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Abstract
For a noetherian ring �, the stabilization functor yields an embedding of the singularity
category of � into the homotopy category of acyclic complexes of injective �-modules.
When � contains a semisimple artinian subring E , we give an explicit description of the
stabilization functor using the Hom complexes in the E-relative singular Yoneda dg category
of �. As an application to an artin algebra, we obtain an explicit compact generator for
the mentioned homotopy category, whose dg endomorphism algebra turns out to be quasi-
isomorphic to the associated dg Leavitt algebra.
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1 Introduction

Let � be a left noetherian ring. Denote by �-mod the abelian category of finitely generated
�-modules and by Db(�-mod) its bounded derived category. Following [5, 25], the singu-
larity category Dsg(�) of � is defined to be the Verdier quotient of Db(�-mod) modulo the
full subcategory formed by perfect complexes. The singularity category Dsg(�) detects the
homological singularity of � in the following sense: Dsg(�) vanishes if and only if every
finitely generated �-module has finite projective dimension. The singularity categories of
certain hypersurfaces are related to categories of B-branes in Landau-Ginzburg models [25].

Denote byK(�-Inj) the homotopy category of complexes of arbitrary injective�-modules
and byKac(�-Inj) its full subcategory formed by acyclic complexes. It is shown in [19] that
Kac(�-Inj) is a compactly generated completion of Dsg(�). More precisely, Kac(�-Inj) is
compactly generated and its full subcategory Kac(�-Inj)c of compact objects is triangle
equivalent to Dsg(�), up to direct summands.

We mention that such a concrete completion makes it possible to apply the rich theory of
compactly generated triangulated categories [17, 24] to singularity categories. However, the
relevant functor from Dsg(�) toKac(�-Inj) is neither explicit nor trivial as explained below.

The following recollement [2] among compactly generated triangulated categories is
established in [19].

Kac(�-Inj)
inc K(�-Inj)

ā

can D(�-Mod)

p̄

i

(1.1)

Here,D(�-Mod) is the unbounded derived category of complexes of�-modules, “inc" is the
inclusion functor and “can" is the canonical functor. Following [19], the composite functor

S = āi : D(�-Mod) −→ Kac(�-Inj)

is called the stabilization functor. As S vanishes on perfect complexes, its restriction to
Db(�-mod) induces a well-defined functor

Dsg(�) −→ Kac(�-Inj). (1.2)

The resulting functor yields an equivalence up to direct summands between Dsg(�) and
Kac(�-Inj)c.

The stabilization functor S is essential in the recollement (1.1), as it is a triangulated
analogue of the gluing functors in the dg setting [21] and ∞-categorical setting [13, 22]. By
[8], the comma category of S yields the middle termK(�-Inj) up to an explicit epivalence. If
the ring � is Gorenstein, that is, � is two-sided noetherian such that it has finite selfinjective
dimension on each side, applying S to any �-module yields a complete injective resolution
of the module; see [19]. In other words, S provides a functorial construction of complete
injective resolutions.

It is well known that the functor i in (1.1) assigns to any complex its dg-injective resolution.
However, the functor ā is not well understood. Consequently, the stabilization functor S = āi
is mysterious in a certain sense.

The goal of this work is to describe the stabilization functor S explicitly. We will assume
that � contains a subring E which is semisimple artinian. For example, if � is an algebra
over a field, we just take E to be the base field.

The central tool is the E-relative singular Yoneda dg category SY = SY�/E of �, which
is introduced in [9]. The objects of SY are just complexes of �-modules, and for bounded
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complexes X , Y of finitely generated modules, the Hom complex SY(X , Y ) computes the
shifted Hom groups in the singularity category Dsg(�). In other words, SY contains a dg
enhancement [4] of the singularity category. We mention that each Hom complex in SY is
defined as an explicit colimit; see Sect. 6.

The main results, proved in Sects. 6 and 8, are summarized as follows. We view � as a
stalk complex concentrated in degree zero, and thus an object in SY .

Theorem Let � be a left noetherian ring and E ⊆ � a semisimple artinian subring. Denote
by SY the E-relative singular Yoneda dg category of �. Then the following hold.

1. SY(�,−) : D(�-Mod) → Kac(�-Inj) is a well-defined triangle functor.
2. There is a natural transformation c : S → SY(�,−) such that its restriction to the full

subcategory D+(�-Mod) consisting of cohomologically bounded below complexes is a
natural isomorphism. Moreover, if � is Gorenstein, c is a natural isomorphism.

There are two immediate consequences of these results. By the first half of (2), we infer
that the functor (1.2) is naturally isomorphic to the following functor

SY(�,−) : Dsg(�) −→ Kac(�-Inj),

which is induced by the restriction of SY(�,−) to Db(�-mod). If � is Gorenstein, we
combine the second half of (2) with [19, Section 7], and infer that SY(�, M) provides an
explicit complete injective resolution for any �-module M .

In a certain sense, the whole paper is devoted to the proof of the results above.
The first key step is to describe the two functors i and p̄ in (1.1) using the E-relative

Yoneda dg category Y = Y�/E of �, which is a natural dg enhancement of the derived
category using the bar resolution [9, 17]; see Propositions 3.8 and 7.2. The second one is to
interpret both S and SY(�,−) as the mapping cones of explicit quasi-isomorphisms, so that
it is possible to compare them; see Theorems 6.3 and 7.5.

The paper is structured as follows. In Sect. 2, we recall the dg-projective and dg-injective
resolutions of complexes using the bar resolution. In Sect. 3, we recall the Yoneda dg category
Y in [9] and prove in Proposition 3.8 that its Hom complexes yield dg-injective resolutions of
complexes. For later use, we study an explicit quasi-isomorphism (4.1) in Sect. 4. In Sect. 5,
we studynoncommutative differential formswith values in complexes, and their compatibility
with the truncated bar resolutions as shown by an explicit commutative diagram in Y; see
Proposition 5.6.

In Sect. 6, we recall the singular Yoneda dg category SY in [9]. We prove in Theorem 6.3
that for any complex X of �-modules, the Hom complex SY(�, X) is homotopy equivalent
to the mapping cone of an explicit quasi-isomorphism ϑX in (6.3). In Sect. 7, we describe
the functor p̄ in (1.1) in Proposition 7.2. We prove in Theorem 7.5 that S(X) is homotopy
equivalent to the mapping cone of an explicit quasi-isomorphism κX in (7.4). In Sect. 8,
we establish a natural transformation to compare the two functors SY(�,−) and S; see
Theorem 8.1 and Proposition 8.2.

In the final section, we have a number of applications of the comparison.We prove that for
a bounded complex X of finitely generated �-modules, the dg algebra SY(X , X) is quasi-
isomorphic to the dg endomorphism algebra of the complex SY(�, X); see Theorem 9.2.
Moreover, we obtain a quasi-equivalence up to direct summands in Proposition 9.3. If � is
an artin algebra, we obtain an explicit compact generator SY(�, E) in Kac(�-Inj), whose
dg endomorphism algebra turns out to be quasi-isomorphic to the dg Leavitt algebra [9]
associated to �; see Proposition 9.5.
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Throughout the paper, we fix a semisimple artinian ring E . The unadorned Hom and
tensor are over E . We will always assume that � is a ring containing E as a subring with the
same unit. By �-modules, we mean left �-modules, and by complexes, we mean cochain
complexes. We will abbreviate “differential graded" as dg.

2 Resolutions of complexes via the bar resolution

In this section, we recall basic facts on dg-projective resolutions and dg-injective resolutions
of complexes via the bar resolution.

We denote by �-Mod the category of �-modules, and by C(�-Mod) the category of
complexes of �-modules. Denote by K(�-Mod) the homotopy category of complexes of
�-modules and byD(�-Mod) the derived category. We will always view a module as a stalk
complex concentrated in degree zero.

A complex of �-modules is usually denoted by X = (Xn, dnX )n∈Z, where dnX is often
written simply as dX . We will use� to denote the suspension functor for cochain complexes.
To be more precise, the suspended complex �(X) is described by �(X)n = Xn+1 and
dn�(X) = −dn+1

X .
For a cochain map f = ( f n)n∈Z : X → Y between complexes, the mapping cone

Cone( f ) is a complex described as follows:

Cone( f )n = Yn ⊕ Xn+1, dnCone( f ) =
(
dnY f n+1

0 −dn+1
X

)
.

We have the following standard exact triangle in K(�-Mod):

X
f−→ Y

(10)−→ Cone( f )
(0 1)−→ �(X). (2.1)

Here, we use 1 to denote the identity endomorphism.

2.1 The bar resolution

As E is a subring of �, � is naturally an E-E-bimodule. Denote by �̄ = �/E the quotient
E-E-bimodule; as above, it is always viewed as a stalk complex concentrated in degree zero.
Denote by s�̄ the 1-shifted complex, which is a stalk complex concentrated in degree −1.
For any a ∈ �, the corresponding element in s�̄ is written as sā. Denote by

T (s�̄) = E ⊕ s�̄ ⊕ (s�̄)⊗2 ⊕ · · ·
the tensor ring of the E-E-bimodule s�̄. A typical element in (s�̄)⊗n is of the form sā1 ⊗
· · · ⊗ sān , which is often abbreviated as sā1,n . We observe that the degree of sā1,n is −n.

The normalised E-relative bar resolution B is a complex of �-�-bimodules

B := � ⊗ T (s�̄) ⊗ �,

whose differential is the external one dex given by

dex(a0 ⊗ sā1,n ⊗ an+1) = a0a1 ⊗ sā2,n ⊗ an+1 + (−1)na0 ⊗ sā1,n−1 ⊗ anan+1

+
n−1∑
i=1

(−1)i a0 ⊗ sā1,i−1 ⊗ sai ai+1 ⊗ sāi+2,n ⊗ an+1.

(2.2)
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Here, the expressions sā1,0 ⊗ for i = 1, and sān+1,n ⊗ for i = n − 1, are understood as the
empty word.

For each p ≥ 0, we consider the following subcomplex of B:

B<p =
⊕

0≤n<p

� ⊗ (s�̄)⊗n ⊗ �.

