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1. Introduction

Let A be a finite-dimensional algebra over a field. We consider the category of finite-
dimensional left A-modules. The study of Gorenstein-projective modules goes back
to [1] under the name ‘modules of G-dimension zero’. The current terminology is
taken from [11]. Due to the fundamental work [5], the stable category of Gorenstein-
projective A-modules is closely related to the singularity category of A. Indeed, for
a Gorenstein algebra, these two categories are triangle equivalent (see also [15]).

We recall that projective modules are Gorenstein-projective. For a self-injective
algebra, all modules are Gorenstein-projective. Hence, for the study of Gorenstein-
projective modules, we often consider non-self-injective algebras. However, there
are algebras that do not admit non-trivial Gorenstein-projective modules, i.e. any
Gorenstein-projective module is actually projective (see [7]).

There are very few classes of non-self-injective algebras for which an explicit clas-
sification of indecomposable Gorenstein-projective modules is known. In [19], such
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1116 X.-W. Chen, D. Shen and G. Zhou

a classification is obtained for Nakayama algebras (cf. [9]). Using the representation
theory of string algebras, there is also such a classification for gentle algebras in [17]
(cf. [10]).

We are interested in the Gorenstein-projective modules over a monomial algebra
A. It turns out that there is an explicit classification of indecomposable Gorenstein-
projective A-modules, so we may unify the results in [17, 19] to some extent. We
rely heavily on a fundamental result in [20], which implies in particular that an
indecomposable Gorenstein-projective A-module is isomorphic to a cyclic module
generated by a path. Then the classification can be pinned down to the following
question: for which path is the corresponding cyclic module Gorenstein-projective?
The main goal of this work is to answer this question.

The content of this paper is as follows. In § 2, we recall basic facts on Gorenstein-
projective modules. In § 3, we introduce the notion of a perfect pair of paths for a
monomial algebra A, and study some basic properties of a perfect pair. We introduce
the central notion of a perfect path in definition 3.7. In § 4 We prove the main classi-
fication result, which claims that there is a bijection between the set of perfect paths
in A and the isoclass set of indecomposable non-projective Gorenstein-projective
A-modules (see theorem 4.1). As an application, we show that, for a connected
truncated quiver algebra A without sources or sinks, either A is self-injective or
any Gorenstein-projective A-module is projective (see example 4.7).

We specialize theorem 4.1 to a quadratic monomial algebra A in § 5, in which case
any perfect path is an arrow. We introduce the notion of a relation quiver for A,
whose vertices are given by arrows in A and whose arrows are given by relations in
A (see definition 5.2). We prove that an arrow in A is perfect if and only if the cor-
responding vertex in the relation quiver belongs to a connected component that is a
basic cycle (see lemma 5.3). Using the relation quiver, we obtain a characterization
result on when a quadratic monomial algebra is Gorenstein, which includes the well-
known result in [12] that a gentle algebra is Gorenstein (see proposition 5.5). We
describe explicitly the stable category of Gorenstein-projective A-modules, which is
proved to be a semisimple abelian category (see theorem 5.7). This theorem gener-
alizes the main result in [17]. Subsequently, in [8], Chen determines the singularity
category and the Gorenstein defect category of a quadratic monomial algebra.

In § 6, we study a Nakayama monomial algebra A, where the quiver of A is a
basic cycle. Following the idea in [19], in proposition 6.2 we describe explicitly all
the perfect paths for A. As a consequence, we recover a key characterization result
for the indecomposable Gorenstein-projective modules over a Nakayama algebra
in [19].

The standard reference on the representation theory of finite-dimensional algebras
is [2].

2. Gorenstein-projective modules

In this section, for the convenience of the reader, we recall some basic facts on
Gorenstein-projective modules over finite-dimensional algebras.

Let A be a finite-dimensional algebra over a field k. All modules are finitely
generated unless otherwise stated. We denote by A-mod the category of (finitely
generated) left A-modules, and by A-proj the full subcategory consisting of projec-
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The Gorenstein-projective modules over a monomial algebra 1117

tive A-modules. We shall identify right A-modules as left Aop-modules, where Aop

is the opposite algebra of A.
For two left A-modules X and Y , we denote by homA(X, Y ) the space of mod-

ule homomorphisms from X to Y , and by P (X, Y ) the subspace formed by those
homomorphisms factoring through projective modules. Write

homA(X, Y ) = homA(X, Y )/P (X, Y )

for the quotient space, which is the hom-space in the stable category A-mod. Indeed,
the stable category A-mod is defined as follows: the objects are left A-modules, and
the hom-space for two objects X and Y is defined to be homA(X, Y ), where the com-
position of morphisms is induced by the composition of module homomorphisms.

Let M be a left A-module. Then M∗ = homA(M, A) is a right A-module. Recall
that an A-module M is Gorenstein-projective provided that there is an acyclic com-
plex P • of projective A-modules such that the hom-complex (P •)∗ = homA(P •, A)
is still acyclic and that M is isomorphic to a certain cocycle Zi(P •) of P •. We
denote by A-Gproj the full subcategory of A-mod formed by Gorenstein-projective
A-modules. We observe that A-proj ⊆ A-Gproj. We recall that the full subcategory
A-Gproj ⊆ A-mod is closed under direct summands, kernels of epimorphisms and
extensions (cf. [1, (3.11)], [3, lemma 2.3]).

Gorenstein-projective modules are sometimes called Cohen–Macaulay (CM) mod-
ules in the literature. Following [4], an algebra A is CM-finite provided that there
are only finitely many indecomposable Gorenstein-projective A-modules up to iso-
morphism. As an extreme case, we say that the algebra A is CM-free [7] provided
that A-proj = A-Gproj.

Let M be a left A-module. Recall that its syzygy Ω(M) = Ω1(M) is defined to
be the kernel of its projective cover P → M . Then we have the dth syzygy Ωd(M)
of M defined inductively by Ωd(M) = Ω(Ωd−1M) for d � 2. Set Ω0(M) = M .
We observe that, for a Gorenstein-projective module M , all its syzygies Ωd(M) are
Gorenstein-projective.

Since A-Gproj ⊆ A-mod is closed under extensions, it naturally becomes an
exact category in the sense of Quillen [18]. Moreover, it is a Frobenius category,
i.e. it has enough (relatively) projective and enough (relatively) injective objects,
and the class of projective objects coincides with that of injective objects. In fact,
the class of projective-injective objects in A-Gproj equals A-proj. In particular, we
have Exti

A(M, A) = 0 for any Gorenstein-projective A-module M and each i � 1.
For details, we refer the reader to [4, proposition 3.8(i)].

