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1. Introduction

The notion of weighted projective lines is introduced in [7,8], which gives a geometric 
treatment to the representation theory of the canonical algebras in the sense of [15]. We 
are interested in weighted projective lines of tubular type. Recall that the category of 
coherent sheaves over such a weighted projective line is derived equivalent to the module 
category over a tubular algebra of the same type.

It is known due to [7,11,2] that the category of coherent sheaves over a weighted pro-
jective line of tubular type is equivalent to the category of equivariant coherent sheaves 
over an elliptic curve with respect to a certain cyclic group action; compare [13]. This 
result explains well that the classification of indecomposable modules over a tubular 
algebra in [15,12] has similar features as the classification of indecomposable coherent 
sheaves over an elliptic curve in [1].

In this paper, we show that the categories of coherent sheaves over weighted projective 
lines of different tubular types are related to each other, via the equivariantization with 
respect to certain cyclic group actions. Indeed, these cyclic groups are of order two or 
three, and the actions are the degree-shift actions, which are induced from the grading 
on the homogeneous coordinate algebras. Here, the equivariantization means forming the 
category of equivariant objects for a given finite group action on a category; compare 
[14,4,5].

Let us describe the main results of this paper. Let k be an algebraically closed field, 
whose characteristic is different from two or three. According to the types, weighted 
projective lines X of tubular type are denoted by X(2, 2, 2, 2; λ), X(3, 3, 3), X(4, 4, 2) and 
X(6, 3, 2), respectively. Here, λ ∈ k is not 0 or 1. The Auslander–Reiten translation on the 
category coh-X of coherent sheaves over X is induced from the degree-shift automorphism 
by the dualizing element �ω, which is an element in the grading group of the homogeneous 
coordinate algebra of X.

In the tubular types, the dualizing element �ω has order 2, 3, 4 and 6, according to 
their types. By the degree-shift automorphisms, we have a strict action on coh-X by the 
cyclic group Z�ω and also by its subgroup. For a finite group G and a (strict) G-action 
on a category A, we denote by AG the category of equivariant objects. In particular, we 
have the category (coh-X)G for any subgroup G ⊆ Z�ω.

The following theorem combines Propositions 3.2, 3.4 and 3.6. Here, we fix ε ∈ k

satisfying ε2 − ε + 1 = 0.

Theorem. Keep the notation and assumptions as above. Denote by �ω the dualizing ele-
ment in the grading group of the homogeneous coordinate algebra of X. Then we have 
the following equivalences of categories.

(1) (coh-X(4, 4, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2; −1).
(2) (coh-X(6, 3, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2; ε).
(3) (coh-X(6, 3, 2))Z(3�ω) ∼−→ coh-X(3, 3, 3). �
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The acting groups in (1) and (3) are of order two, and the one in (2) is of order three. 
For the proof, we construct explicit algebra homomorphisms between the corresponding 
homogeneous coordinate algebras. In all these three cases, the algebra homomorphisms 
are injective, whose images equal certain restriction subalgebras [2] of the homogeneous 
coordinate algebras. We mention that the idea using the restriction subalgebras goes 
back to [7,8,10].

The paper is structured as follows. In Section 2, we recall basic facts on the homoge-
neous coordinate algebras of weighted projective lines, and their restriction subalgebras. 
We introduce admissible homomorphisms between the string groups, which play a role 
in Proposition 2.4. Indeed, Proposition 2.4 claims that under certain conditions, the cat-
egories of coherent sheaves over different weighted projective lines are related via the 
equivariantization with respect to a degree-shift action.

In Section 3, we prove Theorem. For the proof, we construct explicit admissible 
homomorphisms between the string groups and algebra homomorphisms between the 
homogeneous coordinate algebras, which are verified to satisfy the conditions in Propo-
sition 2.4. In Proposition 3.8, we show that the categories of coherent sheaves over 
weighted projective lines of the same weight type (2, 2, 2, 2) but with different parame-
ters, might be related to each other via the equivariantization with respect to a certain 
degree-shift action.

2. The restriction subalgebras and equivariantization

In this section, we recall from [7,8] basic facts on the homogeneous coordinate al-
gebra of a weighted projective line. We study admissible homomorphisms between the 
string groups and algebra homomorphisms between the homogeneous coordinate alge-
bras, whose images equal the restriction subalgebras with respect to an effective subgroup 
of the string group. We formulate Proposition 2.4, which gives sufficient conditions on 
when two categories of coherent sheaves over different weighted projective lines are re-
lated by the equivariantization with respect to a certain degree-shift action.

