^i j! q^{-i} q^{-i+1} X(v),$$

where $X(v)$ is the number of 1s in the sequence $i - s_1, \ldots, s_{n-2} - s_{n-1}, s_{n-1}$. The sum runs over all the vectors $s = (s_0, s_1, \ldots, s_{n-1}), r = (r_0, r_1, \ldots, r_{n-1}) \in \mathbb{N}_0^n$, with

$$i = s_0 \geq s_1 \geq \cdots \geq s_{n-1}, \quad j = r_0 \geq r_1 \geq \cdots \geq r_{n-1},$$

such that for each $t, 1 \leq t \leq n$, either

$$s_{t-1} - s_t = 1, \quad r_{t-1} - r_t = 0,$$

or

$$s_{t-1} - s_t = 0, \quad r_{t-1} - r_t = 1,$$
and hence
\[
\theta(K^i E^q F^j) = i! q^j j! q^{-i(i+1)} \sum_{v \in P^n_i | v| = i} \chi(v) P_i(v)
\]
\[
= i! q^j j! q^{-i(i+1)} b(l, n, i)
\]
for \(n = i + j \geq 2 \) and any integer \(l \). Thus \(U_q(sl_2) \simeq \theta(U_q(sl_2)) \) is spanned by
\[
\{b(l, n, i) \mid 0 \leq i \leq n, n \in \mathbb{N}_0, l \in \mathbb{Z}\},
\]
while this set is obviously \(k \)-linearly independent. This completes the proof. □

4. Comodules of \(U_q(sl_2) \)

In this section, by applying Theorem 3.5 we will characterize the category of the \(U_q(sl_2) \)-comodules in terms of the representations of the quiver \(D \) (see Theorem 4.3), and then list all the indecomposable Schurian \(U_q(sl_2) \)-comodules (see Theorem 4.7), where \(q \) is not a root of unity.

4.1

Let \(Q \) be a quiver (not necessarily finite). By definition a \(k \)-representation of \(Q \) is a datum \(V = (V_e, f_a; e \in Q_0, a \in Q_1) \), where \(V_e \) is a \(k \)-space for each \(e \in Q_0 \), and \(f_a : V_{s(a)} \to V_{t(a)} \) is a \(k \)-linear map for each \(a \in Q_1 \). Set \(f_p := f_{a_1} \circ \cdots \circ f_{a_l} \) for each path \(p = a_1 \cdots a_l \), where each \(a_i \) is an arrow, \(1 \leq i \leq l \). Set \(f_e := Id \) for \(e \in Q_0 \). Then \(f_p \) is a \(k \)-linear map from \(V_{s(p)} \) to \(V_{t(p)} \). A morphism \(\phi : (V_e, f_a; e \in Q_0, a \in Q_1) \to (W_e, g_a; e \in Q_0, a \in Q_1) \) is a datum \(\phi = (\phi_e; e \in Q_0) \) such that
\[
\phi_{s(a)} f_a = g_a \phi_{s(a)}
\]
for each \(a \in Q_1 \). Denote by Rep(\(k \), \(Q \)) the category of the \(k \)-representations of \(Q \). We refer the representations of quivers to [1] and [26].

A representation \(V = (V_e, f_a; e \in Q_0, a \in Q_1) \) is said to be locally nilpotent, provided that for each \(e \in Q_0 \) and each \(m \in V_e \), there are only finitely many paths \(p \) starting at \(e \) such that \(f_p(m) \neq 0 \).

It was observed by Chin and Quinn that there is an equivalence between the category of the right \(kQ^\ell \)-modules and the category of the locally nilpotent representations of \(Q \) (see [4]). The functors can be seen from the following.