Here, we understand B<0 as the zero complex, and B<1 as � ⊗ � = � ⊗ E ⊗ �. The
corresponding quotient complex B/B<p will be denoted by B≥p .

Composing the projection B → � ⊗ � with the multiplication map � ⊗ � → �, we
obtain the following natural map

ε : B −→ �.

It is a quasi-isomorphism between complexes of�-�-bimodules. Here as above,� is viewed
a stalk complex concentrated in degree zero. As in (2.1), we have the following standard exact
triangle of complexes of �-�-bimodules

B
ε−→ � −→ Cone(ε) −→ �(B). (2.3)

We refer to [28, Section 8.6] and [17, Subsection 6.6] for more details on bar resolutions.

2.2 Resolutions of complexes

For two complexes X = (Xn, dnX )n∈Z and Y = (Yn, dnY )n∈Z of �-modules, the Hom-
complex Hom�(X , Y ) is a complex of abelian groups defined as follows: its p-th component
Hom�(X , Y )p consists of graded maps f : X → Y of graded �-modules that have degree
p, namely, f (Xn) ⊆ Y p+n for each n ∈ Z; its differential is defined such that

d( f ) = dY ◦ f − (−1)| f | f ◦ dX .

The following well-known isomorphisms

HnHom�(X , Y ) � HomK(�-Mod)(X , �n(Y )), ∀n ∈ Z, (2.4)

will be used often.
Recall that a complex P of�-modules isK-projective if the Hom-complex Hom�(P, Z)

is acyclic for any acyclic complex Z of �-modules; a complex P is dg-projective provided
that it is K-projective and each component Pn is a projective �-module. Dually, a complex
I of �-modules is K-injective if the Hom-complex Hom�(Z , I ) is acyclic for any acyclic
complex Z of �-modules. A K-injective complex I is called dg-injective if in addition each
component I n is an injective �-module.

We refer to [2, Section 1.4] for details on recollements. We mention its analogues in
the dg setting [21, Section 4] and ∞-categorical setting; see [22, Appendix A.8] and [13,
Example 1.4]. In drawing an adjoint pair, we always put the left adjoint functor in the upper
position.

Denote byKac(�-Mod) the homotopy category of acyclic complexes of �-modules. The
following recollement is well known.

Kac(�-Mod)
inc K(�-Mod)

a

a′

can D(�-Mod)

p

i

(2.5)
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Here, “inc” denotes the inclusion and “can" denotes the quotient functor. For each complex
X of �-modules, we have a unique exact triangle in K(�-Mod)

p(X) −→ X −→ a(X) −→ �p(X) (2.6)

such thatp(X) is dg-projective anda(X) is acyclic; consequently, the cochainmapp(X) → X
is a quasi-isomorphism. Dually, we have a unique exact triangle in K(�-Mod)

a′(X) −→ X −→ i(X) −→ �a′(X) (2.7)

such that i(X) is dg-injective and a′(X) is acyclic; thus the cochain map X → i(X) is a
quasi-isomorphism.

We call p(X) and i(X) the dg-projective resolution and dg-injective resolution of X ,
respectively. Indeed, one should call the quasi-isomorphisms p(X) → X and X → i(X) the
corresponding resolutions. For details, we refer to [17, Section 3] and [20, Section 4.3].

We mention that the recollement (2.5) exists for any ring. In general, the four non-obvious
functors are not explicitly given. In what follows, using the semisimple artinian subring E
and the E-relative bar resolution B, we describe these functors more explicitly.

Lemma 2.1 Let X be any complex of �-modules. Then as a complex of �-modules, B⊗� X
is dg-projective, and the following map

ε ⊗� IdX : B ⊗� X −→ � ⊗� X = X

is a quasi-isomorphism. Consequently, we have isomorphisms p � B ⊗� − and a �
Cone(ε) ⊗� − of functors.

Proof Weobserve thatB⊗�X is the union of the following ascending chain of subcomplexes

B≤0 ⊗� X ⊆ B≤1 ⊗� X ⊆ B≤2 ⊗� X ⊆ · · · .

These inclusions are componentwise split, and the factors are isomorphic to

B−p ⊗� X � � ⊗ (s�̄)⊗p ⊗ X .

As E is semisimple artinian, we infer that these factors are isomorphic to direct summands
of coproducts of �m(�). It follows that B⊗� X satisfies the property (P) in [17, Section 3],
and thus is dg-projective.

As ε is a homotopy equivalence between the underlying complexes of right �-modules,
the map ε ⊗� IdX is a homotopy equivalence of complexes of abelian groups. In particular,
it is a quasi-isomorphism. Now, applying − ⊗� X to the standard triangle (2.3), we obtain
an exact triangle, that is isomorphic to (2.6). Then we infer the required isomorphisms of
functors. ��

The following dual lemma seems to be less well known.

Lemma 2.2 Let X be any complex of �-modules. Then as a complex of �-modules,
Hom�(B, X) is dg-injective, and the following map

Hom�(ε, X) : X = Hom�(�, X) −→ Hom�(B, X)

is a quasi-isomorphism. Consequently, we have isomorphisms i � Hom�(B,−) and a′ �
Hom�(Cone(ε),−) of functors.
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Proof The p-th component of Hom�(B, X) is an infinite product
∏

n≥0 Hom�(B−n, X p−n).
We observe the following canonical isomorphism

Hom�(B−n, X p−n) � Hom(�̄⊗n ⊗ �, X p−n).

As �̄⊗n ⊗ � is a projective right �-module, we infer by the Hom-tensor adjunction that
Hom(�̄⊗n ⊗ �, X p−n) is an injective �-module. This proves that each component of
Hom�(B, X) is injective.

Take any acyclic complex Z of �-module. We have the following canonical isomorphism
of complexes

Hom�(Z ,Hom�(B, X)) � Hom�(B ⊗� Z , X).

By Lemma 2.1, B ⊗� Z is dg-projective and acyclic, as it is quasi-isomorphic to Z . Then
it is contractible. It follows that the Hom-complex Hom�(B ⊗� Z , X) is acyclic; compare
(2.4). Therefore, Hom�(Z ,Hom�(B, X)) is also acyclic. In summary, we have proved that
Hom�(B, X) is K-injective and thus dg-injective.

As ε is a homotopy equivalence between the underlying complexes of left �-modules, it
follows that Hom�(ε, X) is a homotopy equivalence between the Hom-complexes of abelian
groups. We infer that it is a quasi-isomorphism.

The required isomorphisms of functors follow by applying Hom�(−, X) to (2.3) and
comparing the resulting triangle with (2.7). ��
Remark 2.3 Assume that X is a complex of �-�-bimodules. Then by the same reasoning
in the third paragraph of the above proof, the quasi-isomorphism Hom�(ε, X) is even a
homotopy equivalence between the complexes of right �-modules.

In summary, we infer fromLemmas 2.1 and 2.2 that the recollement (2.5)may be rewritten
as follows.

Kac(�-Mod)
inc K(�-Mod)

a=Cone(ε)⊗�−

a′=Hom�(Cone(ε),−)

can D(�-Mod)

p=B⊗�−

i=Hom�(B,−)

(2.8)

3 The Yoneda dg category and dg-injective resolutions

Wewill describe dg-injective resolutions of complexes via theYoneda dg category introduced
in [9].

3.1 Preliminaries on dg categories

We will recall two basic results on dg categories. The main references for dg categories are
[15, 17].

Let C be a dg category. For two objects A and B, the Hom set is usually denoted by
C(A, B), which is a complex of abelian groups. A homogeneous morphism f : A → B is
closed, if dC( f ) = 0.

Lemma 3.1 For an object A in a dg category C, the following statements are equivalent:

1. H0(C(A, A)) = 0;
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2. IdA ∈ C(A, A) is a coboundary;
3. for each object X, the Hom complex C(A, X) is acyclic.

We will say that such an object A is contractible in C. Thanks to (2), any dg functor sends
contractible objects to contractible objects.

Proof The implication “(3) ⇒ (1)" is trivial. We observe that IdA is always closed, that is,
a cocycle in C(A, A). Then we infer “(1) ⇒ (2)".

It remains to show “(2) ⇒ (3)".We fix u ∈ C(A, A) of degree−1 satisfying dC(u) = IdA.
For any cocycle f ∈ C(A, X), using the graded Leibniz rule we have

dC( f ◦ u) = dC( f ) ◦ u + (−1)| f | f ◦ dC(u) = (−1)| f | f .

It implies that f is a coboundary, as required. ��
Let C be a dg category. The homotopy category H0(C) is a pre-additive category with the

same objects as C such that H0(C)(A, B) = H0(C(A, B)). A closed morphism f : A → B
of degree zero is called a homotopy equivalence in C, if its image in H0(C) is an isomorphism.
It is equivalent to the following condition: there is a closed morphism g : B → A of degree
zero such that both g ◦ f − IdA and f ◦ g − IdB are coboundaries; such a morphism g is
called a homotopy inverse of f .

Lemma 3.2 For a closed morphism f : A → B of degree zero in a dg category C, the
following statements are equivalent:

1. for any object X, the cochain map C( f , X) : C(B, X) → C(A, X) induces an isomor-
phism between H0(C(B, X)) and H0(C(A, X));

2. f is a homotopy equivalence in C;
3. for any object X, the cochain map C( f , X) : C(B, X) → C(A, X) is an quasi-

isomorphism.

Proof Since f is closed of degree zero, the map C( f , X) is indeed a cochain map. For
“(1) ⇒ (2)", we have that H0(C)( f , X) is an isomorphism for any object X . By Yoneda
Lemma, we infer that f is an isomorphism in H0(C).

The implication “(3) ⇒ (1)" is trivial. It remains to show “(2) ⇒ (3)". For this, we take
a homotopy inverse g of f . Then it is direct to verify that C(g, X) is homotopy inverse of
C( f , X) in the category of complexes of abelian groups. In particular, C( f , X) is a quasi-
isomorphism. ��

The main example of a dg category is the dg category Cdg(�-Mod) formed by complexes
of �-modules: the Hom sets are given by the corresponding Hom-complexes; see Sect. 2.2.
We observe that the homotopy category H0(Cdg(�-Mod)) coincides with the usual homo-
topy category K(�-Mod). The contractible objects in Cdg(�-Mod) are precisely the usual
contractible complexes. Similarly, homotopy equivalences in Cdg(�-Mod) are precisely the
usual homotopy equivalences between complexes.