We denote by A-Gproj the full subcategory of A-mod consisting of Gorenstein-
projective A-modules. Then the assignment M �→ Ω(M) induces an auto-equiva-
lence Ω : A-Gproj → A-Gproj. Moreover, the stable category A-Gproj becomes a
triangulated category such that the translation functor is given by a quasi-inverse
of Ω, and such that the triangles are induced by short exact sequences in A-Gproj.
These are consequences of a general result in [14, ch. I.2].

We observe that the stable category A-Gproj is a Krull–Schmidt category, i.e. a
k-linear additive category such that each object decomposes into the direct sum of
finitely many indecomposable objects, and the endomorphism algebra of any inde-
composable object is local. We denote by ind(A-Gproj) the set of isoclasses of inde-
composable objects inside. There is a natural identification between ind(A-Gproj)
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1118 X.-W. Chen, D. Shen and G. Zhou

and the set of isoclasses of indecomposable non-projective Gorenstein-projective
A-modules.

The following facts are well known.

Lemma 2.1. Let M be a Gorenstein-projective A-module that is indecomposable
and non-projective. Then the following three statements hold:

(1) the syzygy Ω(M) is also an indecomposable non-projective Gorenstein-pro-
jective A-module;

(2) there exists an indecomposable A-module N that is non-projective and Goren-
stein-projective such that M � Ω(N);

(3) if the algebra A is CM-finite with precisely n indecomposable non-projective
Gorenstein-projective modules up to isomorphism, then we have an isomor-
phism M � Ωn!(M), where n! is the factorial of n.

Proof. We observe that the auto-equivalence Ω : A-Gproj → A-Gproj induces a
permutation on the set of isoclasses of indecomposable non-projective Gorenstein-
projective A-modules. Then all the statements follow immediately. For a detailed
proof of (1), we refer the reader to [7, lemma 2.2].

Let d � 0 be an integer. We recall from [5,15] that an algebra A is d-Gorenstein
provided that the injective dimension of the regular module A on both sides is at
most d. By a Gorenstein algebra we mean a d-Gorenstein algebra for some d � 0.
We observe that 0-Gorenstein algebras coincide with self-injective algebras.

The following result is also well known (cf. [4, proposition 3.10], [3, theorem 3.2]).

Lemma 2.2. Let A be a finite-dimensional algebra and let d � 0. Then the algebra
A is d-Gorenstein if and only if, for each A-module M , the module Ωd(M) is
Gorenstein-projective.

Now we consider some module homomorphisms concerning cyclic modules, which
play an important role in the rest of the paper.

For an element a in A, we consider the left ideal Aa and the right ideal aA
generated by a. We have the following well-defined monomorphism of right A-
modules:

θa : aA → (Aa)∗ = homA(Aa, A), (2.1)

which is defined by θa(ax)(y) = yx for ax ∈ aA and y ∈ Aa. By taking the dual,
we have the following monomorphism of left A-modules:

θ′
a : Aa → (aA)∗ = homAop(aA, A), (2.2)

which is defined by θ′
a(xa)(y) = xy for xa ∈ Aa and y ∈ aA. For an idempotent e

in A, both θe and θ′
e are isomorphisms (see [2, proposition I.4.9]).

The following fact will be used later.

Lemma 2.3. Let a ∈ A satisfy that θa is an isomorphism, and let b ∈ A. Then the
isomorphism θa induces a k-linear isomorphism

aA ∩ Ab

aAb

∼−→ homA(Aa, Ab). (2.3)
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The Gorenstein-projective modules over a monomial algebra 1119

Proof. For a left ideal K ⊆ A, we identify homA(Aa, K) with the subspace of
homA(Aa, A), which consists of homomorphisms with image in K. Therefore, the
isomorphism θa induces an isomorphism aA ∩ K

∼−→ homA(Aa, K). In particular,
we obtain an isomorphism θa : aA ∩ Ab � homA(Aa, Ab).

Consider the surjective homomorphism π : A → Ab given by π(x) = xb for any
x ∈ A. Recall that P (Aa, Ab) denotes the subspace of homA(Aa, Ab) consisting of
homomorphisms factoring through projective modules. Then P (Aa, Ab) is equal to
the image of homA(Aa, π). We have the following commutative diagram:

homA(Aa, A)

θa

��

homA(Aa,π) �� homA(Aa, Ab)

θa

��
aA �� aA ∩ Ab,

where the vertical maps are isomorphisms, and the lower horizontal map sends
y ∈ aA to yb. In particular, its image is equal to aAb. Then the required isomorphism
follows immediately.

3. Monomial algebras and perfect pairs

In this section, we recall some basic notions and results on monomial algebras and
introduce the notions of a perfect pair and of a perfect path. Some basic properties
of perfect pairs are studied.

To aid the reader, we first recall some notation about quivers with relations and
some facts on cyclic modules generated by paths.

Let Q be a finite quiver. We recall that a finite quiver Q = (Q0, Q1; s, t) consists
of a finite set Q0 of vertices, a finite set Q1 of arrows and two maps s, t : Q1 → Q0
that assign to each arrow α its starting vertex s(α) and its terminating vertex t(α).

For n � 1, a path p of length n in Q is a sequence p = αn · · ·α2α1 of arrows
such that s(αi) = t(αi−1) for 2 � i � n; moreover, we define its starting vertex
s(p) = s(α1) and its terminating vertex t(p) = t(αn). We observe that a path of
length 1 is just an arrow. For each vertex i, we associate a trivial path ei of length 0,
and set s(ei) = i = t(ei). A path of length at least 1 is said to be non-trivial. A
non-trivial path is called an oriented cycle if its starting vertex coincides with its
terminating vertex.

For two paths p and q with s(p) = t(q), we write pq for their concatenation. By
convention, we have p = pes(p) = et(p)p. For two paths p and q in Q, we say that q
is a subpath of p provided that p = p′′qp′ for some paths p′′ and p′. Furthermore,
the subpath q is proper if p �= q.

Let S be a set of paths in Q. A path p in S is left-minimal in S provided that
there is no path q ∈ S such that p = qp′ for some non-trivial path p′. Dually, one
defines a right-minimal path in S. A path p in S is minimal in S provided that
there is no proper subpath of p contained in S.

Let k be a field. The path algebra kQ of a finite quiver Q is defined as follows.
As a k-vector space, it has a basis given by all the paths in Q. For two paths p and
q, their multiplication is given by the concatenation pq if s(p) = t(q), and is zero
otherwise. The unit of kQ equals

∑
i∈Q0

ei. Denote by J the two-sided ideal of kQ
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generated by arrows. Then Jd is spanned by all the paths of length at least d for
each d � 2. A two-sided ideal I of kQ is admissible if Jd ⊆ I ⊆ J2 for some d � 2.
In this case, the quotient algebra A = kQ/I is finite dimensional.

