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Abstract

We exploit singular equivalences between artin algebras that are induced from certain functors
between the stable module categories. Such functors are called pre-triangle equivalences. We
construct two pre-triangle equivalences connecting the stable module category over a quadratic
monomial algebra to the one over an algebra with radical square zero. Consequently, we obtain
an explicit singular equivalence between the two algebras. It turns out that this singular equiva-
lence restricts to a triangle equivalence between their stable categories of Gorenstein-projective
modules, and thus induces a triangle equivalence between their Gorenstein defect categories.

1. Introduction

Let A be an artin algebra. The singularity category ( )ADsg of A is introduced in [7] under the
name ‘the stable derived category’. The terminology is justified by the following fact: the algebra
A has finite global dimension if and only if the singularity category ( )ADsg is trivial. Hence, the
singularity category provides a homological invariant for algebras of infinite global dimension.

The singularity category captures the stable homological property of an algebra. More precisely,
certain information of the syzygy endofunctor on the stable A-module category is encoded in

( )ADsg . Indeed, as observed in [21], the singularity category is equivalent to the stabilization of
the pair that consists of the stable module category and the syzygy endofunctor on it; see also [4].
This fact is used in [10] to describe the singularity category of an algebra with radical square zero.
We mention that related results appear in [19, 26].

By the fundamental result in [7], the stable category of Gorenstein-projective A-modules might
be viewed as a triangulated subcategory of ( )ADsg . Moreover, if the algebra A is Gorenstein, the
two categories are triangle equivalent. We mention that the study of Gorenstein-projective modules
goes back to [2] under the name ‘modules of G-dimension zero’. The Verdier quotient triangulated
category ( )ADdef of ( )ADsg by the stable category of Gorenstein-projective A-modules is called the
Gorenstein defect category of A in [6]. This terminology is justified by the fact that the algebra A
is Gorenstein if and only if the category ( )ADdef is trivial. In other words, the Gorenstein defect
category measures how far the algebra is from being Gorenstein.
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By a singular equivalence between two algebras, we mean a triangle equivalence between their
singularity categories. We observe that a derived equivalence implies a singular equivalence.
However, the converse is not true; for such examples, see [9, 23]. In general, a singular equiva-
lence does not induce a triangle equivalence between Gorenstein defect categories. We mention
the work [30], where a class of nice singular equivalences are studied.

The aim of this paper is to study the singularity category of a quadratic monomial algebra. The
main ingredient is the following observation: for two algebras, a certain functor between their
stable module categories induces a singular equivalence after the stabilization. We call such a
functor a pre-triangle equivalence between the stable module categories. More generally, the two
stable module categories are called pre-triangle quasi-equivalent provided that there is a zigzag of
pre-triangle equivalences connecting them. In this case, we also have a singular equivalence.

The main result Theorem 4.5 claims a pre-triangle quasi-equivalence between the stable module
category of a quadratic monomial algebra and the one of an algebra with radical square zero.
Combining this with the results in [10, 13, 27], we describe the singularity category of a quadratic
monomial algebra via the category of finitely generated graded projective modules over the Leavitt
path algebra of a certain quiver; see Proposition 5.3. We mention that this description extends the
result in [20] on the singularity category of a gentle algebra; see also [8, 12].

The paper is organized as follows. In Section 2, we recall the stabilization of a looped category.
We introduce the notion of a pre-stable equivalence between looped categories, which is a functor
between looped categories that induces an equivalence after the stabilization. A pre-stable equiva-
lence in the left triangulated case is called a pre-triangle equivalence, which induces a triangle
equivalence after the stabilization. In Section 3, we recall the result in [21] which states that the
singularity category of an algebra is triangle equivalent to the stabilization of the stable module
category. Therefore, a pre-triangle equivalence between stable module categories induces a singu-
lar equivalence; see Proposition 3.2 and compare Proposition 3.6. We include explicit examples of
pre-triangle equivalences between stable module categories.

In Section 4, we associate an algebra B with radical square zero to a quadratic monomial
algebra A; compare [12]. We construct explicitly two pre-triangle equivalences connecting the
stable A-module category to the stable B-module category. Then we obtain the required singu-
lar equivalence between A and B; see Theorem 4.5. In Section 5, we combine Theorem 4.5
with the results in [10, 13, 27] on the singularity category of an algebra with radical square
zero. We describe the singularity category and the Gorenstein defect category of a quadratic mono-
mial algebra via the categories of finitely generated graded projective modules over Leavitt path
algebras of certain quivers; see Proposition 5.3. We discuss some concrete examples at the end.

2. The stabilization of a looped category

In this section, we recall the construction of the stabilization of a looped category. The basic refer-
ences are [16, Chapter I], [28, Section 1], [21] and [4, Section 3].

Following [4], a looped category ( W), consists of a category  with an endofunctor
W  : , called the loop functor. The looped category ( W), is said to be stable if the loop func-
tor W is an auto-equivalence on  , while it is strictly stable if W is an automorphism.

By a looped functor d( )F, between two looped categories ( W), and ( D), , we mean a func-
tor  F: together with a natural isomorphism d W  DF F: . For a looped functor d( )F, , we
define inductively for each ³i 1 a natural isomorphism d W  DF F:i i i such that d d=1 and
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d d d= D W+i i i1 ◦ . Set d0 to be the identity transformation on F , where W0 andD0 are defined to be
the identity functors.

We say that a looped functor d( ) ( W)  ( D) F, : , , is strictly looped provided that
W = DF F as functors and d is the identity transformation on WF . In this case, we write d( )F, as

F ; compare [16, 1.1].
Let ( W), be a looped category. We define a category = ( W)  , as follows. The objects of

 are pairs ( )X n, with X an object in  and Î n . The Hom-set is defined by the following
formula:

(( ) ( )) = (W ( ) W ( )) ( )- -
 X n Y m X YHom , , , colim Hom , , 2.1i n i m

where i runs over all integers satisfying ³i n and ³i m. An element f in (( ) ( )) X n Y mHom , , ,
is said to have an ith representative W ( )  W ( )- -f X Y:i

i n i m provided that the canonical image of
fi equals f . The composition of morphisms in  is induced by the one in  . We observe that

W  :˜ sending ( )X n, to ( - )X n, 1 is an automorphism. Then we have a strictly stable
category ( W), ˜ .

