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A recollement of vector bundles

Xiao-Wu Chen

Abstract

For a weighted projective line, the stable category of its vector bundles modulo line bundles
has a natural triangulated structure. We prove that, for any positive integers p, q, r and r′ with
r′ � r, there is an explicit recollement of the stable category of vector bundles on a weighted
projective line of weight type (p, q, r) relative to the ones on weighted projective lines of weight
types (p, q, r′) and (p, q, r − r′ + 1).
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1. Introduction

Let k be a field and let p, q and r be arbitrary positive integers. The weighted projective
line X(p, q, r) of weight type (p, q, r), in the sense of Geigle and Lenzing [8], is by definition
the projective line P

1
k with three weighted rational points, whose weights are p, q and r,

respectively. The category coh X(p, q, r) of coherent sheaves on X(p, q, r) is equivalent to
the quotient abelian category modL S/modL

0 S in the sense of Gabriel [7]. Here, S is the
triangle singularity k[x, y, z]/(xp + yq + zr), which is graded by the rank 1 abelian group
L = 〈�x, �y, �z | p�x = q�y = r�z〉 such that deg x = �x, deg y = �y and deg z = �z. We denote by modL S
the abelian category of finitely generated L-graded S-modules and by modL

0 S the Serre
subcategory consisting of finite-dimensional modules. The graded algebra S is referred to as
the homogeneous coordinate algebra of X(p, q, r). The weighted projective lines link various
subjects, such as singularity theory, representation theory and (non-commutative) algebraic
geometry together; see [9, 14, 16].

We denote by vect X(p, q, r) the full subcategory of coh X(p, q, r) consisting of vector
bundles. Following Kussin, Lenzing and Meltzer [14] a sequence η : 0 → E ′ → E → E ′′ → 0 in
vect X(p, q, r) is distinguished exact provided that Hom(L, η) are exact for all line bundles L on
X(p, q, r). Observe that a distinguished exact sequence is exact. With the class of distinguished
exact sequences the category vect X(p, q, r) is an exact category in the sense of Quillen [21].
Moreover, this exact category is Frobenius, that is, it has enough projective objects and enough
injective objects such that the class of projective objects coincides with the class of injective
objects. In this setting, an object in vect X(p, q, r) is projective if and only if it is a direct sum of
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line bundles. Then by Happel [10, Chapter I, Theorem 2.8], the corresponding stable category
vect X(p, q, r) of vect X(p, q, r) modulo line bundles has a natural triangulated structure.

Recently, the stable category vect X(p, q, r) of vector bundles receives a lot of attention. It is
closely related to the category of graded Cohen–Macaulay S-modules and then to the graded
singularity category DL

sg(S) of S in the sense of Buchweitz [3] and Orlov [18]. Here, we recall
that DL

sg(S) is by definition the Verdier quotient triangulated category Db(modL S)/perfL (S),
where Db(modL S) is the bounded derived category of modL S and perfL (S) is the triangulated
subcategory consisting of perfect complexes.

The stable category vect X(p, q, r) is also related to the bounded derived category
Db(coh X(p, q, r)) by a version of Orlov’s trichotomy theorem; see [19, 16]. More recently, D.
Kussin, H. Lenzing and H. Meltzer (‘Weighted projective lines and invariant flags of nilpotent
operators’, work in progress) proved that the stable category vect X(p, q, r) is triangle equivalent
to the stable category of the 2-flag category of graded modules over k[t]/(tr) such that the
lengths of the two flags are given by p − 1 and q − 1, respectively. Here, t is an indeterminant
with degree 1. This result generalizes their previous result in [15], which gives a surprising link
between weighted projective lines and the graded submodule category of nilpotent operators;
also see [4]. The latter category is studied intensively by Ringel and Schmidmeier in a
series of papers [22–24]. Let us remark that the triangulated category vect X(p, q, r) has nice
homological properties such as having a tilting object and being fractionally Calabi–Yau. For
details, we refer to [14, 15] and D. Kussin, H. Lenzing and H. Meltzer (‘Weighted projective
lines and invariant flags of nilpotent operators’, work in progress)

The aim of this paper is to prove the following recollement [1] consisting of the stable
categories of vector bundles on weighted projective lines.

Theorem 1.1. Let p, q, r and r′ be positive integers such that r′ � r. Then there exists a
recollement of triangulated categories

vect X(p, q, r′) �� vect X(p, q, r) ����
��

vect X(p, q, r − r′ + 1).��
��

This result is given in Theorem 5.2, where the six functors in the recollement above are
given explicitly. A part of this recollement is obtained in [6] from the viewpoint of expansions
of abelian categories. Let us point out that the results in D. Kussin, H. Lenzing and H. Meltzer
(‘Weighted projective lines and invariant flags of nilpotent operators’, work in progress) suggest
that the recollement obtained here might relate to the recollements constructed in X. W. Chen
and S. Ladkani (‘The F -inflation category and its stable category’, work in progress).

The paper is organized as follows. In Section 2, we collect some basic facts on adjoint pairs
and recollements. In Section 3, we recall some known results on the homogeneous coordinate
algebras of weighted projective lines. In particular, the relation among vector bundles, graded
Cohen–Macaulay modules, and graded singularity categories is recalled. We construct three
exact functors on the categories of graded modules over the homogeneous coordinate algebras
in Section 4. These functors induce the corresponding functors on the categories of vector
bundles. We state and prove our main result in Section 5.