We recall that an admissible ideal I of kQ is monomial provided that it is gen-
erated by paths of length at least 2. In this case, the quotient algebra A = kQ/I is
called a monomial algebra.

Let A = kQ/I be a monomial algebra as above. We denote by F the set formed
by all the minimal paths in I; it is a finite set. Indeed, the set F generates I as a
two-sided ideal. Moreover, any set of paths that generates I necessarily contains F .

We use the following convention as in [20]. A path p is said to be a non-zero path
in A provided that p does not belong to I or, equivalently, p does not contain a
subpath in F . For a non-zero path p, by abuse of notation, we use p to denote its
canonical image p + I in A. On the other hand, for a path p in I, we write p = 0 in
A. Observe that the set of non-zero paths forms a k-basis of A.

For a non-zero path p, we consider the left ideal Ap and the right ideal pA. Note
that Ap has a basis given by all non-zero paths q such that q = q′p for some path
q′. Similarly, pA has a basis given by all non-zero paths γ such that γ = pγ′ for
some path γ′. If p = ei is trivial, then Aei and eiA are indecomposable projective
left and right A-modules, respectively.

For a non-zero non-trivial path p, we define L(p) to be the set of right-minimal
paths in the set formed by all the non-zero paths q such that s(q) = t(p) and qp = 0.
Dually, R(p) is the set of left-minimal paths in the set formed by all the non-zero
paths q such that t(q) = s(p) and pq = 0.

The following well-known fact is straightforward (cf. the first paragraph of [20,
p. 162]).

Lemma 3.1. Let p be a non-zero non-trivial path in A. Then we have the following
exact sequence of left A-modules:

0 →
⊕

q∈L(p)

Aq
inc−−→ Aet(p)

πp−→ Ap → 0, (3.1)

where ‘inc’ is the inclusion map and πp is the projective cover of Ap with πp(et(p)) =
p. Similarly, we have the following exact sequence of right A-modules:

0 →
⊕

q∈R(p)

qA
inc−−→ es(p)A

π′
p−→ pA → 0, (3.2)

where π′
p is the projective cover of pA with π′

p(es(p)) = p.

We shall rely on the following fundamental result contained in [20, theorem I].

Lemma 3.2. Let M be a left A-module that fits into an exact sequence of A-modules:

0 → M → P → Q

with P, Q projective. Then M is isomorphic to a direct sum
⊕

p Ap(Λ(p)), where p
runs over all the non-zero paths in A and each Λ(p) is some index set.

The main notion we need is the following.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210518000185
Downloaded from https://www.cambridge.org/core. University of Science and Technology of China, on 07 Nov 2018 at 06:35:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210518000185
https://www.cambridge.org/core


The Gorenstein-projective modules over a monomial algebra 1121

Definition 3.3. Let A = kQ/I be a monomial algebra as above. We call a pair
(p, q) of non-zero paths in A perfect provided that the following conditions are
satisfied:

(P1) both of the non-zero paths p, q are non-trivial, satisfying s(p) = t(q) and
pq = 0 in A;

(P2) if pq′ = 0 for a non-zero path q′ with t(q′) = s(p), then q′ = qq′′ for some
path q′′ (in other words, R(p) = {q});

(P3) if p′q = 0 for a non-zero path p′ with s(p′) = t(q), then p′ = p′′p form some
path p′′ (in other words, L(q) = {p}).

Let (p, q) be a perfect pair. Applying (P3) to (3.1), we have the following exact
sequences of left A-modules:

0 → Ap
inc−−→ Aet(q)

πq−→ Aq → 0. (3.3)

In particular, we have that Ω(Aq) � Ap.
The following result seems to be useful for computing perfect pairs. Recall that

F denotes the finite set of minimal paths contained in I.

Lemma 3.4. Let p and q be non-zero non-trivial paths in A satisfying s(p) = t(q).
Then the pair (p, q) is perfect if and only if the following three conditions are sat-
isfied:

(P1′) the concatenation pq lies in F ;

(P2′) if q′ is a non-zero path in A satisfying t(q′) = s(p) and pq′ = γδ for a path γ
and some path δ ∈ F , then q′ = qq′′ for some path q′′;

(P3′) if p′ is a non-zero path satisfying s(p′) = t(q) and p′q = δγ for a path γ and
some path δ ∈ F , then p′ = p′′p for some path p′′.

Proof. For the ‘only if’ part, we assume that (p, q) is a perfect pair. By (P1) we
have pq = γ2δγ1 with δ ∈ F and some paths γ1 and γ2. We claim that γ1 = es(q).
Otherwise, q = q′γ1 for a proper subpath q′, and thus pq′ = γ2δ, which equals 0 in
A. This contradicts (P2). Similarly, we have γ2 = et(p). Then we infer (P1′). The
conditions (P2′) and (P3′) follow from (P2) and (P3) immediately.

For the ‘if’ part, we observe that the condition (P1) follows immediately. For
(P2), assume that pq′ = 0 in A, i.e. pq′ = γδγ1 with δ ∈ F and some paths γ and
γ1. We assume that q′ = xγ1. Then we have px = γδ. By (P2′) we infer that x = qy
and thus q′ = q(yγ1). This proves (P2). Similarly, we have (P3).

We study some basic properties of perfect pairs in the following lemmas.

Lemma 3.5. Let (p, q) and (p′, q′) be two perfect pairs. Then the following state-
ments are equivalent:

(1) (p, q) = (p′, q′);

(2) there is an isomorphism Aq � Aq′ of left A-modules;

(3) there is an isomorphism pA � p′A of right A-modules.
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Proof. We only prove (2) ⇒ (1). Assume that φ : Aq → Aq′ is an isomorphism.
Consider the projective covers πq : Aet(q) → Aq and πq′ : Aet(q′) → Aq′. Then there
is an isomorphism ψ : Aet(q) → Aet(q′) such that πq′ ◦ ψ = φ ◦ πq. In particular, we
have t(q) = t(q′).

Assume that ψ(et(q)) = λet(q) +
∑

γ λ(γ)γ, where λ and λ(γ) are in k, and γ runs
over all the non-zero non-trivial paths that start at t(q). Since ψ is an isomorphism,
we infer that λ �= 0. We observe that ψ(p) = λp +

∑
γ λ(γ)pγ. Recall that πq(p) =

pq = 0. By using πq′ ◦ ψ = φ ◦ πq, we have ψ(p)q′ = 0. We then infer that pq′ = 0
and thus p = δp′ for some path δ. Similarly, we have p′ = δ′p. We conclude that
p = p′. Since R(p) = {q} and R(p′) = {q′}, we infer that q = q′. Then we are
done.

