The singularity category of a quadratic monomial algebra

Xiao-Wu Chen, USTC

The Asia-Australia Algebra Conference, 2019.1.21-25, Sydney

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra

1 The singularity category: a detailed introduction

2 Some known results

- 4 同 ト 4 ヨ ト 4 ヨ ト

The notation

• A = a finite dimensional algebra over a field k, e.g., kQ/I.

/□ ▶ < 글 ▶ < 글

The notation

- A = a finite dimensional algebra over a field k, e.g., kQ/I.
- A-mod = the abelian category of f.d. left A-modules

/□ ▶ < 글 ▶ < 글

The notation

- A = a finite dimensional algebra over a field k, e.g., kQ/I.
- A-mod = the abelian category of f.d. left A-modules
- A-proj = the category of f.d. projective A-modules $\subseteq A$ -mod

The notation

- A = a finite dimensional algebra over a field k, e.g., kQ/I.
- A-mod = the abelian category of f.d. left A-modules
- A-proj = the category of f.d. projective A-modules $\subseteq A$ -mod
- gl.dim A = the global dimension of A

・ 同 ト ・ ヨ ト ・ ヨ ト

Towards the definition of the singularity category

• $D^b(A-mod) = the bounded derived category of A-mod$

- $D^b(A-mod) = the bounded derived category of A-mod$
- a well-known triangle equivalence

$$\mathbf{D}^{b}(A\operatorname{-mod})\simeq \mathbf{K}^{-,b}(A\operatorname{-proj}),$$

the homotopy category of bounded-above complexes of projective modules with bounded cohomologies.

- $D^b(A-mod) = the bounded derived category of A-mod$
- a well-known triangle equivalence

$$\mathbf{D}^{b}(A\operatorname{-mod})\simeq \mathbf{K}^{-,b}(A\operatorname{-proj}),$$

the homotopy category of bounded-above complexes of projective modules with bounded cohomologies.

• So, we have the bounded homotopy category

 $\mathsf{K}^{b}(A\operatorname{-proj})\subseteq\mathsf{D}^{b}(A\operatorname{-mod})$

- **D**^b(A-mod) = the bounded derived category of A-mod
- a well-known triangle equivalence

$$\mathbf{D}^{b}(A\operatorname{-mod})\simeq \mathbf{K}^{-,b}(A\operatorname{-proj}),$$

the homotopy category of bounded-above complexes of projective modules with bounded cohomologies.

• So, we have the bounded homotopy category

 $\mathsf{K}^{b}(A\operatorname{-proj}) \subseteq \mathsf{D}^{b}(A\operatorname{-mod})$

• gl.dim $A < \infty$ if and only if $\mathbf{K}^{b}(A\operatorname{-proj}) = \mathbf{D}^{b}(A\operatorname{-mod})$.

The definition of the singularity category

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\mathrm{sg}}(A) = \mathbf{D}^{b}(A\operatorname{-mod})/\mathbf{K}^{b}(A\operatorname{-proj}).$$

The definition of the singularity category

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\rm sg}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

• On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long!

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\rm sg}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

 On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long! Orlov uses the "singularity category", defined also for schemes X.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\rm sg}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long! Orlov uses the "singularity category", defined also for schemes X. The singularity: D_{sg}(X) = 0 if and only if X is regular.

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\rm sg}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

- On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long! Orlov uses the "singularity category", defined also for schemes X. The singularity: D_{sg}(X) = 0 if and only if X is regular.
- The "homological singularity" of A means $gl.dim A = \infty$.

- 4 同 2 4 回 2 4 U

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient triangulated category

$$\mathbf{D}_{sg}(A) = \mathbf{D}^{b}(A\operatorname{-mod})/\mathbf{K}^{b}(A\operatorname{-proj}).$$

- On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long! Orlov uses the "singularity category", defined also for schemes X. The singularity: $\mathbf{D}_{sg}(\mathbb{X}) = 0$ if and only if \mathbb{X} is regular.
- The "homological singularity" of A means $gl.dim A = \infty$. This property will be somehow captured by the singularity category $\mathbf{D}_{sg}(A)$: Xiao-Wu Chen, USTC

Definition (Buchweitz 1987/Orlov 2004)

The *singularity category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{sg}(A) = \mathbf{D}^{b}(A\operatorname{-mod})/\mathbf{K}^{b}(A\operatorname{-proj}).$$

- On the terminology: Buchweitz uses the "stable derived category" in unpublished paper, 155 pages long! Orlov uses the "singularity category", defined also for schemes X. The singularity: D_{sg}(X) = 0 if and only if X is regular.
- The "homological singularity" of A means $gl.dim A = \infty$. This property will be somehow captured by the singularity category $\mathbf{D}_{sg}(A)$: $\mathbf{D}_{sg}(A) = 0$ iff $gl.dim A < \infty$.

