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1. Introduction

Let C be an additive category which is skeletally small, that is, the iso-classes of objects 
form a set. Let C be an object in C and denote by Γ (C) = EndC(C)op the opposite ring 
of the endomorphism ring of C. For a morphism α: X → Y in C, we may consider its 
induced map HomC(C, α): HomC(C, X) → HomC(C, Y ) between left Γ (C)-modules. The 
image Im HomC(C, α) is a Γ (C)-submodule of HomC(C, Y ).

Recall that for a morphism α: X → Y and an object C, α is said to be right C-
determined provided that for any morphism t: T → Y , Im HomC(C, t) ⊆ Im HomC(C, α)
implies that t factors through α, that is, there exists a morphism t′: T → X with t = α◦t′. 
In the literature, a right C-determined morphism is also called a morphism determined 
by C, see for example [1,2].

For a Γ (C)-submodule H of HomC(C, Y ), we say that the pair (C, H) is right
α-represented provided that α is right C-determined with Im HomC(C, α) = H.

The following notion is essentially contained in [6, Definition 2.6].

Definition 1.1. An object Y in C is right classified provided that the following hold:

(RC1) each morphism α: X → Y ending at Y is right C-determined for some C;
(RC2) for any object C and Γ (C)-submodule H of HomC(C, Y ), the pair (C, H) is right 

α-represented for some α: X → Y .

The additive category C is said to have right determined morphisms if each object is 
right classified. �

Let us justify this terminology. Two morphisms α1: X1 → Y and α2: X2 → Y are right 
equivalent if α1 factors through α2 and α2 factors through α1. The corresponding right 
equivalence class is denoted by [α1〉 = [α2〉. Following [10], we denote by [−→ Y 〉 the 
set of right equivalence classes of morphisms ending at Y . It is indeed a set, since C is 
skeletally small.

If two morphisms α1 and α2 are right equivalent, then α1 is right C-determined if and 
only if so is α2. So it makes sense to say that the class [α1〉 is right C-determined. We de-
note by C [−→ Y 〉 the subset of [−→ Y 〉 formed by classes which are right C-determined. 
Then (RC1) is equivalent to

[−→ Y 〉 =
⋃

C [−→ Y 〉, (1.1)

where C runs over all objects in C.
We denote by SubHomC(C, Y ) the set of Γ (C)-submodules of HomC(C, Y ). The fol-

lowing map is well-defined:

ηC,Y : [−→ Y 〉 −→ Sub HomC(C, Y ), [α〉 �→ Im HomC(C,α).
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The restriction of ηC,Y on C [−→ Y 〉 is injective by the following lemma, which is a direct 
consequence of the definition.

Lemma 1.2. Let α1: X1 → Y and α2: X2 → Y be two right C-determined morphisms. 
Then α1 is right equivalent to α2 if and only if Im HomC(C, α1) = Im HomC(C, α2). �

Then (RC2) is equivalent to the surjectivity of this restriction. In other words, (RC2) is 
equivalent to the bijection

C [−→ Y 〉 ∼−→ Sub HomC(C, Y ), [α〉 �→ Im HomC(C,α). (1.2)

This bijection is known as the Auslander bijection at Y ; see [10].
In summary, an object Y is right classified if and only if (1.1) and (1.2) hold. In 

this case, all morphisms ending at Y are classified by the pairs (C, H) of objects C and 
Γ (C)-submodules H of HomC(C, Y ).

The dual notion is as follows.

Definition 1.3. An object Y in C is left classified if it is right classified as an object in the 
opposite category Cop. The additive category C is said to have left determined morphisms
if each object is left classified.

The additive category C has determined morphisms if it has both right and left de-
termined morphisms. �

One of the fundamental results is that the category A-mod of finitely generated mod-
ules over an artin algebra A has determined morphisms; for example, see [4,9]. This result 
is extended to dualizing k-varieties for a commutative artinian ring k in [6]. We prove 
that the converse is true. More precisely, if an additive category C is k-linear which is 
Hom-finite and has determined morphisms, then it is a dualizing k-variety; see Proposi-
tion 2.1. When the category C is abelian having Serre duality, we prove that a morphism 
is right determined by some object if and only if it is an epimorphism, and dually, a 
morphism is left determined by some object if and only if it is a monomorphism; see Re-
mark 3.5(1). Indeed, we give a characterization to abelian categories having Serre duality 
via determined morphisms; see Theorem 3.4. In particular, we point out that a non-trivial 
abelian category having Serre duality is not a dualizing k-variety; see Remark 3.5(2).