Lemma 3.6. Let (p, q) be a perfect pair. Then both homomorphisms θq and θ′
p

defined in (2.1) and (2.2) are isomorphisms.

Proof. We have mentioned that the map θq : qA → homA(Aq, A) is a monomor-
phism. We observe that, by definition, for each x ∈ qA,

θq(x)(q) = x. (3.4)

To show that θq is epic, take a homomorphism f : Aq → A of left A-modules. Since
q = et(q)q, we infer that f(q) belongs to et(q)A. We assume that f(q) =

∑
γ λ(γ)γ,

where each λ(γ) is in k and γ runs over all non-zero paths terminating at t(q).
By pq = 0, we deduce that pγ = 0 for those γ with λ(γ) �= 0. By (P2) each
of those γ lies in qA. Therefore, we infer that f(q) lies in qA. By (3.4), we have
θq(f(q)) = f . Then we infer that θq is an isomorphism. Dually, one proves that θ′

p

is an isomorphism.

The following notion plays a central role in this paper.

Definition 3.7. Let A = kQ/I be a monomial algebra. We call a non-zero path p
in A a perfect path, provided that there exists a sequence

p = p1, p2, . . . , pn, pn+1 = p

of non-zero paths such that (pi, pi+1) are perfect pairs for all 1 � i � n. If the given
non-zero paths pi are pairwise distinct, we refer to the sequence p = p1, p2, . . . , pn

as a relation cycle for p, which has length n.

By (P2) of definition 3.3 a perfect path lies in a unique relation cycle. Here, we
identify relation cycles up to cyclic permutations.

Let n � 1. By a basic (n-)cycle, we mean a quiver consisting of n vertices and n
arrows that form an oriented cycle.

Example 3.8. Let Q be a connected quiver and let d � 2. Recall that J denotes
the two-sided ideal of kQ generated by arrows. The monomial algebra A = kQ/Jd

is called a truncated quiver algebra. When the quiver Q has no sources or sinks, we
claim that A has a perfect path if and only if the quiver Q is a basic cycle.

Indeed, let (p, q) be a perfect pair. Assume that p = αn · · ·α2α1 and q =
βm . . . β2β1. We have n + m = d by (P1′) in lemma 3.4. We observe that each
αi is the unique arrow starting at s(αi). Otherwise, L(q) has at least two elements,
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The Gorenstein-projective modules over a monomial algebra 1123

contradicting (P3). Here, we use the fact that Q has no sinks. Similarly, we observe
that each βj is the unique arrow terminating at t(βj), using the fact that Q has no
sources.

Let p be a perfect path with a relation cycle p = p1, p2, . . . , pn. We apply the
above observations to the perfect pairs (pi, pi+1) for 1 � i � n, where pn+1 = p.
Then we infer that the quiver Q is a basic cycle.

On the other hand, if Q is a basic cycle, then any non-trivial path p of length
strictly less than d is perfect.

4. The Gorenstein-projective modules over a monomial algebra

In this section, we characterize the isoclasses of indecomposable non-projective
Gorenstein-projective modules over a monomial algebra in terms of perfect paths.

Recall that, for a finite-dimensional algebra A, the set ind(A-Gproj) of isoclasses
of indecomposable objects in the stable category A-Gproj can be identified with the
set of isoclasses of indecomposable non-projective Gorenstein-projective A-modules.

The main result of this paper is as follows.

Theorem 4.1. Let A be a monomial algebra. Then there is a bijection

{perfect paths in A} 1:1←→ ind(A-Gproj)

sending a perfect path p to the A-module Ap.

Proof. The map is well defined due to proposition 4.4(4); its surjectivity is due to
proposition 4.4(3) and its injectivity follows from lemma 3.5.

Corollary 4.2. A monomial algebra A is CM-free if and only if there exist no
perfect paths in A.

Remark 4.3. Considerable information on the stable category A-Gproj is obtained
using theorem 4.1. For example, the syzygy functor Ω on indecomposable objects
is given by (3.3), and the hom-spaces between indecomposable objects can be com-
puted using lemma 2.3.

In general, we do not have a complete description for A-Gproj as a triangulated
category. We do have such a description in the quadratic monomial case and, slightly
more generally, in the case that there are no overlaps in A (see theorem 5.7 and
proposition 5.9).

The map θq in the following proposition is introduced in (2.1).

Proposition 4.4. Let A = kQ/I be a monomial algebra. Let q be a non-zero non-
trivial path. Then the following statements hold.

(1) If the morphism θq : qA → (Aq)∗ = homA(Aq, A) is an isomorphism and
the A-module Aq is non-projective Gorenstein-projective, then the path q is
perfect.

(2) If the A-module Aq is non-projective Gorenstein-projective, then there is a
unique perfect path p such that L(q) = {p}.
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1124 X.-W. Chen, D. Shen and G. Zhou

(3) Let M be an indecomposable non-projective Gorenstein-projective A-module.
Then there exists a perfect path p such that M � Ap.

(4) For a perfect path p, the A-module Ap is non-projective Gorenstein-projective.

Proof. We observe that each indecomposable non-projective Gorenstein-projective
A-module X is of the form Aγ for some non-zero non-trivial path γ. Indeed, there
exists an exact sequence 0 → X → P → Q of A-modules with P, Q projective.
Then, by lemma 3.2, we are done. In particular, this observation implies that any
monomial algebra is CM-finite.

(1) By (3.1) we have Ω(Aq) =
⊕

p∈L(q) Ap, which is indecomposable and non-
projective by lemma 2.1(1). We infer that L(q) = {p} for some non-zero non-trivial
path p. In particular, s(p) = t(q) and pq = 0. Consider the exact sequence (3.1)
for q:

η : 0 → Ap
inc−−→ Aet(q)

πq−→ Aq → 0.

Recall that the A-module Aq is Gorenstein-projective; in particular, Ext1A(Aq, A) =
0. Therefore, the lower row of the commutative diagram

ε : 0 �� qA

θq

��

inc �� es(p)A

θes(p)

��

π′
p �� pA

θp

��

�� 0

η∗ : 0 �� (Aq)∗ (πq)∗
�� (Aet(q))∗ inc∗

�� (Ap)∗ �� 0

is exact, where π′
p is the projective cover of pA with π′

p(es(p)) = p. Recall that θes(p)

is an isomorphism and θp is a monomorphism. However, since inc∗ is epic, we infer
that θp is also epic and thus an isomorphism. We note that the A-module Ap is
also non-projective Gorenstein-projective (see lemma 2.1(1)).

