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For certain full additive subcategories X of an additive category A, one defines the 
lower extension groups in relative homological algebra. We show that these groups are 
isomorphic to the suspended Hom groups in the Verdier quotient category of the bounded 
homotopy category of A by that of X . Alternatively, these groups are isomorphic to the 
negative cohomology groups of the Hom complexes in the dg quotient category A/X , 
where both A and X are viewed as dg categories concentrated in degree zero.
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r é s u m é

Pour certaines sous-catégories pleines additives X d’une catégorie additive A, on définit 
les groupes d’extension inférieurs en algèbre homologique relative. Nous montrons que 
ces groupes sont isomorphes aux groupes Hom suspendus dans la catégorie quotient de 
Verdier de la catégorie homotopique bornée de A par celle de X . Alternativement, ces 
groupes sont isomorphes aux groupes de cohomologie négatifs des complexes Hom dans le 
dg-quotient A/X , où A et X sont considérés comme dg-catégories concentrées en degré 
zéro.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be an additive category, and X be a full additive subcategory of A. In relative homological algebra, X -resolutions 
and X -coresolutions play the role of projective resolutions and injective resolutions in classical homological algebra.

The extension groups Extn
X ,−(−, −) are obtained by substituting the X -resolution in the contravariant entry of the 

Hom bifunctor HomA(−, −) and then computing the cohomology groups. Dually, the extension groups Extn
−,X (−, −) are 

obtained by substituting the X -coresolution in the covariant entry. These groups might be called the upper extension groups.
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In general, these groups Extn
X ,−(−, −) and Extn

−,X (−, −) are not related to each other. We mention that, under certain 
conditions, the upper extension groups are isomorphic to the suspended Hom groups in relative derived categories [4].

The lower extension groups ExtX ,n(−, −) are obtained by substituting the X -resolution in the covariant entry of 
HomA(−, −) and then computing the cohomology groups. They enjoy the balancing property, that is, ExtX ,n(−, −) can 
be obtained alternatively by substituting the X -coresolution in the contravariant entry of HomA(−, −).

The lower extension groups arise in Gorenstein’s homological algebra [7] and general stabilization theory [3]. However, 
they are less well known than the upper extension groups, probably due to the unusual entries to substitute the X -(co)res-
olutions.

This work studies the lower extension groups in a completely different perspective. Denote by A/[X ] the factor category 
of A by those morphisms factoring through X . Denote by Kb(A) and Kb(X ) the bounded homotopy categories of A and 
X , respectively. Then we have the Verdier quotient triangulated category Kb(A)/Kb(X ).

The following canonical functor

� : Kb(A)/Kb(X ) −→ Kb(A/[X ])
sends a complex Z in A to Z , viewed as a complex in A/[X ]. An innocent problem is when � is an equivalence. A spe-
cial case of this problem is implicitly treated in [11], where it is used to construct the realization functor of a bounded 
t-structure in an algebraic triangulated category.

The following result is the motivation of this work, which extends the corresponding result contained in [11, the proof 
in Subsection 3.2].

Proposition. Assume that the lower extension groups ExtX ,n(−, −) are defined. Then the canonical functor � is an equivalence if and 
only if ExtX ,n(−, −) vanishes for all n ≥ 1.

For the proof of the above result, we actually show that the lower extension groups are isomorphic to certain suspended 
Hom groups in Kb(A)/Kb(X ); see Theorem 3.1. We view the additive categories A and X as dg categories concentrated 
in degree zero. Then we have the dg quotient category A/X in the sense of [10,6]. We observe that the lower extension 
groups are isomorphic to the negative cohomology groups of the Hom complexes in A/X ; see Proposition 5.1. Then we 
have another proof of Theorem 3.1 under slightly different assumptions.