2. Adjoint functors and recollements

In this section, we collect several well-known facts on adjoint functors and recollements.
Let F : A → B and G : B → A be two additive functors between additive categories. The

pair (F,G) is an adjoint pair provided that there is a functorial isomorphism of abelian groups

HomB(FA,B) � HomA(A,GB). (2.1)



A RECOLLEMENT OF VECTOR BUNDLES 273

This isomorphism induces the unit η : IdA → GF and the counit ε : FG → IdB of the adjoint
pair, both of which are natural transformations. Recall that the functor F is fully faithful if
and only if the unit η is an isomorphism. We refer to [17, Chapter IV] for details.

Let A′ be a Serre subcategory of an abelian category A. Denote by A/A′ the quotient
abelian category in the sense of Gabriel [7]. Consider an exact functor F : A → B between
abelian categories, and two Serre subcategories A′ ⊆ A and B′ ⊆ B with FA′ ⊆ B′. Then there
is a uniquely induced exact functor F̄ : A/A′ → B/B′.

Lemma 2.1. Let F : A → B be an exact functor between abelian categories that has an
exact right adjoint G. Assume that A′ ⊆ A and B′ ⊆ B are Serre subcategories such that
FA′ ⊆ B′ and GB′ ⊆ A′. Then the induced functor F̄ : A/A′ → B/B′ is left adjoint to the
induced functor Ḡ : B/B′ → A/A′. Moreover, if F is fully faithful, then so is F̄ .

Proof. Observe that the unit η : IdA → GF (respectively, the counit ε : FG → IdB) induces
naturally a natural transformation η̄ : IdA/A′ → ḠF̄ (respectively, ε̄ : F̄ Ḡ → IdB/B′). Then we
apply [17, Chapter IV, Section 1, Theorem 2(v)] to deduce the adjoint pair (F̄ , Ḡ). Moreover,
the corresponding unit and counit are η̄ and ε̄, respectively.

If the functor F is fully faithful, then η : IdA → GF is an isomorphism. It follows that the
natural transformation η̄ : IdA/A′ → ḠF̄ is also an isomorphism. This implies that F̄ is fully
faithful; consult the dual of [17, Chapter IV, Section 3, Theorem 1].

Replacing abelian categories by triangulated categories and the Gabriel quotient by
Verdier quotient [25] in Lemma 2.1, one obtains a triangulated analogue of Lemma 2.1; see
[18, Lemma 1.2].

Let A be an abelian category. Denote by Kb(A) and Db(A) the bounded homotopy category
and the bounded derived category of A, respectively. Recall that Db(A) is the Verdier quotient
triangulated category of Kb(A) by the subcategory consisting of acyclic complexes. We will
always identify A as the full subcategory of Db(A) formed by stalk complexes concentrated at
degree 0. For details, we refer to [10, 12, 25].

Let B be another abelian category. Let F : A → B be an exact functor. Then the functor F
extends naturally to a triangle functor Db(F ) : Db(A) → Db(B) . The following fact could be
proved directly similarly to Lemma 2.1; see [6, Lemma 3.3.1(1)].

Lemma 2.2. Let F : A → B be an exact functor between abelian categories that has an
exact right adjoint G. Then the pair (Db(F ),Db(G)) is adjoint. Moreover, if F is fully faithful,
then so is Db(F ).

Proof. Observe that the isomorphism (2.1) extends to the bounded homotopy categories.
Then we apply the triangulated analogue of Lemma 2.1.

Let A be an additive category. Recall that a sequence X
i→ Y

d→ Z in A is a kernel–cokernel
sequence if i = Ker d and d = Cok i. By an exact category in the sense of Quillen [21], we
mean an additive category with a chosen class of kernel–cokernel sequences which satisfies
certain axioms. For an exact category A the sequence in the chosen class is called a conflation.
For example, an abelian category is naturally an exact category with conflations induced by
short exact sequences. More generally, an extension-closed subcategory of an abelian category
is an exact category in the same manner. An additive functor F : A → B between two exact
categories is exact provided that it sends conflations to conflations. For details, we refer to
[11, Appendix A].
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An exact category A is Frobenius provided that it has enough projective and enough injective
objects, and that the class of projective objects coincides with the class of injective objects.
The stable category A of a Frobenius category A is defined as follows: the objects are the
same as in A, while for two objects X and Y the Hom set HomA(X,Y ) is the quotient of
HomA(X,Y ) modulo the subgroup formed by those morphisms that factor though a projective
object; the composition of morphisms in A is induced by the one of A. The stable category A
has a natural triangulated structure; see [10, Chapter I, Section 2] and [11, 1.2].

Let F : A → B be an exact functor between two Frobenius categories that sends projective
objects to projective objects. Then there is a uniquely induced functor F : A → B, which is a
triangle functor by [10, Chapter I, Lemma 2.8].

We observe the following fact.

Lemma 2.3. Let F : A → B be an exact functor between two Frobenius categories that
sends projective objects to projective objects. Assume that F admits a right adjoint G : B → A
which is also exact. Then we have the following statements:

(1) the functor G sends projective objects to projective objects;
(2) the pair (F ,G) is adjoint;
(3) if the functor F is fully faithful, then so is F .

Proof. Statement (1) follows from a general fact that a right adjoint of an exact functor
preserves injective objects; see [26, Proposition 2.3.10]. Statements (2) and (3) are easy, which
could be proved by the same argument as in the proof of Lemma 2.1.

Recall that a diagram of triangle functors between triangulated categories

T ′ i �� T j ��
iρ

��

iλ��
T ′′

jρ

��

jλ��

forms a recollement [1], provided that the following conditions are satisfied:

(R1) the pairs (iλ, i), (i, iρ), (jλ, j) and (j, jρ) are adjoint;
(R2) the functors i, jλ and jρ are fully faithful;
(R3) Im i = Ker j.