The singularity category via the stablization

• A-mod = the stable category of A-mod,

< E.

The singularity category via the stablization

• A-mod = the stable category of A-mod, the stable Hom is given by

$$\underline{\operatorname{Hom}}_{\mathcal{A}}(M,N) = \operatorname{Hom}_{\mathcal{A}}(M,N)/\mathsf{P}(M,N),$$

where $\mathbf{P}(M, N) = \{\text{morphisms fatoring through projectives}\}.$

伺 ト く ヨ ト く ヨ ト

The singularity category via the stablization

• A-mod = the stable category of A-mod, the stable Hom is given by

$$\underline{\operatorname{Hom}}_{\mathcal{A}}(M,N) = \operatorname{Hom}_{\mathcal{A}}(M,N)/\mathbf{P}(M,N),$$

where $\mathbf{P}(M, N) = \{ \text{morphisms fatoring through projectives} \}.$

• The syzygy functor $\Omega: A-\underline{mod} \to A-\underline{mod}$: for each A-module M, fix an exact sequence

$$0 \rightarrow \Omega(M) \rightarrow P(M) \rightarrow M \rightarrow 0$$

with $P(M) \in A$ -proj.

The singularity category via the stablization

• A-mod = the stable category of A-mod, the stable Hom is given by

$$\underline{\operatorname{Hom}}_{\mathcal{A}}(M,N) = \operatorname{Hom}_{\mathcal{A}}(M,N)/\mathbf{P}(M,N),$$

where $\mathbf{P}(M, N) = \{\text{morphisms fatoring through projectives}\}.$

• The syzygy functor $\Omega: A-\underline{mod} \to A-\underline{mod}$: for each A-module M, fix an exact sequence

$$0 \rightarrow \Omega(M) \rightarrow P(M) \rightarrow M \rightarrow 0$$

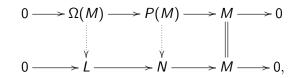
with $P(M) \in A$ -proj.

 The stable property of M: the asymptotic behavior of {Ωⁿ(M)}_{n≥0}

 (A-mod, Ω, E) is a left triangulated category in the sense of [Keller-Vossieck 1987/Beligiannis-Marmaridis 1994]:

 (A-mod, Ω, 𝔅) is a left triangulated category in the sense of [Keller-Vossieck 1987/Beligiannis-Marmaridis 1994]: the class of left triangles in 𝔅 are given by short exact sequences
 0 → L → N → M → 0 in the following manner

 (A-mod, Ω, ε) is a left triangulated category in the sense of [Keller-Vossieck 1987/Beligiannis-Marmaridis 1994]: the class of left triangles in ε are given by short exact sequences 0 → L → N → M → 0 in the following manner



where the resulting left triangle is $\Omega(M) \to L \to N \to M$.

イロト イポト イヨト イヨト 二日

• The *stabilization* S(A-mod) in the sense of [Heller 1968] is triangulated!

- The *stabilization* S(A-mod) in the sense of [Heller 1968] is triangulated!
- The objects are (M, n), $M \in A$ -mod and $n \in \mathbb{Z}$

- The *stabilization* S(A-mod) in the sense of [Heller 1968] is triangulated!
- The objects are (M, n), $M \in A$ -mod and $n \in \mathbb{Z}$
- The Hom are

 $\operatorname{Hom}((M, n), (N, m)) = \operatorname{colim} \underline{\operatorname{Hom}}_{\mathcal{A}}(\Omega^{i-n}(M), \Omega^{i-m}(N))$

伺 ト イヨト イヨト

- The *stabilization* S(A-mod) in the sense of [Heller 1968] is triangulated!
- The objects are (M, n), $M \in A$ -mod and $n \in \mathbb{Z}$
- The Hom are

 $\operatorname{Hom}((M, n), (N, m)) = \operatorname{colim} \underline{\operatorname{Hom}}_{\mathcal{A}}(\Omega^{i-n}(M), \Omega^{i-m}(N))$

• The translation $\Sigma(M, n) = (M, n+1)$;

- The *stabilization* S(A-mod) in the sense of [Heller 1968] is triangulated!
- The objects are (M, n), $M \in A$ -mod and $n \in \mathbb{Z}$
- The Hom are

 $\operatorname{Hom}((M, n), (N, m)) = \operatorname{colim} \underline{\operatorname{Hom}}_{\mathcal{A}}(\Omega^{i-n}(M), \Omega^{i-m}(N))$

 The translation Σ(M, n) = (M, n + 1); triangles are induced by left triangles, plus a rotation.