To justify the title, we observe that the following three quotient categories are involved: the additive quotient A/[X ], 
the triangulated quotient Kb(A)/Kb(X ), and the dg quotient A/X . It is well known that they are related as follows: A/[X ]
is equivalent to the homotopy category H0(A/X ) of A/X , and Kb(A)/Kb(X ) is equivalent to the triangulated hull (A/X )tr

of A/X .
The paper is organized as follows. In Section 2, we prove that the lower extension groups are isomorphic to the Tor 

groups of certain modules over X . We prove Theorem 3.1 in Section 3. The canonical functor � is studied in Section 4. 
Moreover, a new characterization of a hereditary abelian category is given; see Corollary 4.6. In Section 5, we study the 
dg quotient category A/X and prove Proposition 5.1. Then we interpret the Hom groups in the Verdier quotient category 
Kb(A)/Kb(X ) as the Tor groups, yielding another proof of Theorem 3.1; see Proposition 5.2.

In the sequel, we sometimes abbreviate HomA(−, −) as A(−, −). We use the cohomological notation for complexes.

2. The lower extensions as Tor groups

Let A be an additive category and X ⊆ A a full additive subcategory. Denote by [X ] the two-sided ideal formed by 
morphisms factoring through X . Then we have the factor category A/[X ]. For two objects A and B , we have

A/[X ](A, B) = A(A, B)/[X ](A, B).

The corresponding coset of a morphism f : A → B in A is denoted by [ f ].
Recall that an X -resolution of an object B means a complex in A

XB : · · · −→ X−2
B

d−2−→ X−1
B

∂−→ B −→ 0

such that X−i
B ∈X for each i ≥ 1 and that HomA(X, XB) is acyclic for each object X ∈X . In particular, the morphism ∂ is a 

right X -approximation of B , that is, any morphism t : T → B with T ∈ X factors through ∂ . Dually, an X -coresolution of A
means a complex

A X : 0 −→ A −→ A X1 −→ A X2 −→ · · ·
such that each A Xi lies in X and that HomA(A X, X) is acyclic for each X ∈X .

We assume that the above X -resolution and X -coresolution exist. Then the upper extension groups are Extn
X ,−(B, A) =

Hn+1HomA(X≤−1
B , A) and Extn

−,X (B, A) = Hn+1HomA(B, A X≥1) for n ∈Z. Here, X≤−1
B and A X≥1 denote the brutal trunca-

tions of the relevant complexes.
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In general, these groups Extn
X ,−(B, A) and Extn

−,X (B, A) are not related to each other. Therefore, the following balancing 
property is quite different.

Lemma 2.1. We assume that the above X -resolution XB and X -coresolution A X exist. Then for each n ∈Z, there is an isomorphism

H−nHomA(A, XB) � H−nHomA(A X, B).

Proof. This follows immediately by considering the collapsing spectral sequences associated with the Hom bicomplex 
HomA(A X, XB). �

The above common cohomology groups are denoted by ExtX ,n(A, B), and are called the lower extension groups. We 
observe that ExtX ,−n(A, B) = 0 for n ≥ 1 and that

ExtX ,0(A, B) � A/[X ](A, B).

In what follows, if either XB or A X exists, we still talk about the lower extension groups ExtX ,n(A, B).
Assume that X is skeletally small. Denote by X -Mod the abelian category of left X -modules. Here, a left X -module is 

by definition an additive functor X →Z-Mod. Dually, Mod-X denotes the category of right X -modules. Then we have the 
well-defined tensor bifunctor

− ⊗X −: Mod-X ×X -Mod −→ Z-Mod

and the corresponding Tor groups TorXn (−, −) for n ≥ 1.
For example, A(−, B) and A(A, −) will be viewed as a right X -module and a left X -module, respectively. Then the 

tensor product is explicitly given by

A(−, B) ⊗X A(A,−) = (
⊕
X∈X

A(X, B) ⊗Z A(A, X))/I,

where I is a Z-submodule generated by b ◦ x ⊗ a − b ⊗ x ◦ a for all x : X → X ′ in X , a : A → X and b : X ′ → B . Then there 
is a canonical map

can : A(−, B) ⊗X A(A,−) −→ A(A, B), g ⊗ f �→ g ◦ f , (2.1)

where g : X → B and f : A → X for some object X ∈X . The following sequence is exact by definition

A(−, B) ⊗X A(A,−)
can−→ A(A, B)

pr−→ A/[X ](A, B) −→ 0,

where “pr” denotes the projection.