2. Categories having determined morphisms

Let k be a commutative artinian ring with a unit, and let C be a k-linear additive 
category. We assume that C is Hom-finite, that is, the k-module HomC(X, Y ) is finitely 
generated for any objects X and Y in C. We suppose further that C is skeletally small, 
meaning that the iso-classes of objects in C form a set.
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We denote by k-mod the abelian category of finitely generated k-modules. Let E be the 
minimal injective cogenerator of k. Then we have the duality D = Homk(−, E): k-mod →
k-mod with D2 � Idk-mod.

Denote by (C, k-mod) the abelian category of k-linear functors from C to k-mod. Then 
D induces a duality

D: (C, k-mod) ∼−→
(
Cop, k-mod

)op (2.1)

sending a functor F to DF . Here, Cop denotes the opposite category of C.
Recall that the Yoneda embedding C → (Cop, k-mod) sending X to HomC(−, X). Then 

we have the following natural isomorphisms:

Hom(Cop,k-mod)
(
HomC

(
−, C ′), F

) ∼−→ F
(
C ′) ∼−→ HomΓ (C)

(
HomC

(
C,C ′), F (C)

)

(2.2)

for any F ∈ (Cop, k-mod) and C, C ′ ∈ C with C ′ ∈ addC. Here, addC denotes the 
full subcategory formed by direct summands of finite direct sums of C, and Γ (C) =
EndC(C)op. This composite sends a morphism ξ to ξC . The left isomorphism is known 
as Yoneda Lemma, from which it follows that HomC(−, C ′) is a projective object in 
(Cop, k-mod).

By (2.2) and the duality (2.1), we have the following natural isomorphisms:

Hom(Cop,k-mod)
(
F,DHomC

(
C ′,−

)) ∼−→ DF
(
C ′) ∼−→ HomΓ (C)

(
F (C), DHomC

(
C ′, C

))

(2.3)

for any F ∈ (Cop, k-mod) and C, C ′ ∈ C with C ′ ∈ addC. The composite sends ξ to ξC .
A functor F : Cop → k-mod is finitely generated if there is an epimorphism 

HomC(−, Y ) → F for some object Y ; it is finitely cogenerated if there is a monomorphism 
F → DHomC(Y, −) for some object Y , or equivalently, its dual DF is finitely generated. 
The functor F : Cop → k-mod is finitely presented if there is an exact sequence of functors

HomC(−, X) −→ HomC(−, Y ) −→ F −→ 0.

We denote by fp(C) the full subcategory of (Cop, k-mod) consisting of finitely presented 
functors.

Following [3, Section 2], the category C is a dualizing k-variety provided that any 
functor F : Cop → k-mod is finitely presented if and only if so is its dual DF . In this case, 
the subcategory fp(C) ⊆ (Cop, k-mod) is exact abelian, meaning that it is closed under 
kernels, cokernels and images; consult [3, Theorem 2.4]. We mention that by definition 
C is a dualizing k-variety if and only if so is Cop.

The aim of this section is to prove the following result. The implication “(3) ⇒ (1)” 
is given in [6, Corollary 2.13]. We mention that the implication “(1) ⇒ (3)” is somewhat 
implicit in the argument in [6, Sections 3 and 5]. Hence, Proposition 2.1 is simply missed 
in [6]. Here we make this result explicit.
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Proposition 2.1. Let C be a Hom-finite k-linear additive category which is skeletally small. 
Then the following statements are equivalent:

(1) the category C has determined morphisms;
(2) for any functor F in (C, k-mod) or (Cop, k-mod), F is finitely presented if and only 

if F is finitely generated and finitely cogenerated;
(3) the category C is a dualizing k-variety.

Proof. The equivalence between (1) and (2) follows from Corollary 2.6 and its dual, 
while the equivalence between (2) and (3) follows from Lemma 2.2. �

The following result is well-known and implicit in [3, Proposition 3.1].

Lemma 2.2. Let C be as above. Then C is a dualizing k-variety if and only if the following 
two conditions hold:

(1) any functor F : Cop → k-mod is finitely presented ⇐⇒ it is finitely generated and 
finitely cogenerated;

(2) any functor F : C → k-mod is finitely presented ⇐⇒ it is finitely generated and 
finitely cogenerated;

Proof. We observe that the duality (2.1) preserves the functors that are both finitely 
generated and finitely cogenerated. Then the “if” part follows.