3.2 The Yoneda dg category

Following [9, Section 7], we define the E-relative Yoneda dg category Y = Y�/E of � as
follows. It has the same objects as Cdg(�-Mod). For two complexes X and Y of �-modules,
the underlying graded group of Y(X , Y ) is given by an infinite product

Y(X , Y ) =
∏
p≥0

Hom((s�̄)⊗p ⊗ X , Y ).
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Set

Yp(X , Y ) := Hom((s�̄)⊗p ⊗ X , Y ).

We observe that Y0(X , Y ) = Hom(X , Y ). Elements in Yp(X , Y ) is said to have filtration-
degree p. As usual, for a graded map f ∈ Y(X , Y ), we denote by | f | its cohomological
degree. The differential δ of Y(X , Y ) is determined by

(
δin
δex

)
: Yp(X , Y ) −→ Yp(X , Y ) ⊕ Yp+1(X , Y ),

where the internal one is given by

δin( f )(sā1,p ⊗ x) = dY ( f (sā1,p ⊗ x)) − (−1)| f |+p f (sā1,p ⊗ dX (x))

and the external one is given by

δex( f )(sā1,p+1 ⊗ x) = (−1)| f |+1a1 f (sā2,p+1 ⊗ x) + (−1)| f |+p f (sā1,p ⊗ ap+1x)

+
p∑

i=1

(−1)| f |+i+1 f (sā1,i−1 ⊗ sai ai+1 ⊗ sāi+2,p+1 ⊗ x).

Here, as in Sect. 2.1, the expressions sā1,0⊗ for i = 1, and sāp+2,p+1⊗ for i = p, are
understood as the empty word.

The composition � of morphisms in Y is defined as follows: for f ∈ Yp(X , Y ) and
g ∈ Yq(Y , Z), their composition g � f ∈ Yp+q(X , Z) is given such that

(g � f )(sā1,p+q ⊗ x) = (−1)q·| f |g(sā1,q ⊗ f (sāq+1,p+q ⊗ x)). (3.1)

The identity endomorphism in Y(X , X) is given by the identity map IdX ∈ Y0(X , X).

Remark 3.3 In view of [9, Lemma 7.1], we observe that the composition � above is induced
from the coalgebra structure of the bar resolution B in [17, Subsection 6.6]. Therefore, the
dg category Y is implicitly due to [17, Subsection 6.6].

By [9, the proof of Lemma 7.1], we have a canonical isomorphism of complexes

αX ,Y : Y(X , Y ) −→ Hom�(B ⊗� X , Y ), f �→ f̃ . (3.2)

The isomorphism sends f ∈ Yp(X , Y ) to f̃ : (� ⊗ (s�̄)⊗p ⊗ �) ⊗� X → Y given by

f̃ ((a ⊗ sā1,p ⊗ b) ⊗� x) = a f (sā1,p ⊗ bx).

By Lemma 2.1, the Hom-complex Hom�(B ⊗� X , Y ) computes the Hom groups in the
derived category D(�-Mod). Consequently, we have isomorphisms

Hn(Y(X , Y )) � HomD(�-Mod)(X , �n(Y )) (3.3)

for all n ∈ Z.

Remark 3.4 Assume that X is a complex of �-�-bimodules. Then both Y(X , Y ) and
Hom�(B ⊗� X , Y ) are complexes of �-modules. Then the isomorphism αX ,Y becomes
an isomorphism of complexes of �-modules. Taking X = �, we infer that Y(�, Y ) is a
complex of �-modules; moreover, by applying α�,Y and Lemma 2.2, it is even dg-injective.
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The natural inclusion

Hom�(X , Y ) ⊆ Y0(X , Y ) ⊆ Y(X , Y ) (3.4)

makes Hom�(X , Y ) a subcomplex of Y(X , Y ). Therefore, we view Cdg(�-Mod) as a non-
full dg subcategory of Y . In particular, cochain maps between complexes are viewed as
morphisms in Y , that have filtration-degree zero.

Proposition 3.5 Keep the notation as above. Then the following two statements hold.

1. Any acyclic complex X is a contractible object in Y .
2. Any quasi-isomorphism f : X → Y between complexes is a homotopy equivalence in Y .

Proof Recall that any acyclic complex is a zero object in D(�-Mod), and that any quasi-
isomorphism between complexes becomes an isomorphism in D(�-Mod). Combining the
isomorphism (3.3) with Lemma 3.1(3), we infer (1). Similarly, using (3.3) and Lemma 3.2(3),
we infer (2). ��

Consequently, we have a dg functor

Y(�,−) : Cdg(�-Mod) −→ Cdg(�-Mod),

which induces a triangle endofunctor

Y(�,−) : K(�-Mod) −→ K(�-Mod)

between the homotopy categories. By the following lemma, we have an induced triangle
functor

Y(�,−) : D(�-Mod) −→ K(�-Mod).

Lemma 3.6 For any quasi-isomorphism g : Y → Y ′ of complexes of �-modules, we have
that Y(�, g) : Y(�, Y ) → Y(�, Y ′) is an isomorphism in K(�-Mod).

Proof Using the isomorphisms α�,Y and α�,Y ′ , it suffices to show that

Hom�(B ⊗� �, g) = Hom�(B, g)

is a homotopy equivalence. Recall from Lemma 2.2 the isomorphism Hom�(B,−) � i.
In particular, both functors send quasi-isomorphisms to homotopy equivalences. Then the
required statement follows. ��
Remark 3.7 One might prove the above lemma alternatively by using Proposition 3.5(2) and
the dual of Lemma 3.2(3).

We describe the dg-injective resolution functor i : D(�-Mod) → K(�-Mod) in the rec-
ollement (2.8) via the Yoneda dg category.

Proposition 3.8 There is an isomorphism Y(�,−) � i of triangle functors.

Proof The isomorphisms α�,Y imply that

Y(�,−) � Hom�(B ⊗� �,−) = Hom�(B,−).

Recall the isomorphism i � Hom�(B,−) from Lemma 2.2. Combining the two isomor-
phisms, we obtain the required assertion. ��
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Remark 3.9 Let us describe the dg-injective resolution more explicitly. For any complex Y ,
there is an embedding

ηY : Y −→ Y(�, Y )

sending y ∈ Y to ηY (y) ∈ Y0(�, Y ) = Hom(�, Y ) given by a �→ ay. We observe the
following commutative triangle in C(�-Mod).

Y
ηY

Hom�(ε,Y )

Y(�, Y )

α�,Y

Hom�(B, Y )

It follows from Lemma 2.2 that ηY is a quasi-isomorphism. In view of Remark 3.4, we infer
that ηY is a dg-injective resolution of Y .

Remark 3.10 Taking Y = � in Remark 3.9, we observe that Y(�,�) is a complex of �-�-
bimodule, whose right �-module structure is induced by the one on the second entry. Then
the embedding

η� : � −→ Y(�,�)

is a cochain map between complexes of bimodules. As α�,� is an isomorphism of complexes
of bimodules, we infer from Remark 2.3 that η� is a homotopy equivalence on the right side;
it is a dg-injective resolution of � on the left side, as shown in Remark 3.9. We mention that
η� : � → Y(�,�)op is a homomorphism of dg algebras, and thus a quasi-isomorphism of
dg algebras. Here, “op" means the opposite dg algebra.

In view of Proposition 3.8, the following result is indicated by [9, Proposition 7.3].

Proposition 3.11 For any complexes X and Y of �-modules, the following map

Y(X , Y ) −→ Hom�(Y(�, X),Y(�, Y )), f �−→ (g �→ f � g).

is a quasi-isomorphism.

Proof Denote the above map by 
. Since Y(�, Y ) is dg-injective, the natural map induced
by the quasi-isomorphism ηX in Remark 3.9

Hom�(Y(�, X),Y(�, Y )) −→ Hom�(X ,Y(�, Y ))

is a quasi-isomorphism. We have a sequence of isomorphisms of complexes

Hom�(X ,Y(�, Y )) � Hom�(X ,Hom�(B, Y )) � Hom�(B ⊗� X , Y ) � Y(X , Y ),

where the first and third isomorphisms use the isomorphism (3.2), and the second one fol-
lows from the Hom-tensor adjunction. Combining the above quasi-isomorphism with the
composite isomorphism, we obtain an explicit quasi-isomorphism

� : Hom�(Y(�, X),Y(�, Y )) −→ Y(X , Y ).

We observe that � sends φ : Y(�, X) → Y(�, Y ) to an element in Y(X , Y ), whose com-
ponent in Yp(X , Y ) is described as follows:

sā1,p ⊗ x �−→ (−1)p·|x |(φ ◦ ηX )(x)(sā1,p ⊗ 1�).

Here, we abuse (φ ◦ ηX )(x) ∈ Y(�, Y ) with its component in Yp(�, Y ). Using (3.1), it is
direct to verify that � ◦ 
 equals the identity map on Y(X , Y ). Then we are done. ��
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4 An explicit quasi-isomorphism

In this section, we study an explicit quasi-isomorphism εX and a related triangulated subcat-
egory K of K(�-Mod). The results will be used in Sect. 8.

For each complex X of �-modules, we consider the following explicit map between
complexes of �-modules:

εX : Y(�,�) ⊗� X −→ Y(�, X). (4.1)

For any f ∈ Yp(�,�) and x ∈ X , the element εX ( f ⊗� x) ∈ Yp(�, X) is described as
follows: it sends sā1,p⊗b ∈ s�̄⊗p⊗� to f (sā1,p⊗b)x ∈ X . Themap is essentially induced
by the composition � in Y: for each x , we have ηX (x) ∈ Y0(�, X) as in Remark 3.9, and
then

εX ( f ⊗� x) = (−1)|x |·| f |ηX (x) � f .