2.1. Let t ≥ 1 be an integer. A weight sequence p = (p1, p2, · · · , pt) of length t
consists of positive integers satisfying pi ≥ 2. We might assume that the weight sequence 
p satisfies p1 ≥ p2 ≥ · · · ≥ pt.

The string group L(p) is an abelian group with generators �x1, �x2, · · · , �xt subject to 
the relations p1�x1 = p2�x2 = · · · = pt�xt, where this common element is denoted by �c and 
called the canonical element. Here, the abelian group is written additively.

The string group L(p) is of rank one, where �c is of infinite order. There is an isomor-
phism of abelian groups

L(p)/Z�c ∼−→
t∏
Z/piZ,
i=1
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sending �xi + Z�c to the vector (0, · · · , 0, ̄1, 0, · · · , 0) with 1̄ on the i-th component. From 
this isomorphism, we deduce that each element �x in L(p) is uniquely written in its 
normal form

�x = l�c +
t∑

i=1
li�xi (2.1)

with l ∈ Z and 0 ≤ li ≤ pi − 1.
For each 1 ≤ i ≤ t, we have a surjective group homomorphism

πi : L(p) −→ Z/piZ

with πi(�xj) = δi,j 1̄. Here, δ is the Kronecker symbol. Following [2, Definition 6.5], an 
infinite subgroup H ⊆ L(p) is effective provided that πi(H) = Z/piZ, or equivalently, 
1̄ lies in πi(H) for each 1 ≤ i ≤ t.

Let p = lcm(p) = lcm(p1, p2, · · · , pt) be the least common multiple of p. There is a 
unique surjective group homomorphism δ : L(p) → Z, called the degree map, given by 
δ(�xi) = p

pi
. We observe that the kernel of δ equals the torsion subgroup of L(p). Recall 

that the dualizing element �ω in L(p) is defined as �ω = (t − 2)�c −
∑t

i=1 �xi. We observe 
that δ(�ω) = p((t − 2) −

∑t
i=1

1
pi

).
The weight sequence p is of tubular type provided that �ω is a torsion element, or 

equivalently, δ(�ω) = 0. From this, we infer that p = (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) and 
(6, 3, 2).

We mention that if the weight sequence p is of non-tubular type, or equivalently, the 
dualizing element �ω is of infinite order, then the subgroup Z�ω ⊆ L(p) is effective. Here, 
we use the fact that πi(�ω) = −1̄ for each 1 ≤ i ≤ t.

For each element �x = l�c+
∑t

i=1 li�xi in its normal form, we set mult(�x) = max{l+1, 0}. 
This gives rise to a map

mult : L(p) −→ N = {0, 1, 2, · · · }. (2.2)

Let q = (q1, q2, · · · , qs) be another weight sequence and L(q) be the corresponding 
string group. Then we have the map mult: L(q) → N as above.

Definition 2.1. A group homomorphism π : L(q) → L(p) is admissible provided that the 
following conditions are satisfied

(AH1) the subgroup Imπ ⊆ L(p) is effective;
(AH2) for each �x ∈ Imπ, we have 

∑
�y∈π−1(�x) mult(�y) = mult(�x). �

We observe that by (AH1) the fiber π−1(�x) for each �x ∈ Imπ is a finite set, since the 
kernel Kerπ is a finite subgroup of L(q).
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2.2. Let k be an arbitrary field. A parameter sequence λ = (λ1, λ2, · · · , λt) of length 
t consists of a collection of pairwise distinct rational points on the projective line P1

k. 
The parameter sequence is normalized if λ1 = ∞, λ2 = 0 and λ3 = 1.

A weighted projective line X = X(p, λ) of weight type p and parameter sequence 
λ is by definition the projective line P1

k such that each point λi has weight pi. We 
will assume that the parameter sequence λ is normalized. The homogeneous coordinate 
algebra S = S(p, λ) of the weighted projective line X is defined to be k[X1, X2, · · · , Xt]/I, 
where the ideal I is generated by Xpi

i −(Xp2
2 −λiX

p1
1 ) for 3 ≤ i ≤ t. We write xi = Xi+I

in S.
The algebra S is L(p)-graded by means of degxi = �xi. Then we have S =

⊕
�x∈L(p) S�x, 

where S�x denotes the homogeneous component of degree �x. Write �x = l�c+
∑t

i=1 li�xi in its 
normal form (2.1). Then S�x �= 0 if and only if l ≥ 0. Indeed, {xap1

1 xbp2
2 xl1

1 x
l2
2 · · ·xlt

t | a +
b = l, a, b ≥ 0} is a basis of S�x; compare [7, Proposition 1.3]. We deduce that

dimk S�x = mult(�x), for all �x ∈ L(p). (2.3)

For an infinite subgroup H ⊆ L(p), we have the restriction subalgebra SH =
⊕

�x∈H S�x

of S, which is viewed as an H-graded algebra. We recall from [2, Lemma 6.2] that this 
algebra SH is a finitely generated k-algebra.