Here for an additive functor F , Im F and KerF denotes the essential image and kernel of F ,
respectively. Recall that in this situation j induces a triangle equivalence T /Ker j � T ′′, where
T /Ker j denotes the Verdier quotient category [25].

The following two results are well known.

Lemma 2.4. Let i : T ′ → T be a fully faithful triangle functor that admits a left adjoint
iλ and a right adjoint iρ. Then we have a recollement of triangulated categories

T ′ i �� T q ��
iρ

��

iλ��
T /Im i,��

��

where q : T → T /Im i denotes the quotient functor.

Proof. Observe that the functors iλ and iρ are triangle functors; see [12, Lemma 8.3]. The
remaining follows directly from [2, Propositions 1.5 and 1.6].
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Recall that a thick subcategory of a triangulated category T means a full triangulated
subcategory that is closed under taking direct summands. For a class S of objects in T ,
denote by thick〈S〉 the smallest thick subcategory of T containing S, which is called the
thick subcategory generated by S; compare [10, p. 70].

Lemma 2.5. Suppose that we are given a diagram of triangle functors satisfying (R1)
and (R2).

T ′ i �� T j ��
iρ

��

iλ��
T ′′

jρ

��

jλ��

Assume that ji � 0 and thick〈Im i ∪ Im jλ〉 = T . Then this diagram of functors is a recollement.

Proof. It suffices to show that an object X in T satisfying jX � 0 lies in Im i. Consider the
triangle X ′ → X → iiλX → X ′[1], where X → iiλX is given by the unit of the adjoint pair
(iλ, i) and [1] denotes the translation functor of T . We apply the functors j and HomT (−, iY ′)
to this triangle, where Y ′ ∈ T ′. Then it follows that jX ′ � 0 and Im i ⊆ X ′⊥. Here, X ′⊥ =
{Y ∈ T |HomT (X ′, Y [n]) = 0, n ∈ Z} which is a thick subcategory of T , and for each n � 1,
[n] and [−n] denote the nth power of the translation functor [1] and its inverse [−1], respectively.
Observe that Im jλ ⊆ X ′⊥ by the adjoint pair (jλ, j). Then it follows from thick〈Im i ∪ Im jλ〉 =
T that T ⊆ X ′⊥, which forces that X ′ � 0. Then we have X � iiλX. We are done.

3. Homogeneous coordinate algebras

In this section, we recall some basic facts on the homogeneous coordinate algebras of weighted
projective lines. In particular, the relation among vector bundles on weighted projective lines,
graded Cohen–Macaulay modules and the graded singularity categories of the homogeneous
coordinate algebras is recalled. We emphasize that most notions are considered in the graded
sense.

Let p = (p1, p2, . . . , pn) be a sequence of positive integers with n � 2, which is called a weight
sequence. Denote by L = L(p) the rank 1 abelian group generated by �x1, �x2, . . . , �xn subject
to the relations p1�x1 = p2�x2 = . . . = pn�xn. The torsion-free element �c = p1�x1 in L is called the
canonical element. Recall that each element �l in L can be uniquely expressed in its normal form

�l =
n∑

i=1

li�xi + l�c (3.1)

such that l ∈ Z and 0 � li < pi for each i; see [8, 1.2]. In what follows, all elements in L will
be written in their normal forms.

Let k be an arbitrary field. Denote by P
1
k the projective line over k. For each rational point

λ of P
1
k we fix a choice of its homogeneous coordinates λ = [λ0 : λ1]. Let λ = (λ1, λ2, . . . , λn)

be a sequence of pairwise distinct rational points of P
1
k, which is called a parameter sequence.

Denote by X(p,λ) the weighted projective line [8] with weight sequence p and parameter
sequence λ. Recall that S = S(p,λ), the homogeneous coordinate algebra of X(p,λ) is
defined by

S(p,λ) = k[U, V,X1,X2, . . . , Xn]/(Xpi

i + λi1U − λi0V, 1 � i � n).

Here, we recall that λi = [λi0 : λi1]. We write u, v and xi for the canonical image of U , V and
Xi in S, 1 � i � n. The algebra S is naturally L-graded by means of deg u = deg v = �c and
deg xi = �xi. Observe that S is (graded) Noetherian.
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We denote by modL S the abelian category of finitely generated L-graded S-modules. A
graded S-module is written as M =

⊕
�l∈L M�l, where M�l is the homogeneous component of

degree �l. For an element �l in L the shifted module M(�l) is the same as M as ungraded S-
modules, whereas it is graded such that M(�l)�l′ = M�l+�l′ . This yields the degree-shift functor (�l) :
modL S → modL S, which is clearly an automorphism of categories. Observe that a complete
set of representatives of pairwise non-isomorphic indecomposable projective modules in modL S
is given by {S(�l) | �l ∈ L}. Here, we view S as a graded S-module generated by its homogeneous
component of degree 0.

We remark that the L-graded algebra S(p,λ), even up to isomorphism, might depend
on the choice of the homogeneous coordinates of the parameters λi. However, the category
modL S(p,λ) of finitely generated L-graded S(p,λ)-modules, up to equivalence, does not
depend on such choice.

We observe that the algebra S = S(p,λ) is graded local, that is, it has a unique maximal
homogeneous ideal m = (x1, x2, . . . , xn). Consider k = S/m the trivial module of S, which is
concentrated at degree 0 . Then the set {k(�l) | �l ∈ L} is a complete set of representatives of
pairwise non-isomorphic graded simple S-modules.

Lemma 3.1. Use the notation above. Then the following statements hold:
(1) the graded S-module S has injective dimension 2 and in particular, the algebra S is

graded Gorenstein;
(2) the algebra S is a graded isolated singularity, that is, for each homogeneous non-maximal

prime ideal p the homogeneous localization Sp has finite graded global dimension.

