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ALGEBRAS WITH RADICAL SQUARE ZERO

ARE EITHER SELF-INJECTIVE OR CM-FREE

XIAO-WU CHEN

(Communicated by Birge Huisgen-Zimmermann)

Abstract. An artin algebra is called CM-free provided that all its finitely
generated Gorenstein projective modules are projective. We show that a con-
nected artin algebra with radical square zero is either self-injective or CM-free.
As a consequence, we prove that a connected artin algebra with radical square
zero is Gorenstein if and only if its valued quiver is either an oriented cycle
with the trivial valuation or does not contain oriented cycles.

1. Introduction and results

Throughout A is an artin algebra over a commutative artinian ring R. Denote
by A-mod the category of finitely generated left A-modules and by A-proj the full
subcategory formed by projective modules. Recall that a complex P • of projective
A-modules is totally acyclic ([3]) if it is acyclic and that for each projective A-
module Q the Hom complex HomA(P

•, Q) is acyclic. An A-module M is called
a (finitely generated) Gorenstein projective module ([12]) provided that there is a
totally acyclic complex P • such that the zeroth cocycle Z0(P •) is isomorphic to M .
In this case, the complex P • is called a complete resolution of M . In the literature,
Gorenstein projective modules are also called modules of G-dimension zero ([1]),
(maximal) Cohen-Macaulay modules ([6, 14, 4]) or totally reflexive modules ([3]).

We denote by A-Gproj the full subcategory of A-mod formed by Gorenstein
projective modules. Observe that A-proj ⊆ A-Gproj. Recall that an algebra A is
self-injective if and only if A-Gproj = A-mod, that is, all modules are Gorenstein
projective. This is one extreme case. We consider another extreme case. An artin
algebra A is called CM-free provided that A-Gproj = A-proj, that is, all its finitely
generated Gorenstein projective modules are projective; compare [16]. Recall that
an algebra A of finite global dimension is CM-free; see [4, Remark-Notation 3.7].
However, the converse is not true in general.

Let us remark that the class of CM-free algebras is not well understood; see
the remarks after [10, Theorem B]. The following problem might be of interest for
future research: for a CM-free algebra, are all its (possibly infinitely generated)

Received by the editors June 10, 2010 and, in revised form, November 9, 2010.
2010 Mathematics Subject Classification. Primary 18G25, 16G10, 16G50.
The author is supported by the Special Foundation of the President of the Chinese Acad-

emy of Sciences (No. 1731112304061) and by the National Natural Science Foundation of China
(No. 10971206).

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

93



94 XIAO-WU CHEN

Gorenstein projective modules projective? Here, for the notion of arbitrary Goren-
stein projective module, we refer to [12] and [4]. This problem is closely related to
a conjecture stated in [7]; also see [5].

Recall that an algebra A is connected if it is not a proper direct product of two
algebras. Any algebra is uniquely decomposed as a direct product of connected
ones. For an algebra A, denote by r its Jacobson radical. The algebra A is said to
be with radical square zero provided that r2 = 0. Such algebras are studied in [2,
Chapter X.2].

The aim of this paper is to show that for a connected algebra with radical
square zero the study of its Gorenstein projective modules always belongs to the
two extreme cases mentioned above.

Theorem 1.1. Let A be a connected artin algebra with radical square zero. Then
A is either self-injective or CM-free.

Let us point out that the local case of Theorem 1.1 follows from a result by
Menzin [17, Proposition 4], while the commutative case of Theorem 1.1 is well
known; see [19, Proposition 2.4]. We remark that a related consideration is taken
in [15, Theorem 3.4].

We draw two immediate consequences of Theorem 1.1. Recall that an algebra
A is Gorenstein provided that the regular module A has finite injective dimension
on both sides ([14]). Observe that a self-injective algebra is Gorenstein and that an
algebra of finite global dimension is Gorenstein.

Corollary 1.2. Let A be a connected artin algebra with radical square zero. Then
A is Gorenstein if and only if it is self-injective or it has finite global dimension.

Proof. It suffices to notice the following fact: a Gorenstein algebra is CM-free if
and only if it has finite global dimension. This can be deduced from [4, Proposi-
tion 3.10(ii)]. Let us remark that it also follows immediately from a general result,
due to Buchweitz and Happel, on the singularity category of a Gorenstein algebra
([6, Theorem 4.4.1] and [14, Theorem 4.6]; also see [9, Proposition 3.8]). �

In general, there are Gorenstein algebras which are neither self-injective nor of
finite global dimension ([14, 8]). For example, the upper triangular matrix algebra

A =

(
k[x]/(x2) k[x]/(x2)

0 k[x]/(x2)

)
is such a Gorenstein algebra (see [14] and [8, Re-

mark 3.5]). Here k is a field. Observe that the Jacobson radical r of A satisfies
r3 = 0 and r2 �= 0.