Proposition 2.2. Assume that X is skeletally small and that either XB or A X exists. Then there are isomorphisms

ExtX ,n(A, B) � TorXn−1(A(−, B),A(A,−))

for n ≥ 2; moreover, ExtX ,1(A, B) is isomorphic to the kernel of (2.1).

Proof. We assume that the X -resolution XB exists, and the case where A X exists is similar.
The X -resolution XB gives rise to the following projective resolution of the right X -module A(−, B)

· · · −→ X (−, X−2
B )

X (−,d−2)−→ X (−, X−1
B ) −→ A(−, B) −→ 0.

Applying − ⊗X A(A, −) to it and using the natural isomorphisms

X (−, X−n
B ) ⊗X A(A,−) � A(A, X−n

B ),

the required isomorphisms follow immediately. For the last isomorphism, we just observe that the cokernel of A(A, d−2) is 
isomorphic to A(−, B) ⊗X A(A, −). �
Remark 2.3. Since the Tor groups have the balancing property, the above isomorphisms yield another proof of the balanced 
property of the lower extension groups in Lemma 2.1.
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Example 2.4. Let A be an abelian category with enough projectives and enough injectives. Denote by P (resp. I) the full 
subcategory of projective objects (resp. injective objects). The factor category A/[P] is usually denoted by A. Similarly, we 
write A/[I] as A. These factor categories are known as the stable categories.

We claim that ExtP,n(−, B) = 0 if and only if proj.dim B ≤ n. It suffices to show the “only if” part. Assume that 
proj.dim B > n. Then in a projective resolution of B

· · · −→ P−n−1 d−n−1−→ P−n −→ · · · −→ P−1 −→ B −→ 0

the image A = Im d−n−1 is not projective. Then the inclusion A → P−n yields a nonzero element in ExtP,n(A, B), which is 
a contradiction.

Indeed, the above claim can be deduced from the following isomorphism

ExtP,n(A, B) � A(A,�n(B)) (2.2)

for all n ≥ 0. Here, �n(B) denotes the n-th syzygy of B and �0(B) = B by convention.
Recall that an abelian category A is hereditary if its global dimension is at most one. The above claim yields the following 

characterization of a hereditary abelian category: A is hereditary if and only if ExtP,n(−, −) = 0 for any n ≥ 1. Dually, A is 
hereditary if and only if ExtI,n(−, −) = 0 for any n ≥ 1.

The following example is studied in [11, Subsection 3.2].

Example 2.5. Let E be a Frobenius exact category. Denote by P the full subcategory formed by all the projective–injective 
objects. The stable category E = E/[P] is naturally triangulated, and its suspension functor is denoted by �.

Let A ⊆ E be a full additive subcategory containing P . Denote the factor category A/[P] by A. In a fashion similar to 
(2.2), we observe an isomorphism

ExtP,n(A, B) � E(�n(A), B)

for any A, B ∈A and each n ≥ 0.

3. The lower extensions as suspended Hom groups

Denote by Kb(A) the homotopy category of bounded complexes in A. The suspension functor is denoted by �. We will 
identify an object A ∈ A with the corresponding stalk complex concentrated in degree zero. Then A is viewed as a full 
subcategory of Kb(A). For each n ∈Z, the suspended stalk complex �−n(X) is concentrated in degree n.

Similarly, we have the homotopy category Kb(X ) of bounded complexes in X . It is a triangulated subcategory of Kb(A). 
Denote by Kb(A)/Kb(X ) the Verdier quotient triangulated category.

We will assume that the category Kb(A)/Kb(X ) is well defined, that is, all the Hom groups in Kb(A)/Kb(X ) are sets. 
For example, this happens provided that X is skeletally small.

Theorem 3.1. Let A, B be two objects in A, which are also viewed as objects in Kb(A)/Kb(X ). Then the following statements hold.