We claim that (p, q) is a perfect pair. Indeed, we already have (P1) and (P2). It
suffices to show that R(p) = {q}. By assumption, the map θq is an isomorphism.
Then the upper sequence ε in the above diagram is also exact. Comparing ε with
(3.2), we obtain that R(p) = {q}.

We have obtained a perfect pair (p, q) and have also proved that θp is an isomor-
phism. We mention that Ω(Aq) � Ap. Set p0 = q and p1 = p. We now replace q
by p and repeat the above argument. Thus, we obtain perfect pairs (pm+1, pm) for
all m � 0 satisfying Ω(Apm) � Apm+1. By lemma 2.1(3), for a sufficiently large
m, there is an isomorphism Apm � Ap0 = Aq. By lemma 3.5 we have pm = q.
Thus, we have the required sequence q = pm, pm−1, . . . , p1, p0 = q, proving that q
is perfect.

(2) By the first paragraph in the proof of (1), we obtain that L(q) = {p} and
that θp is an isomorphism. Since Ap � Ω(Aq), we infer that Ap is non-projective
Gorenstein-projective. Then the path p is perfect, by (1). This proves (2).

(3) By lemma 2.1(2), there is an indecomposable non-projective Gorenstein-pro-
jective A-module N such that M � Ω(N). By the observation above, we may
assume that N = Aq for a non-zero non-trivial path q. Recall from (3.1) that
Ω(N) �

⊕
q′∈L(q) Aq′. Then we have L(q) = {p} for some non-zero path p and an

isomorphism M � Ap. The path p is necessarily perfect, by (2).
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(4) Take a relation cycle p = p1, p2, . . . , pn for the perfect path p. We define pm = pj

if m = an+j for some integer a and 1 � j � n. Then each pair (pm, pm+1) is perfect.
By (3.3) we have an exact sequence of left A-modules:

ηm : 0 → Apm
inc−−→ Aet(pm+1)

πpm+1−−−−→ Apm+1 → 0.

Gluing all these ηm together, we obtain an acyclic complex,

P • = (· · · → Aet(pm) → Aet(pm+1) → Aet(pm+2) → · · · ),

such that Ap is isomorphic to one of the cocycles. We observe that Ap = Ap1 is
non-projective, since η1 does not split.

It remains to prove that the hom-complex (P •)∗ = homA(P •, A) is also acyclic.
For this, it suffices to show that, for each m, the sequence homA(ηm, A) is exact or,
equivalently, the morphism inc∗ = homA(inc, A) is epic. We observe the following
commutative diagram:

es(pm)A

θes(pm)

��

π′
pm �� pmA

θpm

��
(Aet(pm+1))

∗ inc∗
�� (Apm)∗

where we use the notation in (3.2). Recall that θes(pm) is an isomorphism. By
lemma 3.6 the morphism θpm is an isomorphism. Since π′

pm
is a projective cover,

we infer that the morphism inc∗ is epic. The proof is now complete.

The following example shows that the condition that θq is an isomorphism is
necessary in the proof of proposition 4.4(1).

Example 4.5. Let Q be the following quiver:

1
α

��
2

β

�� 3
γ��

Let I be the ideal generated by βα and αβ, and let A = kQ/I. Denote by Si the
simple A-module corresponding to the vertex i for 1 � i � 3.

The corresponding set F of minimal paths contained in I is {βα, αβ}. Using
(P1′) of lemma 3.4, we observe that there exist precisely two perfect pairs: (β, α)
and (α, β). Hence, the set of perfect paths is exactly {α, β}. Then by theorem 4.1,
up to isomorphism, all the indecomposable non-projective Gorenstein-projective
A-modules are given by Aα and Aβ. We observe two isomorphisms, Aα � S2 and
Aβ � S1.

Consider the non-zero path q = βγ. Then there is an isomorphism Aq � Aβ
of left A-modules. In particular, the A-module Aq is non-projective Gorenstein-
projective. However, the path q is not perfect. Indeed, the map θq is not surjective,
since dimk qA = 1 and dimk(Aq)∗ = 2.

The following result answers the question posed in § 1: for which non-zero path
p in A is the A-module Ap Gorenstein-projective? We observe by (3.1) that Ap is
projective if and only if p is trivial or L(p) is empty.
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Proposition 4.6. Let A be a monomial algebra and let q be a non-zero non-trivial
path. Then Aq is non-projective Gorenstein-projective if and only if L(q) = {p} for
a perfect path p.

Proof. The ‘only if’ part is due to proposition 4.4(2). Conversely, let (p, q′) be a
perfect pair, with q′ a perfect path. In particular, L(q′) = {p}, and thus t(q′) = t(q).
By comparing the exact sequences (3.1) for q and q′, we obtain an isomorphism
Aq � Aq′. Then we are done, since Aq′ is non-projective Gorenstein-projective by
proposition 4.4(4).

The following example shows that a connected truncated quiver algebra is either
self-injective or CM-free, provided that the underlying quiver has no sources or
sinks (cf. [7, theorem 1.1]).

Example 4.7. Let A = kQ/Jd be the truncated quiver algebra in example 3.8 such
that Q is a connected quiver without sources or sinks. If Q is not a basic cycle, then
there is no perfect path. Then, by corollary 4.2, the algebra A is CM-free. On the
other hand, if Q is a basic cycle, then the algebra A is well known to be self-injective.

5. The Gorenstein-projective modules over
a quadratic monomial algebra

In this section, we specialize theorem 4.1 to quadratic monomial algebras. We
describe explicitly the stable category of Gorenstein-projective modules over a
quadratic monomial algebra, which turns out to be a semisimple triangulated cate-
gory. We also characterize monomial algebras whose stable category of Gorenstein-
projective modules is semisimple.

Let A = kQ/I be a monomial algebra. We say that the algebra A is quadratic
monomial provided that the ideal I is generated by paths of length 2 or, equiva-
lently, the corresponding set F consists of certain paths of length 2. By lemma 3.4
(P1′), for a perfect pair (p, q) in A, both p and q are necessarily arrows. In partic-
ular, a perfect path is an arrow and its relation cycle consists entirely of arrows.
Hence, we have the following immediate consequence of theorem 4.1.

Proposition 5.1. Let A be a quadratic monomial algebra. Then there is a bijection

{perfect arrows in A} 1:1←→ ind(A-Gproj)

that sends a perfect arrow α to the A-module Aα.

We shall give a more convenient characterization of perfect arrows. To this end,
we introduce the following notion.

Definition 5.2. Let A = kQ/I be a quadratic monomial algebra. We define its
relation quiver RA as follows: the vertices are given by the arrows in Q, and there
is an arrow [βα] : α → β if t(α) = s(β) and βα lies in I or, equivalently, lies in F .