We claim that εX is a quasi-isomorphism. Indeed, we observe the following commutative
triangle in C(�-Mod).

Y(�,�) ⊗� X
εX Y(�, X)

� ⊗� X = X

η�⊗�IdX ηX

By Remark 3.10, η� is a homotopy equivalence on the right side. It follows that η� ⊗� IdX
is a quasi-isomorphism. Since ηX is also a quasi-isomorphism, we infer the claim.

In general, the quasi-isomorphism εX may not be a homotopy equivalence. Therefore, we
consider the following full subcategory of K(�-Mod)

K := {X ∈ K(�-Mod) | εX is a homotopy equivalence}. (4.2)

We observe that K is a thick triangulated subcategory and that � ∈ K.

Lemma 4.1 A complex X lies in K if and only if Y(�,�) ⊗� X is K-injective.

Proof The “only if" part is clear, since Y(�, X) is dg-injective. The “if" part holds, since any
quasi-isomorphism between K-injective complexes is necessarily a homotopy equivalence.

��
In what follows, we assume that � is left noetherian. Then coproducts of injective �-

modules are still injective. Recall that a complex X is called cohomologically bounded
below, if Hn(X) = 0 for n � 0.

Proposition 4.2 Assume that X is cohomologically bounded below. Then B≤p ⊗� X belongs
to K for any p ≥ 0.

Proof We claim that Y(�,�) ⊗� (B−q ⊗� X) is K-injective for each q ≥ 0. Here, B−q =
� ⊗ (s�̄)⊗q ⊗ �. Then by Lemma 4.1, each B−q ⊗� X belongs to K. We observe that
B≤p ⊗� X is an iterated extension of those complexes B−q ⊗� X in K(�-Mod), and recall
that K is a triangulated subcategory of K(�-Mod). Then we deduce the required statement.

We will actually prove that each Y(�,�) ⊗� (B−q ⊗� X) is dg-injective. We have a
canonical isomorphism of complexes

Y(�,�) ⊗� (B−q ⊗� X) � Y(�,�) ⊗ ((s�̄)⊗q ⊗ X).
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Since E is semisimple artianin and coproducts of injective �-modules are injective, we infer
that Y(�,�) ⊗� (B−q ⊗� X) is a complex of injective �-modules.

We observe that as a complex of E-modules, V := (s�̄)⊗q ⊗ X is homotopy equivalent
to

⊕
i∈Z �−i H i (V ). Therefore, we deduce a homotopy equivalence

Y(�,�) ⊗� (B−q ⊗� X) �
⊕
i∈Z

�−iY(�,�) ⊗ Hi (V ).

Since X is cohomologically bounded below, we infer that Hi (V ) = 0 for i � 0. This implies
that the complex

⊕
i∈Z �−iY(�,�) ⊗ Hi (V ) is bounded below. Then the claim follows,

as any bounded below complex of injective modules is dg-injective. ��
The proof of the following result is similar to the one in [26, Proposition 5.2].

Lemma 4.3 Let (Pn)n∈Z be a family of projective �-modules. Then the following canonical
embedding of complexes of �-modules

emb :
⊕
n∈Z

�−nY(�, Pn) ↪→
∏
n∈Z

�−nY(�, Pn)

is a homotopy equivalence if and only if for each finitely generated �-module M and d ∈ Z,
the set {n ∈ Z | Extd−n

� (M, Pn) �= 0} is finite.
Proof In this proof, we identify Y(�,−) with i; see Proposition 3.8. We will identify
Extd−n

� (M, Pn) with

Hd(�−nHom�(i(M), i(Pn))) � Hd(Hom�(i(M),�−n i(Pn))).

We will view “emb" as a morphism in K(�-Inj).
Recall from [19, Proposition 2.3] that K(�-Inj) is generated by i(M) for all finitely

generated �-modules M . Therefore, the above embedding is a homotopy equivalence if and
only if the following canonical map

Hom�(i(M),
⊕
n∈Z

�−n i(Pn)) −→ Hom�(i(M),
∏
n∈Z

�−n i(Pn))

is a quasi-isomorphism for each M . Since each i(M) is compact, that is, the Hom functor
Hom(i(M),−) commutes with infinite coproducts, the canonical embedding⊕

n∈Z
Hom�(i(M),�−n i(Pn)) −→ Hom�(i(M),

⊕
n∈Z

�−n i(Pn))

is always a quasi-isomorphism. We conclude that “emb” is a homotopy equivalence if and
only if the following canonical map from a coproduct to a product⊕

n∈Z
Hom�(i(M),�−n i(Pn)) −→

∏
n∈Z

Hom�(i(M),�−n i(Pn))

is a quasi-isomorphism for each M . However, the latter condition is equivalent to
the following finiteness one: for each integer d , there are only finitely many n with
Hd(Hom�(i(M),�−n i(Pn)) �= 0. Then we are done. ��

We refer to (4.2) for the category K.

Proposition 4.4 Assume that � is left noetherian. Then the following statements are equiv-
alent.
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1. Any complex P of projective �-modules with zero differential belongs to K.
2. The complex

⊕
n∈Z �n(�) belongs to K.

3. The complex
⊕

n∈Z �nY(�,�) is dg-injective.
4. For each finitely generated �-module M, the set {n ≥ 0 | Extn�(M,�) �= 0} is finite.
Proof We observe the following isomorphism of complexes of injective modules

⊕
n∈Z

�nY(�,�) � Y(�,�) ⊗� (
⊕
n∈Z

�n(�)).

Then “(2) ⇔ (3)” follows from Lemma 4.1.
For “(3) ⇔ (4)", we first observe that the canonical embedding

⊕
n∈Z

�nY(�,�) ↪→
∏
n∈Z

�nY(�,�)

is a quasi-isomorphism, as Y(�,�) is quasi-isomorphic to �. Moreover,
∏

n∈Z �nY(�,�)

is a dg-injective. Therefore, the condition in (3) is equivalent to the one that the above
embedding is a homotopy equivalence. Then the implications follow from Lemma 4.3.

The implication “(1) ⇒ (2)" is trivial. It remains to show “(4) ⇒ (1)". The condition in
(4) implies that for each finitely generated �-module M and d ∈ Z, the set

{n ∈ Z | Extd−n
� (M, Pn) �= 0}

is finite. By the homotopy equivalence in Lemma 4.3, we infer that the following infinite
coproduct

⊕
n∈Z

�−nY(�, Pn)

is K-injective. We observe a homotopy equivalence

�−nY(�, Pn) � �−nY(�,�) ⊗� Pn,

as both complexes are injective resolutions of the module Pn . We conclude that the following
complex

Y(�,�) ⊗� P �
⊕
n∈Z

�−nY(�,�) ⊗� Pn

is K-injective. By Lemma 4.1, we infer (1). ��
Wemention that if the injective dimension of� (i.e. the selfinjective dimension) on the left

side, denote by inj.dim(��), is finite, then the equivalent conditions in Proposition 4.4 hold.
If � is commutative, then these conditions are actually equivalent to the condition that the
localization of � at any prime ideal has finite selfinjective dimension; see [14, Theorem I].
If � is left artinian, these conditions also imply the finiteness of inj.dim(��).

Recall that � is Gorenstein provided that � is two-sided noetherian and has finite self-
injective dimension on each side. Therefore, the conditions in Proposition 4.4 hold for any
Gorenstein ring.

Proposition 4.5 Assume that � satisfies the conditions in Proposition 4.4. Then for any
complex X and p ≥ 0, the complex B≤p ⊗� X belongs to K.
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Proof As in the first paragraph in the proof of Proposition 4.2, it suffices claim that each
B−q ⊗� X belongs to K.

By the isomorphism B−q ⊗� X � � ⊗ ((s�̄)⊗q ⊗ X) and the semisimplicity of E , we
infer that B−q ⊗� X is homotopy equivalent to a complex P of projective �-modules with
zero differential. Then the claim follows from Proposition 4.4(1). ��

5 Noncommutative differential forms

In this section, we construct an explicit homotopy inverse ιX in the Yoneda dg category Y
of the dg-projection resolution ε ⊗� IdX : B ⊗ X → X , where the latter is viewed as an
element inY0(B⊗X , X) via the inclusion (3.4); see (5.2). This homotopy inverse fits into the
commutative diagram in Proposition 5.6, which involves noncommutative differential forms
and the truncated bar resolutions.

Let X be a complex of �-modules. Following [9, Section 8], the complex of X-valued
E-relative noncommutative differential 1-forms is defined by

�nc(X) = s�̄ ⊗ X ,

whose differential is given by d(sā ⊗ x) = −sā ⊗ dX (x), and whose grading is given such
that |sā ⊗ x | = |x | − 1. The left �-action is given by the following nontrivial rule:

b � (sā ⊗ x) = sba ⊗ x − sb̄ ⊗ ax . (5.1)

Indeed, �nc : Y → Y is a dg endofunctor, which sends a morphism f ∈ Yp(X , Y ) to the
following morphism in Yp(�nc(X),�nc(Y )):

(s�̄)⊗p ⊗ �nc(X) = (s�̄)⊗(p+1) ⊗ X
Ids�̄⊗ f−−−−→ s�̄ ⊗ Y = �nc(Y ).

We mention that the study of noncommutative differential forms goes back to [11].

Remark 5.1 Denote by�nc(�) the�-�-bimodule of E-relative noncommutative differential
1-forms on �, that is, the kernel of the multiplication map � ⊗ � → �. The nontrivial �-
action on �nc(X) above is induced by the following isomorphism

� ⊗ �
∼−→ �nc(�), a ⊗ b �→ a ⊗ b − 1 ⊗ ab.

We refer to [11, Proposition 2.5] for details.

Lemma 5.2 For each p ≥ 0, we have a canonical isomorphism

B≥p ⊗� �nc(X) � B≥p+1 ⊗� X

of complexes of�-modules, sending (a0⊗sā1,n⊗1)⊗�(sān+1⊗x) to (a0⊗sā1,n+1⊗1)⊗�x
for n ≥ p.

