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THE STABLE MONOMORPHISM CATEGORY OF A FROBENIUS
CATEGORY

Xiao-Wu Chen

Abstract. For a Frobenius abelian category A, we show that the category Mon(A)

of monomorphisms in A is a Frobenius exact category; the associated stable category
Mon(A) modulo projective objects is called the stable monomorphism category of A.

We show that a tilting object in the stable category A of A modulo projective objects
induces naturally a tilting object in Mon(A). We show that if A is the category of

(graded) modules over a (graded) self-injective algebra A, then the stable monomorphism

category is triangle equivalent to the (graded) singularity category of the (graded) 2× 2
upper triangular matrix algebra T2(A). As an application, we give two characterizations

to the stable category of Ringel-Schmidmeier.

1. Introduction

Let A be an abelian category. Denote by Mor(A) the category of morphisms in A
([3, p.101]): the objects are morphisms in A and the morphisms are given by commu-
tative squares in A. It is an abelian category ([17, Proposition 1.1]). We are mainly
concerned with the full subcategory Mon(A) of Mor(A) consisting of monomorphisms
in A, which is called the monomorphism category of A. It is an additive subcategory
of Mor(A) which is closed under extensions, thus it becomes an exact category in the
sense of Quillen ([22, Appendix A]).

In the case that the abelian category A is the module category over a ring, the
monomorphism category Mon(A) is known as the submodule category. Recently it is
studied intensively by Ringel and Schmidmeier ([34, 35, 36]). If the ring is Z/(qp)
with p ≥ 2 and q a prime number, the study of the submodule category goes back to
Birkhoff ([8]; see also [1]). The case that the ring is k[t]/(tp) with k a field is studied
by Simson ([37]) and also by Beligiannis ([7]). In this case, the study of indecom-
posable objects in Mon(A) shows an example of the typical trichotomy phenomenon
“finite/tame/wild” in the representation theory of finite dimensional algebras, where
the trichotomy depends on the parameter p; see [36, Section 6]. Moreover, the case
where the abelian category A is given by the graded module category over the graded
algebra k[t]/(tp) with deg t = 1 plays an important role in [36]; in this case, the
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monomorphism category Mon(A) is denoted by S(p̃). It is a Frobenius exact cate-
gory ([27]; also see Lemma 2.1 and compare [22, Section 5]). Then by [18, Chapter
I, Theorem 2.6] its stable category S(p̃) modulo projective objects is triangulated. A
very recent and remarkable result due to Kussin, Lenzing and Meltzer claims that
the stable category S(p̃) is triangle equivalent to the stable category of vector bun-
dles on the weighted projective lines of type (2, 3, p); see [27]. Recall that a similar
trichotomy phenomenon “domestic/tubular/wild” occurs in the classification of inde-
composable vector bundles on the weighted projective lines of type (2, 3, p), while the
trichotomy again depends on the parameter p; see [29, 26]. In this paper, we will call
the triangulated category S(p̃) the stable category of Ringel-Schmidmeier.

The present paper studies the monomorphism category Mon(A) of a Frobenius
abelian category A, in particular, the stable category A modulo projective objects is
triangulated. We show that Mon(A) is a Frobenius exact category and then the sta-
ble category Mon(A) modulo projective objects is triangulated; it is called the stable
monomorphism category of A. Recently this category is also studied by Iyama, Kato
and Miyachi ([21]). Observe that the triangulated categories above are algebraical in
the sense of Keller. We have a well-behaved notion of tilting object for an algebraical
triangulated category ([24]). We prove that a tilting object in A induces naturally
a tilting object in Mon(A); see Theorem 3.2. Moreover, if the category A is the
(graded) module category over a (graded) self-injective algebra A, we relate the cate-
gory Mon(A) to the category of (graded) Gorenstein-projective modules and then to
the (graded) singularity category of the 2× 2 upper triangular matrix algebra T2(A)
of A (for T2(A), see [17, p.115] and [3, Chapter III, Section 2]); see Theorem 4.1.
We are inspired by a computational result by Li and Zhang on Gorenstein-projective
modules ([30]; compare [7, 21]). Here, the Gorenstein-projective module is in the
sense of Enochs and Jenda ([16, Chapter 10]), and the singularity category is in the
sense of Orlov ([32, 33]; compare [10, 19]).