Let C be a connected component of RA. We say that C is a perfect component
if it is a basic cycle, and that C is an acyclic component if it contains no oriented
cycles.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210518000185
Downloaded from https://www.cambridge.org/core. University of Science and Technology of China, on 07 Nov 2018 at 06:35:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210518000185
https://www.cambridge.org/core


The Gorenstein-projective modules over a monomial algebra 1127

We mention that the relation quiver is somehow dual to the Ufnarovskii graph
studied in [16].

The following lemma shows that an arrow in Q is perfect if and only if the
corresponding vertex in the relation quiver of A lies in a perfect component. This
justifies the terminology.

Lemma 5.3. Let A = kQ/I be a quadratic monomial algebra and let α be an arrow.
Then the following statements hold.

(1) We have L(α) = {β ∈ Q1 | s(β) = t(α) and βα ∈ F } and R(α) = {β ∈ Q1 |
t(β) = s(α) and αβ ∈ F }.

(2) Assume that β is an arrow with t(β) = s(α). Then the pair (α, β) is perfect
if and only if there is an arrow [αβ] from β to α in RA such that it is the
unique arrow starting at β and also the unique arrow terminating at α.

(3) The arrow α is perfect if and only if the corresponding vertex in RA belongs
to a perfect component.

Proof. For (1), we observe the following fact: for a non-zero path p with s(p) = t(α),
pα = 0 if and only if p = p′β with βα ∈ F . This fact implies L(α) = {β ∈
Q1 | s(β) = t(α) and βα ∈ F }. Similarly, we have R(α) = {β ∈ Q1 | t(β) =
s(α) and αβ ∈ F }.

By (1), the set L(α) consists of all immediate successors of α in RA, and R(α)
consists of all immediate predecessors of α. Then (2) follows readily from the defi-
nition of perfect pairs. Statement (3) is a direct consequence of (2).

We say that a vertex j in a quiver is bounded, provided that the lengths of all
the paths starting at j have an upper bound. In this case, the least upper bound is
strictly less than the number of vertices in the quiver.

The following result concerns some homological properties of the module Aα
generated by an arrow α.

Lemma 5.4. Let A = kQ/I be a quadratic monomial algebra and let α be an arrow
in Q. Then the following statements hold:

(1) the A-module Aα is non-projective Gorenstein-projective if and only if the
corresponding vertex of α lies in a perfect component of RA;

(2) the A-module Aα has finite projective dimension if and only if α is a bounded
vertex in RA;

(3) if the corresponding vertex of α in RA is not bounded and does not belong
to a perfect component, then any syzygy module Ωd(Aα) is not Gorenstein-
projective.

Proof. The ‘if’ part of (1) follows from lemma 5.3(3) and proposition 4.4(4). For
the ‘only if’ part, assume that the A-module Aα is non-projective Gorenstein-
projective. By proposition 4.4(2) there is a perfect arrow β such that L(α) = {β}.
In particular, there is an arrow from α to β in RA. By lemma 5.3(3) β belongs to
a perfect component C of RA. It follows that α also belongs to C.
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For (2), we observe that by lemma 5.3(1) and (3.1) there is an isomorphism

Ω(Aα) ∼−→
⊕

β

Aβ, (5.1)

where β runs over all the immediate successors of α in RA. Then (2) follows.

For (3), we assume, on the contrary, that Ωd(Aα) is Gorenstein-projective for
some d � 1. We know already by (2) that Ωd(Aα) is not projective. By iterating
(5.1), we obtain an arrow β such that Aβ is non-projective Gorenstein-projective
and that there is a path from α to β of length d in RA. However, by (1), β belongs
to a perfect component C. It follows that α also belongs to C, which is a desired
contradiction.

The following result concerns Gorenstein homological properties of quadratic
monomial algebras. In particular, we obtain a characterization for quadratic mono-
mial algebras to be Gorenstein, which extends the well-known result that a gentle
algebra is Gorenstein (see [12, theorem 3.4]; cf. example 5.6).

Proposition 5.5. Let A = kQ/I be a quadratic monomial algebra. Denote by d the
length of the longest path in all the acyclic components of RA. Then the following
statements hold.

(1) The algebra A is Gorenstein if and only if each connected component of its
relation quiver RA is either perfect or acyclic. In this case, the algebra A is
(d + 2)-Gorenstein.

(2) The algebra A is CM-free if and only if the relation quiver RA contains no
perfect components.

(3) The algebra A has finite global dimension if and only if each component of
the relation quiver RA is acyclic.

Proof. Statement (2) is an immediate consequence of proposition 5.1 and lemma
5.3(3). By lemma 2.2, an algebra has finite global dimension if and only if it is
Gorenstein and CM-free. Hence, the last statement is a direct consequence of (1)
and (2).

We now prove (1). Recall from lemma 2.2 that the algebra A is Gorenstein if and
only if there exists a natural number n such that Ωn(M) is Gorenstein-projective
for any A-module M .

For the ‘only if’ part, suppose that the contrary holds. Then there is an arrow α
in Q whose corresponding vertex in RA is not bounded and does not belong to a
perfect component. By lemma 5.4(3), we infer that A is not Gorenstein, which is a
contradiction.

For the ‘if’ part, let α be an arrow in Q. Then the A-module Aα is either
Gorenstein-projective or is of projective dimension at most d (see lemma 5.4(1),
(2)). We infer that the A-module Ωd(Aα) is Gorenstein-projective. We observe
that, for a non-zero path p = αp′ of length at least 2, there exists an isomorphism
Aα � Ap of A-modules, sending x to xp′. We conclude that, for any non-zero path
p, the A-module Ωd(Ap) is Gorenstein-projective.
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Let M be any A-module. Then by lemma 3.2 we have an isomorphism between
Ω2(M) and a direct sum of modules of the form Ap for some non-zero paths p.
It follows that the syzygy module Ωd+2(M) is Gorenstein-projective. This proves
that the algebra A is (d + 2)-Gorenstein.

Example 5.6. Let A be a quadratic monomial algebra. Assume that, for each arrow
α, there exists at most one arrow β with αβ ∈ F and at most one arrow γ with
γα ∈ F . Then the algebra A is Gorenstein. In particular, a gentle algebra satisfies
these conditions. As a consequence, we recover the main part of [12, theorem 3.4].

Indeed, the assumption implies that at each vertex in RA, there is at most one
starting arrow and at most one terminating arrow. This forces that each connected
component is either perfect or acyclic.

We recall from [6, lemma 3.4] that, for a semisimple abelian category A and an
auto-equivalence Σ on A, there is a unique triangulated structure on A with Σ
the translation functor. Indeed, all the triangles in the triangulated structure split.
We denote the resulting triangulated category by (A, Σ). We call a triangulated
category semisimple, provided that it is triangle equivalent to (A, Σ) for some
semisimple abelian category A and an auto-equivalence Σ on A.