In general, the structure of these restriction subalgebras SH is not known. We mention 
that if p is of non-tubular type and H = Z�ω, the corresponding restriction subalgebras 
are related to Kleinian singularities and Fuchsian singularities; see [8, Proposition 8.4]
and [10, Sections 5 and 6]. In what follows, we explain the importance of effective sub-
groups H in L(p) = L.

We recall that the weighted projective line X is endowed with a structure sheaf 
of L-graded commutative noetherian algebras. Then the abelian category coh-X of 
(L-graded) coherent sheaves on X is defined. In what follows, we will recall a more 
convenient description of coh-X via graded S-modules.

We denote by modL-S the abelian category of finitely generated L-graded S-modules, 
and by modL

0 -S its Serre subcategory formed by finite dimensional modules. We denote 
by qmodL-S = modL-S/modL

0 -S the quotient abelian category. By [7, Theorem 1.8] the 
sheafification functor yields an equivalence

qmodL-S ∼−→ coh-X. (2.4)

We will identify these two categories.
Each �x ∈ L gives rise to an automorphism (�x) : modL-S → modL-S, called the degree-

shift functor, as follows. For each L-graded S-module M =
⊕

�l∈L M�l, the new module 
M(�x) = M is graded by M(�x)�l = M�l+�x. This degree-shift functor induces the corre-
sponding automorphisms on qmodL-S and on coh-X, both of which are denoted by (�x).

For an infinite subgroup H ⊆ L(p), the restriction subalgebra SH is H-graded. 
Then we have abelian categories modH -SH and qmodH -SH . The restriction functor
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res : modL-S → modH -SH sends an L-graded S-module M =
⊕

�l∈L M�l to MH =⊕
�l∈H M�l, which is naturally an H-graded SH -module. The exact functor “res” pre-

serves finite dimensional modules, and induces an exact functor between the quotient 
categories

res : qmodL-S −→ qmodH -SH .

The following result combines [2, Proposition 6.6] with the equivalence (2.4).

Lemma 2.2. Let H ⊆ L = L(p) be an infinite subgroup. Then the induced functor 
res : qmodL-S → qmodH-SH is an equivalence if and only if the subgroup H is effec-
tive, in which case, we might identify coh-X with qmodH-SH . �

2.3. Let q = (q1, q2, · · · , qs) and μ = (μ1, μ2, · · · , μs) be another weight sequence and 
parameter sequence, respectively. We have the homogeneous coordinate algebra S(q, μ)
of the weighted projective line X(q, μ).

We suppose that π : L(q) → L(p) is a group homomorphism with Imπ ⊆ L(p) an 
infinite subgroup, and that there is an algebra homomorphism φ : S(q, μ) → S(p, λ)
satisfying φ(S(q, μ)�y) ⊆ S(p, λ)π(�y) for each �y ∈ L(q). We observe that φ induces an 
Imπ-graded algebra homomorphism

φ̄ : π∗S(q, μ) −→ S(p, λ)Imπ. (2.5)

Here, S(p, λ)Imπ is the restriction subalgebra with respect to the subgroup Imπ ⊆ L(p). 
For the Imπ-graded algebra π∗S(q, μ), we apply the notation in the following paragraph 
to the surjective homomorphism L(q) → Imπ.

Given a surjective group homomorphism θ : G → K and a G-graded algebra A =⊕
g∈G AG, we define a K-graded algebra θ∗A as follows: as an ungraded algebra θ∗A = A, 

while its homogeneous component (θ∗A)h =
⊕

g∈θ−1(h) Ag for each h ∈ K. In other 
words, θ∗A equals A, but with a coarser grading.

Lemma 2.3. Keep the notation as above. Assume that the Imπ-graded algebra homomor-
phism φ̄ is surjective and that π : L(q) → L(p) satisfies (AH2) in Definition 2.1. Then 
φ̄ is an isomorphism.