There is a canonical functor  S: sending X to ( )X, 0 , and a morphism f to ( )fS whose
0th representative is f . For an object X in  , we have a natural isomorphism

q (W ) ( - )X X: , 0 , 1 ,X ⟶

whose 0th representative is WId X . Indeed, this yields a looped functor

q( ) ( W) ( W) S, : , , .⟶ ˜

This process is called in [16] the stabilization of the looped functor ( W), . We mention that
 S: is an equivalence if and only if ( W), is a stable category, in which case we identify

( W), with ( W), ˜ .
The stabilization functor q( )S, enjoys a universal property; see [16, Proposition 1.1]. Let
d( ) ( W)  ( D) F, : , , be a looped functor with ( D), a strictly stable category. We denote

by D-1 the inverse of D. Then there is a unique functor ( W)  ( D) F: , ,˜ ˜ which is strictly
looped satisfying =F FS˜ and d q= F̃ . The functor F̃ sends ( )X n, to D ( )- F Xn . For a morphism

( )  ( )f X n Y m: , , whose ith representative is given by W ( )  W ( )- -f X Y:i
i n i m , we have

d d( ) = D (( ) ( ) ( ) ) D ( ) D ( ) ( )- - - - - -F f F f F X F Y: . 2.2i
Y
i m

i X
i n n m1˜ ◦ ◦ ⟶

LEMMA 2.1 Keep the notation as above. Then the functor ( W)  ( D) F: , ,˜ ˜ is an equivalence
if and only if the following conditions are satisfied:

(1) for any morphism ( )  ( )g F X F Y: in , there exist ³i 0 and a morphism f :
W ( )  W ( )X Yi i in  satisfying d dD( ) = ( ) ( )-g F fi

Y
i

X
i 1◦ ◦ ;

(2) for any two morphisms ¢ f f X Y, : in  with ( ) = ( ¢)F f F f , there exists ³i 0 such that
W ( ) = W ( ¢)f fi i ;

(3) for any object Z in , there exist ³i 0 and an object X in  satisfyingD( ) ( )Z F Xi  .
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Proof. Indeed, the above three conditions are equivalent to the statements that F̃ is full, faithful
and dense, respectively. We refer to [28, 1.2 Proposition] for the details and compare [4,
Proposition 3.4]. □

We now apply Lemma 2.1 to a specific situation. Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped
functor. Consider the composition

( W) ( ¢ W¢) ( ( ¢ W¢) W¢) ( )
d q( ) ( )

   , , , , . 2.3
F S, ,

⟶ ⟶ ˜

By the universal property of the stabilization, there is a unique strictly looped functor d( ) F, :
( ( W) W)  ( ( ¢ W¢) W¢)   , , , ,˜ ˜ making the following diagram commutative:

(C, Ω)
(F,δ)

(S,θ)

(C′, Ω′)

(S,θ)

(S(C, Ω), Ω̃)
S(F,δ)

(S(C′, Ω′), Ω̃′)

We call the functor d( ) F, the stabilization of d( )F, .

PROPOSITION 2.2 Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped functor. Then its stabilization
d( ) F, is an equivalence if and only if the following conditions are satisfied:

(S1) for any morphism ( )  ( )g F X F Y: in ¢ , there exist ³i 0 and a morphism f :
W ( )  W ( )X Yi i in  satisfying d dW¢ ( ) = ( ) ( )-g F f

i
Y
i

X
i 1◦ ◦ ;

(S2) for any two morphisms ¢ f f X Y, : in  with ( ) = ( ¢)F f F f , there exists ³i 0 such that
W ( ) = W ( ¢)f fi i ;

(S3) for any object ¢C in ¢ , there exist ³i 0 and an object X in  satisfying W¢ ( ¢) ( )C F X
i  .

The looped functor d( )F, is called a pre-stable equivalence if it satisfies (S1)–(S3). The result
implies that a pre-stable equivalence induces an equivalence between the stabilized categories.

Proof. Write ( D) = ( ( ¢ W¢) W¢)  , , , ˜ and d= ( )F F,˜ . Write the composition (2.3) as ( ¶)FS , .
Then for an object X in  , the morphism ¶ W( )  W¢ ( )F X F XS S:X

˜ equals q d( )SFX X◦ . We make
the following observation: for a morphism W ( )  W ( )f X Y: l l in  , the morphism ¶Y

l ◦
( ) (¶ )-F fS X

l 1◦ has a 0th representative d d( ) ( )-F fY
l

X
l 1◦ ◦ .

We claim that for each £ £i1 3, the condition ( iS ) for d( )F, is equivalent to the condition (i)
in Lemma 2.1 for ( ¶)FS , . Then we are done by Lemma 2.1. In what follows, we only prove that
( iS ) implies (i). By reversing the argument, we obtain the converse implication.

Assume that (S1) for d( )F, holds. We take a morphism ( ) = ( )  ( ) =g F X FX F YS S: , 0
( )FY , 0 in . We assume that g has a jth representative W¢ ( )  W¢ ( )g F X F Y:j

j j
. Consider the

morphism (W )  (W )h F X F Y: j j by d d= ( )-h gY
j

j X
j1 ◦ ◦ . Then by (S1), there exist ³i 0 and a

morphism W ( )  W ( )+ +f X Y: i j i j satisfying d dW¢ ( ) = ( ) ( ) ( )W W
-h F f

i
Y

i
X

i 1
j j◦ ◦ . Then we have

D ( ) = ¶ ( ) (¶ )+ + + -g F fSi j
Y
i j

X
i j 1◦ ◦ . Here, we use the observation above and the fact that D ( )+ gi j has

a 0th representativeW¢ ( )gi
j . The we have (1) for ( ¶)FS , .

Assume that (S2) for d( )F, holds. We take two morphisms ¢ f f X Y, : in  with
( ) = ( ¢)F f F fS S . Then there exists ³j 0 such that W¢ ( ) = W¢ ( ¢)F f F f

j j
. Using the natural
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isomorphism d j, we infer that W ( ) = W ( ¢)F f F fj j . By (S2), there exists ³i 0 such that
W ( ) = W ( ¢)+ +f fi j i j , proving (2) for ( ¶)FS , .

Assume that (S3) for d( )F, holds. We take any object ( ¢ )C n, in ( D), . We may assume that
³n 0. Otherwise, we use the isomorphism q ((W¢) ( ¢) ) ( ¢ )¢

- - C C n: , 0 ,
C

n n  . By (S3), there exist
³j 0 and an object X in  satisfying W¢ ( ¢) ( )C F X

j  . We observe that D ( ¢ ) = ( ¢ - )+ C n C j, ,j n ,
which is isomorphic to W¢ ( ¢)CS

j
, which is further isomorphic to ( )F XS . Set = +i j n. Then we

have the required isomorphism D( ¢ ) ( )C n F XS,i  in (3) for ( ¶)FS , . This completes the proof of
the claim. □

We make an easy observation.

COROLLARY 2.3 Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped functor. Assume that F is fully faith-
ful. Then d( )F, is a pre-stable equivalence if and only if (S3) holds.