Let n � 1. Consider the algebra automorphism σ : kn → kn defined by

σ(λ1, λ2, . . . , λn) = (λ2, . . . , λn, λ1). (5.2)

Then σ induces an automorphism σ∗ on the category kn-mod by twisting the mod-
ule actions. We denote by Tn = (kn-mod, σ∗) the resulting semisimple triangulated
category.

The main result in this section is as follows. It is inspired by [17], and extends [17,
theorem 2.5(b)].

Theorem 5.7. Let A = kQ/I be a quadratic monomial algebra. Let C1, C2, . . . , Cm

be all the perfect components of RA, and denote by di the number of vertices in Ci

for each 1 � i � m. Then there is a triangle equivalence

A-Gproj ∼−→ Td1 × Td2 × · · · × Tdm .

Proof. Let α be a perfect arrow. Then the morphism θα in (2.1) is an isomorphism
(see lemma 3.6). Let β be a different arrow. Then αA ∩ Aβ = αAβ. We apply
lemma 2.3 and infer that homA(Aα, Aβ) = 0. Observe that αA ∩ Aα = kα ⊕ αAα.
Applying lemma 2.3 again, we get homA(Aα, Aα) = k IdAα.

Recall from proposition 5.1 that, up to isomorphism, all the indecomposable
objects in A-Gproj are of the form Aα, where α is a perfect arrow. By lemma 5.3(3),
an arrow α is perfect if and only if the corresponding vertex in RA belongs to a
perfect component. From the above calculation on hom-spaces, we deduce that the
categories A-Gproj and Td1 × Td2 × · · · × Tdm

are equivalent. In particular, both
categories are semisimple abelian. To complete the proof, it suffices to verify that
such an equivalence respects the translation functors.

Recall that the translation functor Σ on A-Gproj is a quasi-inverse of the syzygy
functor Ω. For a perfect arrow α lying in the perfect component Ci, its rela-
tion cycle is of the form α = α1, α2, . . . , αdi with αdi+1 = α. By (5.1), we have
Ω(Aαi) � Aαi−1, and thus Σ(Aαi) � Aαi+1. On the other hand, the translation
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1130 X.-W. Chen, D. Shen and G. Zhou

functor on Tdi is induced by the algebra automorphism in (5.2). By comparing these
two translation functors, we infer that they are respected by the equivalence.

Let us illustrate the above results by an example.

Example 5.8. Let Q be the following quiver:

1
α

��
2

β

��
γ

��
3.

δ

��

Let I be the two-sided ideal of kQ generated by {βα, αβ, δγ}, and let A = kQ/I.
Then the relation quiver RA is as follows:

α

[βα]
��
β

[αβ]

�� γ
[δγ] �� δ

By proposition 5.5(1) the algebra A is Gorenstein. Indeed, the algebra A is 2-
Gorenstein. In particular, the bound of the self-injective dimension obtained in
proposition 5.5(1) is not sharp. We mention that A is not a gentle algebra.

By lemma 5.3(3), the only perfect paths in A are α and β. Hence, there are only
two indecomposable non-projective Gorenstein-projective A-modules Aα and Aβ.
By theorem 5.7 we have a triangle equivalence A-Gproj ∼−→ T2.

We give a slight extension of theorem 5.7. For a monomial algebra A = kQ/I, we
say that an overlap between two perfect paths p and q exists if one of the following
conditions holds:

(O1) p = q, and p = p′x and q = xq′ for some non-trivial paths x, p′ and q′ such
that the path p′xq′ is non-zero.

(O2) p �= q, and p = p′x and q = xq′ for some non-trivial path x such that the
path p′xq′ is non-zero.

Observe that if A is quadratic monomial, there is no overlap in A because all the
perfect paths are indeed arrows.

Proposition 5.9. Let A = kQ/I be a monomial algebra. We identify relation
cycles up to cyclic permutations. Denote by d1, d2, . . . , dm the lengths of all the
relation cycles in A. Then the following statements are equivalent;

(1) there is no overlap in A;

(2) there is a triangle equivalence A-Gproj ∼−→ Td1 × Td2 × · · · × Tdm ;

(3) the stable category A-Gproj is semisimple.

Proof. We observe that (O1) is equivalent to the condition that the inclusion kp ⊕
pAp ⊆ pA ∩ Ap is proper. By lemma 2.3 the latter is equivalent to saying that
the inclusion k IdAp ⊆ homA(Ap, Ap) is proper. Similarly, (O2) is equivalent to the
condition that homA(Ap, Aq) �= 0.
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Using the above observation, (1) ⇒ (2) follows by the same argument as in the
proof of theorem 5.7.

The implication (2) ⇒ (3) is trivial.

To show (3) ⇒ (1), we assume that A-Gproj is semisimple. Recall that, for a per-
fect path p, Ap is an indecomposable object in A-Gproj. Hence, by the semisimplic-
ity condition, we have that homA(Ap, Ap) is a division algebra. On the other hand,
we observe that EndA(Ap)/ rad EndA(Ap) is isomorphic to k, where rad EndA(Ap)
denotes the Jacobson radical. It follows that homA(Ap, Ap) is isomorphic to k, that
is, we have homA(Ap, Ap) = k IdAp. For two distinct perfect paths p and q, the
indecomposable objects Ap and Aq are not isomorphic. Then by the semisimplicity
condition, we have homA(Ap, Aq) = 0. Therefore, by the observation made above,
we infer that A has no overlap.

Example 5.10. Let Q be the following quiver:

1
α

��
2

β

��

Consider the ideal I of kQ generated by βαβα. Let A = kQ/I. Then all the perfect
pairs are given by (β, αβα), (βα, βα) and (βαβ, α) (cf. lemma 6.1(3)). It follows
that the unique perfect path is βα, whose relation cycle has length 1. Hence, there is
no overlap in A. By proposition 5.9, we have a triangle equivalence A-Gproj ∼−→ T1.
This equivalence can be deduced from [19, proposition 1] or [9, corollary 3.11]
because A is 2-Gorenstein.

6. The Gorenstein-projective modules over
a Nakayama monomial algebra

In this section, we describe another class of examples for theorem 4.1, for which the
quiver is a basic cycle. In this case, the monomial algebra A is a Nakayama algebra.
We recover a key characterization result of Gorenstein-projective A-modules in [19].