For the “only if” part, we assume that C is a dualizing k-variety and we only prove (1). 
Indeed, if F is finitely presented, then DF is finitely presented, in particular, DF is 
finitely generated. Hence F is finitely cogenerated. This yields the direction “=⇒”. Con-
versely, if F is finitely generated and finitely cogenerated, then F is the image of some 
morphism θ: HomC(−, X) → DHomC(Z, −). The morphism θ is in the category fp(C). 
Recall that for a dualizing k-variety C, the subcategory fp(C) ⊆ (Cop, k-mod) is closed 
under images. We infer that F is finitely presented. �

For each morphism α: X → Y in C, we may define a finitely presented functor Fα by 
the exact sequence

HomC(−, X) HomC(−,α)−−−−−−−−→ HomC(−, Y ) −→ Fα → 0.

By Yoneda Lemma, every finitely presented functor arises in this way.
The following result is contained in [6, Proposition 5.2]. We give a proof for complete-

ness.

Lemma 2.3. The morphism α is right C-determined if and only if there is a monomor-
phism Fα → DHomC(C ′, −) for some C ′ ∈ addC.
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Proof. For the “only if” part, we assume that α: X → Y is right C-determined. Take an 
exact sequence of Γ (C)-modules for some C ′ ∈ addC:

HomC(C,X) HomC(C,α)−−−−−−−−→ HomC(C, Y ) θC−→ DHomC
(
C ′, C

)
.

Indeed, we may take an injective map Cok HomC(C, α) ↪→ DHomC(C ′, C) for some 
C ′ ∈ addC; here, we use the fact that DHomC(C, C) is an injective cogenera-
tor as a Γ (C)-module. By the isomorphism (2.3), the map θC induces a morphism 
θ: HomC(−, Y ) → DHomC(C ′, −). We claim that the following sequence of functors is 
exact, which yields the required monomorphism:

HomC(−, X) HomC(−,α)−−−−−−−−→ HomC(−, Y ) θ−→ DHomC
(
C ′,−

)
. (2.4)

The composite is zero by the isomorphism (2.3). Take an arbitrary t: T → Y in Ker θT . 
For any morphism ψ: C → T , the morphism t ◦ ψ lies in Ker θC by the naturalness of θ, 
and thus in Im HomC(C, α). In other words, Im HomC(C, t) ⊆ Im HomC(C, α). Since 
α is right C-determined, we infer that t factors through α. This proves that the above 
sequence is exact.

For the “if” part, we may assume that we have an exact sequence as (2.4). Take 
an arbitrary morphism t: T → Y with Im HomC(C, t) ⊆ Im HomC(C, α). Then θC ◦
HomC(C, t) = 0. By the isomorphism (2.3), we have θ ◦ HomC(−, t) = 0. Note that 
HomC(−, T ) is a projective object in (Cop, k-mod). Then the exact sequence (2.4) yields 
that HomC(−, t) factors through HomC(−, α). Thus t factors through α, by Yoneda 
Lemma, and we are done. �

Let Y be an object. Consider a pair (C, H) with C an object and H ⊆ HomC(C, Y ) a 
Γ (C)-submodule. Recall that DHomC(C, C) is an injective cogenerator as a Γ (C)-module.
Take an embedding of Γ (C)-modules

HomC(C, Y )/H ↪→ DHomC
(
C ′, C

)

for some C ′ ∈ addC. This gives rise to a map θC : HomC(C, Y ) → DHomC(C ′, C), which 
corresponds via (2.3) to a morphism θ: HomC(−, Y ) → DHomC(C ′, −). Denote its image 
by F (C,H); it is a finitely generated and finitely cogenerated functor. Indeed, all functors 
in (Cop, k-mod) that are finitely generated and finitely cogenerated arise in this way.

Lemma 2.4. The pair (C, H) is right α-represented if and only if the functor F (C,H) is 
finitely presented.

Proof. For the “only if” part, assume that (C, H) is right α-represented for some 
α: X → Y ; in particular, H = Im HomC(C, α). By the proof of Lemma 2.3, the func-
tor Fα is the image of the morphism θ: HomC(−, Y ) → DHomC(C ′, −). It follows that 
F (C,H) = Fα. In particular, it is finitely presented.
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For the “if” part, assume that F (C,H) is finitely presented. Then the kernel of the 
epimorphism HomC(−, Y ) → F (C,H) is finitely generated. Thus there exists a map 
α: X → Y such that the following sequence is exact:

HomC(−, X) HomC(−,α)−−−−−−−−→ HomC(−, Y ) θ−→ DHomC
(
C ′,−

)
. (2.5)

Hence, Im HomC(C, α) = H and F (C,H) � Fα. By Lemma 2.3 the map α is right 
C-determined, and (C, H) is right α-represented. �
Corollary 2.5. Let Y be an object in C. Then the following statements are equivalent:

(1) the object Y is right classified;
(2) for any quotient functor F of HomC(−, Y ), F is finitely presented if and only if F is 

finitely cogenerated.