Proof. By the fully-faithfulness of F , the conditions (S1) and (S2) hold trivially. We just take
=i 0 in both the conditions. □

We say that two looped categories ( W), and ( ¢ W¢) , are pre-stably quasi-equivalent provided
that there exists a chain of looped categories

( W) = ( W ) ( W ) ¼ ( W ) = ( ¢ W¢) ( )    , , , , , , , , 2.4n n1 1 2 2

such that for each £ £ -i n1 1, there exists a pre-stable equivalence from ( W ) ,i i to
( W )+ + ,i i1 1 , or a pre-stable equivalence from ( W )+ + ,i i1 1 to ( W ) ,i i .

We have the following immediate consequence of Proposition 2.2.

COROLLARY 2.4 Let ( W), and ( ¢ W¢) , be two looped categories which are pre-stably quasi-
equivalent. Then there is a looped functor

( ( W) W) ( ( ¢ W¢) W¢)
~

   , , , , ,˜ ⟶ ˜

which is an equivalence. □

Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped functor. A full subcategory Í  is said to be satu-
rated provided that the following conditions are satisfied:

(Sa1) For each object X in  , there is a morphism h  ( )X G X:X with ( )G X in  such that
h( )F X is an isomorphism and that hW ( )d

X is an isomorphism for some ³d 0.
(Sa2) For a morphism f X Y: , there is a morphism ( ) ( )  ( )G f G X G Y: with h( ) =G f X◦

h fY ◦ .
(Sa3) The conditions (S1)–(S3) above hold by requiring that all the objects X Y, belong to  .

EXAMPLE 2.5 Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped functor. Assume that F has a right
adjoint functor G, which is fully faithful. Assume further that the unit h  GF: Id satisfies the
following condition: for each object X , there exists ³d 0 with hW ( )d

X an isomorphism. Take 
to be the essential image of G.

We claim that Í  is a saturated subcategory. Indeed, the restriction  ¢ F :∣ is an
equivalence. Then (Sa3) holds trivially, by taking i to be zero in (S1)–(S3). The conditions (Sa1)
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and (Sa2) are immediate from the assumption. Here, we use the well-known fact that h( )F is a
natural isomorphism, since G is fully faithful.

LEMMA 2.6 Let d( ) ( W)  ( ¢ W¢) F, : , , be a looped functor, and Í  a saturated sub-
category. Then the conditions (S1)–(S3) hold, that is, the functor d( )F, is a pre-stable equivalence.

Proof. It suffices to verify (S1) and (S2). For (S1), take any morphism ( )  ( )g F X F Y: in ¢ .
Consider h h¢ = ( ) ( ) ( )  ( )-g F g F FG X FG Y:Y X

1◦ ◦ . Then by (Sa3), there exist ³i 0 and
¢ W ( )  W ( )f GX GY: i i with d dW¢ ( ¢) = ( ¢) ( )-g F f

i
GY
i

GX
i 1◦ ◦ . We may assume that i is large

enough such that both hW ( )i
X and hW ( )i

Y are isomorphisms. Take h h= (W ( )) ¢ W ( )-f fi
Y

i
X

1 ◦ ◦ ,
which is the required morphism in (S1).

Let ¢ f f X Y, : be morphisms with ( ) = ( ¢)F f F f . Applying (Sa2) and using the isomorph-
isms h( )F X and h( )F Y , we have ( ) = ( ¢)FG f FG f . By (Sa3), we have W ( ) = W ( ¢)G f G fi i for
some ³i 0. We assume that i is large enough such that both hW ( )i

X and hW ( )i
Y are isomorphisms.

Then we infer from (Sa2) that W ( ) = W ( ¢)f fi i . We are done with (S2). □

We will specialize the consideration to left triangulated categories. A looped category ( W), is
additive provided that  is an additive category and the loop functor W is an additive functor. We
recall that a left triangulated category ( W ) , , consists of an additive looped category ( W), and
a class  of left triangles in  satisfying certain axioms, which are analogous to those for a triangu-
lated category, but the endofunctor W is possibly not an auto-equivalence.

The following convention is usual. We call a left triangulated category ( W ) , , a triangulated
category, provided that the category ( W), is stable, that is, the endofunctor W is an auto-
equivalence. In this case, the translation functor S of  is a quasi-inverse of W. Then this notion is
equivalent to the original one of a triangulated category in the sense of Verdier. For details, we
refer to [5] and compare [21].

In what follows, we write  for the left triangulated category ( W ) , , . A looped functor d( )F,
between two left triangulated categories  and ¢ = ( ¢ W¢ ¢)  , , is called a triangle functor if F is
an additive functor and sends left triangles to left triangles. We sometimes suppress the natural iso-
morphism d and simply denote the triangle functor by F .

A triangle functor which is a pre-stable equivalence is called a pre-triangle equivalence. Two
left triangulated categories  and ¢ are pre-triangle quasi-equivalent if they are pre-stably quasi-
equivalent such that all the categories in (2.4) are left triangulated and all the pre-stable equiva-
lences connecting them are pre-triangle equivalences.

For a left triangulated category = ( W )  , , , the stabilized category ( ) ( ( W) W )    , , ,≔ ˜ ˜
is a triangulated category, where the translation functor S = (W)-1˜ and the triangles in ̃ are
induced by the left triangles in  ; see [4, Section 3].

COROLLARY 2.7 Let  and ¢ be two left triangulated categories which are pre-triangle quasi-
equivalent. Then there is a triangle equivalence ( ) ~ ( ¢)    . □

3. The singularity categories and singular equivalences

In this section, we recall the notion of the singularity category of an algebra. We shall show that
for two algebras whose stable module categories are pre-triangle quasi-equivalent, their singularity
categories are triangle equivalent; see Proposition 3.2 and compare Proposition 3.6 below.
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Let k be a commutative artinian ring with a unit. We emphasize that all the functors and categories
are required to be k-linear in this section.

Let A be an artin k-algebra. We denote by A mod- the category of finitely generated left A-modules,
and by A proj- the full subcategory consisting of projective modules. We denote by A mod- the stable
category of A mod- modulo projective modules [3, p. 104]. The morphism space ( )M NHom ,A of two
modules M and N in A mod- is defined to be ( )/ ( )M N M NpHom , ,A , where ( )M Np , denotes the
k-submodule formed by morphisms that factor through projective modules. For a morphism

f M N: , we write f̄ for its image in ( )M NHom ,A .
Recall that for an A-module M , its syzygy W ( )MA is the kernel of its projective cover
( ) P M M

pM . We fix for M a short exact sequence  W ( )  ( )  M P M M0 0A
i pM M . This gives

rise to the syzygy functor W A A: mod modA - - ; see [3, p. 124]. Indeed, A mod- ≔ ( W )A mod, ,A A-
is a left triangulated category, where A consists of left triangles that are induced from short exact
sequences in A mod- . More precisely, given a short exact sequence    X Y Z0 0

f g
, we

have the following commutative diagram:

0 ΩA(Z)

h

iZ
P (Z)

pZ
Z 0

0 X
f

Y
g

Z 0

Then W ( )   Z X Y ZA
h f g¯ ¯ ¯

is a left triangle in A. As recalled in Section 2, the stabilized
category ( ) A mod- is a triangulated category.