Proof. Let �x ∈ Imπ. We apply (2.3) and (AH2) to infer that dimk (π∗S(q, μ))�x =
dimk S(p, λ)�x, both of which are finite. By the surjectivity assumption, we infer that φ̄
is bijective on each degree. Then we are done. �

We recall from [5,4,2] the equivariantization briefly. Let G be a group with unit e
and A be a category. A strict G-action on A is a group homomorphism from G to the 
automorphism group of A, which assigns for each g ∈ G an automorphism Fg on A. 
Hence, we have Fe = IdA and FgFh = Fgh. Temporarily, we write G mutliplicatively.
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A G-equivariant object in A is a pair (X, α), where X is an object in A and α assigns to 
each g ∈ G an isomorphism αg : X → Fg(X) subject to the relations αgh = Fg(αh) ◦αg. 
A morphism f : (X, α) → (Y, β) between equivariant objects is a morphism f : X → Y

in A satisfying βg ◦ f = Fg(f) ◦ αg. This gives rise to the category AG of equivariant 
objects.

We observe if A is abelian, so is AG. Indeed, a sequence of equivariant objects is exact 
in AG if and only if so is the sequence of underlying objects in A.

For each subgroup N ⊆ L(q), we have a strict N -action on modL(q)-S(q, μ) by setting 
F�x = (−�x) for each �x ∈ N . Here, (−�x) is the degree-shift functor by the element −�x. 
This N -action induces strict N -actions on both qmodL(q)-S(q, μ) and coh-X(q, μ). These 
resulted N -actions are called the degree-shift actions. In particular, we will consider the 
categories (qmodL(q)-S(q, μ))N and (coh-X(q, μ))N of N -equivariant objects.

Proposition 2.4. Let π : L(q) → L(p) be an admissible homomorphism. Assume that 
the algebra homomorphism φ : S(q, μ) → S(p, λ) induces a surjective homomorphism φ̄
in (2.5). Then φ̄ : π∗S(q, μ) → S(p, λ)Imπ is an isomorphism of Imπ-graded algebras, 
and thus we have an equivalence of categories

(coh-X(q, μ))Kerπ ∼−→ coh-X(p, λ).

Proof. We identify (coh-X(q, μ))Kerπ and (qmodL(q)-S(q, μ))Kerπ via (2.4). By [2, 
Proposition 5.2 and Corollary 4.4], these two categories are further equivalent to 
qmodImπ-π∗S(q, μ), which is isomorphic to qmodImπ-S(p, λ)Imπ. Here, we use the iso-
morphism φ̄ in Lemma 2.3. Since the subgroup Imπ ⊆ L(p) is effective, we are done by 
the identification in Lemma 2.2. �
3. The proof of Theorem

In this section, we study the homogeneous coordinate algebras of weighted projec-
tive lines of tubular type. We prove the Theorem in Propositions 3.2, 3.4 and 3.6. We 
construct explicit admissible homomorphisms between the string groups and algebra 
homomorphisms between the homogeneous coordinate algebras, which satisfy the con-
ditions in Proposition 2.4.

3.1. We assume that p = (p1, p2, · · · , pt) is a weight sequence of tubular type and 
that S(p, λ) is the homogeneous coordinate algebra of the weighted projective line 
X(p, λ). Here, λ = (λ1, λ2, · · · , λt) is a normalized parameter sequence. Then we have 
p = (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) or (6, 3, 2). Since the parameter sequence is normalized, 
it is trivial if the length of p is three. Hence, we might write S(p, λ) as S(2, 2, 2, 2; λ), 
S(3, 3, 3), S(4, 4, 2) or S(6, 3, 2), according to their types. Here, the scalar λ ∈ k is not 0
or 1.
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We list these homogeneous coordinate algebras explicitly as follows.

S(2, 2, 2, 2;λ) = k[X1, X2, X3, X4]/(X2
3 − (X2

2 −X2
1 ), X2

4 − (X2
2 − λX2

1 ));

S(3, 3, 3) = k[Y1, Y2, Y3]/(Y 3
3 − (Y 3

2 − Y 3
1 ));

S(4, 4, 2) = k[Z1, Z2, Z3]/(Z2
3 − (Z4

2 − Z4
1 ));

S(6, 3, 2) = k[U1, U2, U3]/(U2
3 − (U3

2 − U6
1 )).

Here, we use different letters for the generators to avoid confusion. Moreover, we will use 
letters in the lower case to represent their images in the quotient algebras. For example, 
yi will represent the image of Yi in S(3, 3, 3).

3.2. In this subsection, we will relate the weighted projective line X(2, 2, 2, 2; −1) to 
X(4, 4, 2). Here, we require that the field k is not of characteristic two.

We consider the corresponding string groups. Recall that L(2, 2, 2, 2) is generated by 
�x1, �x2, �x3 and �x4 with the relations 2�x1 = 2�x2 = 2�x3 = 2�x4. The string group L(4, 4, 2)
is generated by �z1, �z2 and �z3 with the relations 4�z1 = 4�z2 = 2�z3. Then we have a 
well-defined group homomorphism π : L(4, 4, 2) → L(2, 2, 2, 2) by π(�z1) = �x1, π(�z2) = �x2
and π(�z3) = �x3 + �x4.