Recall the notion of the valued quiver of an algebra A. Choose a complete set
of representatives of pairwise non-isomorphic simple A-modules {S1, S2, · · · , Sn}.
Set Δi = EndA(Si); they are division algebras. Observe that Ext1A(Si, Sj) has a
natural Δj-Δi-bimodule structure. The valued quiver QA of A is defined as follows:
its vertex set is {S1, S2, · · · , Sn} (here we identify each Si with its isoclass); there
is an arrow from Si to Sj whenever Ext1A(Si, Sj) �= 0, in which case the arrow is

endowed with a valuation (dimΔj
Ext1A(Si, Sj), dimΔi

op Ext1A(Si, Sj)); here Δi
op

denotes the opposite algebra of Δi. We say that the valuation of QA is trivial if all
the valuations are (1, 1). Recall that the algebra A is connected if and only if the
underlying graph of QA is connected. For details, we refer to [2, Chapter III.1] and
[11, 3.6].

We have the following consequence of Corollary 1.2. Since the proof requires
several standard facts on artin algebras, we postpone it to Section 2.
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Corollary 1.3. Let A be a connected artin algebra with radical square zero. Then A
is Gorenstein if and only if QA either is an oriented cycle with the trivial valuation
or does not contain oriented cycles.

2. Proofs of Theorem 1.1 and Corollary 1.3

In this section we present the proofs of Theorem 1.1 and Corollary 1.3. We will
first make some preparations.

Let A be an artin algebra. Recall that for each A-module M , its syzygy module
Ω(M) is defined to be the kernel of its projective cover P → M . Recall that in

a short exact sequence 0 → M ′ → P
p→ M → 0 with P projective, we have

M ′ � Ω(M)⊕Q for some projective module Q; moreover, Q � 0 if and only if p is
a projective cover. For details, see [2, Chapter IV.3].

We have the following easy observation. Recall that r denotes the Jacobson
radical of A.

Lemma 2.1. Let M be a Gorenstein projective A-module without projective direct
summands. Assume that rn = 0 for some n ≥ 2. Then rn−1M = 0.

Proof. From the definition of a Gorenstein projective module, we infer that there

exists a short exact sequence 0 → M → P
p→ M ′ → 0 with P projective. Since M

does not have a projective direct summand, the morphism p is a projective cover.
In particular, we have M � Ker p ⊆ rP . Then rn−1M ⊆ rnP = 0. �

Recall that A-Gproj denotes the full subcategory of A-mod formed by Goren-
stein projective modules. Recall that A-Gproj ⊆ A-mod is closed under direct sum-
mands, kernels of epimorphisms and extensions; see [1, (3.11)] and [3, Lemma 2.3].
In particular, for a Gorenstein projective module M , its syzygy module Ω(M) is
also Gorenstein projective. Since A-Gproj is closed under extensions, it naturally
becomes an exact category in the sense of Quillen ([18]). Moreover, it is a Frobe-
nius category, that is, it has enough (relatively) projective and enough (relatively)
injective objects, and the class of projective objects coincides with the class of injec-
tive objects. In fact, the class of the projective-injective objects in A-Gproj equals
A-proj. In particular, we have that ExtnA(G,P ) = 0 for G ∈ A-Gproj, P ∈ A-proj
and n ≥ 1. For details, see [4, Proposition 3.8(i)] and [9, Proposition 3.1(1)].

We consider the stable category A-Gproj of A-Gproj modulo projective mod-
ules. Then the assignment M 	→ Ω(M) induces an auto-equivalence Ω: A-Gproj →
A-Gproj; see [13, Chapter I.2]. It is well known that for a Gorenstein projective
module M , it is indecomposable, viewed as an object in A-Gproj if and only if
M � P ⊕ M ′ for a projective module P and an indecomposable non-projective
module M ′.

We will need the following fact.

Lemma 2.2. Let M be a Gorenstein projective A-module which is indecomposable
and non-projective. Then Ω(M) is also an indecomposable non-projective Goren-
stein projective A-module.

Proof. We have noticed above that the module Ω(M) is Gorenstein projective.
Since the functor Ω: A-Gproj → A-Gproj is an equivalence, we infer that Ω(M) is
indecomposable in A-Gproj. Hence it suffices to show that Ω(M) has no projective
direct summands.
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Choose a short exact sequence ξ : 0 → Ω(M) → P
p→ M → 0 such that p

is a projective cover. We assume that Ω(M) = P ′ ⊕ M ′ with P ′ �= 0 projec-
tive. Consider the short exact sequence π.ξ obtained by a pushout of ξ along the
projection π : Ω(M) → P ′. Note that Ext1A(M,P ′) = 0, since M is Gorenstein pro-
jective. Then the sequence π.ξ splits. This proves that the natural monomorphism
P ′ ↪→ P splits, which contradicts the assumption that p is a projective cover. We
are done. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that the algebra A is not CM-free. Take M ∈
A-Gproj to be indecomposable and non-projective. Recall that r2 = 0. By
Lemma 2.1 we have rM = 0, and then M is semi-simple. Since M is indecom-
posable, we conclude that M is a simple module.