Proof The givenmap is an isomorphism of graded�-modules. Using the external differential
(2.2) and the nontrivial action (5.1) on �nc(X), it is routine to verify that the isomorphism is
compatible with differentials. ��

Following [9, Section 8], we have a closed natural transformation of degree zero

θ : IdY −→ �nc
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defined as follows: for any complex X , θX lies in Y1(X ,�nc(X)) ⊆ Y(X ,�nc(X)) and is
given by

θX (sā ⊗ x) = sā ⊗ x ∈ �nc(X).

Recall from Lemma 2.1 the dg-projective resolution

ε ⊗� IdX : B ⊗� X −→ X .

It will be viewed as an element in Y0(B⊗� X , X) via (3.4), and further as a closed morphism
in Y of degree zero. Conversely, we will define another closed morphism in Y of degree zero

ιX : X −→ B ⊗� X . (5.2)

For each p ≥ 0, we define the entry (ιX )p ∈ Yp(X ,B ⊗� X) by the following map:

(s�̄)⊗p ⊗ X −→ B−p ⊗� X ⊆ B ⊗� X , sā1,p ⊗ x �−→ (1 ⊗ sā1,p ⊗ 1) ⊗� x .

Then we set ιX = ((ιX )p)p≥0 ∈ Y(X ,B ⊗� X). The following identity holds in Y:
(ε ⊗� IdX ) � ιX = IdX . (5.3)

Since ε ⊗� IdX is a quasi-isomorphism, it is a homotopy equivalence in Y; see Proposi-
tion 3.5(2). We infer from (5.3) that ιX is a homotopy inverse of ε ⊗� IdX .

Remark 5.3 By Lemma 3.6, we infer that Y(�, ε ⊗� IdX ) is an isomorphism inK(�-Mod).
It follows from (5.3) that Y(�, ιX ) is also an isomorphism in K(�-Mod). Moreover, we
have

Y(�, ιX )−1 = Y(�, ε ⊗� IdX )

in K(�-Mod).

Denote by π0 : B → B≥1 = B/B<1 the natural projection.

Lemma 5.4 The following diagram

X
θX

ιX

�nc(X)

ι�nc(X)

B ⊗� X B ⊗� �nc(X)

commutes in Y , where the lower arrow is the composition of π0 ⊗� IdX with B≥1 ⊗� X →
B ⊗� �nc(X), the inverse of the canonical isomorphism in Lemma 5.2.

Proof Both the composite morphisms in the square correspond to the same element in
Y(X ,B⊗� �nc(X)) given as follows: the entry in Y0(X ,B⊗� �nc(X)) is zero, and the one
in Yp(X ,B⊗� �nc(X)) sends sā1,p ⊗ x to (1⊗ sā1,p−1 ⊗ 1) ⊗� (sāp ⊗ x) for any p ≥ 1.
��
Remark 5.5 In view of (5.3) and in contrast to the above commutative diagram, the following
diagram in Y

X
θX

�nc(X)

B ⊗� X

ε⊗�IdX

B ⊗� �nc(X)

ε⊗�Id�nc(X)
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does not commute in general, as the two composite morphisms have differential filtration-
degrees. This is one of the motivations to study the better-behaved morphisms ιX .

By using Lemma 5.2 repeatedly, we obtain a canonical isomorphism

ςp : B ⊗� �p
nc(X) −→ B≥p ⊗� X

of complexes of �-modules for each p ≥ 0. Here, we have �0
nc(X) = X and B≥0 = B.

Therefore, ς0 is the identity map. In more details, the isomorphism ςp sends (a0 ⊗ sā1,n ⊗
1) ⊗� (sān+1,n+p ⊗ x) to (a0 ⊗ sā1,n+p ⊗ 1) ⊗� x for any n ≥ 0.

Denote by πp : B≥p → B≥p+1 the projection for any p ≥ 0. The following commutative
diagram will be crucial in the proof of Theorem 6.3.

Proposition 5.6 Keep the notation as above. Then for each p ≥ 0, the following diagram

�
p
nc(X)

θ
�
p
nc(X)

ςp◦ι
�
p
nc(X)

�
p+1
nc (X)

ςp+1◦ι
�
p+1
nc (X)

B≥p ⊗� X
πp⊗�IdX

B≥p+1 ⊗� X

commutes in Y .

Proof By Lemma 5.2, we have a canonical isomorphism

ψ : B≥1 ⊗� �p
nc(X) −→ B ⊗� �p+1

nc (X).

Applying Lemma 5.4 to �
p
nc(X), we obtain the following commutative diagram in Y .

�
p
nc(X)

θ
�
p
nc(X)

ι
�
p
nc(X)

�
p+1
nc (X)

ι
�
p+1
nc (X)

B ⊗� �
p
nc(X)

ψ◦(π0⊗�Id
�
p
nc(X)

)

B ⊗� �
p+1
nc (X)

We observe the following commutative diagram in Cac(�-Mod),

B ⊗� �
p
nc(X)

ςp

ψ◦(π0⊗�Id
�
p
nc(X)

)

B ⊗� �
p+1
nc (X)

ςp+1

B≥p ⊗� X
πp⊗�IdX

B≥p+1 ⊗� X

which is also a commutative diagram in Y . Combining the above two commutative squares,
we obtain the required one. ��

6 The singular Yoneda dg category

In this section, we study the singular Yoneda dg category introduced in [9], whose Hom
complexes with the first entry � will play a central role.
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The E-relative singular Yoneda dg category SY = SY�/E of � is a dg category defined
as follows: its objects are just complexes of �-modules; for two objects X and Y , the Hom
complex SY(X , Y ) is defined to be the colimit of the following sequence of complexes.

Y(X , Y ) −→ Y(X ,�nc(Y )) −→ · · · −→ Y(X ,�p
nc(Y )) −→ Y(X ,�p+1

nc (Y )) −→ · · ·
The structure map sends f to θ�

p
nc(Y ) � f . More precisely, for any f ∈ Yn(X ,�

p
nc(Y )), the

map θ�
p
nc(Y ) � f ∈ Yn+1(X ,�

p+1
nc (Y )) is given by

sā1,n+1 ⊗ x �−→ (−1)| f |sā1 ⊗ f (sā2,n+1 ⊗ x).

The image of f ∈ Y(X ,�
p
nc(Y )) in SY(X , Y ) is denoted by [ f ; p]. The composition

�sg of [ f ; p] with [g; q] ∈ SY(Y , Z) is defined by

[g; q] �sg [ f ; p] = [�p
nc(g) � f ; p + q]. (6.1)

We have the canonical dg functor Y → SY , which acts on objects by the identity and sends
f to [ f ; 0]. We refer to [9, Sections 6 and 9] for details on the construction of SY; compare
[27, Lemma 1.3].

We observe that for each complex X of �-modules, SY(�, X) is also a complex of
�-modules; its �-module structure is induced from the right �-module structure on �.

Lemma 6.1 Keep the notation as above. Then the following two statements hold.

1. The stalk complex� is contractible inSY . In particular, the complexSY(�, X) is acyclic
for any complex X.

2. Any acyclic complex X is contractible in SY . Moreover, the complex SY(�, X) of �-
modules is contractible for any acyclic complex X.

Proof 1. We observe that H0(SY(�,�)) is isomorphic to colim H0Y(�,�
p
nc(�)). As

�
p
nc(�) is a stalk complex concentrated on degree −p, it follows from (3.3) that for each

p ≥ 1, H0Y(�,�
p
nc(�)) = 0. Then the required statements follow from Lemma 3.1.

2. By Proposition 3.5(1), any acyclic complex X is a contractible object in Y . As any dg
functor preserves contractible objects, it follows that X is contractible in SY .

Take h ∈ Y(X , X) of degree −1 with δ(h) = IdX , where δ denotes the differential
in Y . For the contractibility of SY(�, X), we may choose the homotopy which sends any
morphism [ f ; p] to [h; 0] �sg [ f ; p]. Note that this homotopy is compatible with the left
�-module structure on SY(�, X). ��

By Lemma 6.1(1), the following triangle functor

SY(�,−) : K(�-Mod) −→ Kac(�-Mod)

is well defined. By Lemma 6.1(2) it vanishes on acyclic complexes, so we have the induced
triangle functor

SY(�,−) : D(�-Mod) −→ Kac(�-Mod).

Proposition 6.2 Assume that � is left noetherian. Then for each complex X of �-modules,
the complex SY(�, X) is acyclic and consists of injective �-modules.

Proof By Lemma 6.1, the complex SY(�, X) is acyclic. It is the colimit of the following
sequence

Y(�, X) −→ Y(�,�nc(X)) −→ · · · −→ Y(�,�p
nc(X)) −→ Y(�,�p+1

nc (X)) −→ · · ·
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whose each term is dg-injective; see Proposition 3.8. Since � is left noetherian, any direct
limit of injective �-modules is injective. It follows that SY(�, X) is complex of injective
�-modules. ��

By the above proposition, we actually have a well-defined triangle functor

SY(�,−) : D(�-Mod) −→ Kac(�-Inj). (6.2)

We will consider the following sequence of injective maps between complexes, which are
induced by the inclusions B≤p ⊗� X ⊆ B≤p+1 ⊗� X .

Y(�,B≤0 ⊗� X) ↪→ Y(�,B≤1 ⊗� X) ↪→ Y(�,B≤2 ⊗� X) ↪→ · · ·
We take the colimit, denoted by colim Y(�,B≤p ⊗� X). For each p ≥ 0, we consider the
following map

Y(�,B≤p ⊗� X)
Y(�,inc)−−−−−→ Y(�,B ⊗� X)

Y(�,ε⊗�IdX )−−−−−−−−→ Y(�, X),

where “inc" denotes the inclusion B≤p ⊗� X ⊆ B ⊗� X . These maps are compatible with
the ones in the sequence above, and induce the following one

ϑX : colim Y(�,B≤p ⊗� X) −→ Y(�, X). (6.3)

More explicitly, ϑX sends an element represented by f ∈ Yq(�,B≤q ⊗� X) to the compo-
sition (ε ⊗� IdX ) ◦ inc ◦ f ∈ Yq(�, X).