Lemma 3.1. The above defined group homomorphism π : L(4, 4, 2) → L(2, 2, 2, 2) is ad-
missible with Kerπ = {0, 2�z1 + 2�z2 − �c} = Z(2�ω).

Here, we recall that the dualizing element �ω = �c− �z1 − �z2 − �z3 in L(4, 4, 2) has order 
four. The cyclic subgroup generated by 2�ω = 2�z1 + 2�z2 − �c is denoted by Z(2�ω).

Proof. We observe that Imπ ⊆ L(2, 2, 2, 2) is effective. Write an element �x ∈ L(2, 2, 2, 2)
in its normal form �x = l�c + l1�x1 + l2�x2 + l3�x3 + l4�x4 with each li ∈ {0, 1}. We observe 
that �x lies in Imπ if and only if l3 = l4.

For an element �z = r�c + r1�z1 + r2�z2 + r3�z3 ∈ L(4, 4, 2) in its normal form, we have 
π(�z) = 2r�c + r1�x1 + r2�x2 + r3�x3 + r3�x4. This expression might not be a normal form. 
Indeed, it depends on whether r1 and r2 are larger than two or not.

We now prove (AH2) for the above �x ∈ Imπ. Indeed, if l is even, we infer from the 
above analysis that π−1(�x) = { l

2�c+ l1�z1 + l2�z2 + l3�z3, l−2
2 �c+(l1 +2)�z1 +(l2 +2)�z2 + l3�z3}, 

which implies the statement on the kernel of π. Then the required identity in (AH2) 
follows by

max{ l2 + 1, 0} + max{ l − 2
2 + 1, 0} = max{l + 1, 0}, (3.1)

which holds for all even numbers l. Here, we consult the definition of the map “mult”. 
Similarly, if l is odd, we have that π−1(�x) = { l−1

2 �c+(l1 +2)�z1 + l2�z2 + l3�z3, l−1
2 �c+ l1�z1 +

(l2 + 2)�z2 + l3�z3}. Then the required identity in (AH2) follows by
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max{ l − 1
2 + 1, 0} + max{ l − 1

2 + 1, 0} = max{l + 1, 0}, (3.2)

which holds for all odd numbers l. We are done. �
We compare the relations in the homogeneous coordinate algebras S(2, 2, 2, 2; −1) and 

S(4, 4, 2). There is a well-defined algebra homomorphism φ : S(4, 4, 2) → S(2, 2, 2, 2; −1)
by φ(z1) = x1, φ(z2) = x2 and φ(z3) = x3x4.

Proposition 3.2. The above defined homomorphisms π : L(4, 4, 2) → L(2, 2, 2, 2) and 
φ : S(4, 4, 2) → S(2, 2, 2, 2; −1) satisfy the conditions in Proposition 2.4. Consequently, 
we have an isomorphism of Imπ-graded algebras

φ̄ : π∗S(4, 4, 2) ∼−→ S(2, 2, 2, 2;−1)Imπ

and an equivalences of abelian categories

(coh-X(4, 4, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2;−1).

Proof. We observe that φ(S(4, 4, 2)�z) ⊆ S(2, 2, 2, 2; −1)π(�z) for each �z ∈ L(4, 4, 2). 
By Lemma 3.1, it suffices to claim that φ̄ is surjective, equivalently, the homoge-
neous component S(2, 2, 2, 2; −1)�x is generated by x1, x2 and x3x4, whenever �x lies 
in Imπ. We recall that such �x has its normal form l�c + l1�x1 + l2�x2 + l3(�x3 + �x4). Then 
{x2a

1 x2b
2 xl1

1 x
l2
2 (x3x4)l3 | a + b = l, a, b ≥ 0} is a basis of S(2, 2, 2, 2; −1)�x, proving the 

claim. The remaining statements follow from Proposition 2.4. �
3.3. In this subsection, we will relate the weighted projective line X(2, 2, 2, 2; ε) to 

X(6, 3, 2). Here, ε ∈ k satisfies ε2 − ε + 1 = 0. We assume further that there exists a 
nonzero Δ ∈ k satisfying Δ2 = 6ε − 3; in particular, the field k is not of characteristic 
three. Indeed, if k = C is the field of complex numbers, we might take ε = 1+

√
−3

2 and 
Δ = 4

√
−27.