Set S1 = M to be the above simple module. Take a short exact sequence

η : 0 → S2
i2→ P1

π1→ S1 → 0 such that π1 is a projective cover. By Lemma 2.2 the
module S2 is Gorenstein projective, which is indecomposable and non-projective;
in particular, it is non-zero. Then by the above we infer that S2 is a simple module.
Moreover, we claim that a simple A-module S with Ext1A(S, S2) �= 0 is isomorphic
to S1.

To prove the claim, let us assume on the contrary that S is not isomorphic to S1.

Take a short exact sequence 0 → K → P
π→ S → 0 such that π is a projective cover.

Note that the module K is semi-simple, since K ⊆ rP and then rK = 0. Observe
that Ext1A(S, S2) �= 0 implies that HomA(K,S2) �= 0. Then S2 is a direct summand
of K. Thus we get a non-zero morphism S2 ↪→ K ↪→ P which is denoted by l. Note
that Ext1A(S1, P ) = 0, since the module S1 is Gorenstein projective. By the long
exact sequence obtained by applying HomA(−, P ) to η we have an epimorphism
HomA(P1, P ) → HomA(S2, P ) induced by i2. Then it follows that there exists a
morphism a : P1 → P such that a ◦ i2 = l. Observe that S2 is the socle of P1

on which a is non-zero. It follows that the morphism a is mono. On the other

hand, since S is not isomorphic to S1, the composite P1
a→ P

π→ S is necessarily
zero. This implies that the monomorphism a factors through K. Observe that K is
semi-simple, while the module P1 is not semi-simple. This is absurd. We are done
with the claim.

Similarly we define S3 by the short exact sequence 0 → S3
i3→ P2

π2→ S2 → 0 such
that π2 is a projective cover. As above the module S3 is simple and non-projective,
which is Gorenstein projective and satisfies the fact that any simple A-module S
with Ext1A(S, S3) �= 0 is isomorphic to S2. In this way we define Sn for each n ≥ 1.

Choose n ≥ 1 minimal with the property that Sn � Sm for some m < n. Then
such anm is unique. We observe thatm = 1. Otherwise, we have Ext1A(Sm−1, Sn) �
Ext1A(Sm−1, Sm) �= 0, while Sm−1 is not isomorphic to Sn−1 by the minimality of
n. This contradicts the claim above for Sn.

We now get a set {S1, S2,· · ·, Sn−1} of pairwise non-isomorphic simple A-modules;
moreover, each Si satisfies that any simple A-module S with Ext1A(S, Si) �= 0 is
isomorphic to Si−1. Observe that Si+1 � Ω(Si). Then we have that any sim-
ple A-module S with Ext1A(Si, S) �= 0 is isomorphic to Si+1. Here we identify
S0 with Sn−1 and identify Sn with S1. Consider the valued quiver QA of A. It
then follows that the full subquiver of QA with vertices {S1, S2, · · · , Sn−1} is a
connected component. Since the algebra A is connected, these are all the simple
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A-modules. Then accordingly all the indecomposable projective A-modules are
given by {P1, P2, · · · , Pn−1}. Observe from the construction of Si’s that each of
the Pi’s has length two and has a pairwise non-isomorphic simple socle. It follows
immediately from [11, Theorem 9.3.7] that the algebra A is self-injective. �

Proof of Corollary 1.3. We recall some standard facts on artin algebras. Let A be
an artin algebra with radical square zero. Consider its valued quiver QA. Then
A has finite global dimension if and only if QA does not have oriented cycles.
The “if” part follows from a general result ([11, Chapter 11, Ex. 12(i)]). For the
“only if” part, assume that A has finite global dimension. We observe that for two
simple modules S, S′ with Ext1A(S, S

′) �= 0, S′ is a direct summand of Ω(S). Here
we use the fact that r2 = 0, and then Ω(S) is semi-simple. It then follows that
proj.dim S′ ≤ proj.dim S − 1, where proj.dim X denotes the projective dimension
of a module X. This inequality forces the fact that QA has no oriented cycles.

Let A be a connected artin algebra with radical square zero. We also need the
following fact: the algebra A is self-injective if and only if QA is an oriented cycle
with the trivial valuation. For the “only if” part, we assume that A is self-injective.
By [2, Proposition IV.2.16] the algebra A is serial. Then the result follows from
[11, Theorem 10.4.1 and Corollary 10.4.2]. For the “only if” part, we observe that
all the indecomposable projective modules of the algebra A have length two and
that their socles are pairwise non-isomorphic. Then it follows from [11, Theorem
9.3.7] that A is self-injective.

We apply the above-recalled two facts. Then the result follows from Corollary 1.2
immediately. �
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