Combining all these together, we give two characterizations to the stable category
S(p̃) of Ringel-Schmidmeier. We characterize the stable category S(p̃) as the bounded
derived category of T2(kAp−1) ' kA2⊗k kAp−1; see Corollary 3.4. Here, for each n ≥
1, An is the linear quiver with n vertices and linear orientation, and kAn is the path
algebra. We characterize the stable category S(p̃) as the graded singularity category
of T2(k)[t]/(tp), where the algebra T2(k)[t]/(tp) is graded such that deg T2(k) = 0 and
deg t = 1; see Corollary 4.7.

For the convention, throughout we fix a commutative artinian ring R. All artin
algebras are artin R-algebras, and all categories and functors are R-linear. For an
artin algebra A, denote by mod A the category of finitely generated right A-modules
and by proj A the full subcategory consisting of projective modules. We denote by
AA and AA the right and left regular modules of the artin algebra A, respectively.
For triangulated categories and derived categories, we refer to [20, 18, 23, 24].

2. Monomorphism Category

Let A be a Frobenius abelian category. Thus A has enough projective objects and
enough injective objects, and the class of projective objects coincides with the class
of injective objects. Denote by P the full subcategory of A consisting of projective
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objects. Denote by A the stable category of A modulo P: the objects are the same
as A, and the morphism spaces are factors of the morphism spaces in A modulo
those factoring through projective objects ([3, p.101]). The stable category A is a
triangulated category such that its shift functor is given by the quasi-inverse of the
syzygy functor on A and triangles are induced by short exact sequences in A; for
details, see [18, Chapter I, Section 2].

Recall that Mor(A) is the category of morphisms in A: the objects are morphisms
α : A → B in A and the morphisms are commutative squares in A, that is, of the
form (f, g) : α → α′ where f : A → A′ and g : B → B′ are morphisms in A such that
α′ ◦ f = g ◦ α (compare [3, p.101]). For an object α : A → B in Mor(A), we write
s(α) = A and t(α) = B, which are called the source and target of α, respectively.
Note that Mor(A) is an abelian category such that a sequence α′ → α → α′′ is exact if
and only if the induced sequences of sources and targets are exact in A ([17, Corollary
1.2]).

Recall that an exact category in the sense of Quillen is an additive category together
with an exact structure, that is, a distinguished class of ker-coker sequences, which are
called conflations, subject to certain axioms. Recall that a full additive subcategory
of an abelian category which is closed under extensions has a natural exact structure
such that conflations are just short exact sequences with terms in the subcategory
([22, Appendix A] and [23, Section 4]). Moreover, there is a notion of Frobenius
exact category and the associated stable category modulo projective objects is still
triangulated; compare [18, p.10-11], [22, subsection 1.2 b)] and [23, Section 6].

Recall that our main concern is the monomorphism category Mon(A), which is
the full subcategory of Mor(A) consisting of monomorphisms in A. We will consider
the following two functors: the first functor i1 : A → Mon(A) is defined such that
i1(A) = 0 → A and i1(f) = (0, f) where A is an object and f is a morphism in A;
the second i2 : A → Mon(A) is defined such that i2(A) = A

IdA→ A and i2(f) = (f, f).
We observe that both functors are exact and fully faithful.

Lemma 2.1. Let A be an abelian category. Then the monomorphism category
Mon(A) is an exact category such that conflations are given by sequences α′ → α → α′′

with the induced sequences of sources and targets short exact in A.
Assume further that A is Frobenius. Then the exact category Mon(A) is Frobenius

such that its projective objects are equal to direct summands of objects of the form
i1(P )⊕ i2(P ) where P is a projective object in A.