There is a more well-known description of this stabilized category as the singularity category;
see [21]. To recall this, we denote by ( )AD modb - the bounded derived category of A mod- . We
identify an A-module M with the corresponding stalk complex concentrated at degree zero, which
is also denoted by M .

Recall that a complex in ( )AD modb - is perfect provided that it is isomorphic to a bounded com-
plex consisting of projective modules. The full subcategory consisting of perfect complexes is
denoted by ( )Aperf , which is a triangulated subcategory of ( )AD modb - and is closed under direct
summands; see [7, Lemma 1.2.1]. Following [22], the singularity category of an algebra A is
defined to be the Verdier quotient triangulated category ( ) = ( )/ ( )A A AD D mod perfb

sg - ; compare
[7, 15, 21]. We denote by ( )  ( )q A AD D: modb

sg- the quotient functor.
We denote a complex of A-modules by = ( ) ÎX X d,n n

n
• , where Xn are A-modules and the

differentials  +d X X:n n n 1 are homomorphisms of modules satisfying =+d d 0n n1 ◦ . The
translation functor S both on ( )AD modb - and ( )ADsg sends a complex X • to a complex S( )X • ,
which is given by S( ) = +X Xn n 1 and = -S

+d dX
n

X
n 1.

Consider the following functor:

( )F A AD: modA sg- ⟶

sending a module M to the corresponding stalk complex concentrated at degree zero, and a morph-
ism f̄ to ( )q f . Here, the well-definedness of FA on morphisms is due to the fact that a projective
module is isomorphic to the zero object in ( )ADsg .

For an A-module M , we consider the two-term complex ( ) =   ( ) C M P M0
pM

 M 0  with ( )P M at degree zero. Then we have a quasi-isomorphism W ( )  ( )i M C M:M A .
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The canonical inclusion S ( )  ( )- M C Mcan :M
1 becomes an isomorphism in ( )ADsg . Then we

have a natural isomorphism

d = ( ) ( ) W ( ) S ( )- -q q i F M F Mcan : .M M M A A A
1 1◦ ⟶

In other words, d( ) ( W )  ( ( ) S )-F A AD, : mod, ,A A sg
1- is a looped functor. Indeed, FA is an addi-

tive functor and sends left triangles to (left) triangles. Then we have a triangle functor

d( ) ( )F A AD, : mod .A sg- ⟶

Applying the universal property of the stabilization to d( )F ,A , we obtain a strictly looped functor

( ) ( )F A AD: mod ,A sg˜ - ⟶

which is also a triangle functor; see [4, 3.1].
The following basic result is due to [21]. For a detailed proof, we refer to [4, Corollary 3.9].

LEMMA 3.1 Keep the notation as above. Then ( )  ( )F A AD: modA sg˜ - is a triangle equivalence.

By a singular equivalence between two algebras A and B, we mean a triangle equivalence
between their singularity categories.

PROPOSITION 3.2 Let A and B be two artin algebras. Assume that the stable categories A mod-
and B mod- are pre-triangle quasi-equivalent. Then there is a singular equivalence between A and B.

Proof. We just combine Lemma 3.1 and Corollary 2.7. □

In the following two examples, pre-triangle equivalences between stable module categories are
explicitly given. We require that k acts centrally on any bimodules.

EXAMPLE 3.3 Let A and ¢B be artin algebras, and let ¢MBA be an A- ¢B -bimodule. Consider the

upper triangular matrix algebra ( )= ¢B A M

B0
. We recall that a left B-module is a column vector

( )X

Y
, where XA and ¢YB are a left A-module and a left ¢B -module with an A-module homomorph-

ism f Ä ¢M Y X: B , respectively; compare [3, III]. We call f the structure morphism of the

B-module ( )X

Y
.

Consider the natural full embedding i A B: mod mod- - , sending an A-module X to ( ) =i X
( )X

0
. Since i preserves projective modules and is exact, it commutes with taking the syzygies. Then

we have the induced functor i A B: mod mod- - , which is a triangle functor.
We claim that the induced functor i is a pre-triangle equivalence if and only if the algebra ¢B

has finite global dimension. In this case, by Proposition 3.2, there is a triangle equivalence
( )  ( )

~
A BD Dsg sg ; compare [9, Theorem 4.1(1)].

Indeed, the induced functor i is fully faithful. By Corollary 2.3, we only need to consider the

condition (S3). Then we are done by the following fact: for any B-module ( )X

Y
and ³d 0, we

have ( )( )W = ¢

W ( )¢
B
d X

Y

X

Y
B
d

for some A-module ¢X . Hence, if W ( ) =¢ Y 0
B
d , the B-module ( )WB

d X

Y
lies

in the essential image of i.
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The following example is somehow more difficult.

EXAMPLE 3.4 Let A and ¢B be artin algebras, and let ¢ NAB be an A- ¢B -bimodule. Consider the

upper triangular matrix algebra ( )= ¢
B B N

A0
. We assume that ¢B has finite global dimension.

Consider the natural projection functor p B A: mod mod- - , sending a B-module ( )X

Y
to the

A-module Y . It is an exact functor which sends projective modules to projective modules. Then

we have the induced functor p B A: mod mod- - , which is a triangle functor.
For an A-module Y , ( )Y

0 is naturally a B-module with the zero structure morphism Ä N Y 0A .

Take  to be the full subcategory of B mod- consisting of modules of the form ( )Y

0 . We claim that
 is a saturated subcategory of B mod- . Then by Lemma 2.6, the induced functor p is a pre-
triangle equivalence. Therefore, by Proposition 3.2, there is a triangle equivalence ( ) 

~
BDsg

( )ADsg ; compare [9, Theorem 4.1(2)].
We now prove the claim. For a B-module ( )=C X

Y
, we consider the projection ( )h :C

X

Y

( )( ) =G C
Y

0 . Since its kernel has finite projective dimension, it follows that hW ( )B
d

C is an iso-

morphism for d large enough. We observe that h( )p C is an isomorphism. Then we have (Sa1).
The conditions (Sa2) and (Sa3) are trivial. Here for (S2) in  , we use the following fact: if a

morphism  ¢f Y Y: of A-module factors through a projective A-module P, then the morphism

( ) ( ) ( ) ¢:
f Y Y

0 0 0 of B-modules factors though ( )P

0 , which has finite projective dimension; conse-

quently, we have ( )W = 0B
d

f

0 for d large enough.