The following result shows that SY(�, X) is homotopy equivalent to the mapping cone
Cone(ϑX ) of ϑX . We denote byC(�-Inj) the category of complexes of injective�-modules.

Theorem 6.3 Assume that � is left noetherian. Then for any complex X of �-modules, we
have an exact triangle in K(�-Inj):

colim Y(�,B≤p ⊗� X)
ϑX−→ Y(�, X) −→ SY(�, X) −→ �(colim Y(�,B≤p ⊗� X)),

where the middle arrow is the canonical map, sending f to [ f ; 0].
Proof We apply Y(�,−) to the commutative diagram in Proposition 5.6, and obtain the
following commutative square in C(�-Inj).

Y(�,�
p
nc(X))

Y(�,θ
�
p
nc(X)

)

Y(�,ςp◦ι
�
p
nc(X)

)

Y(�,�
p+1
nc (X))

Y(�,ςp+1◦ι
�
p+1
nc (X)

)

Y(�,B≥p ⊗� X)
Y(�,πp⊗�IdX ) Y(�,B≥p+1 ⊗� X)

Recall that ςp is an isomorphism. By Remark 5.3, we infer that the vertical arrows are
both homotopy equivalences. Taking the colimits along the horizontal maps, we obtain the
following commutative diagram.

Y(�, X)

�Y(�,ιX )

SY(�, X)

� colim Y(�,ςp◦ι
�
p
nc(X)

)

Y(�,B ⊗� X) colim Y(�,B≥p ⊗� X)

(6.4)

By Lemma 6.4 below, the vertical arrow on the right side is a homotopy equivalence.
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For each p ≥ 0, we have an exact sequence of complexes as follows.

0 −→ Y(�,B<p ⊗� X)
Y(�,inc)−−−−−→ Y(�,B ⊗� X)

Y(�,pr)−−−−→ Y(�,B≥p ⊗� X) −→ 0

Here, “pr" denotes the projection. Letting p vary and taking the colimits, we obtain an exact
sequence of complexes of injective modules

0 −→ colim Y(�,B<p ⊗� X) −→ Y(�,B ⊗� X) −→ colim Y(�,B≥p ⊗� X) −→ 0.

It induces an exact triangle in K(�-Inj):

colim Y(�,B<p ⊗� X) → Y(�,B ⊗� X) → colim Y(�,B≥p ⊗� X)

→ �(colim Y(�,B<p ⊗� X)).

We use the commutative diagram (6.4) to replace the middle two terms in the above triangle,
and obtain the required one. Here, we use

colim Y(�,B<p ⊗� X) = colim Y(�,B≤p ⊗� X);
moreover, we need the fact that in K(�-Inj), we have Y(�, ιX )−1 = Y(�, ε ⊗� IdX ); see
Remark 5.3. ��

The following result is standard.

Lemma 6.4 Assume that � is left noetherian. Suppose that we are given a commutative
diagram in C(�-Inj) with each gp a homotopy equivalence.

I0

g0

φ0
I1

g1

φ1
I2

g2

· · · Ip

gp

φp
Ip+1

gp+1

· · ·

J0
ψ0

J1
ψ1

J2 · · · Jp
ψp

Jp+1 · · ·
Then the induced map

colim gp : colim Ip −→ colim Jp

is a homotopy equivalence.

Proof We observe that the following exact sequence of complexes

0 −→
⊕
p≥0

Ip
1−φ−→

⊕
p≥0

Ip −→ colim Ip −→ 0

is componentwise split, where 1 − φ is the unique map whose restriction on Ip is given by( 1
−φp

) : Ip → Ip ⊕ Ip+1. Here, we use the fact that
⊕

p≥0 Ip lies in C(�-Inj), as � is left
noetherian. In particular, colim Ip also lies inC(�-Inj). So we have an induced exact triangle
inK(�-Inj), as shown in the upper row of the following commutative diagram; compare [20,
Section 3.4]. Similarly, we have the lower exact triangle.

⊕
p≥0 Ip

⊕
p≥0 gp

1−φ ⊕
p≥0 Ip

⊕
p≥0 gp

colim Ip

colim gp

�(
⊕

p≥0 Ip)

�(
⊕

p≥0 gp)

⊕
p≥0 Jp

1−ψ ⊕
p≥0 Jp colim Jp �(

⊕
p≥0 Jp)
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Since
⊕

p≥0 gp is an isomorphism in K(�-Inj), it follows that colim gp is also an isomor-
phism in K(�-Inj), as required. ��

7 The stabilization functor

In this section, we describe the stabilization functor [19] via the mapping cone of an explicit
quasi-isomorphism; see Theorem 7.5. We will assume that � is left noetherian.

Recall from [19] the following recollement.

Kac(�-Inj)
inc K(�-Inj)

ā

a′

can D(�-Mod)

p̄

i

(7.1)

Here, the lower part is the restriction of the one in (2.8), so we use the same notation and we
have a′ = Hom�(Cone(ε),−) and i = Hom�(B,−) � Y(�,−); see Proposition 3.8. The
functors in the upper row are nontrivial.

The following definition is taken from [19, Section 5].

Definition 7.1 The stabilization functor of � is defined to be the composition

S = āi : D(�-Mod) −→ Kac(�-Inj).

We mention that by [2, 1.4.6] or [8, Subsection 2.1], S is isomorphic to the composition
�a′p̄. As pointed out in Introduction, S is a triangulated analogue of the gluing functor in
the dg setting [21, Subsections 2.2 and 4.2]; for a related ∞-categorical consideration, we
refer to [13, 22].

Recall from Remark 3.10 the embedding η� : � → Y(�,�) of complexes of �-�-
bimodules. For any complex X , we denote by p(X) = B ⊗� X its dg-projective resolution.
As � is left noetherian, it follows that the complex Y(�,�) ⊗� p(X) consists of injective
�-modules since Y(�,�) is a complex of injective modules; see Remark 3.4.

The following result describes the functor p̄ in (7.1) explicitly.

Proposition 7.2 There is a natural isomorphism p̄(X) � Y(�,�)⊗� p(X) inK(�-Inj) for
any complex X of �-modules.

Proof Take any complex I of injective modules. We first observe that the following map of
complexes of �-modules

Hom�(η�, I ) : Hom�(Y(�,�), I ) −→ Hom�(�, I ) = I

is a quasi-isomorphism. Indeed, according to Lemma 2.2, we identify Y(�,�) with i(�).
Then we apply [19, Lemma 2.1].

We have the following quasi-isomorphisms of complexes.

Hom�(Y(�,�) ⊗� p(X), I ) � Hom�(p(X),Hom�(Y(�,�), I )) � Hom�(p(X), I )

Here, the map on the right hand side is given by Hom�(p(X),Hom�(η�, I )); it is indeed a
quasi-isomorphism, since p(X) is dg-projective and Hom�(η�, I ) is a quasi-isomorphism.
Recall that Hom�(p(X), I ) computes HomD(�-Mod)(X , I ). Applying H0(−) to the compos-
ite quasi-isomorphism above, we prove that Y(�,�) ⊗� p− is left adjoint to the canonical
functor “can”. ��
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Although the functor p̄ is explicitly given, we generally do not have an explicit description
for the relevant counit of the adjoint pair (p̄, can), as explained below.

Remark 7.3 By the proposition above, we identify p̄ with Y(�,�) ⊗� p−. Take any
complex I of injective modules. Denote by πI : p(I ) → I the dg-projective resolution.
As Hom�(η�, I ) is a surjective quasi-isomorphism, there is a cochain map ξ : p(I ) →
Hom�(Y(�,�), I ) such that Hom�(η�, I ) ◦ ξ = πI in the category C(�-Mod). By the
Hom-tensor adjunction, ξ corresponds to the counit

uI : Y(�,�) ⊗� p(I ) −→ I .

As ξ is not explicit, we can not describe the counit uI explicitly.
However, by chasing the diagram, one proves that the following triangle

p(I ) = � ⊗� p(I )

πI

η�⊗�Idp(I ) Y(�,�) ⊗� p(I )

uI

I

(7.2)

commutes in C(�-Mod). Since η� is a homotopy equivalence on the right side, η� ⊗�

Idp(I ) is a quasi-isomorphism. It follows that so is uI . We mention that if I is dg-injective,
the above commutative triangle determines uI up to homotopy. We just use the fact that
Hom�(Cone(η� ⊗� Idp(I )), I ) is acyclic, since Cone(η� ⊗� Idp(I )) is acyclic.

To calculate the stabilization functor S, we need the following well-known fact; compare
[3, the second paragraph in the proof of Lemma 3.1] and [20, Proposition 3.2.8].

Remark 7.4 In the recollement (7.1), we have a functorial exact triangle in K(�-Inj)

p̄(I )
uI−→ I −→ ā(I ) −→ �p̄(I ), (7.3)

where I is any complex of injective modules and uI is the counit in Remark 7.3; this triangle
is unique. Take any complex X of �-modules. Suppose that there exists an exact triangle in
K(�-Inj):

I1 −→ i(X) −→ I2 −→ �(I1),

with I1 ∈ Im(p̄) and I2 ∈ Kac(�-Inj). Then there are unique isomorphisms g1 : I1 → p̄i(X)

and g2 : I2 → S(X) making the following diagram commute.

I1

g1

i(X) I2

g2

�(I1)

�(g1)

p̄i(X)
ui(X)

i(X) S(X) �p̄i(X)

Here, the lower exact triangle is obtained by applying (7.3) to i(X).

For each complex X of �-modules, we will consider the following composition:

κX : Y(�,�) ⊗� B ⊗� X
IdY(�,�)⊗�(ε⊗�IdX )−−−−−−−−−−−−−→ Y(�,�) ⊗� X

εX−→ Y(�, X), (7.4)

where εX is given in (4.1). For a typical element f ⊗� (a0 ⊗ sā1,q ⊗1)⊗� x ∈ Y(�,�)⊗�

B ⊗� X with f ∈ Yp(�,�), we have

κX ( f ⊗� (a0 ⊗ sā1,q ⊗ 1) ⊗� x) ∈ Yp(�, X),
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which sends sb̄1,p⊗b ∈ (s�̄)⊗p⊗� to δq,0 f (sb̄1,p⊗b)a0x ∈ X . Here, δq,0 is theKronecker
symbol.