For a right \(kQ^\ell \)-comodule \((M, \rho) \), define for each \(e \in Q_0 \)
\[
M_e := \{m \in M \mid \rho_0(m) = m \otimes e\}
\]
where \(\rho_0 = (Id \otimes \pi_0) \rho \), and \(\pi_0 : kQ_0 \to kQ_0 \) is the projection. For every path \(p \) there is a unique \(k \)-linear map \(f_p : M_{s(p)} \to M_{t(p)} \), such that for each \(m \in M_{s(p)} \) there holds
\[
\rho(m) = \sum_{s(p') = s(p)} f_{p'}(m) \otimes p'
\]
where \(p' \) runs over all the paths with \(s(p') = s(p) \). In this way we obtain a \(k \)-representation \((M_e, f_a; e \in Q_0, a \in Q_1) \) of \(Q \) satisfying \(f_p = f_{b \alpha} f_a \) for any path \(p = b \alpha \). By construction it is clearly a locally nilpotent representation. Note that \(M \) is a \(kQ_0 \)-comodule with \(\rho_0 \). Since \(kQ_0 \) is group-like, it follows that we have a \(kQ_0 \)-comodule decomposition
\[
M = \bigoplus_{e \in Q_0} M_e.
\]

Conversely, given a locally nilpotent representation \(V = (V_e, f_a; e \in Q_0, a \in Q_1) \) of \(Q \), define
\[
M := \bigoplus_{e \in Q_0} V_e
\]
and \(\rho : M \to M \otimes kQ^\ell \) by
\[
\rho(m) := \sum_{s(p) = e} f_p(m) \otimes p
\]
for each \(m \in V_e \) (where \(f_e \) is understood to be \(Id \) for \(e \in Q_0 \)). Then \(\rho \) is well defined since \(V \) is locally nilpotent and \((M, \rho) \) is a right \(kQ^e \)-comodule.

4.2

Keep the notations in 3.2. Given a representation \(V = (V_l, V_a; e_l \in D_0, a \in D_1) \) of the quiver \(D \), define \(f_1^{(v)} := f_{p(v)} \), for each integer \(l \) and \(v \in I \). In particular, \(f_1^{(0)} = Id \).

With the help of the representations of a quiver and Theorem 3.5, we can describe the category of the comodules of \(U_q(sl_2) \).

Theorem 4.3. Assume that \(q \) is not a root of unity. Then there is an equivalence between the category of the right \(U_q(sl_2) \)-comodules and the full subcategory of \(\text{Rep}(k, D) \) whose objects \(V = (V_l, f_a : e_l \in D_0, a \in D_1) \) satisfies the following conditions:

(i) \(f_{l-1}^{(1)} \circ f_{l}^{(-1)} = q^2 f_{l-1}^{(-1)} \circ f_{l}^{(1)} \) for all \(l \in \mathbb{Z} \).

(ii) For any \(m \in V_l \), \(f_{l}^{(v)}(m) = 0 \) for all but finitely many \(v \in I \).

Proof. By Theorem 3.5, as a coalgebra \(U_q(sl_2) \) is isomorphic to the subcoalgebra \(C \) of path coalgebra \(kD^e \) with the set of basis

\[
\left\{ b(l, n, i) := \sum_{v \in I^n, |T_v| = i} \chi(v)P_l^{(v)} \mid 0 \leq i \leq n, n \in \mathbb{N}_0, l \in \mathbb{Z} \right\}.
\]

For a coalgebra \(C \), let \(\mathcal{M}^C \) denote the category of the right \(C \)-comodules. So we have the following embedding of categories

\[
\mathcal{M}^{U_q(sl_2)} \simeq \mathcal{M}^C \hookrightarrow \mathcal{M}^{kD^e} \hookrightarrow \text{Rep}(k, D),
\]

where \(\mathcal{M}^C \hookrightarrow \mathcal{M}^{kD^e} \) since \(C \) is a subcoalgebra of \(kD^e \), and \(\mathcal{M}^{kD^e} \hookrightarrow \text{Rep}(k, D) \) is the embedding described in 4.1.

Now, the question is reduced to determine all locally nilpotent \(k \)-representations of quiver \(D \) which are right \(C \)-comodules, via the equivalence described in 4.1.

It follows from the definition that a representation \(V = (V_l, f_a : e_l \in D_0, a \in D_1) \) of the quiver \(D \) is locally nilpotent if and only if condition (ii) is satisfied. Assume that such a \(V \) is locally nilpotent, then \(M = \bigoplus_{l \in \mathbb{Z}} V_l \) becomes a right \(kD^e \)-comodule via

\[
\rho(m) = \sum_{v \in I} f_{l}^{(v)}(m) \otimes P_l^{(v)} \in M \otimes kD^e
\]

for all \(m \in V_l, l \in \mathbb{Z} \).