Let M be a left A-module. Then = ( )M M AHom ,A* is a right A-module. Recall that an
A-module M is Gorenstein-projective provided that there is an acyclic complex P• of projective
A-modules such that the Hom-complex ( ) = ( )P P AHom ,A

• •* is still acyclic and that M is iso-
morphic to a certain cocycle ( )Z Pi • of P•.

We denote by -A Gproj the full subcategory of -A mod formed by Gorenstein-projective
A-modules. We observe that - Í -A Aproj Gproj. We recall that the full subcategory
- Í -A AGproj mod is closed under direct summands, kernels of epimorphisms and extensions;

compare [2, (3.11)]. In particular, for a Gorenstein-projective A-module M all its syzygies W ( )MA
i

are Gorenstein-projective.
Since ÍA AGproj mod- - is closed under extensions, it becomes naturally an exact category in

the sense of Quillen [24]. Moreover, it is a Frobenius category, that is, it has enough (relatively)
projective and enough (relatively) injective objects, and the class of projective objects coincides
with the class of injective objects. In fact, the class of projective-injective objects in A Gproj-
equals A proj- . For details, we compare [4, Proposition 2.13].

We denote by A Gproj- the full subcategory of A mod- consisting of Gorenstein-projective
A-modules. Then the syzygy functor WA restricts to an auto-equivalence W A A: Gproj GprojA - - .
Moreover, the stable category A Gproj- becomes a triangulated category such that the translation
functor is given by a quasi-inverse of WA, and that the triangles are induced by short exact
sequences in A Gproj- . These are consequences of a general result in [14, Chapter I.2]. The inclu-
sion functor A Ainc: Gproj mod- - is a triangle functor between left triangulated categories. We
consider the composite of triangle functors

( )G A A AD: Gproj mod .A
Finc

sg
A- ⟶ - ⟶
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Let M N, be Gorenstein-projective A-modules. By the fully-faithfulness of the functor
W A A: Gproj GprojA - - , the natural map

( ) ( )( )M N M NHom , Hom ,A A mod⟶ -

induced by the stabilization functor  ( )A AS: mod mod- - is an isomorphism. We identify
( ) A mod- with ( )ADsg by Lemma 3.1. Then this isomorphism implies that the triangle functor GA

is fully faithful; compare [7, Theorem 4.1] and [15, Theorem 4.6].
Recall from [7, 15] that an artin algebra A is Gorenstein if the regular module A has finite

injective dimension on both sides. Indeed, the two injective dimensions are equal. We mention
that a self-injective algebra is Gorenstein, where any module is Gorenstein-projective.

The following result is also known. As a consequence, for a self-injective algebra A the stable
module category A mod- and ( )ADsg are triangle equivalent; see [21] and [25, Theorem 2.1].

LEMMA 3.5 Let A be an artin algebra. Then the following statements are equivalent:

(1) The algebra A is Gorenstein.
(2) The inclusion functor A Ainc: Gproj mod- - is a pre-triangle equivalence.
(3) The functor  ( )G A AD: GprojA sg- is a triangle equivalence.

Proof. Recall that A is Gorenstein if and only if for any module X , there exists ³d 0 with W ( )XA
d

Gorenstein-projective; see [18]. The inclusion functor in (2) is fully faithful. By Corollary 2.3, it is
a pre-triangle equivalence if and only if the condition (S3) in A mod- is satisfied. Then the equiva-
lence ‘( )  ( )1 2 ’ follows.

Since W A A: Gproj GprojA - - is an auto-equivalence, we identify A Gproj- with its stabilization
( ) A Gproj- . By Lemma 3.1, we identify ( )ADsg with ( ) A mod- . Then the functor GA is identified

with the stabilization of the inclusion functor in (2). Then the equivalence ‘( )  ( )2 3 ’ follows
from Proposition 2.2. □

Recall from [6] that the Gorenstein defect category of an algebra A is defined to be the Verdier
quotient triangulated category ( ) = ( )/A A GD D Im Adef sg , where GIm A denotes the essential image
of the fully-faithful triangle functor GA, and thus is a triangulated subcategory of ( )ADsg . By
Lemma 3.5(3), the algebra A is Gorenstein if and only if ( )ADdef is trivial; see also [6].

The following observation implies that pre-triangle equivalences seem to be ubiquitous in the
study of singular equivalences; compare Proposition 3.2.

PROPOSITION 3.6 Let A and B be artin algebras. Assume that B is a Gorenstein algebra and that
there is a singular equivalence between A and B. Then there is a pre-triangle equivalence from
A mod- to B mod- .

Proof. Using the triangle equivalence GB, we obtain a triangle equivalence

( )H A BD: Gproj.sg ⟶ -

More precisely, we have = -H G LB
1 , where ( )  ( )L A BD D: sg sg is the assumed singular equiva-

lence and -GB
1 is a quasi-inverse of GB. Then we have the following composite of triangle

functors:
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( )F A A B BD: mod Gproj mod.
F H

sg
incA- ⟶ ⟶ - ⟶ -

We claim that F is a pre-triangle equivalence.
Indeed, the functor FA is a pre-triangle equivalence by Lemma 3.1, where we identify ( )ADsg

with its stabilization ( ( )) ADsg . The inclusion functor is a pre-triangle equivalence by Lemma 3.5
(2). Therefore, all the three functors above are pre-triangle equivalences. Then as their compos-
ition, so is the functor F . □

4. The singularity category of a quadratic monomial algebra

In this section, we study the singularity category of a quadratic monomial algebra A. We consider
the algebra B with radical square zero that is defined by the relation quiver of A. The main result
claims that there is a pre-triangle quasi-equivalence between the stable A-module category and the
stable B-module category. Consequently, we obtain an explicit singular equivalence between A
and B.

For the ease of the reader, we recall some notation on quivers and quadratic monomial
algebras.

Let = ( )Q Q Q s t, ; ,0 1 be a finite quiver, where Q0 is the set of vertices, Q1 the set of arrows,
and s t Q Q, : 1 0 are maps which assign to each arrow a its starting vertex a( )s and its terminat-
ing vertex a( )t . A path p of length n in Q is a sequence a a a=p n 2 1 of arrows such that
a a( ) = ( )-s ti i 1 for £ £i n2 ; moreover, we define its starting vertex a( ) = ( )s p s 1 and its ter-

minating vertex a( ) = ( )t p t n . We observe that a path of length one is just an arrow. To each
vertex i, we associate a trivial path ei of length zero, and set ( ) = = ( )s e i t ei i .