Recall from Remark 3.10 that Y(�,�) is homotopy equivalent to� on the right side, and
by Lemma 2.1, ε ⊗� IdX is a quasi-isomorphism. It follows that IdY(�,�) ⊗� (ε ⊗� IdX )

is a quasi-isomorphism. Since εX is also a quasi-isomorphism, we infer that so is κX . We
conclude that Cone(κX ) is an acyclic complex of injective �-modules. Consequently, we
have a well-defined dg functor

Cone(κ−) : Cdg(�-Mod) −→ Cdg,ac(�-Inj),

where Cdg,ac(�-Inj) denotes the dg category formed by acyclic complexes of injective mod-
ules. This dg functor induces a well-defined triangle functor

Cone(κ−) : K(�-Mod) −→ Kac(�-Inj).

We claim that for each quasi-isomorphism g : X → X ′, the corresponding map
Cone(κX ) → Cone(κX ′) is a homotopy equivalence. Indeed, this map fits into the following
commutative diagram of exact triangles in K(�-Inj).

Y(�,�) ⊗� B ⊗� X
κX

IdY(�,�)⊗�B⊗�g

Y(�, X)

Y(�,g)

Cone(κX ) �(Y(�, �) ⊗� B ⊗� X)

Y(�,�) ⊗� B ⊗� X ′ κX ′ Y(�, X ′) Cone(κX ′ ) �(Y(�,�) ⊗� B ⊗� X ′)

The two vertical arrows on the left side are homotopy equivalences; see Lemma 3.6. Then
the claim follows.

By the above claim, we have the following induced triangle functor

Cone(κ−) : D(�-Mod) −→ Kac(�-Inj).

Theorem 7.5 Keep the notation as above. Then we have an isomorphism of triangle functors

Cone(κ−) � S.

Proof We consider the standard triangle

Y(�,�) ⊗� B ⊗� X
κX−→ Y(�, X) −→ Cone(κX ) −→ �(Y(�,�) ⊗� B ⊗� X).

By Proposition 7.2, we identify Y(�,�) ⊗� B ⊗� X with p̄(X). In particular, it lies in
Im(p̄). As mentioned above, Cone(κX ) is an acyclic complex of injective modules. We apply
the uniqueness of the functorial exact triangle in Remark 7.4 to obtain a unique isomor-
phism gX : Cone(κX ) → S(X). This uniqueness also implies that gX is functorial in X , as
required. ��
Remark 7.6 The recollement (7.1) may be rewritten as follows.

Kac(�-Inj)
inc K(�-Inj)

ā

a′=Hom�(Cone(ε),−)

can D(�-Mod)

p̄=Y(�,�)⊗�B⊗�−

i=Y(�,−)

(7.5)
As mentioned in Remark 7.3, the counit uI is not explicitly given. Therefore, it is difficult to
describe the functor ā. In this sense, the description of S = āi in Theorem 7.5 is nontrivial.
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As mentioned before, by [2, 1.4.6] we have S � �a′p̄. Therefore,

S(X) � �Hom�(Cone(ε), p̄(X)).

Applying the functor Hom�(−, p̄(X)) to the standard triangle (2.3), we obtain an exact
triangle in K(�-Inj)

p̄(X)
ηp̄(X)−−−→ Y(�, p̄(X)) −→ S(X) −→ �p̄(X),

where we apply Remark 3.9 to p̄(X). Moreover, we have the following commutative diagram

p̄(X)
ηp̄(X) Y(�, p̄(X)) S(X) �p̄(X)

p̄(X)
κX Y(�, X) Cone(κX ) �p̄(X),

where from the left, the second vertical arrow is (ηY(�,X))
−1 ◦ Y(�, κX ), which is an iso-

morphism in K(�-Inj). This yields another proof of Theorem 7.5.

Denote byDb(�-mod) the bounded derived category of finitely generated�-modules.We
view the bounded homotopy category Kb(�-proj) of finitely generated projective modules
as a triangulated subcategory of Db(�-mod). The singularity category [5, 25] of � is the
Verdier quotient category

Dsg(�) = Db(�-mod)/Kb(�-proj).

It has a canonical dg enhancement, as explained below. Denote by D = Db
dg(�-mod) the

bounded dg derived category, and byP its full dg subcategory formed by bounded complexes
of projective modules. Following [16], the dg singularity category of � is the dg quotient
category S = D/P . Then the homotopy category H0(S) is identified with Dsg(�). For
details on dg quotient categories, we refer to [6, 12, 18].

Remark 7.7 Keep the notation as above. We have the inclusion functor inc : P → D and
the quotient functor π : D → S. By [12, Proposition 4.6(ii)], these dg functors induce a
recollement of derived categories; see also [6, Theorem 5.1.3].

D(S)
can D(D)

−⊗L
DS

RHomD(S,−)

res D(P)

−⊗L
PD

RHomP (D,−)

Here, for any small dg category C, we denote by D(C) the derived category of right dg C-
modules; “res" means the restriction of dgD-modules to the full dg subcategoryP , and “can"
sends anydgS-moduleM to the compositionMπ . By [19,AppendixA], the recollement (7.1)
is isomorphic to the above one; compare [10, Theorem 2.2]. In comparison, we emphasize
that the categories in (7.1) seems to be more accessible. The stabilization functor S = ai is
isomorphic to RHomP (D,−) ⊗L

D S. However, the latter seems to be hard to deal with.
The above discussion implies that S admits a lift on the dg level. We mention that the

existence of such a lift follows also from the adjoint functor theorem in [23,Corollary 5.5.2.9];
compare Remark 8.3(2) below.
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8 Comparing the two functors

In this section, we establish a natural transformation between the two triangle functors
SY(�,−) and S, both of which are from D(�-Mod) to Kac(�-Inj); see (6.2) and Defi-
nition 7.1. We prove the main results of the paper; see Theorem 8.1 and Proposition 8.2.

By Theorem 7.5, we will identify S with Cone(κ−). Therefore, for each complex X of
�-modules, we have a standard exact triangle (2.1) in K(�-Inj)

Y(�,�) ⊗� B ⊗� X
κX−→ Y(�, X)

(10)−→ S(X)
(0 1)−→ �(Y(�,�) ⊗� B ⊗� X). (8.1)

By Proposition 7.2, we have Y(�,�) ⊗� B⊗� X � p̄(X). By Proposition 6.2 the complex
SY(�, X) is acyclic and consisting of injectivemodules. So, the upper half of the recollement
(7.1) implies that

HomK(�-Inj)(Y(�,�) ⊗� B ⊗� X , �nSY(�, X)) = 0

for any n ∈ Z. Consider the canonical map Y(�, X) → SY(�, X) sending f to [ f ; 0]. It
follows that there is a unique morphism in K(�-Inj)

cX : S(X) −→ SY(�, X)

such that its composition with
(1
0

) : Y(�, X) → S(X) equals the canonical map. The unique-
ness of cX implies that it is functorial in X .Wewill use the natural transformation c to compare
the two functors.

We will use the following natural isomorphism to identify these complexes

colim Y(�,�) ⊗� B≤p ⊗� X � Y(�,�) ⊗� B ⊗� X . (8.2)

Recall from (4.1) the following quasi-isomorphism for each p ≥ 0.

εB≤p⊗�X : Y(�,�) ⊗� B≤p ⊗� X −→ Y(�,B≤p ⊗� X)

These quasi-isomorphisms induce a quasi-isomorphism

colim εB≤p⊗�X : colim Y(�,�) ⊗� B≤p ⊗� X −→ colim Y(�,B≤p ⊗� X).

Thanks to the identification (8.2) and by abuse of notation, we have the following quasi-
isomorphism

colim εB≤p⊗�X : Y(�,�) ⊗� B ⊗� X −→ colim Y(�,B≤p ⊗� X). (8.3)

Finally, we observe a canonical isomorphism

Cone(colim εB≤p⊗�X ) � colim Cone(εB≤p⊗�X )), (8.4)

as taking cones and taking colimits are compatible.
The followingmain result describes themapping cone of cX in terms of an explicit colimit.

Theorem 8.1 Assume that � is left noetherian. Then for each complex X, there is an exact
triangle in Kac(�-Inj).

colim Cone(εB≤p⊗�X ) −→ S(X)
cX−→ SY(�, X) −→ �(colim Cone(εB≤p⊗�X ))

Consequently, cX is a homotopy equivalence if and only if colim Cone(εB≤p⊗�X ) is con-
tractible.
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Proof We will compare (8.1) with the exact triangle in Theorem 6.3. It is direct to verify that
the following diagram

Y(�,�) ⊗� B ⊗� X

colim εB≤p⊗�X

κX Y(�, X)

colim Y(�,B≤p ⊗� X)
ϑX Y(�, X)

commutes in C(�-Inj), where the cochain map colim εB≤p⊗�X is explained in (8.3). There-
fore, we have a commutative diagram in K(�-Inj)

Y(�, �) ⊗� B ⊗� X

colim εB≤p⊗�X

κX Y(�, X) S(X) �(Y(�, �) ⊗� B ⊗� X)

colim Y(�,B≤p ⊗� X)
ϑX Y(�, X) SY(�, X) �(colim Y(�,B≤p ⊗� X)).

By the above uniqueness of cX , the dotted arrow has to be cX . Applying the octahedral axiom
(TR4) to the above diagram and using the isomorphism (8.4), we infer the required statement.

��
We apply the results in Sect. 4 to investigate when cX is a homotopy equivalence.

Proposition 8.2 Keep the assumptions in Theorem 8.1. Then the following hold.

1. If X is cohomologically bounded below, then cX is a homotopy equivalence. Conse-
quently, the restriction of c to D+(�-Mod) is a natural isomorphism.