Proof. We observe that Mon(A) is an additive subcategory of the abelian category
Mor(A) which is closed under extensions by Snake Lemma. Then it is an exact
category with conflations induced by short exact sequences in Mor(A); see Example
4.1 in [23].

Assume now that the abelian category A is Frobenius. We will show first that
objects of the form i1(P ) and i2(P ) are projective and injective. Recall that for
an object α in Mon(A) we denote by s(α) and t(α) the source and target of α,
respectively. We have the following natural isomorphisms

HomMon(A)(i1(P ), α) ' HomA(P, t(α)) and HomMon(A)(i2(P ), α) ' HomA(P, s(α)).
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These isomorphisms show that the objects i1(P ) and i2(P ) are projective. Similarly,
we have the following natural isomorphisms

HomMon(A)(α, i1(P )) ' HomA(Cok α, P )

and
HomMon(A)(α, i2(P )) ' HomA(t(α), P ).

These isomorphisms show that the objects i1(P ) and i2(P ) are injective; here, we use
that the functor Cok of taking the cokernels is exact on Mon(A) by Snake Lemma.

Let α be an object in Mon(A). Take epimorphisms P → s(α) and P → t(α) with
P projective in A. Then we have an epimorphism i1(P ) ⊕ i2(P ) → α whose kernel
lies in Mon(A). This shows that the exact category Mon(A) has enough projective
objects. On the other hand, for the object α, take monomorphisms a : t(α) → P and

b′ : Cok α → P with P projective in A. Denote by b the composite t(α) → Cok α
b′

→ P
where the first morphism is the natural projection. Consider the following morphism
in Mor(A)

(
(

a ◦ α
0

)
,

(
a
b

)
) : α −→ i2(P )⊕ i1(P ).

It is a monomorphism and by a diagram-chasing its cokernel lies in Mon(A). Then
it becomes a conflation in Mon(A). This shows that the exact category Mon(A) has
enough injective objects. From the argument above, it is direct to conclude that in
the exact category Mon(A) the class of projective objects coincides with the class of
injective objects, and projective objects are direct summands of objects of the form
i1(P )⊕ i2(P ) where P is a projective object in A. �

Remark 2.2. With a slightly modified proof as above, one can show that a similar
result holds if the category A is an exact category. In this case, one replaces Mon(A)
by the inflation category of A; compare [22, Section 5] and [21]. �

For a Frobenius abelian category A, we denote by Mon(A) the stable category of
Mon(A) modulo projective objects; it is a triangulated category. We will call it the
stable monomorphism category of A.

We observe that both the functors i1 and i2 are fully faithful and send projective
objects to projective objects. Then they induce fully faithful triangle functors i1 : A →
Mon(A) and i2 : A → Mon(A) ([18, p.23, Lemma 2.8]).

3. Tilting Objects in Stable Monomorphism Category

In this section, we will show that for a Frobenius abelian categoryA, a tilting object
in the stable category A induces naturally a tilting object in the stable monomorphism
category Mon(A). We characterize the stable category of Ringel-Schmidmeier as the
bounded derived category of a finite dimensional algebra.

Following Keller, we recall that a triangulated category is algebraical provided
that it is triangle equivalent to the stable category of a Frobenius exact category ([24,
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subsection 8.7]). One has a well-behaved notion of tilting object in an algebraical
triangulated category.

Let T be an algebraical triangulated category. Denote by [1] the shift functor and
by [n] its n-th power for each n ∈ Z. An object T in T is a tilting object if the
following conditions are satisfied:

(T1) HomT (T, T [n]) = 0 for n 6= 0;
(T2) the smallest thick triangulated subcategory of T containing T is T itself;
(T3) EndT (T ) is an artin algebra having finite global dimension.