For two paths p and q with ( ) = ( )s p t q , we write pq for their concatenation. As convention,
we have = =( ) ( )p pe e ps p t p . For two paths p and q in Q, we say that q is a sub-path of p pro-

vided that =  ¢p p qp for some paths p and ¢p .
Let k be a field. The path algebra kQ of a finite quiver Q is defined as follows. As a k-vector

space, it has a basis given by all the paths in Q. For two paths p and q, their multiplication is given
by the concatenation pq if ( ) = ( )s p t q , and it is zero, otherwise. The unit of kQ equals å Î ei Q i0

.
Denote by J the two-sided ideal of kQ generated by arrows. Then Jd is spanned by all the paths of
length at least d for each ³d 2. A two-sided ideal I of kQ is admissible provided that

Í ÍJ I Jd 2 for some ³d 2. In this case, the quotient algebra = /A kQ I is finite-dimensional.
We recall that an admissible ideal I of kQ is quadratic monomial provided that it is generated

by some paths of length two. In this case, the quotient algebra = /A kQ I is called a quadratic
monomial algebra. Observe that the algebra A is with radical square zero if and only if =I J2.
We call /kQ J2 the algebra with radical square zero defined by the quiver Q.

In what follows, = /A kQ I is a quadratic monomial algebra. We denote by F the set of paths
of length two contained in I . Following [29], a path p in Q is non-zero in A provided that it does
not belong to I , or equivalently, p does not contain a sub-path in F. In this case, we abuse the
image +p I in A with p. The set of non-zero paths forms a k-basis for A. For a path p in I , we
write =p 0 in A.

For a non-zero path p, we consider the left ideal Ap generated by p, which has a k-basis given
by the non-zero paths q such that = ¢q q p for some path ¢q . We observe that for a vertex i, Aei is
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an indecomposable projective A-module. Then we have a projective cover p ( )Ae Ap:p t p send-
ing ( )et p to p.

LEMMA 4.1 Let = /A kQ I be a quadratic monomial algebra. Then the following statements hold:

(1) For a non-zero path a= ¢p p with a an arrow, there is an isomorphism aAp A of A-modules
sending xp to ax for any path x with ( ) = ( )s x t p .

(2) For an arrow a, we have a short exact sequence of A-modules

b a ( )
b ba

a
p

{ Î Î }
( )

a
A Ae A0 0, 4.1

Q

t

F

inc

1

⨁⟶ ⟶ ⟶ ⟶
∣

where ‘inc’ denotes the inclusion map.
(3) For any A-module M , there is an isomorphism aW ( ) ( )aÎ aM AA Q

n2
1⨁ for some integers an .

Proof. (1) is trivial and (2) is straightforward; compare the first paragraph in [29, p. 162]. In view
of (1), the statement (3) is a special case of [29, Theorem I]. □

Let a be an arrow such that the set b ba{ Î Î }Q F1 ∣ is non-empty. By (4.1), this is equivalent
to the condition that the A-module aA is non-projective. Denote by a a a( ) = { ¢ Î ( ¢) =N Q t1 ∣
a ba b ba( ) ¢ Î Î }t F F, for each arrow satisfying . Set a a( ) = ¢a a¢Î ( )Z AN⨁ , which is the right

ideal generated by a( )N . We observe that a aÎ ( )N .
The second statement of the following result is analogous to [12, Lemma 2.3].

LEMMA 4.2 Let a a¢, be two arrows. We assume that the set b ba{ Î Î }Q F1 ∣ is non-empty.
Then we have the following statements:

(1) There is an isomorphism a a( )  ( )A A ZHom ,A sending f to a( )f .
(2) There is a k-linear isomorphism

a a
a a
a a

( ¢) =
( ) Ç ¢

( ) ¢
( )A A

Z A

Z
Hom , . 4.2A

(3) If a¢ does not belong to a( )N , we have a a( ¢) =A AHom , 0A .
(4) If a¢ belongs to a( )N , there is a unique epimorphism p p a a=  ¢a a¢ A A:, sending a to a¢

and a a p( ¢) =A A kHom ,A ¯ .

Proof. We observe that a( )Z has a k-basis given by non-zero paths q which satisfy a( ) = ( )t q t
and b =q 0 for each arrow b with ba Î F. Then we infer (1) by applying (- )AHom ,A to (4.1)
and using the canonical isomorphism ( )a a( ) ( )Ae A e AHom ,A t t .

For (2), we identify for each left ideal K of A, a( )A KHom ,A with the subspace of
a( )A AHom ,A formed by those morphisms whose image is contained in K . Therefore, we identify
a a( ¢)A AHom ,A with a a( ) Ç ¢Z A , a( )a( ¢)A AeHom ,A t with a( ) Ç a( ¢)Z Aet . Recall the projective

cover p a ¢a a¢ ( ¢)Ae A: t . The subspace a a( ¢)A Ap , formed by those morphisms factoring through
projective modules equals the image of the map p( )a¢ AHom ,A . This image is then identified with

a a( ) ¢Z . Then the required isomorphism follows.
The statement (3) is an immediate consequence of (2), since in this case we have
a a a a( ) Ç ¢ = ( ) ¢Z A Z .
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For (4), we observe in this case that a a a a a( ) Ç ¢ = ( ( ) ¢) Å ¢Z A Z k . It follows from (3) that
a a( ¢)A AHom ,A is one dimensional. The existence of the surjective homomorphism p is by the

isomorphism in (1), under which p corresponds to the element a¢. Then we are done. □

REMARK 4.3 Assume that a a¢ Î ( )N . In particular, a a( ) = ( ¢)t t . Then we have the following
commutative diagram:

0
⊕

{β∈Q1 | βα∈F} Aβ

inc

inc
Aet(α)

πα
Aα

πα,α′

0

0
⊕

{β∈Q1 | βα′∈F} Aβ
inc

Aet(α)
πα′

Aα′ 0

The leftmost inclusion uses the fact that a a¢ Î ( )N , and thus b ba b{ Î Î } Í { ÎQ QF1 1∣ ∣
ba¢ Î }F .

The following notion is taken from [12, Section 5]; compare [17].

DEFINITION 4.4 Let = /A kQ I be a quadratic monomial algebra. Denote by F the set consisting
of paths in Q, that are of length two and contained in I . The relation quiver A of A is defined as
follows. Its vertices are given by arrows in Q, and there is an arrow ba[ ] from a to b for each
element ba in F.

We will consider the algebra = /B k JA
2 with radical square zero defined by A. The main

result of this paper is as follows.

THEOREM 4.5 Let = /A kQ I be a quadratic monomial algebra, and let = /B k JA
2 be the

algebra with radical square zero defined by the relation quiver of A. Then there is a pre-triangle
quasi-equivalence connecting A mod- and B mod- . Consequently, there is a singular equivalence
between A and B.