Recall that the string group L(6, 3, 2) is generated by �u1, �u2 and �u3 subject to 
the relations 6�u1 = 3�u2 = 2�u3. The homogeneous coordinate algebra S(6, 3, 2) is 
L(6, 3, 2)-graded by means of deg ui = �ui.

There is a well-defined group homomorphism π : L(6, 3, 2) → L(2, 2, 2, 2) given by 
π(�u1) = �x4, π(�u2) = �c and π(�u3) = �x1 + �x2 + �x3. Here, �c is the canonical element in 
L(2, 2, 2, 2).

Lemma 3.3. The group homomorphism π : L(6, 3, 2) → L(2, 2, 2, 2) is admissible with 
Kerπ = {0, 4�u1 + �u2 − �c, 2�u1 + 2�u2 − �c} = Z(2�ω).

Here, we observe that the dualizing element �ω = �c − �u1 − �u2 − �u3 in L(6, 3, 2) has 
order six. The cyclic subgroup Z(2�ω) generated by 2�ω = 4�u1 + �u2 − �c has order three.



86 J. Chen, X.-W. Chen / Journal of Algebra 470 (2017) 77–90
Proof. The argument is similar to the proof of Lemma 3.1. We observe that the subgroup 
Imπ ⊆ L(2, 2, 2, 2) is effective. Any element �x in Imπ has its normal form �x = l�c+ l1(�x1+
�x2 + �x3) + l4�x4 with l1, l4 ∈ {0, 1}. We compute its inverse image π−1(�x) as follows.

If 3 divides l, we have π−1(�x) = { l
3�c+ l4�u1 + l1�u3, l−3

3 �c+(l4 +2)�u1 +2�u2 + l1�u3, l−3
3 �c+

(l4+4)�u1+�u2+l1�u3}. This also proves the statement on the kernel of π. If 3 divides l−1, 
we have π−1(�x) = { l−1

3 �c+l4�u1+�u2+l1�u3, l−1
3 �c+(l4+2)�u1+l1�u3, l−4

3 �c+(l4+4)�u1+2�u2+
l1�u3}. If 3 divides l− 2, we have π−1(�x) = { l−2

3 �c+ l4�u1 + 2�u2 + l1�u3, l−2
3 �c+ (l4 + 2)�u1 +

�u2 + l1�u3, l−2
3 �c + (l4 + 4)�u1 + l1�u3}. In all the three cases, the identity in (AH2) follows 

immediately from the definition of the map “mult”. For example, if 3 divides l − 1, we 
use the following identity

2max{ l − 1
3 + 1, 0} + max{ l − 4

3 + 1, 0} = max{l + 1, 0}.

We omit the remaining details. �
We compute in S(2, 2, 2, 2; ε) the following identity

x6
4 = (x2

2 + (ε− 1)x2
1)3 − (Δx1x2x3)2.

It follows that the algebra homomorphism φ : S(6, 3, 2) → S(2, 2, 2, 2; ε) given by φ(u1) =
x4, φ(u2) = x2

2 + (ε − 1)x2
1 and φ(u3) = Δx1x2x3 is well defined.

Proposition 3.4. The above defined homomorphisms π : L(6, 3, 2) → L(2, 2, 2, 2) and 
φ : S(6, 3, 2) → S(2, 2, 2, 2; ε) satisfy the conditions in Proposition 2.4. Consequently, 
we have an isomorphism of Imπ-graded algebras

φ̄ : π∗S(6, 3, 2) ∼−→ S(2, 2, 2, 2; ε)Imπ

and an equivalences of abelian categories

(coh-X(6, 3, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2; ε).

Proof. This is similar to the proof of Proposition 3.2. It suffices to claim that the homoge-
neous component S(2, 2, 2, 2; ε)�x is generated by x4, x2

2 +(ε −1)x2
1 and x1x2x3, whenever 

�x lies in Imπ. Such an element �x has its normal form �x = l�c+ l1(�x1 + �x2 + �x3) + l4�x4. It 
follows that {x2a

1 x2b
2 (x1x2x3)l1xl4

4 | a + b = l, a, b ≥ 0} is a basis of S(2, 2, 2, 2; ε)�x. Then 
the claim follows immediately, once we observe that x2

4 = x2
2 − εx2

1 and x2
2 + (ε − 1)x2

1
linearly span x2

1 and x2
2. �

3.4. In this subsection, we will relate the weighted projective line X(3, 3, 3) to 
X(6, 3, 2). Here, we require that the field k is not of characteristic two, and that 

√
−1

and 3
√
−4 exist in k.
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Recall that the string group L(3, 3, 3) is generated by �y1, �y2 and �y3 subject to the rela-
tions 3�y1 = 3�y2 = 3�y3. The homogeneous coordinate algebra S(3, 3, 3) is L(3, 3, 3)-graded 
by means of deg yi = �yi.