If for an arbitrary fixed \(m \in V_l, l \in \mathbb{Z} \), the element \(\frac{f_{l}^{(v)}(m)}{ \chi(v) } \) only depends on \(|v| \) and \(|T_v| \), then we can write

\[
\rho(m) = \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} \sum_{v \in I^n, |T_v| = i} \frac{f_{l}^{(v)}(m)}{ \chi(v) } \otimes \chi(v)P_l^{(v)}
= \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} \frac{f_{l}^{(v)}(m)}{ \chi(v) } \otimes \left(\sum_{v \in I^n, |T_v| = i} \chi(v)P_l^{(v)} \right)
\in M \otimes C,
\]

and hence \(M \) becomes a right \(C \)-comodule. Conversely, if \(M \) becomes a right \(C \)-comodule, then we have

\[
\rho(m) = \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} \sum_{v \in I^n, |T_v| = i} \frac{f_{l}^{(v)}(m)}{ \chi(v) } \otimes \chi(v)P_l^{(v)}
= \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} m(n, i) \otimes \left(\sum_{v \in I^n, |T_v| = i} \chi(v)P_l^{(v)} \right)
\]
for some \(m(n, i) \in M \). Since
\[
\{ \chi(v) P_i^{(v)} \mid v \in T^n, | T_v | = i, 0 \leq i \leq n, n \in \mathbb{N}_0, l \in \mathbb{Z} \}
\]
is a basis of \(kD^c \), it follows that
\[
m(n, i) = \frac{f_i^{(v)}(m)}{\chi(v)},
\]
which implies that \(\frac{f_i^{(v)}(m)}{\chi(v)} \) only depends on \(|v| \) and \(|T_v| \) for an arbitrary fixed \(m \in V_l, l \in \mathbb{Z} \).

Now, condition (i) implies that for an arbitrary fixed \(m \in V_l, l \in \mathbb{Z} \), the element \(\frac{f_i^{(v)}(m)}{\chi(v)} \) only depends on \(|v| \) and \(|T_v| \). Conversely, by taking \(v = (-1, 1) \) and \(v' = (1, -1) \) in \(\mathcal{I} \) we obtain
\[
\frac{f_i^{(-1, 1)}(m)}{\chi((-1, 1))} = \frac{f_i^{(1, -1)}(m)}{\chi((1, -1))},
\]
which is exactly condition (i). This completes the proof. ■

Theorem 4.3 permits us to explicitly construct some \(U_q(sl_2) \)-comodules. In the following \(q \) is not a root of unity.

Example 4.4. Let \(A \) be the quantum plane generated by \(X \) and \(Y \) subject to the relation \(XY = q^2 YX \). Let \(l \) be an integer and \(n \) a non-negative integer. Then for any \(A \)-module \(U \) one can define a representation \(V = V(l,n,U) \) of quiver \(D \) as follows:

\[
\begin{align*}
V_j &:= U, \quad \text{if } l \leq j \leq l + n, \\
V_j &:= 0, \quad \text{otherwise;} \\
f_j^{(1)} &:= X, \quad \text{if } l + 1 \leq j \leq l + n, \\
f_j^{(1)} &:= 0, \quad \text{otherwise;} \\
f_j^{(-1)} &:= Y, \quad \text{if } l + 1 \leq j \leq l + n, \\
f_j^{(-1)} &:= 0, \quad \text{otherwise}
\end{align*}
\]

where \(l \) is any integer and \(n \geq 0 \). Then by **Theorem 4.3**, \(V \) induces a right \(U_q(sl_2) \)-comodule.

Example 4.5. Let \(l \) be an integer and \(n \) a non-negative integer.

(i) For each \(\lambda \in k \), one can define a representation \(V \) of quiver \(D \) as follows:

\[
\begin{align*}
V_j &:= k, \quad \text{if } l \leq j \leq l + n, \\
V_j &:= 0, \quad \text{otherwise;} \\
f_j^{(1)} &:= 1, \quad \text{if } l + 1 \leq j \leq l + n, \\
f_j^{(1)} &:= 0, \quad \text{otherwise;} \\
f_j^{(-1)} &:= \lambda q^{-2(l+n-j)}, \quad \text{if } l + 1 \leq j \leq l + n, \\
f_j^{(-1)} &:= 0, \quad \text{otherwise.}
\end{align*}
\]

Then by **Theorem 4.3**, \(V \) induces a right \(U_q(sl_2) \)-comodule, which is denoted by \(M(l,n,\lambda) \).