Here, we recall that a triangulated subcategory of T is called thick if it is closed under
taking direct summands. We point out that the notion of tilting object presented here
is slightly different from, however closely related to, the ones in [18] and [24].

Recall that an additive category is said to be idempotent-split provided that each
idempotent e : X → X admits a factorization X

u→ Y
v→ X such that u◦v = IdY ([18,

Chapter I, 3.2]). Recall that for an artin algebra A having finite global dimension,
the bounded derived category Db(mod A) is algebraical and idempotent-split (see the
proof of [18, Chapter I, Corollary 4.9]), and it has AA as its tilting object.

The following remarkable result due to Keller claims that the converse holds true
(compare [9, Theorem 1]).

Lemma 3.1. (Keller) Let T be an idempotent-split algebraical triangulated category
with a tilting object T . Then there is a triangle equivalence

T ' Db(mod EndT (T )).

Proof. Set A = EndT (T ). By [24, Theorem 8.51 a)] there is a triangle functor
F ′ : T → D(A′) sending T to A′, where A′ is a differential graded algebra with
the only nonzero cohomology H0(A′) ' A and D(A′) is the (unbounded) derived
category of differential graded (right) modules on A′. By [24, subsection 8.4] there
is a triangle equivalence D(A′) ' D(Mod A) identifying A′ with AA, where Mod A
is the category of (not necessarily finitely generated) right A-modules. Consequently,
there is a triangle functor F : T → D(Mod A) sending T to A. Using (T1) and (T2)
and applying Beilinson Lemma ([18, p.72, Lemma 3.4]), the triangle functor F is fully
faithful. Then we may view T as a triangulated subcategory of D(Mod A); more-
over, since T is idempotent-split, it is necessarily a thick subcategory of D(Mod A).
By (T3) the artin algebra A has finite global dimension, and then the smallest thick
triangulated subcategory of D(Mod A) containing AA is Db(mod A). From this
we conclude that the essential image of F is Db(mod A). Therefore F induces the
required equivalence. �

Our first observation states that a tilting object in the stable category A induces
naturally a tilting object in the stable monomorphism category Mon(A). Recall that

for an artin algebra A, T2(A) =
(

A A
0 A

)
is the 2×2 upper triangular matrix algebra

([3, Chapter III, Section 2]).
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Theorem 3.2. Let A be a Frobenius abelian category such that T is a tilting object
in its stable category A. Then T ′ = i1(T ) ⊕ i2(T ) is a tilting object in Mon(A);
moreover, we have an isomorphism EndMon(A)(T ′) ' T2(EndA(T )) of algebras.

Proof. Recall that i1 : A → Mon(A) and i2 : A → Mon(A) are fully faithful triangle
functors. Observe that for objects A and B in A, HomMon(A)(i2(A), i1(B)) = 0. So to
check the condition (T1) for T ′, it suffices to show that HomMon(A)(i1(T ), i2(T )[n]) =
0 for n 6= 0. For this end, note that since i2 is a triangle functor, we have

i2(T )[n] ' i2(T [n]) = T [n]
IdT [n]−→ T [n].

Thus a morphism in HomMon(A)(i1(T ), i2(T )[n]) is of the form (0, f), where f : T →
T [n] is a morphism in A. By the condition (T1) for T , f factors through a projec-
tive object P in A. Therefore the morphism (0, f) factors through i1(P ), which is
projective in Mon(A); see Lemma 2.1. Hence (0, f) = 0 in the stable monomorphism
category Mon(A).

To check (T2) for T ′, recall that each object α fits into a conflation

i2(s(α)) −→ α −→ i1(Cok α)

and thus into a triangle

i2(s(α)) −→ α −→ i1(Cok α) −→ i2(s(α))[1].

Here as in Section 2, s(α) denotes the source of α. Hence the smallest triangulated
subcategory of Mon(A) containing i1(A) and i2(A) is Mon(A) itself. Now applying
the condition (T2) of T , we infer that (T2) holds for T ′.