Proof. Statement (1) follows from the observation that S has (graded) Krull dimension 2
and it is a complete intersection, and then Gorenstein; compare [8, Proposition 1.3]. Statement
(2) follows from [8, 1.6].

Denote by k[u, v] the polynomial algebra with two variables which is L-graded such
that deg u = deg v = �c. The following embedding of L-graded algebras is known as the core
homomorphism

k[u, v] −→ S,

which sends u to u, and v to v. you to check on attached file respectively. Observe that
the algebra S is a finitely generated free module over k[u, v] via this core homomorphism.
More precisely, each homogeneous component S�l has an explicit basis {

∏n
i=1 xli

i uavb | a, b �
0, a + b = l} . Hence the free k[u, v]-module S has a homogeneous basis {

∏n
i=1 xli

i | 0 � li <
pi, 1 � i � n}. For details, we refer to the proof of [8, Proposition 1.3]. Observe that again via
the core homomorphism, a graded S-module M induces graded k[u, v]-modules M |�l+Z�c for all
�l ∈ L. Here, M |�l+Z�c =

⊕
�l′∈�l+Z�c M�l′ .

The following lemma is easy.

Lemma 3.2. A graded S-module M is finitely generated if and only if all the induced
k[u, v]-modules M |�l+Z�c are finitely generated.

Recall that a module M in modL S is called (maximal) Cohen–Macaulay provided that
Exti

modL S(M,S(�l)) = 0 for all i � 1 and �l in L. Denote by CML(S) the full subcategory
consisting of Cohen–Macaulay modules. Observe that projective S-modules are Cohen–
Macaulay and that CML(S) is extension-closed in modL S. Hence, CML(S) becomes naturally
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an exact category. Since S is Gorenstein, this exact category is Frobenius; moreover, an object
M in CML(S) is projective if and only if it is a projective S-module; see [3, Lemma 4.2.2]. We
denote by CML(S) the stable category; it is a triangulated category.

Lemma 3.3. A graded S-module M is Cohen–Macaulay if and only if all the induced
k[u, v]-modules, M |�l+Z�c are (finitely generated) projective.

Proof. Recall that the algebra S is graded Gorenstein of self-injective dimension 2. Then
by a graded version of local duality the module M is Cohen–Macaulay if and only if
HommodL S(k(�l),M) = 0 = Ext1modL S(k(�l),M) for all �l in L. Then this is equivalent to that
HommodL k[u,v](k(�l),M) = 0 = Ext1modL k[u,v](k(�l),M) for all �l in L; see the third paragraph of
the proof of [8, Theorem 5.1]. Observe that the algebra k[u, v] has graded global dimension
2. Then this is equivalent to that M is a graded projective k[u, v]-module, which is further
equivalent to that all the induced k[u, v]-modules M |�l+Z�c are projective.

Denote by Db(modL S) the bounded derived category of modL S. We identify modL S as the
full subcategory of Db(modL S) consisting of stalk complexes concentrated at degree 0. Denote
by perfL(S) the full triangulated subcategory of Db(modL S) consisting of perfect complexes.
Here, we recall that perfect complexes in Db(modL S) are those complexes isomorphic to a
bounded complex of finitely generated projective modules in modL S. Following Buchweitz
[3] and Orlov [18] the graded singularity category of S is defined to be the Verdier quotient
triangulated category DL

sg(S) = Db(modL S)/perfL(S).
Consider the composite modL S ↪→ Db(modL S)

q→ DL
sg(S) , where the first functor identifies

a module as a stalk complex concentrated at degree 0, and q denotes the quotient functor. In
this way, for a module M in modL S, qM becomes an object in DL

sg(S). Recall that a short

exact sequence 0 → M
f→ N

g→ L → 0 of graded S-modules induces a triangle η : M
f→ N

g→
L → M [1] in Db(modL S). Here, [1] denotes the translation functor on the derived category.

The triangle η induces further a triangle qM
q(f)→ qN

q(g)→ qL → (qM)[1] in DL
sg(S). For the

construction of the triangle η, we refer to [26, Example 10.4.9] and the paragraph following
[12, Example 11.5].

We restrict the composite functor modL S ↪→ Db(modL S)
q→ DL

sg(S) to CML(S). Observe
that qP is isomorphic to zero for a projective S-module P . Then we have an induced functor
CML(S) → DL

sg(S).

Lemma 3.4. Keep the notation above. Then the following statements hold:
(1) the induced functor CML(S) → DL

sg(S) is a triangle equivalence;
(2) DL

sg(S) = thick〈qk(�l) | �l ∈ L〉.

Proof. (1) Recall that the algebra S is graded Gorenstein. Then the triangle equivalence
follows from an L-graded version of Buchweitz’s theorem [3, Theorem 4.4.1].

(2) We use the fact that S is a graded isolated singularity; see Lemma 3.1(2). Then the
statement follows from an L-graded version of [13, Proposition A.2]; also see [5, Corollary 2.4]
and compare [20, Proposition 2.7].

We denote by coh X the abelian category of coherent sheaves on X = X(p,λ). Recall
that coh X is equivalent to the quotient abelian category modL S/modL

0 S, where modL
0 S

denotes the Serre subcategory consisting of finite-dimensional S-modules. This corresponds
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to a quotient functor modL S → coh X, which is known as the sheafification functor [8]. For
details, see [8, 1.8]. The degree-shift functors (�l) yield the twist functors on coh X, which are
still denoted by (�l). Then the sheafification functor sends S(�l) to the twisted structure sheaf
OX(�l) of X.