(ii) Consider the representation \(V \) of quiver \(D \) defined by:

\[
\begin{align*}
V_j &:= k, \quad \text{if } l \leq j \leq l + n, \\
V_j &:= 0, \quad \text{otherwise;} \\
f_j^{(1)} &:= 0, \quad \forall j \in \mathbb{Z}; \\
f_j^{(-1)} &:= 1, \quad \forall j \in \mathbb{Z}.
\end{align*}
\]

Then by **Theorem 4.3**, \(V \) induces a right \(U_q(sl_2) \)-comodule, which is denoted by \(M(l,n,\infty) \).
4.6

A finite-dimensional right $U_q(sl_2)$-comodule (M, ρ) is said to be Schurian, if $\dim_k M_j = 1$ or 0 for each integer j, where $M_j := \{ m \in M \mid (lD \otimes \pi_0) \rho(m) = m \otimes e_j \}$ and π_0 is the projection from kD^e to kD_0.

Theorem 4.7. When the triple (l, n, λ) runs over $\mathbb{Z} \times \mathbb{N}_0 \times (k \cup \{ \infty \})$, $M(l, n, \lambda)$ gives a complete list of all pairwise non-isomorphic, indecomposable Schurian right $U_q(sl_2)$-comodules, where q is not a root of unity.

Proof. Assume that M is an indecomposable Schurian right $U_q(sl_2)$-comodule. Set $\text{Supp}(M) := \{ j \in \mathbb{Z} \mid M_j \neq 0 \}$. Let l and $l + n$ be the minimal and the maximal elements in $\text{Supp}(M)$. Then $\text{Supp}(M) \subseteq \{ l, l + 1, \ldots, l + n \}$. We claim that $\text{Supp}(M) = \{ l, l + 1, \ldots, l + n \}$.

Otherwise, there exists a j_0 such that $l < j_0 < l + n$ and $j_0 \notin \text{Supp}(M)$. Then by (4.1) we have a kD_0-comodule decomposition

$$M = \left(\bigoplus_{j < j_0} M_j \right) \oplus \left(\bigoplus_{j > j_0} M_j \right).$$

Since $M_{j_0} = 0$, it follows that this is a kD^e-comodule decomposition, and hence it is also a $U_q(sl_2)$-comodule decomposition, which contradicts the assumption.

Note that each M_j is one dimensional for $l \leq j \leq l + n$. Set

$$a_j := f_j^{(1)} \text{ and } b_j := f_j^{(-1)}, l + 1 \leq j \leq l + n.$$

Note that for each j, we have $a_j \neq 0$ or $b_j \neq 0$ (otherwise, say $a_{j_0} = b_{j_0} = 0$, then we again have a $U_q(sl_2)$-comodule decomposition $M = (\bigoplus_{j < j_0} M_j) \oplus (\bigoplus_{j \geq j_0} M_j)$).

By Theorem 4.3 we have $a_j b_{j+1} = q^j b_j a_{j+1}$ for all j with $l + 1 \leq j \leq l + n - 1$. Now, if some $b_{j_0} = 0$, then all $b_j = 0$ and all $a_j \neq 0$, and hence M is isomorphic to $M_{(l, n, 0)}$. If some $a_{j_0} = 0$, then all $a_j = 0$ and all $b_j \neq 0$, and hence M is isomorphic to $M_{(l, n, \infty)}$. If $a_j \neq 0 \neq b_j$ for all j, then M is isomorphic to $M_{(l, n, \lambda)}$ with $\lambda = b_{l+1}/a_{l+1} q^{2(n-1)}$.

On the other hand, each $M_{(l, n, \lambda)}$ is indecomposable since its socle is of dimension one, and they are clearly pairwise non-isomorphic. ■

5. A class of $SL_q(2)$-modules

Theorem 4.3 characterizes the category of the right $U_q(sl_2)$-comodules by a full subcategory of the category of the k-representations of D, where q is not a root of unity, and D is the Gabriel quiver of $U_q(sl_2)$ as a coalgebra. This permits us to construct some left $SL_q(2)$-modules from some representations of quiver D, via the duality between $U_q(sl_2)$ and $SL_q(2)$.