Finally to see the condition (T3) for T ′, it is direct to check that EndMon(A)(T ′) '
T2(EndA(T )). Recall that the algebra EndA(T ) has finite global dimension. Then
by [3, Chapter III, Proposition 2.6] we infer that EndMon(A)(T ′) has finite global
dimension. �

We will give an application of Theorem 3.2. Let A = ⊕n≥0An be a positively
graded artin algebra. Denote by c the maximal integer such that Ac 6= 0. Consider
the following upper triangular matrix algebra

b(A) =


A0 A1 · · · Ac−2 Ac−1

0 A0 · · · Ac−3 Ac−2

...
...

. . .
...

...
0 0 · · · A0 A1

0 0 · · · 0 A0

 .

Here the multiplication of b(A) is induced from the one of A. This algebra is called
the Beilinson algebra of A in [12].

Denote by modZ A the category of finitely generated Z-graded A-modules with
homomorphisms preserving degrees. We say that A is graded self-injective provided
that modZ A is a Frobenius category. In fact, this is equivalent to that as a ungraded
algebra A is self-injective ([15, 12]). In this case, we denote by modZ A the stable
category of modZ A modulo projective modules; it is a triangulated category.
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We say that a graded algebra A is right well-graded, provided that Ac, as a right
A0-module, is sincere in the sense of [3, p.317]. In fact, for a graded self-injective
algebra A, it is right well-graded if and only if it is left well-graded; see [12, Lemma
2.2]. In this case we will simply say that the graded algebra A is well-graded.

Corollary 3.3. Let A = ⊕n≥0An be a positively graded self-injective artin algebra
which is well-graded. Suppose that A0 has finite global dimension. Then there is a
triangle equivalence

Mon(modZ A) ' Db(mod T2(b(A))).

.

Proof. By [3, Chapter III, Proposition 2.6], the Beilinson algebra b(A) and then
T2(b(A)) has finite global dimension. By [12, Corollary 1.2] there is a triangle equiv-
alence modZ A ' Db(mod b(A)). In particular, there is a tilting object T in modZ A
with endomorphism algebra b(A). We apply Theorem 3.2 to get a tilting object T ′ in
Mon(modZ A) whose endomorphism algebra is isomorphic to T2(b(A)). Note that the
stable monomorphism category Mon(modZ A) is idempotent-split; in fact, it is even
a Krull-Schmidt category. Then the result follows immediately from Lemma 3.1. �

In what follows, we will apply the obtained results to the stable category of Ringel-
Schmidmeier.

Let k be a field and let p ≥ 2 be an integer. Consider the truncated polynomial
algebra A = k[t]/(tp) with t an indeterminant; it is positively graded such that deg t =
1. Observe that A is graded self-injective and moreover it is well-graded. In particular,
the category modZ A of finitely generated graded A-modules is Frobenius. Following
[36, subsection 0.4], we denote by S(p̃) the category of pairs (V,U), where V is a
graded module over A and U ⊆ V is a graded submodule, and the morphisms in this
category are given by morphisms in the graded module category which respect the
inclusion. There is a natural identification S(p̃) = Mon(modZ A) and then by Lemma
2.1 it is a Frobenius exact category. Hence its stable category S(p̃) modulo projective
objects is triangulated. This triangulated category will be called the stable category
of Ringel-Schmidmeier.

We note that the Beilinson algebra b(A) of the graded algebra A is isomorphic
to the path algebra kAp−1 of the linear quiver Ap−1 with p − 1 vertices and linear
orientation (compare [33, Example 2.9]). Then the 2 × 2 upper triangular matrix
algebra T2(b(A)) is given by the following quiver with 2p− 2 vertices subject to the
commutativity relation

• //

��

•

��

// · · · · · · // • //

��

•

��
• // • // · · · · · · // • // •

We observe that T2(b(A)) ' kA2 ⊗k kAp−1. Let us mention that these diagrams and
algebras are studied in [28].