(1) HomKb(A)/Kb(X )(�
−n(A), B) = 0 for n ≥ 1.

(2) The natural map A/[X ](A, B) → HomKb(A)/Kb(X )(A, B) is an isomorphism. Consequently, the canonical functor A/[X ] →
Kb(A)/Kb(X ) is fully faithful.

(3) Assume that either XB or A X exists. Then there are isomorphisms

ExtX ,n(A, B) � HomKb(A)/Kb(X )(�
n(A), B)

for all n ≥ 1.

Proof. Recall that any morphism from �m(A) to B in Kb(A)/Kb(X ) is realized as a right roof

�m(A)
g−→ C ⇐= B (3.1)

where C = Cone( f ) is the mapping cone of a chain map f : X → B for some bounded complex X ∈ Kb(X ). In other words, 
C has the following form

· · · −→ X0

(
f 0

−d0
X

)

−→ B ⊕ X1 −→ X2 −→ · · ·
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and B =⇒ C is the inclusion. Here, by the double arrow, we indicate a morphism that is localized in forming the Verdier 
quotient. If m < 0, then g : �m(A) → C factors through the brutal truncation C≥−m . Since C≥−m lies in Kb(X ), g becomes 
zero in Kb(A)/Kb(X ). This proves (1).

For (2), we observe the following commutative diagram

C

A

a

g

C≥0

pr

inc

B

B,

where “inc” and “pr” denote the obvious inclusion and projection, respectively. Here, we recall that C0 = B ⊕ X1, and then 

the map a is obtained by g0 =
(

a
x

)
for some morphism x : A → X1. It follows that the given morphism is equivalent to the 

trivial roof

A −→ B
IdB⇐= B.

In other words, the natural map

HomA/[X ](A, B) −→ HomKb(A)/Kb(X )(A, B)

is surjective. For its injectivity, take a morphism b : A → B that is mapped to zero. It means that b factors through some 
complex Y ∈ Kb(X ). Then it follows that b actually factors through Y 0 in A, that is, [b] = 0 in A/[X ], as required.

To prove (3), we assume that the X -resolution XB exists. The case where A X exists is similar, where we use left roofs 
instead of right roofs.

The required isomorphism

φ : ExtX ,n(A, B) −→ HomKb(A)/Kb(X )(�
n(A), B)

sends a class c̄ in ExtX ,n(A, B) to the right roof

�n(A)
c′−→ X≥−n

B
inc⇐= B. (3.2)

Here, c : A → X−n
B represents the class c̄, X≥−n

B denotes the brutal truncation of XB , and the chain map c′ is induced by c.

We assume that we are given a right roof (3.1) with m = n. By Lemma 3.2(2) below, we infer that the inclusion B → X≥−l
B

factors through the natural map B → C = Cone( f ) for sufficiently large l. Therefore, the right roof (3.1) is equivalent to

�n(A) −→ X≥−l
B

inc⇐= B.

It is clear that the above roof is equivalent to a right roof of the form (3.2). This proves the surjectivity of φ.
For the injectivity of φ, we take a morphism c : A → X−n

B such that the right roof (3.2) is equivalent to zero. It follows 
that c′ : �n(A) → XB factors through some complex Y ∈ Kb(X ). The factorization is assumed to be �n(A) u→ Y

v→ XB . 
However, by Lemma 3.2(1) v is homotopic to zero, and so is c′ . In other words, the map c factors through d−n−1. Then the 
corresponding class c̄ in ExtX ,n(A, B) is zero, as required. �

Denote by K−(A) the homotopy category of bounded-above complexes in A.

Lemma 3.2. Let XB be the X -resolution of B and X be a bounded complex in X . Then the following statements hold.

(1) HomK−(A)(Y , XB) = 0 for any complex Y ∈ Kb(X ).

(2) Given any chain map f : X → B, the inclusion B → X≥−m
B factors through the natural map B → Cone( f ) for sufficiently large m.