Proof. Observe that the quotient functor F is finitely presented if and only if F = Fα for 
some morphism α: X → Y , and that F is finitely cogenerated if and only if F = F (C,H)

for a pair (C, H). Then the result follows from Lemmas 2.3 and 2.4. �
The following is an immediate consequence of the above result.

Corollary 2.6. Let C be as above. Then the following statements are equivalent:

(1) the additive category C has right determined morphisms;
(2) for any functor F in (Cop, k-mod), F is finitely presented if and only if F is finitely 

generated and finitely cogenerated. �
Example 2.7. Let C be a Hom-finite k-linear additive category which is skeletally small 
and has split idempotents. Hence C is Krulll–Schmidt. Denote by ind C the set of iso-
classes of indecomposable objects in C. We assume that for each object Y , there are 
only finitely many X ∈ ind C such that HomC(X, Y ) �= 0, and that there exists an ob-
ject C0 such that HomC(C0, X) �= 0 for infinitely many X ∈ ind C. For example, the 
category of preprojective modules over a tame hereditary algebra satisfies this condi-
tion.

In this case, every finitely generated functor F in (Cop, k-mod) has finite length, and 
it follows that F is finitely presented and finitely cogenerated. However, every finitely 
cogenerated functor in (C, k-mod) has finite length, and thus the functor HomC(C0, −)
is not finitely cogenerated. It follows from Corollary 2.6 that C has right determined 
morphism, but does not have left determined morphisms. Indeed, by the dual of Corol-
lary 2.5, an object C is left classified if and only if there are only finitely many X ∈ ind C
such that HomC(C, X) �= 0.
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3. Abelian categories having Serre duality

Let C be a Hom-finite k-linear abelian category. Recall that C is said to have Serre 
duality provided that there exists a k-linear auto-equivalence τ : C → C with a functorial 
isomorphism

DExt1C(X,Y ) ∼−→ HomC
(
Y, τ(X)

)
(3.1)

for any objects X, Y in C. The functor τ is called the Auslander–Reiten translation of C.
The following notion is modified from Definition 1.1.

Definition 3.1. An object Y in C is right epi-classified provided that the following hold:

(REC1) each epimorphism α: X → Y ending at Y is right C-determined for some C;
(REC2) for any object C and Γ (C)-submodule H of HomC(C, Y ), the pair (C, H) is 

right α-represented for some epimorphism α: X → Y .

If each object in C is right epi-classified, then C is said to have right determined epimor-
phisms. �

We observe the following fact.

Lemma 3.2. Let α: X → Y be a morphism in C with Y right epi-classified. Then α is 
right C-determined for some C if and only if α is an epimorphism.

Consequently, if C has right determined epimorphisms, then a morphism is right de-
termined by some object if and only if it is an epimorphism.

Proof. We only need to prove the necessity. Recall that for two right equivalent maps 
α1: X1 → Y and α2: X2 → Y , α1 is epic if and only if so is α2. By (REC2) the pair 
(C, Im HomC(C, α)) is right α′-represented for an epimorphism α′: X ′ → Y . Lemma 1.2
implies that α and α′ are right equivalent, which follows that α is epic. �

We denote by [−→ Y 〉epi the subset of [−→ Y 〉 formed by epimorphisms. As in In-
troduction, an object Y being right epi-classified implies that C [−→ Y 〉 = C [−→ Y 〉epi
and [−→ Y 〉epi =

⋃
C [−→ Y 〉epi where C runs over all objects in C, and the Auslander 

bijection (1.2) at Y .
Following [7], a morphism f : Z → Y is projectively trivial if Ext1C(f, −) = 0. For any 

objects Z and Y , denote by P(Z, Y ) the subset of HomC(Z, Y ) formed by projectively 
trivial morphisms. This gives rise to an ideal P of C and the corresponding factor cat-
egory is denoted by C. Dually, one defines injectively trivial morphisms and the factor 
category C. For almost split sequences, we refer to [4].
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Proposition 3.3. Let C be a Hom-finite k-linear abelian category, and let Y be right 
epi-classified. Then we have the following statements:

(1) if Y is indecomposable, then there is an almost split sequence 0 → K → X → Y → 0
for some objects K and X;

(2) P(Z, Y ) = 0 for any object Z.