Locally free sheaves on X are called vector bundles. A line bundle is a vector bundle of rank
1. Recall that a complete set of representatives of pairwise non-isomorphic line bundles on X

is given by {OX(�l) | �l ∈ L}; see [8, Proposition 2.1].
We denote by vect X the full subcategory of coh X consisting of vector bundles. This is

an extension-closed subcategory and thus becomes an exact category. However, we are not
interested in this exact category, since it is not Frobenius in general.

Following Kussin, Lenzing and Meltzer [14] a sequence η : 0 → E ′ → E → E ′′ → 0 in vect X

is distinguished exact provided that Hom(OX(�l), η) are exact for all �l in L. Observe that a
distinguished exact sequence is exact in coh X. With the class of distinguished exact sequences
the category vect X is a Frobenius category such that an object is projective if and only if it
is a direct sum of line bundles. Denote by vect X the corresponding stable category, which is
triangulated. This category is called the stable category of vector bundles on X [14].

We have the following result in [14]. Recall that an exact functor between two exact categories
is an equivalence of exact categories provided that it is an equivalence of categories and its
quasi-inverse is also an exact functor.

Lemma 3.5. The sheafification functor induces an equivalence of exact categories
CML(S) � vect X, which further induces a triangle equivalence CML(S) � vect X.

Proof. This follows from [8, Theorem 5.1] immediately.

We observe that the degree-shift functors (�l) act on CML(S) and DL
sg(S) naturally. Similarly,

the twist functors (�l) act on vect X.

Proposition 3.6. Keep the notation as above. Then there is a triangle equivalence
vect X � DL

sg(S), which is compatible with the degree-shift functors and the twist functors.

Proof. Combine Lemmas 3.4(1) and 3.5. Observe that the equivalences in the two lemmas
are compatible with the degree-shift functors and the twist functors.

4. Functors on graded modules and sheaves

In this section, we construct three functors on the graded module categories of the homogeneous
coordinate algebras of weighted projective lines. These functors will induce a recollement of
the stable categories of vector bundles. Let us point out that the construction of these functors
is essentially contained in [9, Section 9]; also see [6, Section 4].

Let p = (p1, p2, . . . , pn), the weight sequence in Section 3. Fix a positive integer p′n � pn.
Write p′ = (p1, p2, . . . , pn−1, p

′
n). Denote L′ = L(p′). Consider the following injective map φ′ :

L′ → L which sends an element �l =
∑n

i=1 li�xi + l�c to φ′(�l) =
∑n

i=1 li�xi + l�c. Here, the element
�l in L′ is in its normal form, that is, 0 � li < p′i and l ∈ Z, where p′i = pi for i < n; see (3.1).
Observe that in general, the map φ′ is not a homomorphism of groups; moreover, an element
�l in L lies in the image of φ′ if and only if ln < p′n.

Let λ be the parameter sequence in Section 3. We denote by S′ = S(p′,λ) the homogeneous
coordinate algebra of the weighted projective line X

′ = X(p′,λ). Then S′ is naturally L′-graded.
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We will define a functor i′ : modL′
S′ → modL S as follows. For an L′-graded S′-module M ,

define i′M =
⊕

�l∈L(i′M)�l such that (i′M)�l = Mφ′−1(�l−ln�xn) if 0 � ln < pn − p′n, and (i′M)�l =
Mφ′−1(�l−(pn−p′

n)�xn), otherwise. The action of u, v and xi on i′M is induced by the one on
M , except that xn acts as the identity on (i′M)�l provided that ln < pn − p′n. In this case, we
note that (i′M)�l = (i′M)�l+�xn

. The obtained L-graded S-module i′M is finitely generated by
Lemma 3.2. The action of i′ on morphisms is defined naturally.

As indicated in the paragraph following [9, Proposition 9.4], the functor i′ might be viewed
as the right Kan extension associated to a fully faithful functor from the companion category
of S′ to the one of S; see [9, p. 324].

Lemma 4.1. Use the notation above. Then the following statements hold:

(1) the functor i′ is exact and fully faithful;
(2) i′(M(�xi)) = (i′M)(�xi) for any graded S′-module M and 1 � i < n;
(3) i′(S′(�l)) � S(φ′(�l)) for all �l ∈ L′;
(4) i′(k(�l)) = k(φ′(�l)) if ln > 0, and i′(k(�l)) = S(φ′(�l))/(x1, x2, . . . , xn−1, x

pn−p′
n+1

n ), other-
wise;

(5) if M is a Cohen–Macaulay S′-module, then i′M is a Cohen–Macaulay S-module.

Proof. The statements (1), (2) and (4) are obvious from the construction of i′. For statement
(5), take �l ∈ L. If ln < pn − p′n, we have (i′M)|�l+Z�c = M |φ′−1(�l−ln�xn)+Z�c as k[u, v]-modules;
otherwise, we have (i′M)|�l+Z�c = M |φ′−1(�l−(pn−p′

n)�xn)+Z�c as k[u, v]-modules. Then (5) follows
from Lemma 3.3.

We will describe the isomorphism in statement (3). Fix �l ∈ L′, and let �m =
∑n

i=1 mi�xi +
m�c ∈ L be in its normal form; see (3.1). We have three cases.