Proof. By definition, HomK−(A)(�
n(Z), XB) = 0 for any Z ∈X and n ∈Z. Then (1) follows immediately.

We apply the cohomology functor HomK−(A)(−, XB) to the canonical exact triangle

X
f−→ B

ι−→ Cone( f ) −→ �X .

By (1) the inclusion B → XB factors through ι. Since Cone( f ) is a bounded complex, the required factorization follows 
immediately. �
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4. The canonical functor

The following canonical functor

� : Kb(A)/Kb(X ) −→ Kb(A/[X ])
sends a complex Z in A to Z , where the latter is viewed as a complex in A/[X ].

Proposition 4.1. Keep the notation as above. Then the following statements hold.

(1) If � is full, then it is dense.
(2) The functor � is faithful if and only if it is an equivalence.
(3) Assume that the category A is Krull–Schmidt. Then � is full if and only if it is an equivalence.

Proof. (1) Recall that the essential image of a full triangle functor is necessarily a triangulated subcategory. The only trian-
gulated subcategory of Kb(A/[X ]) containing A/[X ] is itself. Then the result follows immediately.

(2) Assume that � is faithful. Let A, B ∈ A. Recall that HomKb(A/[X ])(�n(A), B) = 0 for n �= 0 and HomKb(A/[X ])(A, B) �
A/[X ](A, B). The faithfulness of � forces that HomKb(A)/Kb(X )(�

n(A), B) = 0 for n �= 0. In view of Theorem 3.1(2), we have 
an isomorphism

HomKb(A)/Kb(X )(�
n(A), B) � HomKb(A/[X ])(�n(A), B)

for each n ∈Z. It follows from [1, Lemma 1] that � is fully faithful. By (1), we infer that � is an equivalence.
(3) Recall a well-known fact: a full triangle functor is faithful if and only if it is faithful on objects; see [12, p. 446]. 

Therefore, it suffices to prove that � is faithful on objects, that is, for any complex Y ∈ Kb(A), �(Y ) � 0 implies that Y is 
isomorphic to a direct summand of some object in Kb(X ).

We observe that A/[X ] is also Krull–Schmidt. We may assume that Y is a minimal complex in Kb(A), that is, each differ-
ential Y i → Y i+1 is a radical morphism in A. Then �(Y ) is also a minimal complex in Kb(A/[X ]). Since a null-homotopic 
minimal complex is necessarily isomorphic to the zero complex in the category of complexes, we infer that each component 
Y i is zero in A/[X ]. In other words, each Y i is isomorphic to a direct summand of some object in X . It follows that Y is 
isomorphic to a direct summand of some object in Kb(X ), as required. �
Remark 4.2. In general, the denseness of � will not imply its full faithfulness; see Example 4.8.

Example 4.3. Let k be a field and � = k[t]/(t3) be the truncated polynomial algebra. Denote by �-mod the abelian category 
of finite dimensional �-modules and by �-proj the full subcategory formed by projective modules. The stable module 
category �-mod is by definition �-mod/[�-proj]. We claim that the canonical functor

� : Kb(�-mod)/Kb(�-proj) −→ Kb(�-mod)

is not dense. Then it is non-faithful and non-full by Proposition 4.1.
Consider the simple �-module k and the 2-dimensional �-module M = k[t]/(t2). We have the following complex in 

�-mod

0 −→ M
[π ]−→ k

[ι]−→ M
[π ]−→ k −→ 0,

where π denotes the projection and ι is the natural embedding. We observe that this complex does not lie in the essential 
image of �.

As pointed out in the introduction, the following result is our main motivation to study the lower extension groups.

Proposition 4.4. Assume that X ⊆ A satisfies the following condition: XB exists for each B ∈ A, or A X exists for each A ∈ A. Then 
the canonical functor � is an equivalence if and only if ExtX ,n(A, B) = 0 for all A, B ∈A and n ≥ 1.