5.1

Recall that the algebra homomorphism $\psi : SL_q(2) \rightarrow U_q(sl_2)^*$ in Lemma 2.3 is given by

$$\psi(a)(K^l E^n F^j) = \delta_{i,0} \delta_{j,0} q^l + \delta_{i,1} \delta_{j,1} q^{-l-1}, \quad \psi(b)(K^l E^n F^j) = \delta_{i,1} \delta_{j,0} q^{-l-1},$$

$$\psi(c)(K^l E^n F^j) = \delta_{i,0} \delta_{j,1} q^{-l}, \quad \psi(d)(K^l E^n F^j) = \delta_{i,0} \delta_{j,0} q^{-l},$$

where $E^* = K^{-1} E$.

Let (M, ρ) be a right $U_q(sl_2)$-comodule. Then M becomes a left $SL_q(2)$-module via

$$x.m := \sum \psi(x)(m_1)m_0,$$

for $x \in SL_q(2), m \in M$, where $\rho(m) = \sum m_0 \otimes m_1 \in M \otimes U_q(sl_2)$.

Let C be the subcoalgebra of kD^e with the set of basis

$$\left\{ b(l, n, i) = \sum_{v \in P^n, |P^n| = i} \chi(v) F_l^{(v)} \mid 0 \leq i \leq n, n \in \mathbb{N}_0, l \in \mathbb{Z} \right\}.$$
Identifying $U_q(sl_2)$ with C via (3.1), we can evaluate $\psi(a)$, $\psi(b)$, $\psi(c)$ and $\psi(d)$ on this set of basis of C via Lemma 2.3. Since
\[b(l, n, i) = \frac{q^{(i+1)}}{l^q f^q_{-2}} \theta(K^{l}E^n F^j) \quad \text{with } j = n - i, \]

it follows that the list of the non-zero values is as follows:
\[
\begin{align*}
\psi(a)(b(l, 0, 0)) &= \psi(a)(K^l) = q^l, \\
\psi(a)(b(l, 2, 1)) &= \psi(a)(q^2 K^l E^F) = q^{l+1}, \\
\psi(b)(b(l, 1, 1)) &= \psi(b)(q^2 K^l E') = q^{l+1}, \\
\psi(c)(b(l, 1, 0)) &= \psi(c)(K^l F) = q^{-l}, \\
\psi(d)(b(l, 0, 0)) &= \psi(d)(K^l) = q^{-l}.
\end{align*}
\]

Theorem 5.2. Let $V = (V_l, f_a : l \in D_0, a \in D_1)$ be a k-representation of the quiver D satisfying the following conditions:
\begin{enumerate}
 \item [(i)] $f^{(1)}_{l-1} \circ f^{(-1)}_{l} = q^2 f^{(-1)}_{l-1} \circ f^{(1)}_{l}$ for all $l \in \mathbb{Z}$.
 \item [(ii)] For any $m \in V_l$, $f^{(v)}_{l}(m) = 0$ for all but finitely many $v \in \mathcal{I}$, where $f^{(v)}_{l} = f^{(v)}_{l^{(0)}}, f^{(0)}_{l} = \text{Id} | V_l$.
\end{enumerate}

Then $M = \bigoplus_{l \in \mathbb{Z}} V_l$ is a left $SL_q(2)$-module via
\[
\begin{align*}
a.m &= q^l m + q^{l-1} f^{(1, -1)}_{l}(m), \\
b.m &= q^{l-1} f^{(1)}_{l}(m), \\
c.m &= q^{-l} f^{(-1)}_{l}(m), \\
d.m &= q^{-l} m,
\end{align*}
\]

for each $m \in V_l$, $l \in \mathbb{Z}$, where q is not a root of unity.