For an arrow a in Q, we denote by aS and aP the simple B-module and the indecomposable pro-
jective B-module corresponding to the vertex a, respectively. We may identify aP with aBe , where
ae denotes the trivial path in A at a. Hence, the B-module aP has a k-basis ba ba{ [ ] Î }ae F, ∣ .
We observe the following short exact sequence of B-modules

( )
b ba

b a a
{ Î Î }

a
S P S0 0, 4.3

Q

i

F1

⨁⟶ ⟶ ⟶ ⟶
∣

where ai identifies bS with the B-submodule ba[ ]k .
We denote by B ssmod- the full subcategory of B mod- consisting of semisimple B-modules.

We observe that for any B-module M , the syzygy W ( )MB is semisimple; compare [11, Lemma
2.1]. Moreover, any homomorphism f X Y: between semisimple modules splits, that is, it is

isomorphic to a homomorphism of the form ( ) Å  ÅK Z C Z:0

0

Id

0
Z for some B-modules K , C

and Z . We infer that ÍB Bssmod mod- - is a left triangulated subcategory. Moreover, all left triangles

inside B ssmod- are direct sums of trivial ones.
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There is a unique k-linear functor F B A: ssmod mod- - sending aS to aA for each arrow a in
Q. Here, for the well-definedness of F , we use the following fact, which can be obtained by com-
paring (4.1) and (4.3): the simple B-module aS is projective if and only if so is the A-module aA .

We have the following key observation.

LEMMA 4.6 The functor F B A: ssmod mod- - is a pre-triangle equivalence.

Proof. Let a be an arrow in Q. We observe that (4.1) and (4.3) compute the syzygies modules
aW ( )AA and W ( )aSB , respectively. It follows that the functor F commutes with the syzygy functors.

In other words, there is a natural isomorphism d W  WF F: A B such that d( )F, is a looped functor.
Since all morphisms in B ssmod- split, each left triangle inside is a direct sum of trivial ones. It fol-
lows that F respects left triangles, that is, d( )F, is a triangle functor.

We verify the conditions (S1)–(S3) in Proposition 2.2. Then we are done. Since the functor F is
faithful, (S2) follows. The condition (S3) follows from Lemma 4.1(3).

For (S1), we take a morphism ( )  ( )g F X F Y: in A mod- . Without loss of generality, we
assume that both X and Y are indecomposable, in which case both are simple B-modules. We
assume that = aX S and = a¢Y S . We assume that g is non-zero, in particular, a( ) =F X A is non-
projective, or equivalently, the set b ba{ Î Î }Q F1 ∣ is non-empty. Observe that a( ) = ¢F Y A .
We apply Lemma 4.2(3) to infer that a a¢ Î ( )N . Write p p= a a¢, . By Lemma 4.2(4), we may
assume that p=g ¯ .

The commutative diagram in Remark 4.3 implies that W ( )gA equals the inclusion morphism

b b
b ba b ba{ Î Î } { Î ¢Î }

A A .
Q QF F1 1

⨁ ⟶ ⨁
∣ ∣

Take f to be the corresponding inclusion morphism

W ( ) = W ( ) =a
b ba

b a
b ba

b
{ Î Î }

¢
{ Î ¢Î }

S S S SB
Q

B
QF F1 1

⨁ ⟶ ⨁
∣ ∣

in B ssmod- . Then we identify ( )F f with W ( )gA ; more precisely, we have d( ) =F f Y ◦
dW ( ) ( )-gA X

1◦ . This proves the condition (S1). □

We now prove Theorem 4.5.
Proof of Theorem 4.5. Consider the inclusion functor B Binc: ssmod mod- - . As mentioned

above, this is a triangle functor. Recall that the syzygy of any B-module is semisimple, that is, it
lies in B ssmod- . Then the inclusion functor is a pre-triangle equivalence by Corollary 2.3. Recall
the pre-triangle equivalence F B A: ssmod mod- - in Lemma 4.6. Then we have the required pre-
triangle quasi-equivalence

A B Bmod ssmod mod.
F inc

- ⟵ - ⟶ -

The last statement follows from Proposition 3.2. We mention that by the explicit construction
of the functor F , the resulting triangle equivalence ( )  ( )A BD Dsg sg sends aA to aS for each
arrow a in Q. □
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REMARK 4.7 We will observe in the proof of Proposition 5.3 below that the singular equivalence
in Theorem 4.5 restricts to a triangle equivalence between A Gproj- and B Gproj- . Consequently,
it induces a triangle equivalence between ( )ADdef and ( )BDdef . We emphasize that in general a
singular equivalence will not induce a triangle equivalence between Gorenstein defect categories.

5. Consequences and examples

In this section, we draw some consequences of Theorem 4.5 and describe some examples.
We first make some preparation by recalling some known results on the singularity category of

an algebra with radical square zero. For a finite quiver Q, we recall that a vertex in Q is a sink if
there is no arrow starting at it. We denote by Q0 the quiver without sinks, that is obtained from Q
by repeatedly removing sinks. The double quiver Q̄ of Q is obtained from Q by adding for each
a Î Q1 a new arrow a* in the reverse direction, that is, a a( ) = ( )s t* and a a( ) = ( )t s* .

Recall that the Leavitt path algebra ( )L Q of Q with coefficients in k is the quotient algebra of
kQ̄ modulo the two-sided ideal generated by the following elements:

åab d a b a a{ - Î } È
ì
í
ïï

î
ïï

- Î
ü
ý
ïï

þ
ïï

a b a
a a

( )
{ Î ( )= }

e Q e i Q, non sink .t
Q s i

i, 1 0

1

* *∣ ∣ -
∣

Here, d denotes the Kronecker symbol. Then ( )L Q has a natural -grading by
a= =edeg 0 deg 1i and a = -deg 1* . We denote by ( )L Q grproj- the category of finitely gen-

erated -graded left ( )L Q -modules, and by (- ) ( )  ( )L Q L Q1 : grproj grproj- - the degree-shift
functor by degree-1. For details on Leavitt path algebras, we refer to [1, 13, 27].

We denote by /kQ J2 the algebra with radical square zero defined by Q. For ³n 1, we denote
by Zn the basic n-cycle, which is a connected quiver consisting of n vertices and n arrows which
form an oriented cycle. Then the algebra /kZ Jn

2 is self-injective. In particular, the stable module
category /kZ J modn

2- is triangle equivalent to ( / )kZ JD nsg
2 .

An abelian category  is semisimple if any short exact sequence splits. For example, if the quiver
Q has no sinks, the category ( )L Q grproj- is a semisimple abelian category; see [13, Lemma 4.1].