2. Assume that � satisfies the equivalent conditions in Proposition 4.4. Then c is a natural
isomorphism.

Proof We observe that for each p ≥ 0, Cone(εB≤p⊗�X ) is a complex of injective�-modules.
Therefore, by Lemma 6.4, if each Cone(εB≤p⊗�X ) is contractible, or equivalently, the com-
plex B≤p ⊗� X lies in K defined in (4.2), then colim Cone(εB≤p⊗�X ) is also contractible.
By Theorem 8.1, cX is a homotopy equivalence. Now, we deduce (1) from Proposition 4.2,
and (2) from Proposition 4.5, respectively. ��
Remark 8.3 1. Since Gorenstein rings satisfy the conditions in Proposition 4.4, the functors
S and SY(�,−) are isomorphic if � is Gorenstein. In the general case, we suspect that they
are not isomorphic on D(�-Mod).

2. In comparing S and SY(�,−), we emphasize that the triangle functor SY(�,−)

naturally lifts to a dg functor. However, the dg lift of S in Remark 7.7 is very hard to handle.

9 Applications

Throughout this section, � is a left noetherian ring. We apply the results in Sect. 8. The
central result is Theorem 9.2. It implies that for a bounded complex X of finitely generated
�-modules, SY(X , X) is quasi-isomorphic to the dg endomorphism algebra of the corre-
sponding complex SY(�, X) of injective �-modules.

We obtain a quasi-equivalence up to direct summands in Proposition 9.3. When � is an
artin algebra, we obtain an explicit compact generator for Kac(�-Inj), whose dg endomor-
phism algebra turns out to be quasi-isomorphic to the dg Leavitt algebra [9] associated to �;
see Proposition 9.5.
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Lemma 9.1 Let X be a cohomologically bounded below complex of �-modules. Then for
any complex Y , the following map

Hom�(SY(�, X),SY(�, Y )) −→ Hom�(Y(�, X),SY(�, Y )), φ �→ φ ◦ qX

is a quasi-isomorphism, where qX : Y(�, X) → SY(�, X) is the canonical map.

Proof By the proof of Proposition 8.2, colim Cone(εB≤p⊗�X ) is contractible, or equivalently,
colim εB≤p⊗�X is a homotopy equivalence. It follows from the second commutative diagram
in the proof of Theorem 8.1 that we have an exact triangle in K(�-Inj)

p̄(X) −→ Y(�, X)
qX−→ SY(�, X) −→ �p̄(X).

Here, we identify p̄(X) with Y(�,�) ⊗� B ⊗� X . By the adjoint pair (p̄, can) in (7.1), we
infer that Hom�(p̄(X),SY(�, Y )) is acyclic. Applying Hom�(−,SY(�, Y )) to the above
exact triangle, we infer the required quasi-isomorphism. ��

The following consideration is analogous to the one in Proposition 3.11.
Recall from (6.1) the composition �sg in the singular Yoneda dg category SY . Then we

have the following map of complexes

ϕX ,Y : SY(X , Y ) −→ Hom�(SY(�, X),SY(�, Y )), [ f ; p] �−→ ([g; q] �→ [ f ; p] �sg [g; q]).
If X = Y then ϕX ,X is a homomorphism between dg endomorphism algebras.

We identify Db(�-mod) with the full subcategory of D(�-Mod) formed by cohomologi-
cally bounded complexes with finitely generated cohomological modules.

Theorem 9.2 Let � be left noetherian and X ∈ Db(�-mod). Then the map ϕX ,Y is a quasi-
isomorphism for any complex Y . Consequently, ϕX ,X is a quasi-isomorphism of dg algebras
for any X ∈ Db(�-mod).

Proof We have the following natural maps between complexes.

SY(X , Y ) = colim Y(X ,�p
nc(Y )) −→ colim Hom�(Y(�, X),Y(�,�p

nc(Y )))

−→ Hom�(Y(�, X),SY(�, Y ))

The first map is induced by the one in Proposition 3.11, and thus a quasi-isomorphism. For
the second one, we apply Lemma 2.2 to identify Y(�, X) with i(X). It follows from [19,
Proposition 2.3(2)] that Y(�, X) is compact in K(�-Inj). By [20, Lemma 3.4.3], we infer
that the second map is also a quasi-isomorphism.

Denote byψX ,Y the quasi-isomorphism in Lemma 9.1. It is routine to verify that the above
composite quasi-isomorphism coincides with ψX ,Y ◦ ϕX ,Y . This forces that ϕX ,Y is also a
quasi-isomorphism. ��

Recall that a dg functor F : C → D between dg categories is quasi-fully faithful if for any
objects X , Y in C, the induced map C(X , Y ) → D(F(X), F(Y )) is a quasi-isomorphism. In
this case, the induced functor H0(F) : H0(C) → H0(D) between their homotopy categories
is fully faithful. The dg functor F is called a quasi-equivalence, if it is quasi-fully faithful
and H0(F) is dense, in which case H0(F) is an equivalence.

We say that a quasi-fully faithful dg functor F : C → D is a quasi-equivalence up to
direct summands, if H0(F) is dense up to direct summand, that is, any object in H0(D) is
isomorphic to a direct summand of some object in the essential image of H0(F).

Denote by Cdg,ac(�-Inj) the dg category formed by acyclic complexes of injective �-
modules, whose Hom complexes are given by the Hom-complex bifunctor Hom�(−,−)
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over �. Its homotopy category H0(Cdg,ac(�-Inj)) coincides with K(�-Inj). We denote by
Cdg,ac(�-Inj)c the full dg category of Cdg,ac(�-Inj) formed by those compact objects in
K(�-Inj).

We denote bySY f the full dg subcategory ofSY formed by bounded complexes of finitely
generated modules.

Proposition 9.3 Keep the notation as above. Then the dg functor

SY(�,−) : SY f −→ Cdg,ac(�-Inj)c

is a quasi-equivalence up to direct summands.

Proof In view of (6.2), the following dg functor

SY(�,−) : SY f −→ Cdg,ac(�-Inj)

iswell defined. For anybounded complexes X , Y offinitely generated�-modules,weobserve
that ϕX ,Y is induced by the dg functor SY(�,−). Therefore, the quasi-isomorphism in
Theorem 9.2 implies that the above dg functor is quasi-fully faithful.

By Proposition 8.2(1), we identity S(X) and SY(�, X). Recall from [19, Corollary 5.4]
that an object in K(�-Inj) is compact if and only if it is a direct summand of S(X) for
some bounded complex X of finitely generated modules. It follows that SY(�,−) : SY f →
Cdg,ac(�-Inj)c is well defined and is a quasi-equivalence up to direct summands. ��

We recall that Dsg(�) denotes the singularity category of �.

Remark 9.4 1. By [9, Corollary 9.3], SY f is a dg enhancement [4] of the singularity category
Dsg(�). Proposition 9.3 implies that

SY(�,−) : Dsg(�) −→ Kac(�-Inj)

is fully faithful. By abuse of notation, this functor is induced by SY(�,−) : Db(�-mod) →
Kac(�-Inj).

2. We mention that Proposition 9.3 yields another proof of [7, Proposition 3.1], once we
identify SY f with the dg singularity category Sdg(�).

In what follows, we fix an artin algebra � over a commutative artinian ring.
Denote by J = rad(�) its Jacobson radical and set E = �/J . We assume that E is a

subalgebra of�with a decomposition� = E⊕ J .We identify the E-E-bimodule� = �/E
with J . For instance, this assumption holds for any finite-dimensional algebra� over a perfect
field, or if� is given a finite quiver with admissible relations.We refer to [1] for artin algebras
and quivers.

Consider the left E-dual J ∗ = Hom(J , E) of J , which carries a natural E-E-bimodule
structure. We have the Casimir element c = ∑

i∈S α∗
i ⊗ αi ∈ J ∗ ⊗ J , where {αi | i ∈ S}

and {α∗
i | i ∈ S} form the dual basis of J . The multiplication on J induces a map of

E-E-bimodules

∂+ : J ∗ −→ J ∗ ⊗ J ∗.

To be more precise, ∂+(g) = ∑
g1 ⊗ g2 such that g(ab) = ∑

g2(ag1(b)) for any a, b ∈ J .
Associated to �, we have the dg Leavitt algebra LE (J ) [9]. As an algebra, it is given by

LE (J ) = TE (J ⊕ J ∗)/(a ⊗ g − g(a), 1E − c | a ∈ J , g ∈ J ∗).
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Here, TE (J ⊕ J ∗) denotes the tensor algebra. It is naturally Z-graded such that |e| = 0 for
any e ∈ E , |a| = −1 for any a ∈ J and |g| = 1 for any g ∈ J ∗. The differential ∂ on
LE (J ) is uniquely determined by the graded Leibniz rule and the conditions that ∂|E = 0
and ∂|J∗ = ∂+; see [9, Remark 3.6].

In the following proposition, we obtain an explicit compact generator of Kac(�-Inj).
Recall that

SY(�, E) = colim Y(�,�p
nc(E)) = colim Y(�, (s J )⊗p),

and denote by LE (J )op the opposite dg algebra of LE (J ).

Proposition 9.5 Let � = E ⊕ J be an artin algebra. Then the following statements hold.

1. The complex SY(�, E) is a compact generator of K(�-Inj).
2. There is a quasi-isomorphism End�(SY(�, E)) � LE (J )op of dg algebras.

Proof 1. By Proposition 8.2(1), we identify S(E) with SY(�, E). As E is a generator of the
singularity category Dsg(�), it follows from [19, Corollary 5.4] that S(E) = SY(�, E) is
compact generator of K(�-Inj).

2. By [9, Theorem 9.5], we have an isomorphism

SY(E, E) � LE (J )op

of dg algebras. Then the required result follows from the quasi-isomorphism in Theorem 9.2.
��

Remark 9.6 1. In view of the general result [17, Theorem 4.3], the proposition above implies
a triangle equivalence

Kac(�-Inj) � D(LE (J )),

where D(LE (J )) is the derived category of left dg modules over LE (J ). This is proved in
[9, Proposition 10.2] with a different approach.

2. If � is given by a finite quiver with admissible relations, the dg endomorphism algebra
of the complex SY(�, E) is quasi-isomorphic to the opposite algebra of the dg Leavitt path
algebra associated to the radical quiver of �; see [9, Theorem 10.5].
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