Proof. By Theorem 4.3 $M = \bigoplus_{l \in \mathbb{Z}} V_l$ is a right $U_q(sl_2)$-comodule via
\[
\rho(m) = \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} \frac{f^{(v)}_{l}(m)}{\chi(v)} \otimes b(l, n, i)
\]

where v is a fixed element in I^n with $| T_v | = i$, and $m \in V_l, l \in \mathbb{Z}$. By (5.1), M becomes a left $SL_q(2)$-module via
\[
x.m = \sum_{n \in \mathbb{N}_0} \sum_{0 \leq i \leq n} \psi(x)(b(l, n, i)) \frac{f^{(v)}_{l}(m)}{\chi(v)}.
\]

It follows that for each $m \in V_l, l \in \mathbb{Z}$, we have
\[
\begin{align*}
a.m &= \psi(a)(b(l, 0, 0))m + \psi(a)(b(l, 2, 1)) \frac{f^{(1, -1)}_{l}(m)}{\chi(1, -1)} \\
&= q^l m + q^{l-1} f^{(1, -1)}_{l}(m), \\
b.m &= \psi(b)(b(l, 1, 1)) \frac{f^{(1)}_{l}(m)}{\chi(1)} = q^{l-1} f^{(1)}_{l}(m), \\
c.m &= \psi(c)(b(l, 1, 0)) \frac{f^{(-1)}_{l}(m)}{\chi(0)} = q^{-l} f^{(-1)}_{l}(m), \\
d.m &= \psi(d)(b(l, 0, 0))m = q^{-l} m.
\end{align*}
\]

Theorem 5.2 permits us to write out explicitly the following examples of $SL_q(2)$-modules.
Example 5.3. Let A be the quantum plane generated by X and Y subject to the relation $XY = qXY$, and U be a left A-module, where q is not a root of unity. Let l be an integer and n a non-negative integer. For any element $u \in U$ and $1 \leq i \leq n + 1$, let U^{n+1} denote the direct sum of the copies of U, and u_i denote the element in U^{n+1} with the ith component being u and other components being zero. Then by Theorem 5.2 and Example 4.4, the copy U^{n+1} becomes a left $SL_q(2)$-module with the following actions:

$$
au_i = q^{i+1-1}u_i + q^{i+1-2}Y Xu_{i-2}, \quad 3 \leq i \leq n + 1, \quad au_i = 0, \text{ otherwise},
$$

$$
bu = q^{i+1-2}X u_{i-1}, \quad 2 \leq i \leq n + 1, \quad bu_i = 0, \text{ otherwise},
$$

$$
cu_i = q^{-1}(i+1-1)Y u_{i-1}, \quad 2 \leq i \leq n + 1, \quad cu_i = 0, \text{ otherwise},
$$

$$
du_i = q^{-i+1-1}u_i, \quad \forall i.
$$

Example 5.4. Let V be a k-space of dimension $n + 1$, $n \in \mathbb{N}_0$, with basis v_0, v_1, \ldots, v_n. Let l be an integer, and $q \in k$ be not a root of unity.

(i) Let $\lambda \in k$. Then by Theorem 5.2 and Example 4.5(i), V becomes a left $SL_q(2)$-module via the following actions, which is denoted again by $M_{(l,n,\lambda)}$

$$
av_i = q^{l+i}v_i + \lambda q^{-2n+i+3i-3}v_{i-2}, \quad 2 \leq i \leq n,
$$

$$
av_i = q^{l+i}v_i, \quad i = 0, 1,
$$

$$
bv_i = q^{l+i-1}v_{i-1}, \quad 1 \leq i \leq n,
$$

$$
0v_0 = 0,
$$

$$
cv_i = \lambda q^{-2n+i-l}v_{i-1}, \quad 1 \leq i \leq n,
$$

$$
c0 = 0,
$$

$$
dv_i = q^{-(l+i)}v_i, \quad \forall i.
$$

(ii) By Theorem 5.2 and Example 4.5(ii), V also becomes a left $SL_q(2)$-module via the following actions, which is denoted again by $M_{(l,n,\infty)}$

$$
av_i = q^{l+i}v_i, \quad \forall i,
$$

$$
v_i = 0, \quad \forall i,
$$

$$
cv_i = q^{-(l+i)}v_{i-1}, \quad 1 \leq i \leq n,
$$

$$
c0 = 0,
$$

$$
dv_i = q^{-(l+i)}v_i, \quad \forall i.
$$

Note that $M_{(l,n,\lambda)}$ with $l \in \mathbb{Z}$, $n \in \mathbb{N}_0$, $\lambda \in k \cup \{\infty\}$ are indecomposable, pairwise non-isomorphic $SL_q(2)$-modules.

Acknowledgements

We thank the anonymous referee for his or her helpful comments. Work supported in part by the National Natural Science Foundation of China and Shanghai City (Grant No. 10301033 and No. 06ZR14049).

References