(i) If mn < pn − p′n, then set �r = �l + φ′−1(�m − mn�xn) and write �r =
∑n

i=1 ri�xi + r�c

in its normal form. Then we have φ′(�l) + �m = φ′(�r) + mn�xn. In this case, i′(S′(�l))�m =
S′

�r has a basis {
∏n

i=1 xri
i uavb | a, b � 0, a + b = r} and S(φ′(�l))�m = Sφ′(�l)+�m has a basis

{
∏n

i=1 xri
i xmn

n uavb | a, b � 0, a + b = r}; refer to the paragraphs before Lemma 3.2. We define
a linear isomorphism φ�m : i′(S′(�l))�m → S(φ′(�l))�m sending

∏n
i=1 xri

i uavb to
∏n

i=1 xri
i xmn

n uavb.
(ii) If pn − p′n � mn < pn − ln, then set �r = �l + φ′−1(�m − (pn − p′n)�xn). Then we have φ′(�l) +

�m = φ′(�r) + (pn − p′n)�xn. By a similar analysis as above, we define a linear isomorphism φ�m :
i′(S′(�l))�m → S(φ′(�l))�m sending

∏n
i=1 xri

i uavb ∈ S′
�r to

∏n
i=1 xri

i x
pn−p′

n
n uavb ∈ Sφ′(�r)+(pn−p′

n)�xn
.

(iii) If mn � pn − ln, then set �r = �l + φ′−1(�m − (pn − p′n)�xn). Then we have φ′(�l) +
�m = φ′(�r). The linear isomorphism φ�m : i′(S′(�l))�m → S(φ′(�l))�m sends

∏n
i=1 xri

i uavb ∈ S′
�r to∏n

i=1 xri
i uavb ∈ Sφ′(�r).

Then φ =
⊕

�m∈L φ�m : i′(S′(�l)) → S(φ′(�l)) is the required isomorphism of S-modules.

We define a functor i′λ : modL S → modL′
S′ as follows. For an L-graded S-module N , we

set i′λN =
⊕

�l∈L′(i′λN)�l such that (i′λN)�l = Nφ′(�l)+(pn−p′
n)�xn

for all �l in L′. The action of u, v

and xi on i′λN is induced by the one on N , except that xn acts by x
pn−p′

n+1
n (in S) on (i′λN)�l

provided that ln = p′n − 1. In this case, we note that φ′(�l + �xn) = φ′(�l) + (pn − p′n + 1)�xn. The
obtained L′-graded S′-module i′λN is finitely generated by Lemma 3.2. The action of i′λ on
morphisms is defined naturally.

We point out that the functor i′λ coincides with the restriction functor between the module
categories considered in [9, p. 324]. Then the statement (3) in the following lemma is essentially
the same as [9, Proposition 9.4(1)], while the statement (6) is implicitly stated in [9, p. 325].
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Lemma 4.2. Use the notation above. Then the following statements hold:
(1) the functor i′λ is exact;
(2) i′λ(N(�xi)) = (i′λN)(�xi) for any graded S-module N and 1 � i < n;
(3) i′λ(S(�l)) � S′(φ′−1(�l)) if 0 � ln < p′n, and i′λ(S(�l)) � S′(φ′−1(�l − ln�xn) + �c), otherwise;
(4) i′λ(k(�l)) = k(φ′−1(�l − �xn) + �xn) if 1 � ln � p′n, and i′λ(k(�l)) = 0, otherwise;
(5) if N is a Cohen–Macaulay S-module, then i′λN is a Cohen–Macaulay S′-module;
(6) the pair (i′λ, i′) is adjoint.

Proof. The statements (1)–(5) are proved with a similar argument as in Lemma 4.1.
Here, we indicate the construction of the isomorphism Φ : HommodL′

S′(i′λN,M) �
HommodL S(N, i′M) for the adjoint pair in statement (6). It sends f : i′λN → M to Φ(f) :
N → i′M such that its restriction on N�l, that is, N�l → (i′M)�l, is restricted from f , except that

in the cases ln < pn − p′n, it is given by N�l

x
pn−p′

n−ln
n −→ N�l+(pn−p′

n−ln)�xn
= (i′λN)φ′−1(�l−ln�xn) →

Mφ′−1(�l−ln�xn) = (i′M)�l, where the second map is restricted from f .

We define a functor i′ρ : modL S → modL′
S′ as follows. For an L-graded S-module N , we

set i′ρN =
⊕

�l∈L′(i′ρN)�l such that (i′ρN)�l = Nφ′(�l) if ln = 0, and (i′ρN)�l = Nφ′(�l)+(pn−p′
n)�xn

,
otherwise. The action of u, v and xi on i′λN is induced by the one on N , except that xn

acts by x
pn−p′

n+1
n (in S) on (i′ρN)�l provided that ln = 0. The obtained L′-graded S′-module

i′ρN is finitely generated by Lemma 3.2. The action of i′ρ on morphisms is defined naturally.
We observe that (i′ρN)(�xn) = i′λ(N(�xn)) for any L-graded S-module N .

The following lemma is dual to Lemma 4.2.

Lemma 4.3. Use the notation above. Then the following statements hold:
(1) the functor i′ρ is exact;
(2) i′ρ(N(�xi)) = (i′ρN)(�xi) for any graded S-module N and 1 � i < n;
(3) i′ρ(S(�l)) � S′(φ′−1(�l)) if 0 � ln < p′n, and i′ρ(S(�l)) � S′(φ′−1(�l − (ln − p′n + 1)�xn)),

otherwise;
(4) i′ρ(k(�l)) = k(φ′−1(�l)) if 0 � ln < p′n, and i′ρ(k(�l)) = 0, otherwise;
(5) if N is a Cohen–Macaulay S-module, then i′ρN is a Cohen–Macaulay S′-module;
(6) the pair (i′, i′ρ) is adjoint.

Proof. We describe the isomorphism Ψ : HommodL S(i′M,N) � HommodL′
S′(M, i′ρN) for

the adjoint pair (i′, i′ρ) in statement (6). It sends f : i′M → N to Ψ(f) : M → i′ρN such that

its restriction on M�l, that is, M�l → (i′ρN)�l, is given by M�l = (i′M)φ′(�l)
f−→ Nφ′(�l) = (i′ρN)�l for

the case ln = 0, and it is given by M�l = (i′M)φ′(�l)+(pn−p′
n)�xn

f−→ Nφ′(�l)+(pn−p′
n)�xn

= (i′ρN)�l,
otherwise.