Then we have the following immediate consequence of Corollary 3.3.
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Corollary 3.4. Use the notation above. Then there is a triangle equivalence

S(p̃) ' Db(mod kA2 ⊗k kAp−1).

Remark 3.5. Let us remark that taking into account of the results obtained in [26]
and [28, Corollary 1.2], one may find a close relation between Corollary 3.4 and some
results in [27].

Recall that T =
⊕p−2

i=0 (A/(tp−i−1))(i) is a tilting object in modZ A, where (i)
denote the degree-shift functors ([31] and [15]). This assertion can be obtained from
the proof of [33, Corollary 2.8] or [12, Corollary 1.2]. We apply Theorem 3.2 to deduce
that T ′ = i1(T )⊕i2(T ) is a tilting object in S(p̃), which yields the triangle equivalence
in Corollary 3.4. We point out that this explicit tilting object is also obtained in [27,
Lemma 4.7] via a different method.

4. Stable Monomorphism Category as Singularity Category

In this section, we will relate the stable monomorphism category of the (graded)
module category of a (graded) self-injective algebra to the (graded) singularity cate-
gory of the associated (graded) 2×2 upper triangular matrix algebra. We characterize
the stable category of Ringel-Schmidmeier as the graded singularity category of a fi-
nite dimensional graded algebra.

Let A be an artin algebra. Recall that the bounded homotopy category Kb(proj A)
of projective modules is viewed naturally as a triangulated subcategory of Db(mod A).
Following [32, 33], we call the Verdier quotient triangulated category

Dsg(A) = Db(mod A)/Kb(proj A)

the singularity category of A; compare [10] and [19].

Recall that for an artin algebra A, T2(A) is the 2 × 2 upper triangular matrix
algebra of A. We consider the following composite functor

GA : Mon(mod A) ↪→ mod T2(A) −→ Db(mod T2(A)) −→ Dsg(T2(A)).

Here, the first inclusion is obtained by regarding morphisms in mod A as (right) T2(A)-
modules ([3, Chapter III, Proposition 2.2]), the middle functor identifies modules with
stalk complexes concentrated at degree zero ([20, p.40, Proposition 4.3]), and the last
functor is the quotient functor.

Our second observation is as follows.

Theorem 4.1. Let A be a self-injective algebra. Then the functor GA induces a
triangle equivalence

Mon(mod A) ' Dsg(T2(A)).

Before giving the proof, we recall several notions. Let A be an artin algebra. Follow-
ing [5, p.400], an acyclic complex P • of projective A-modules is called totally acyclic if
the Hom complex HomA(P •, A) is still acyclic (also see [25, Section 7]). An A-module
M is said to be Gorenstein-projective if there is a totally acyclic complex P • such that
its zeroth cocycle Z0(P •) is isomorphic to M ([16, Chapter 10]). Recall that a module
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M is Gorenstein-projective if and only if Exti
A(M,A) = 0, Exti

Aop(HomA(M,A), A) =
0 for i ≥ 1 and the natural map M → HomAop(HomA(M,A), A) is an isomorphism
(compare [14, Definition (1.1.2)]).

We denote by Gproj A the full subcategory of mod A consisting of Gorenstein-
projective modules. Observe that projective modules are Gorenstein-projective and
thus proj A ⊆ Gproj A. Moreover, by [2, Proposition 5.1] the subcategory Gproj A
is closed under extensions and taking direct summands (also see [16]), and then it
is direct to see that Gproj A is a Frobenius exact category such that its projective
objects are equal to projective A-modules ([6, Proposition 3.8(i)] and [13, Proposition
3.1(1)]). Denote by Gproj A its stable category modulo projective A-modules; it is a
triangulated category.