Theorem (Keller-Vossieck 1987)

The canonical functor $A\operatorname{-mod} \to \mathbf{D}_{\operatorname{sg}}(A)$, sending M to the stalk complex M concentrated in degree zero, induces a triangle equivalence

 $\mathcal{S}(A\operatorname{-}\underline{\mathrm{mod}})\simeq \mathbf{D}_{\mathrm{sg}}(A).$

Theorem (Keller-Vossieck 1987)

The canonical functor $A\operatorname{-mod} \to \mathbf{D}_{\operatorname{sg}}(A)$, sending M to the stalk complex M concentrated in degree zero, induces a triangle equivalence

 $\mathcal{S}(A\operatorname{-}\underline{\mathrm{mod}})\simeq \mathbf{D}_{\mathrm{sg}}(A).$

• For a detailed proof, we refer to [Beligiannis 2000].

Theorem (Keller-Vossieck 1987)

The canonical functor $A\operatorname{-mod} \to \mathbf{D}_{\operatorname{sg}}(A)$, sending M to the stalk complex M concentrated in degree zero, induces a triangle equivalence

 $\mathcal{S}(A-\underline{\mathrm{mod}})\simeq \mathbf{D}_{\mathrm{sg}}(A).$

- For a detailed proof, we refer to [Beligiannis 2000].
- The singularity category **D**_{sg}(*A*) captures the **stable property** of *A*!

- 4 同 2 4 日 2 4 H

The Gorenstein-projective modules

 An A-module G is Gorenstein-projective if G ≃ G^{**} reflexive, and Extⁱ_A(G, A) = 0 = Extⁱ_{A^{op}}(G^{*}, A) for any i ≥ 1.

The Gorenstein-projective modules

- An A-module G is Gorenstein-projective if G ≃ G^{**} reflexive, and Extⁱ_A(G, A) = 0 = Extⁱ_{A^{op}}(G^{*}, A) for any i ≥ 1.
- On the terminology: [Auslander-Bridger 1969] uses "modules of G-dimension zero", [Enochs-Jenda 1995] uses "Gorenstein-projective modules", [Avramov-Martsinkovsky 2002] uses "totally-reflexive modules", [Buchweitz 1987/Happel 1991/Beligiannis 2000...] use "(maximal) Cohen-Macaulay modules"

The Gorenstein-projective modules

- An A-module G is Gorenstein-projective if G ≃ G^{**} reflexive, and Extⁱ_A(G, A) = 0 = Extⁱ_{A^{op}}(G^{*}, A) for any i ≥ 1.
- On the terminology: [Auslander-Bridger 1969] uses "modules of G-dimension zero", [Enochs-Jenda 1995] uses "Gorenstein-projective modules", [Avramov-Martsinkovsky 2002] uses "totally-reflexive modules", [Buchweitz 1987/Happel 1991/Beligiannis 2000...] use "(maximal) Cohen-Macaulay modules"
- A-Gproj = the category of G.-projective modules $\supseteq A$ -proj

A (B) A (B) A (B) A

The Gorenstein-projective modules

- An A-module G is Gorenstein-projective if G ≃ G^{**} reflexive, and Extⁱ_A(G, A) = 0 = Extⁱ_{A^{op}}(G^{*}, A) for any i ≥ 1.
- On the terminology: [Auslander-Bridger 1969] uses "modules of G-dimension zero", [Enochs-Jenda 1995] uses "Gorenstein-projective modules", [Avramov-Martsinkovsky 2002] uses "totally-reflexive modules", [Buchweitz 1987/Happel 1991/Beligiannis 2000...] use "(maximal) Cohen-Macaulay modules"
- A-Gproj = the category of G.-projective modules $\supseteq A$ -proj
- A-Gproj is a Frobenius category, and then A-Gproj is triangulated.

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A\operatorname{-}\underline{\operatorname{Gproj}} \longrightarrow \mathbf{D}_{\operatorname{sg}}(A), \quad G \mapsto G.$$

伺 ト く ヨ ト く ヨ ト

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A-\underline{\operatorname{Gproj}} \longrightarrow \mathbf{D}_{\operatorname{sg}}(A), \quad G \mapsto G.$$

It is an equivalence if and only if A is Gorenstein.

同 ト イ ヨ ト イ ヨ ト

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A$$
-Gproj \longrightarrow $\mathbf{D}_{sg}(A), \quad G \mapsto G.$

It is an equivalence if and only if A is Gorenstein.