For a semisimple abelian category  and an auto-equivalence S on , there is a unique trian-
gulated structure on  with S the translation functor. Indeed, all triangles are direct sums of trivial
ones. The resulting triangulated category is denoted by ( S), ; see [10, Lemma 3.4]. As an
example, we will consider the triangulated category ( ( ) (- ))L Q grproj, 1- for a quiver Q without
sinks.

EXAMPLE 5.1 Let = ´ ´ ´k k k kn  be the product algebra of n copies of k. Consider the
automorphism s k k: n n sending ( ¼ )a a a, , , n1 2 to ( ¼ )a a a, , ,n2 1 , which induces an automorph-
ism s k k: mod modn n* - - by twisting the kn-action on modules. We observe that there are tri-
angle equivalences

s( ) ~ / ~ ( ( ) (- ))k kZ J L Zmod, mod grproj, 1 .n
n n

2*- ⟶ - ⟶ -

The first equivalence is well known and the second one is a special case of [13, Theorem 6.1]. We
will denote this triangulated category by n.
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Let Q be a finite quiver. We call a connected component  of Q perfect (resp. acyclic) if it is a
basic cycle (resp. it has no oriented cycles). A connected component is defect if it is neither perfect
nor acyclic. Then we have a disjoint union

= È ÈQ Q Q Q ,perf ac def

where Qperf (resp. Qac, Qdef) is the union of all the perfect (resp. acyclic, defect) components in Q.
Denote by = /B kQ J2. Then we have a decomposition of algebras

= ´ ´B B B B .perf ac def

We summarize the known results on the singularity category and the Gorenstein defect category
of an algebra with radical square zero.

LEMMA 5.2 Keep the notation as above. Then the following statements hold:

(1) There is a triangle equivalence ( ) ´ ( )B B BD Dmodsg
perf

sg
def- .

(2) There is a triangle equivalence B BGproj modperf- - , which is triangle equivalent to a product
of categories n.

(3) There is a triangle equivalence ( ) ( )B BD Ddef sg
def , which is triangle equivalent to

( (( ) ) (- ))L Q grproj, 1def 0 - .

Proof. We observe that the algebra Bperf is self-injective and that Bac has finite global dimension.
Then (1) is a consequence of the decomposition ( ) = ( ) ´ ( ) ´ ( )B B B BD D D Dsg sg

perf
sg

ac
sg

def of
categories.

For (2), we note that any Bperf-module is Gorenstein-projective and that a Gorenstein-projective
Bac-module is necessarily projective. By [11, Theorem 1.1] any Gorenstein-projective Bdef -module
is projective. Then (2) follows by a similar decomposition of B Gproj- . The last statement follows
from Example 5.1, since Bperf is isomorphic to a product of algebras of the form /kZ Jn

2.
By (1) and (2), the functor  ( )G B BD: GprojB sg- is identified with the inclusion. The required

triangle equivalence in (3) follows immediately. The last sentence follows by combining [10,
Proposition 4.2] and [13, Theorem 6.1]; compare [10, Theorem B] and [27, Theorem 5.9]. □

In what follows, let = /A kQ I be a quadratic monomial algebra with A its relation quiver.
We denote by { ¼ }  , , , m1 2 the set of all the perfect components in A, and by di the number of
vertices in the basic cycle i.

Let = /B k JA
2 be the algebra with radical square zero defined by A. We consider the tri-

angle equivalence F ( )  ( )A BD D: sg sg obtained in Theorem 4.5. We identify the fully faithful
functors GA and GB as inclusions.

The following result describes the singularity category and the Gorenstein defect category of a
quadratic monomial algebra. We mention that the equivalence in Proposition 5.3(2) is due to [12,
Theorem 5.7], which is obtained by a completely different method.

PROPOSITION 5.3 The triangle equivalence F ( )  ( )A BD D: sg sg restricts to a triangle equivalence
~A BGproj Gproj- - , and thus induces a triangle equivalence ( ) ~ ( )A BD Ddef def .
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Consequently, we have the following triangle equivalences:

(1) ( ) ~ ´ ( )A A AD DGprojsg def- ;

(2) ~ ~ ´ ´ ´  A BGproj mod d d d
perf

m1 2- -  ;

(3) ( ) ~ ( ) ~ ( ( ¢) (- ))A B L QD D grproj, 1def sg
def - with ¢ = ( )Q A

def 0.

Proof. Recall from the proof of Theorem 4.5 that aF( ) = aA S for each arrow a in Q. By [12,
Lemma 5.4(1)] the A-module aA is non-projective Gorenstein-projective if and only if a, as a vertex,
lies in a perfect component of A. Moreover, any indecomposable non-projective Gorenstein-
projective A-module arises in this way. On the other hand, any indecomposable non-projective
Gorenstein-projective B-module is of the form aS with a inA

perf ; see Lemma 5.2(2). It follows that the
equivalenceF restricts to the equivalence ~A BGproj Gproj- - .

The three triangle equivalences follow immediately from the equivalences in Lemma 5.2. □

We end the paper with examples on Proposition 5.3.

EXAMPLE 5.4 Let A be a quadratic monomial algebra which is Gorenstein. By [12, Proposition 5.5(1)],
this is equivalent to the condition that the relation quiverA has no defect components. For example, a
gentle algebra is such an example. Note that ( )ADdef is trivial. Then we obtain a triangle equivalence

( ) ~ ´ ´ ´  AD ,d d dsg m1 2⟶ 

where di’s denote the sizes of the perfect components ofA. This result extends [20, Theorem 2.5(b)];
see also [8].

EXAMPLE 5.5 Let = á ñ/A k x y I, be the quotient algebra of the free algebra á ñk x y, by the ideal
= ( )I x y yx, ,2 2 . Then the relation quiver A is as follows:

x[x2]
[yx]

y [y2].

The relation quiver has no perfect components. Then we have triangle equivalences ( )ADsg 
( ) ( ( ) (- ))A LD grproj, 1Adef - .

EXAMPLE 5.6 Consider the following quiver Q and the algebra = /A kQ I with ba ab dg= (I , , ,
gd dx), :

1
α

2
β

γ

3
δ

4.
ξ

Its relation quiver A is as follows:

α

[βα]

β
[αβ]

γ

[δγ]

δ
[γδ]

ξ.
[δξ]

There are one perfect component and one defect component; moreover, we observe ( ) = ZA
def 0

2.
Then we have triangle equivalences A Gproj 2-  and ( ) ( ( ) (- ))A L ZD grproj, 1def 2 - , which is
equivalent to 2; see Example 5.1. Therefore, we have a triangle equivalence ( ) ´ ADsg 2 2 .
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