Recall that an artin algebra A is said to be Gorenstein if the regular modules AA
and AA have finite injective dimensions ([19]). In this case the two dimensions are
equal and the common value is denoted by G.dim A. We say that the Gorenstein
algebra A is 1-Gorenstein provided that G.dim A ≤ 1.

For an artin algebra A, denote by sub A the full subcategory of mod A consisting
of submodules of projective modules; these modules are called torsionless modules.
We remark that homological properties of torsionless modules are studied in [4].

The following result is well known.

Lemma 4.2. Let A be a 1-Gorenstein algebra. Then we have Gproj A = sub A.

Proof. The inclusion Gproj A ⊆ sub A is easy. On the other hand, assume that M is
a torsionless module. Consider a short exact sequence 0 → M → P → M ′ → 0 with
P projective. Since the regular module AA has injective dimension at most one, using
dimension shift, we infer that Exti(M,A) = 0 for i ≥ 1. Then by [16, Corollary 11.5.3]
(see also [13, Lemma 3.7] and [25, Proposition 7.13]), M is Gorenstein-projective. �

The next observation is essentially due to Li and Zhang ([30, Theorem 1.1]; also
see [7, Example 4.17] and [21, Proposition 3.6]). Recall that for an artin algebra A, a
morphism of (right) A-modules is identified with a (right) module over T2(A); in fact,
this yields an equivalence Mor(mod A) ' mod T2(A) of categories; see [3, Chapter
III, Proposition 2.2].

Lemma 4.3. Let A be a self-injective algebra. Then we have an equivalence of cate-
gories

Mon(mod A) ' sub T2(A).

Proof. Recall the equivalence Mor(mod A) ' mod T2(A). Observe that the regular
module T2(A)T2(A) corresponds to the monomorphism

(
0

IdA

)
: A → A⊕A. From this

one infers that torsionless T2(A)-modules correspond to monomorphisms in mod A.
On the other hand, the third paragraph of the proof of Lemma 2.1 already shows that
for a monomorphism α, there is a short exact sequence 0 → α →

(
0

IdP

)
→ α′ → 0 in

Mor(mod A) such that P is a projective A-module. Observe that the monomorphism(
0

IdP

)
corresponds to a projective T2(A)-module. Therefore the monomorphism α

corresponds to a torsionless T2(A)-module. This completes the proof. �
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We will recall the last ingredient in our proof. Let A be an artin algebra. Consider
the following composite of functors

FA : Gproj A ↪→ mod A −→ Db(mod A) −→ Dsg(A)

where from the left side, the first functor is the inclusion, the second identifies modules
with stalk complexes concentrated in degree zero ([20, p.40, Proposition 4.3]) and
the last is the quotient functor. Observe that the additive functor FA vanishes on
projective modules and then induces uniquely an additive functor Gproj A → Dsg(A),
which is still denoted by FA.

The following important result is due to Buchweitz ([10, Theorem 4.4.1]) and in-
dependently due to Happel ([19, Theorem 4.6]); also see [13, Proposition 3.5 and
Theorem 3.8].

Lemma 4.4. (Buchweitz-Happel) Let A be an artin algebra. Then the functor
FA : Gproj A → Dsg(A) is a fully faithful triangle functor. Moreover, if A is Goren-
stein, then the functor FA is dense and thus a triangle equivalence.

Proof of Theorem 4.1. We observe that by [11, Remark 3.5] (also see [17, 19])
the algebra T2(A) is 1-Gorenstein and then we can apply Lemma 4.2. Then Lemma
4.3 yields an equivalence of categories Mon(mod A) ' Gproj T2(A). We observe that
this equivalence preserves the exact structures, that is, the equivalence and its quasi-
inverse preserve short exact sequences in Mon(mod A) and Gproj T2(A). Therefore,
this equivalence is an equivalence of Frobenius exact categories. Consequently, we
have an induced equivalence of triangulated categories

Mon(mod A) ' Gproj T2(A).