We have built adjoint pairs (i′λ, i′) and (i′, i′ρ) of exact functors on graded module categories.
Observe that these functors preserve finite dimensionality. By abuse of notation, we have the
induced functor i′ : coh X

′ → coh X which has a left adjoint i′λ : coh X → coh X
′ and a right

adjoint i′ρ : coh X → coh X
′; see Lemma 2.1. These induced functors are all exact, and i′ is

fully faithful.
Recall that the sheafification functor modL S → coh X induces an equivalence CML(S) �

vect X of exact categories, which identifies projective modules with line bundles; see Lemma 3.5.
Here, the exact structure on vect X is given by the distinguished exact sequences. Then it follows
from Lemmas 4.1(5), 4.2(5) and 4.3(5) that the obtained three functors on sheaves restrict to
three exact functors on the categories of vector bundles. Moreover, these restricted functors
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preserve line bundles; see Lemmas 4.1(3), 4.2(3) and 4.3(3). Therefore, these restricted functors
induce triangle functors on the stable categories of vector bundles. Applying Lemma 2.3 we
obtain two adjoint pairs (i′λ, i′) and (i′, i′ρ) of triangle functors, where the triangle functor
i′ : vect X

′ −→ vect X is fully faithful. Here we abuse the notation again.
We have the following immediate consequence of Lemma 2.4; compare [6, Theorem 4.3.1].

Proposition 4.4. Keep the notation as above. Then we have the following recollement:

vect X
′

i′ �� vect X q ��

i′ρ
��

i′λ��
vect X/Im i′,��

��

where q : vect X → vect X/Im i′ denotes the quotient functor.

In general, we do not know much about the Verdier quotient category vect X/Im i′ in the
recollement above. Note that the case n = 2 is boring, since then the three triangulated
categories in the recollement are trivial. We will see that if n = 3, that is, the weight sequence
of the weighted projective line X has length 3, then we have an explicit description of the
quotient category.

5. The main result

In this section, we describe the quotient category appearing in the recollement of Proposition 4.4
under the condition that the weight sequence has length 3. This yields our main result,
where an explicit recollement consisting of the stable categories of vector bundles is given;
see Theorem 5.2.

Let p = (p1, p2, p3) be a weight sequence of length 3, and let λ = (λ1, λ2, λ3) be a parameter
sequence. Denote by X = X(p,λ) the corresponding weighted projective line. Note that the
category of coherent sheaves on the weighted projective line X, up to equivalence, does not
depend on the choice of the parameter sequence λ, since the weight sequence has length 3;
compare [9, Proposition 9.1]. For this reason, as we do in Section 1, the weighted projective
line X(p,λ) is sometimes written as X(p).

Fix a positive integer p′3 such that p′3 � p3. Set p′′3 = p3 − p′3 + 1. Set p′ = (p1, p2, p
′
3) and

X
′ = X(p′,λ). Recall that S′ = S(p′,λ) is the homogeneous coordinate algebra of X

′, which is
graded by L′ = L(p′). Similarly, we have the notation p′′, X

′′, S′′ and L′′.
Recall from Section 4 the explicitly given exact functor i′ : modL′

S′ → modL S, which allows
an exact left adjoint i′λ and an exact right adjoint i′ρ. Observe that all these functors preserve
projective modules. These exact functors extend to triangle functors between the corresponding
bounded derived categories; see Lemma 2.2. These triangle functors form adjoint pairs and
preserve perfect complexes. Applying a triangulated analogue of Lemma 2.1, we obtain the
induced triangle functor i′ : DL′

sg (S′) → DL
sg(S), which allows a left adjoint iλ and a right

adjoint i′ρ.
We have observed in Section 4 that the three exact functors i′, i′λ and i′ρ on module categories

induce the corresponding triangle functors between the stable categories of vector bundles.
Then we have the fully faithful triangle functor i′ : vect X

′ → vect X, which allows a left adjoint
i′λ and a right adjoint i′ρ.

We recall the triangle equivalence in Proposition 3.6, which will be denoted by F : vect X →
DL

sg(S). Similarly, we have a triangle equivalence F ′ : vect X
′ → DL′

sg (S′).
The following immediate observation states that these triangle equivalences are compatible

with the functors i′, i′λ and i′ρ defined on both sides.
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Lemma 5.1. Keep the notation as above. Then we have natural isomorphisms i′F ′ � Fi′,
i′λF � F ′i′λ and i′ρF � F ′i′ρ.

Recall that S′′ = S(p′′,λ) and X
′′ = X(p′′,λ). Then we have the exact fully faithful functor

i′′ : modL′′
S′′ → modL S which admits an exact left adjoint i′′λ and an exact right adjoint i′′ρ ; see

Section 4. These functors induce the corresponding functors on the stable categories of vector
bundles and the graded singularity categories; these induced functors are still denoted by i′′, i′′λ
and i′′ρ . Moreover, the triangle equivalences F : vect X → DL

sg(S) and F ′′ : vect X
′′ → DL′′

sg (S′′)
are compatible with these functors; compare Lemma 5.1.

We are in a position to state and prove our main result.

Theorem 5.2. Keep the assumption and notation as above. Then we have the following
recollement of triangulated categories:

vect X
′

i′ �� vect X i′′λ((1−p′
3)�x3) ��

i′ρ
��

i′λ��
vect X

′′.
((p′

3−1)�x3)i
′′

��

(p′
3�x3)i

′′(−�x3)��

In particular, we have a triangle equivalence vect X/Im i′ � vect X
′′.