In particular, if the abelian category C has right determined epimorphisms, we have 
C = C.

Proof. Denote by radEndC(Y ) the Jacobson radical of EndC(Y ). We apply (REC2) to 
the pair (Y, radEndC(Y )), and assume that it is right α-represented with α: X → Y

an epimorphism; moreover, we may assume that α is right minimal. It follows from [4, 
Proposition V.1.14] that 0 → Kerα → X

α−→ Y → 0 is an almost split sequence.
For (2), let f : Z → Y be a projectively trivial morphism. Then from the definition, one 

infers that f factors through any epimorphism α: X → Y . In particular, by (REC2) we 
may take α to be an epimorphism which is right Z-determined with ImHomC(Z, α) = 0. 
This implies that f = 0. �

The dual of Definition 3.1 is as follows: an object Y in C is left mono-classified if 
it is right epi-classified in the opposite category Cop; the abelian category C has left 
determined monomorphisms if each object is left mono-classified.

The following result is an abelian analogue of [6, Theorem 4.2]. The proof relies on 
the results in [7].

Theorem 3.4. Let C be a Hom-finite k-linear abelian category. Then C has Serre duality 
if and only if C has right determined epimorphisms and left determined monomorphisms.

Proof. For the “only if” part, we assume that C has Serre duality with its Auslander–
Reiten translation τ . We only prove that C has right determined epimorphisms. Fix an 
object Y in C. For an epimorphism α: X → Y , denote its kernel by K. Then we have an 
exact sequence in (Cop, k-mod):

HomC(−, X) HomC(−,α)−−−−−−−−→ HomC(−, Y ) −→ Ext1C(−,K).

By Serre duality, Ext1C(−, K) � DHomC(τ−1(K), −). It follows that there is a mono-
morphism Fα → DHomC(τ−1(K), −). By Lemma 2.3 the morphism α is right 
τ−1(K)-determined, proving (REC1).

For (REC2), let C be an object and H ⊆ HomC(C, Y ) be a Γ (C)-submodule. Consider 
the morphism θ: HomC(−, Y ) → DHomC(C ′, −) with C ′ ∈ addC and Im θ = F (C,H); 
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see Section 2. Combining θ with the isomorphism DHomC(C ′, −) � Ext1C(−, τ(C ′)) we 
obtain a morphism

θ′: HomC(−, Y ) −→ Ext1C
(
−, τ

(
C ′))

with Im θ′ � F (C,H). Consider the extension ρ: 0 → τ(C ′) → X
α→ Y → 0 corresponding 

to θ′Y (IdY ), which induces an exact sequence in (Cop, k-mod)

HomC(−, X) HomC(−,α)−−−−−−−−→ HomC(−, Y ) δ−→ Ext1C
(
−, τ

(
C ′)).

Observe that δ = θ′. This is because δY (IdY ) = θ′Y (IdY ) and by Yoneda Lemma. Thus 
F (C,H) � Im δ, and (C, H) is right α-represented.

For the “if” part, we assume that C has right determined epimorphisms and left de-
termined monomorphisms. By Proposition 3.3 and its dual, we infer that C = C = C, 
and that for any indecomposable object Y , there exist an almost split sequence end-
ing at Y and an almost split sequence starting at Y . Then C has Serre duality by [7, 
Propositions (3.1) and (3.3)]. �
Remark 3.5. Let C be a Hom-finite k-linear abelian category having Serre duality, whose 
Auslander–Reiten translation is denoted by τ .

(1) By Theorem 3.4 and Lemma 3.2, a morphism α: X → Y is right determined 
by some object if and only if it is an epimorphism, in which case α is right 
τ−1(Kerα)-determined; dually, a morphism β: Y → Z is left determined by some ob-
ject if and only if it is a monomorphism, in which case β is left τ(Cok β)-determined.

(2) We assume that C is not zero. Then a morphism that is not epic is not right de-
termined by any object, and thus C does not have right determined morphisms in 
the sense of Definition 1.1. By Proposition 2.1, the category C is not a dualizing 
k-variety. However, its bounded derived category Db(C) has Serre duality [8] and 
thus is a dualizing k-variety; see [6, Theorem 4.2] or [5, Corollary 2.6].
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