There is a well-defined group homomorphism π : L(6, 3, 2) → L(3, 3, 3) given by 
π(�u1) = �y3, π(�u2) = �y1 + �y2 and π(�u3) = �c. Here, �c is the canonical element in L(3, 3, 3).

Lemma 3.5. The group homomorphism π : L(6, 3, 2) → L(3, 3, 3) is admissible with 
Kerπ = {0, 3�u1 + �u3 − �c} = Z(3�ω).

Here, we observe that the dualizing element �ω = �c − �u1 − �u2 − �u3 in L(6, 3, 2) has 
order six. The cyclic subgroup Z(3�ω) generated by 3�ω = 3�u1 + �u3 − �c has order two.

Proof. The argument is similar to the proof of Lemma 3.1. We observe that the 
subgroup Imπ ⊆ L(3, 3, 3) is effective. Any element �y in Imπ has its normal form 
�y = l�c + l1(�y1 + �y2) + l3�y3 with l1, l3 ∈ {0, 1, 2}. We now describe the inverse image 
π−1(�y).

If l is even, we have π−1(�y) = { l
2�c+ l3�u1+ l1�u2, l−2

2 �c+(l3+3)�u1+ l1�u2+�u3}. This also 
proves the statement for the kernel. If l is odd, we have π−1(�y) = { l−1

2 �c+l3�u1+l1�u2+�u3,
l−1
2 �c+ (l3 + 3)�u1 + l1�u2}. In both cases, the identity in (AH2) follows immediately from 

the definition of the map “mult”. We omit the details. �
We compute in S(3, 3, 3) that y6

3 = (y3
1 + y3

2)2 − 4(y1y2)3. Then we have a well-
defined algebra homomorphism φ : S(6, 3, 2) → S(3, 3, 3) given by φ(u1) = y3, φ(u2) =
3
√
−4(y1y2) and φ(u3) =

√
−1(y3

1 + y3
2).

Proposition 3.6. The above defined homomorphisms π : L(6, 3, 2) → L(3, 3, 3) and 
φ : S(6, 3, 2) → S(3, 3, 3) satisfy the conditions in Proposition 2.4. Consequently, we 
have an isomorphism of Imπ-graded algebras

φ̄ : π∗S(6, 3, 2) ∼−→ S(3, 3, 3)Imπ

and an equivalences of abelian categories

(coh-X(6, 3, 2))Z(3�ω) ∼−→ coh-X(3, 3, 3).

Proof. This is similar to the proof of Proposition 3.2. It suffices to claim that the homo-
geneous component S(3, 3, 3)�y is generated by y3, y1y2 and y3

1 + y3
2 , whenever �y lies in 

Imπ. Such an element �y has its normal form �y = l�c + l1(�y1 + �y2) + l3�y3. It follows that 
{y3a

1 y3b
2 (y1y2)l1yl33 | a + b = l, a, b ≥ 0} is a basis of S(3, 3, 3)�y. Then the claim follows 

immediately, once we observe that y3
3 = y3

2 − y3
1 and y3

1 + y3
2 linearly span y3

1 and y3
2 . �
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3.5. In this subsection, we give another example for Proposition 2.4, which relates 
weighted projective lines of the same weight sequence (2, 2, 2, 2) but with different pa-
rameters. Let λ ∈ k be different from 0, 1. We consider the weighted projective line 
X(2, 2, 2, 2; λ).

There is a well-defined group homomorphism π : L(2, 2, 2, 2) → L(2, 2, 2, 2) given by 
π(�x1) = �x1 + �x3, π(�x2) = �x2 + �x4 and π(�x3) = π(�x4) = �c.

Lemma 3.7. The above group homomorphism π : L(2, 2, 2, 2) → L(2, 2, 2, 2) is admissible 
with Kerπ = {0, �x3 + �x4 − �c} = Z(�x3 − �x4).

Here, Z(�x3 − �x4) denotes the cyclic subgroup generated by �x3 − �x4 = �x3 + �x4 − �c, 
which has order two.

Proof. The argument is similar to the proof of Lemma 3.1. Any element �x in Imπ has 
its normal form �x = l�c + l1(�x1 + �x3) + l2(�x2 + �x4) with l1, l2 ∈ {0, 1}. We now describe 
the inverse image π−1(�x).