Proof. Set j′′ = i′′λ((1 − p′3)�x3), j′′λ = (p′3�x3)i′′(−�x3) and j′′ρ = ((p′3 − 1)�x3)i′′. Recall that
(i′λ, i′) and (i′, i′ρ) are adjoint pairs. Similarly, (i′′λ, i′′) and (i′′, i′′ρ) are adjoint pairs. Then it
follows that (j′′, j′′ρ ) is an adjoint pair. Note that j′′ = (�x3)i′′ρ(−p′3�x3), since we have (�x3)i′′ρ =
i′′λ(�x3); see the paragraphs before Lemma 4.3. Then we have that (j′′λ , j′′) is also an adjoint
pair. Recall that both the functors i′ and i′′ are fully faithful, and so are j′′λ and j′′ρ . Then
the above diagram satisfies the conditions (R1) and (R2). We will apply Lemma 2.5. Then it
suffices to show that j′′i′ � 0 and thick〈Im i′ ∪ Im j′′λ〉 = vect X.

Recall that the triangle equivalences F , F ′ and F ′′ are compatible with the degree-shift
functors and the twist functors, and also with the six functors i′, i′λ, i′ρ, i′′, i′′λ and i′′ρ ; see
Proposition 3.6 and Lemma 5.1. Then it follows that they are compatible with the functors
j′′, j′′λ and j′′ρ . Using these three triangle equivalences again, it suffices to show the following

two statements: (1) the composite DL′
sg (S′) i′→ DL

sg(S)
j′′
→ DL′′

sg (S′′) is zero; (2) the union of the
images of the functors i′ : DL′

sg (S′) → DL
sg(S) and j′′λ : DL′′

sg (S′′) → DL
sg(S) generates DL

sg(S).
Recall from Lemma 3.4(2) that the category DL′

sg (S′) is generated by {qk(�l) | �l ∈ L′}, where
q : Db(modL′

S′) → DL′
sg (S′) is the quotient functor. To see the statement (1), it suffices to show

that j′′i′(qk(�l)) � 0 for each �l in L′. We write �l in its normal form; see (3.1). Then we observe
from Lemmas 4.1(4) and 4.2(4) that j′′i′(k(�l)) = 0 (as an S′′-module) if l3 > 0. If l3 = 0, then
we have by Lemma 4.1(4) that i′(k(�l)) = S(φ′(�l))/(x1, x2, x

p3−p′
3+1

3 ) = S(φ′(�l))/(x1, x2, x
p′′
3

3 ).
Here, we recall that n = 3, that is, the weight sequence of X has length 3. Then we have for the
case l3 = 0 that j′′i′(k(�l)) = S′′(φ′′−1(φ′(�l)) + �c)/(x1, x2, x

p′′
3

3 ) = S′′(φ′′−1(φ′(�l)) + �c)/(x1, x2).
Since {x1, x2} is a (homogeneous) regular sequence in S′′, the S′′-module j′′i′(k(�l)) has finite
projective dimension. Hence, j′′i′(qk(�l)) = q(j′′i′k(�l)) � 0 in DL′′

sg (S′′).
It remains to show the statement (2). By Lemma 3.4(2) it suffices to show that qk(�l) lie in

thick〈Im i′ ∪ Im j′′λ〉 for all �l in L. We write the element �l ∈ L in its normal form; see (3.1). We
observe that by Lemma 4.1(4) that qk(�l) lies in the image of i′ : DL′

sg (S′) → DL
sg(S) provided

that 1 � l3 < p′3. Similarly qk(�l) lies in the image of j′′λ : DL′′
sg (S′′) → DL

sg(S) provided that
p′3 + 1 � l3 < p3 or l3 = 0. Here, we apply Lemma 4.1(4) to i′′ and use implicitly the fact that
p′3 + p′′3 = p3 + 1. Hence we have that qk(�l) lies in thick〈Im i′ ∪ Im j′′λ〉 provided that l3 	= p′3.
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We will show that qk(�l) lies in thick〈Im i′ ∪ Im j′′λ〉 in the case l3 = p′3. Then by Lemma 3.4(2)
we are done with the statement (2).

Assume that l3 = p′3. By Lemma 4.1(4), we have the following short exact sequence in
modL S:

0 −→ K −→ j′′λ(k(φ′′−1(�l − p′3�x3) + �x3)) −→ k(�l) −→ 0,

where K is a finite-dimensional S-module with composition factors {k(�l − �x3), k(�l −
2�x3), . . . , k(�l − (p′3 − 1)�x3)}. This exact sequence induces a triangle in DL

sg(S); refer to the
paragraphs before Lemma 3.4. Observe that qK lies in thick〈k(�l − �x3), k(�l − 2�x3), . . . , k(�l −
(p′3 − 1)�x3)〉, and thus by above in thick〈Im i′ ∪ Im j′′λ〉. Then the induced triangle forces that
qk(�l) lies in thick〈Im i′ ∪ Im j′′λ〉. This completes the proof.

Remark 5.3. The above proof yields the following two recollements, both of which
are equivalent to the recollement above. Here, we use the equivalences in Lemma 3.5 and
Proposition 3.6.

DL′
sg (S′) i′ �� DL

sg(S) i′′λ((1−p′
3)�x3) ��

i′ρ
��

i′λ��
DL′′

sg (S′′)
((p′

3−1)�x3)i
′′

��

(p′
3�x3)i

′′(−�x3)��

CML′
(S′) i′ �� CML(S) i′′λ((1−p′

3)�x3) ��

i′ρ
��

i′λ��
CML′′

(S′′)
((p′

3−1)�x3)i
′′

��

(p′
3�x3)i

′′(−�x3)��
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