Proof. As we saw in the proof of Proposition 4.1(2), the functor � is an equivalence if and only if

HomKb(A)/Kb(X )(�
n(A), B) = 0

for any objects A, B ∈A and n �= 0. Then we are done by Theorem 3.1. �
The “if” part of the following immediate consequence is implicitly contained in the proof of [11, Subsection 3.2].
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Corollary 4.5. Keep the notation as in Example 2.5. Then the canonical functor Kb(A)/Kb(P) −→ Kb(A) is an equivalence if and only 
if E(�n(A), B) = 0 for all A, B ∈A and n ≥ 1. �

The following result is a seemingly new characterization of hereditary abelian categories. It follows directly from Exam-
ple 2.4 and Proposition 4.4.

Corollary 4.6. Let A be an abelian category with enough projectives and enough injectives. Then the following statements are equiva-
lent:

(1) the canonical functor Kb(A)/Kb(P) −→ Kb(A) is an equivalence;
(2) the abelian category A is hereditary;
(3) the canonical functor Kb(A)/Kb(I) −→ Kb(A) is an equivalence. �
Remark 4.7. Assume that the abelian category A has finite global dimension. Denote by Db(A) the bounded derived category 
of A, and by Kb

ac(A) the homotopy category of bounded acyclic complexes. Then we have a well-known recollement [2]

Kb
ac(A) inc Kb(A) can Db(A).

p

i

Here, p sends a complex to its projective resolution; in particular, its essential image is Kb(P). So, we obtain a triangle 
equivalence:

Kb
ac(A) � Kb(A)/Kb(P).

Dually, we have the triangle equivalence:

Kb
ac(A) � Kb(A)/Kb(I).

Assume now that A is hereditary. Combining the above equivalences with Corollary 4.6, we have a triangle equivalence

Kb(A) � Kb(A).

We mention that if A is the category of finitely generated modules over an Artin algebra, then the stable categories A and 
A are already equivalent via the Auslander–Reiten translations.

Example 4.8. Let k be a field and � = k[t]/(t2) be the algebra of dual numbers. Then the stable module category �-mod
is equivalent to the category of finite-dimensional k-modules. It follows that any complex in Kb(�-mod) is isomorphic to a 
finite direct sum of stalk complexes. Then the canonical functor

� : Kb(�-mod)/Kb(�-proj) −→ Kb(�-mod)

is dense. However, since �-mod is not hereditary, by Corollary 4.6 the functor � is not an equivalence.

5. The Tor groups and dg quotients

Let k be a commutative ring, and let A be a k-linear additive category. Assume that A is skeletally small. By choosing a 
skeleton, we might assume further that A is small.

We view A and X as dg categories concentrated in degree zero. The following treatment is similar to [8, Subsection 7.2]
and [5, Subsection 5.2]. For dg quotient categories, we refer the reader to [10,6].

We recall the construction of the dg quotient category. Take a semi-free resolution π : Ã →A as in [6, Lemma B.5]. We 
identify the objects of Ã with those of A. Denote by X̃ the full dg subcategory of Ã formed by objects in X . Then we 
have a new dg category Ã/X̃ as follows: the objects are the same as in Ã; for each object X ∈ X̃ , we freely add a new 
endomorphism εX of degree −1 and set d(εX ) = IdX . For details, we refer to [6, Subsection 3.1].

By abuse of notation, the resulting dg category Ã/X̃ will be denoted by A/X , and called the dg quotient category of A
by X . This notation is justified by the fact that Ã/X̃ is uniquely determined up to quasi-equivalence; see [6, 1.6.2 Main 
Theorem].

Thanks to the isomorphisms in Proposition 2.2, the following observation interprets the lower extension groups as the 
negative cohomology groups of the Hom complexes in A/X .

Proposition 5.1. Keep the assumptions and notation as above. Then, for any objects A, B ∈ A/X , the Hom complex A/X (A, B) is 
non-positively graded, such that the following statements hold.
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(1) H0(A/X (A, B)) �A/[X ](A, B).
(2) H−1(A/X (A, B)) is isomorphic to the kernel of (2.1).
(3) For each n ≥ 2, H−n(A/X (A, B)) � TorXn−1(A(−, B), A(A, −)).