Then the result follows directly from Lemma 4.4. �

We will need a graded version of Theorem 4.1. Let A = ⊕n≥0An be a positively
graded artin algebra. Denote by projZ A the full subcategory of modZ A consisting
of projective objects. Following [33], one has the graded singularity category of A
defined by

DZ
sg(A) = Db(modZ A)/Kb(projZ A).

For a graded module M = ⊕i∈ZMi and an integer d ∈ Z, its shifted module M(d)
has the same module structure as M while it is graded such that M(d)i = Md+i

for all i ∈ Z. This defines automorphisms (d) : modZ A → modZ A, which are
called degree-shift functors. For graded modules M,N , we write HOMA(M,N) =
⊕i∈ZHommodZ A(M,N(i)) and set EXTn

A(−,−) to be the n-th right derived functors
([31] and [15]).

An acyclic complex P • in projZ A is totally acyclic if the complex HOMA(P •, A)
in projZ Aop is acyclic. A graded A-module is called graded Gorenstein-projective
provided that it is the zeroth cocycle of a totally acyclic complex. Thus we have a full
subcategory GprojZ A of modZ A consisting of graded Gorenstein-projective modules
and evidently projZ A ⊆ GprojZ A. As in the ungraded case, the category GprojZ A
is a Frobenius exact category with its projective objects equal to graded projective
A-modules.
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Recall that a graded artin algebra A is said to be graded Gorenstein if the graded
regular modules AA and AA have finite injective dimensions in modZ A and modZ Aop,
respectively. In this case the two dimensions are the same, which will be denoted by
G.dimZ A.

We observe the following fact, which guarantees in principle that most results in
Gorenstein homological algebra hold true in the graded situation.

Lemma 4.5. Let A be a positively graded artin algebra, and let M be a graded A-
module. Then we have

(1) the module M is graded Gorenstein-projective if and only if it is Gorenstein-
projective as a ungraded module;

(2) the algebra A is graded Gorenstein if and only if it is Gorenstein as a ungraded
algebra; in this case, we have G.dimZ A = G.dim A.

Proof. For (1), it suffices to recall that a graded module M is graded Gorenstein-
projective if and only if EXTi

A(M,A) = 0, EXTi
Aop(HOMA(M,A), A) = 0 for i ≥ 1

and the natural map M → HOMAop(HOMA(M,A), A) is an isomorphism of graded
modules; moreover, for graded modules M and N we have for each i a natural iden-
tification EXTi

A(M,N) = Exti
A(M,N) ([31, Corollary 2.4.7]). For (2), we observe

that a graded module M has finite injective dimension in modZ A if and only if it has
finite injective dimension as a ungraded module; moreover, the two dimensions are
the same ([31, Theorem 2.8.7]). �

One can show the graded analogues of Lemmas 4.2, 4.3 and 4.4. Using these, we
have the following graded analogue of Theorem 4.1.

Proposition 4.6. Let A = ⊕n≥0An be a positively graded self-injective artin algebra.
Denote by T2(A) the 2× 2 upper triangular matrix algebra of A which is graded such
that T2(A)n = T2(An) for n ≥ 0. Then we have a triangle equivalence

Mon(modZ A) ' DZ
sg(T2(A)).

We apply Proposition 4.6 to the stable category of Ringel-Schmidmeier.

Let k be a field and p ≥ 2 be an integer. Recall from Section 3 that A = k[t]/(tp)
with deg t = 1, which is graded self-injective. We observe that T2(A) is isomorphic, as
a graded algebra, to T2(k)[t]/(tp), while the latter is graded such that deg T2(k) = 0
and deg t = 1.

Recall that the category S(p̃) is identified with Mon(modZ A), and then the stable
category S(p̃) of Ringel-Schmidmeier is identified with Mon(modZ A). Then the
following is an immediate consequence of Proposition 4.6.

Corollary 4.7. Use the notation above. Then there is a triangle equivalence

S(p̃) ' DZ
sg(T2(k)[t]/(tp)).
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