If l is even, we have π−1(�x) = { l
2�c + l1�x1 + l2�x2, l−2

2 �c + l1�x1 + l2�x2 + �x3 + �x4}. This 
also proves the statement on the kernel of π. If l is odd, we have π−1(�x) = { l−1

2 �c +
l1�x1 + l2�x2 + �x3, l−1

2 �c + l1�x1 + l2�x2 + �x4}. In both cases, the identity in (AH2) follows 
immediately from the definition of the map “mult”. Indeed, if l is even, we use (3.1); 
otherwise, we use (3.2). �

We assume that 
√

1 − λ exists in k, and that the characteristic of k is not two. We 
fix the choice of 

√
1 − λ. Set ξ± = (2 − λ) ± 2

√
1 − λ. Let λ′ = ξ−

ξ+
, which equals 

λ2−8λ+8+4(λ−2)
√

1−λ
λ2 . For example, if k = C and λ = −1, we infer that λ′ = 17 − 12

√
2.

We compute in the homogeneous coordinate algebra S(2, 2, 2, 2; λ) that

(x2x4)2 − ξ±(x1x3)2 = (x2
2 − (1 ±

√
1 − λ)x2

1)2.

We assume that 
√
ξ+ exists in k. We infer that there is a well-defined algebra homo-

morphism φ : S(2, 2, 2, 2; λ) → S(2, 2, 2, 2; λ′) given by φ(x1) =
√

ξ+x1x3, φ(x2) = x2x4, 
φ(x3) = x2

2 − (1 +
√

1 − λ)x2
1 and φ(x4) = x2

2 − (1 −
√

1 − λ)x2
1.

Proposition 3.8. Keep the notation and assumptions as above. In particular, we have 
λ′ = ξ−

ξ+
. Then the above defined homomorphisms π : L(2, 2, 2, 2) → L(2, 2, 2, 2) and 

φ : S(2, 2, 2, 2; λ) → S(2, 2, 2, 2; λ′) satisfy the conditions in Proposition 2.4. Conse-
quently, we have an isomorphism of Imπ-graded algebras

φ̄ : π∗S(2, 2, 2, 2;λ) ∼−→ S(2, 2, 2, 2;λ′)Imπ

and an equivalences of abelian categories

(coh-X(2, 2, 2, 2;λ))Z(�x3−�x4) ∼−→ coh-X(2, 2, 2, 2;λ′).
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Proof. This is similar to the proof of Proposition 3.2. It suffices to claim that the homo-
geneous component S(2, 2, 2, 2; λ′)�x is generated by x1x3, x2x4, x2

2 − (1 +
√

1 − λ)x2
1 and 

x2
2 − (1 −

√
1 − λ)x2

1, whenever �x lies in Imπ. Such an element �x has its normal form �x =
l�c+ l1(�x1 +�x3) + l2(�x2 +�x4). It follows that {x2a

1 x2b
2 (x1x3)l1(x2x4)l2 | a + b = l, a, b ≥ 0}

is a basis of S(2, 2, 2, 2; λ′)�x. Then the claim follows immediately, once we observe that 
x2

2 − (1 +
√

1 − λ)x2
1 and x2

2 − (1 −
√

1 − λ)x2
1 linearly span x2

1 and x2
2. �

We conclude the paper with some remarks.

Remark 3.9. (1) Concerning the examples for Proposition 2.4 we give in this paper, all 
the weight sequences are of tubular type. We do not know whether there are nontrivial 
examples with non-tubular weight sequences for Proposition 2.4.

(2) Denote by Cd the cyclic group of order d. We apply a general result [6, Theorem 7.2]
about finite abelian group actions to the equivalence in Theorem (1). It follows that there 
is a C2-action on coh-X(2, 2, 2, 2; −1) such that the corresponding category of equivariant 
objects is equivalent to coh-X(4, 4, 2). However, it seems not easy to write this C2-action 
explicitly. Similar remarks apply to the equivalences in Theorem (2) and (3).

(3) We observe that the equivalences in Theorem (1) and (2) might be applied to the 
study of τ2-stable tilting complexes in [9]. We recall that the Auslander–Reiten transla-
tion τ is induced from the degree-shift functor by the dualizing element �ω. To be more 
precise, τ2-stable tilting complexes in coh-X(4, 4, 2) (resp. coh-X(6, 3, 2)) correspond to 
certain tilting complexes in coh-X(2, 2, 2, 2; −1) (resp. coh-X(2, 2, 2, 2; ε)). Here, we use 
[3, Proposition 4.5] implicitly. Similar remarks hold for the equivalence in Theorem (3), 
where we study τ3-stable tilting complexes in coh-X(6, 3, 2).
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