Let n � 1 be an integer. Let Zn be a basic n-cycle with the vertex set {1, 2, . . . , n}
and the arrow set {α1, α2, . . . , αn}, where s(αi) = i and t(αi) = i + 1 for each
1 � i � n. Here, we identify n + 1 with 1. For each integer m, denote by [m] the
unique integer satisfying 1 � [m] � n and m ≡ [m] modulo n. Hence, for each
vertex i, t(αi) = [i+1]. Denote by pl

i the unique path of length l � 0 in Zn starting
at i. In particular, we have p0

i = ei. We observe that t(pl
i) = [i + l].

Let I be a monomial ideal of kZn, and let A = kZn/I be the corresponding
monomial algebra. Then A is a connected Nakayama algebra that is elementary
and has no simple projective modules. Indeed, any connected Nakayama algebra
that is elementary and has no simple projective modules is of this form.

For each 1 � i � n, we denote by Pi = Aei the indecomposable projective A-
module corresponding to the vertex i. Set ci = dimk Pi. Following [13], we define a
map

θ : {1, 2, . . . , n} → {1, 2, . . . , n}
such that θ(i) = [i + ci]. An element in

⋂
d�0 Im θd is called θ-cyclic. We observe

that θ restricts to a permutation on the set of θ-cyclic vertices.
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Let Pi be the projective A-module corresponding to a vertex i. Following [19], we
call Pi minimal if its radical radPi is non-projective or, equivalently, each non-zero
proper submodule of Pi is non-projective. Recall that the projective cover of radPi

is P[i+1]. Hence, the projective A-module Pi is minimal if and only if ci � c[i+1].
Observe that if Pi is not minimal, we have ci = c[i+1] + 1.

The following terminology is taken from [19]. If Pi is minimal, we shall say that
the vertex i, or the corresponding simple module Si, is black. The vertex i, or the
simple module Si, is θ-cyclically black if i is θ-cyclic and θd(i) is black for each
d � 0.

Recall that F denotes the set of minimal paths contained in I.

Lemma 6.1. Let 1 � i � n and l � 0. Let p, q be two non-zero non-trivial paths in
A such that s(p) = t(q). Then the following statements hold.

(1) The path pl
i belongs to I if and only if l � ci.

(2) The path pl
i belongs to F if and only if the A-module Pi is minimal and l = ci.

(3) The pair (p, q) is perfect if and only if the concatenation pq lies in F . In this
case, the vertex s(q) is black.

(4) If (p, q) is a perfect pair, then t(p) = θ(s(q)).

Proof. Recall that Pi = Aei has a basis given by {pj
i | 0 � j < ci}. Then (1) follows

trivially.

For the ‘only if’ part of (2), we assume that pl
i belongs to F . By the minimality

of pl
i, we have l = ci. Moreover, if Pi is not minimal, we have c[i+1] = ci − 1 and

thus pl−1
[i+1] belongs to I. This contradicts the minimality of pl

i. By reversing the
argument, we have the ‘if’ part.

The ‘only if’ part of (3) follows from lemma 3.4(P1′). For the ‘if’ part, we apply
lemma 3.4. We only verify (P2′). Assume that pq′ = γδ with δ ∈ F . In particular,
the path pq′ lies in I, which shares the same terminating vertex with pq. By the
minimality of pq, we infer that q′ is longer than q. By t(q′) = t(q), we infer that
q′ = qx for some non-zero path x.

When the equivalent conditions of (3) hold, pq = pl
i for i = s(q), which belongs

to F . By (2), the vertex i is black.

Observe by (3) and (2) that the length of pq equals ci. Hence, we have t(p) =
[s(q) + ci] = θ(s(q)), which proves (4).

The following result describes explicitly all the perfect paths in A = kZn/I. It is
close in spirit to [19, lemma 5].

Proposition 6.2. Let A = kZn/I be as above, and q be a non-zero non-trivial
path in A. Then the path q is perfect if and only if both vertices s(q) and t(q) are
θ-cyclically black.

Proof. For the ‘only if’ part, we assume that the path q is perfect. We take a
relation cycle q = p1, p2, . . . , pm with pm+1 = q. We apply lemma 6.1(3), (4) to
each perfect pair (pi, pi+1), and deduce that s(pi+1) is black and t(pi) = θ(s(pi+1))
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is also black because t(pi) = s(pi−1). Moreover, we have θ(s(pi+1)) = s(pi−1), where
the subindex is taken modulo m. Then each s(pi) is θ-cyclic and so is t(pi). Indeed,
they are all θ-cyclically black.

For the ‘if’ part, we assume that both vertices s(q) and t(q) are θ-cyclically black.
We claim that there exists a perfect pair (p, q) with both s(p) and t(p) θ-cyclically
black.

Since the vertex i = s(q) is black, by lemma 6.1(2) the path pci
i belongs to F .

We observe that pci
i = pq for a unique non-zero path p. Then (p, q) is a perfect pair

by lemma 6.1(3). By lemma 6.1(4), we have t(p) = θ(s(q)). Hence, both vertices
s(p) = t(q) and t(p) are θ-cyclically black, proving the claim.

Set q0 = q and q1 = p. We apply the claim repeatedly and obtain perfect pairs
(qi+1, qi) for each i � 0. We assume that ql = qm+l for some l � 0 and m > 0.
Then, applying lemma 3.5 repeatedly, we infer that q0 = qm. Then we have the
desired sequence q = qm, qm−1, . . . , q1, q0 = q, proving that q is perfect.

As a consequence, we recover a key characterization result of Gorenstein-project-
ive A-modules in [19, lemma 5]. We denote by topX the top of an A-module X.

Corollary 6.3. Let A = kZn/I be as above, and let M be an indecomposable
non-projective A-module. Then the module M is Gorenstein-projective if and only
if both topM and topΩ(M) are θ-cyclically black simple modules.

Proof. For the ‘only if’ part, we assume by theorem 4.1 that M � Aq for a perfect
path q. We take a perfect pair (p, q), with p a perfect path. Then by (3.3) we have
Ω(M) � Ap. We infer that topM � St(q) and topΩ(M) � St(p). By proposition 6.2,
both simple modules are θ-cyclically black.

For the ‘if’ part, we assume that topM � Si. Take a projective cover π : Pi →
M . Recall that each non-zero proper submodule of Pi is of the form Ap for a
non-zero non-trivial path p with s(p) = i. Take such a path p with Ap = Ker π,
which is isomorphic to Ω(M). Therefore, by assumption, both Si = Ss(p) and
St(p) � topΩ(M) are θ-cyclically black. Then by proposition 6.2, the path p is
perfect. Take a perfect pair (p, q), with q a perfect path. In particular, by (3.3) Aq
is isomorphic to Pi/Ap, which is further isomorphic to M . Then we are done, since
by proposition 4.4(4) Aq is a Gorenstein-projective module.
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