Proof. Recall that the Hom complexes in Ã are non-positively graded. By the very construction, the same holds for Ã/X̃ =
A/X .

The quasi-equivalence π : X̃ → X implies that X̃ and X are derived equivalent. The relevant derived equivalences 
identify the right dg X̃ -module Ã(−, B) with the right X -module A(−, B), and the left dg X̃ -module Ã(A, −) with the 
left X -module A(A, −). Moreover, the natural map

Ã(−, B) ⊗L
X̃ Ã(A,−) −→ A(−, B) ⊗L

X A(A,−)

is a quasi-isomorphism. Then we have natural isomorphisms

Hn(Ã(−, B) ⊗L
X̃ Ã(A,−)) � TorX−n(A(−, B),A(A,−)) (5.1)

for all n ∈ Z. Here, TorX0 (A(−, B), A(A, −)) = A(−, B) ⊗X A(A, −) and, by convention, TorXn (A(−, B), A(A, −)) = 0 for 
n < 0.

Recall from [6, Subsection 3.1] that there is an exact sequence of complexes

0 −→ Ã(A, B) −→ Ã/X̃ (A, B) −→ �(B ⊗X̃ Ã(A,−)) −→ 0, (5.2)

where B denotes the total module of the bar resolution [9, Subsection 6.6] for the right dg X̃ -module Ã(−, B), and �
denotes the suspension functor. In particular, by (5.1), we have

Hn(�(B ⊗X̃ Ã(A,−))) � TorX−n−1(A(−, B),A(A,−)).

Since Ã(A, B) is quasi-isomorphic to the stalk complex A(A, B) concentrated in degree zero, the long exact sequence 
associated with (5.2) yields the required statements. �

For a dg category C , the homotopy category H0(C) is defined such that it has the same objects as C and that its Hom 
k-modules are the zeroth cohomologies H0(C(A, B)) of the Hom complexes C(A, B). Therefore, Proposition 5.1(1) implies 
that H0(A/X ) is isomorphic to the factor category A/[X ].

Denote by Ctr the triangulated hull of C; for details, see [6, Subsection 2.4]. We mention that H0(C) naturally becomes a 
full subcategory of Ctr. Furthermore, for any objects A, B , we have the natural isomorphisms

Ctr(�n(A), B) � H−n(C(A, B)) (5.3)

for all n ∈Z. Here, � denotes the suspension functor on Ctr .
In view of Proposition 2.2, we now actually give another proof of Theorem 3.1 via the dg method.

Proposition 5.2. Let A be a skeletally small k-linear additive category and X ⊆ A be a full additive subcategory. Then there is a 
triangle equivalence

Kb(A)/Kb(X ) � (A/X )tr.

Consequently, for any A, B ∈A, the following isomorphisms hold:

(1) HomKb(A)/Kb(X )(�
n(A), B) = 0 for n < 0;

(2) HomKb(A)/Kb(X )(A, B) �A/[X ](A, B);

(3) HomKb(A)/Kb(X )(�
n(A), B) � TorXn−1(A(−, B), A(A, −)) for n ≥ 2; moreover, HomKb(A)/Kb(X )(�(A), B) is isomorphic to the 

kernel of (2.1).

Proof. We identify Kb(A) with Atr, and Kb(X ) with X tr. Then the triangle equivalence follows from a general result [6, 
Theorem 3.4 and Subsection 3.5]. In view of the isomorphisms (5.3) for the dg quotient category A/X , the remaining 
statements follow from the triangle equivalence and Proposition 5.1. �

The following consequence is analogous to Proposition 4.4. We omit the same reasoning.

Corollary 5.3. Keep the same assumptions as above. Then the canonical functor � : Kb(A)/Kb(X ) → Kb(A/[X ]) is an equivalence if 
and only if the canonical map (2.1) is injective and TorXn (A(−, B), A(A, −)) = 0 for any A, B ∈A and n ≥ 1. �
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