• A is Gorenstein, if $\operatorname{inj.dim}_A A < \infty$ and $\operatorname{inj.dim}_A A < \infty$.

伺 ト イ ヨ ト イ ヨ ト

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A$$
-Gproj \longrightarrow $\mathbf{D}_{sg}(A), \quad G \mapsto G.$

It is an equivalence if and only if A is Gorenstein.

A is Gorenstein, if inj.dim_AA < ∞ and inj.dim_AA < ∞.
 Gorenstein Symmetric Conjecture: if inj.dim_AA < ∞, then A is Gorenstein.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A$$
-Gproj \longrightarrow $\mathbf{D}_{sg}(A), \quad G \mapsto G.$

It is an equivalence if and only if A is Gorenstein.

- A is Gorenstein, if inj.dim_AA < ∞ and inj.dim_AA < ∞.
 Gorenstein Symmetric Conjecture: if inj.dim_AA < ∞, then A is Gorenstein.
- Buchweitz's unpublished theorem applies for Gorenstein rings!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Buchweitz 1987)

The canonical functor A- $\underline{mod} \to \mathbf{D}_{\mathrm{sg}}(A)$ restricts to a fully faithful triangle functor

$$A$$
-Gproj \longrightarrow $\mathbf{D}_{sg}(A), \quad G \mapsto G.$

It is an equivalence if and only if A is Gorenstein.

- A is Gorenstein, if inj.dim_AA < ∞ and inj.dim_AA < ∞.
 Gorenstein Symmetric Conjecture: if inj.dim_AA < ∞, then A is Gorenstein.
- Buchweitz's unpublished theorem applies for Gorenstein rings!

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The *Gorenstein defect category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\mathrm{def}}(A) = \mathbf{D}_{\mathrm{sg}}(A)/A$$
-Gproj.

/□ ▶ < 글 ▶ < 글

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The *Gorenstein defect category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\mathrm{def}}(A) = \mathbf{D}_{\mathrm{sg}}(A)/A$$
-Gproj.

• $\mathbf{D}_{def}(A) = 0$ if and only if A is Gorenstein;

同 ト イ ヨ ト イ ヨ ト

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The *Gorenstein defect category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\mathrm{def}}(A) = \mathbf{D}_{\mathrm{sg}}(A)/A$$
-Gproj.

- $\mathbf{D}_{def}(A) = 0$ if and only if A is Gorenstein;
- $\mathbf{D}_{def}(A)$ is NOT intrinsic:

伺 ト く ヨ ト く ヨ ト

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The *Gorenstein defect category* of *A* is the Verdier quotient triangulated category

$$\mathbf{D}_{\mathrm{def}}(A) = \mathbf{D}_{\mathrm{sg}}(A)/A$$
-Gproj.

- $\mathbf{D}_{def}(A) = 0$ if and only if A is Gorenstein;
- $\mathbf{D}_{def}(A)$ is NOT intrinsic: there are equivalences $\mathbf{D}_{sg}(A) \simeq \mathbf{D}_{sg}(B)$, which do not induce $\mathbf{D}_{def}(A) \simeq \mathbf{D}_{def}(B)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The singularity category via Tate-Vogel cohomology

 For each P, Q ∈ K^{-,b}(A-proj), we denote by Hom_A(P, Q) its Hom complex

$$\begin{split} \operatorname{Hom}_{A}(P,Q)^{n} &= \prod_{p \in \mathbb{Z}} \operatorname{Hom}_{A}(P^{p},Q^{p+n}), \\ (df)^{p} &= d_{Q}^{p+n} \circ f^{p} - (-1)^{n} f^{p+1} \circ d_{P}^{p}, \quad f = (f^{p})_{p \in \mathbb{Z}}. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The singularity category via Tate-Vogel cohomology

 For each P, Q ∈ K^{-,b}(A-proj), we denote by Hom_A(P, Q) its Hom complex

$$\begin{aligned} \operatorname{Hom}_{\mathcal{A}}(P,Q)^{n} &= \prod_{p \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}(P^{p},Q^{p+n}), \\ (df)^{p} &= d_{Q}^{p+n} \circ f^{p} - (-1)^{n} f^{p+1} \circ d_{P}^{p}, \quad f = (f^{p})_{p \in \mathbb{Z}}. \end{aligned}$$

A morphism f = (f^p) is bounded, if f^p = 0 for p ≪ 0; they form a subcomplex Hom_A(P, Q).

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

The singularity category via Tate-Vogel cohomology

 For each P, Q ∈ K^{-,b}(A-proj), we denote by Hom_A(P, Q) its Hom complex

$$\operatorname{Hom}_{\mathcal{A}}(\mathcal{P}, \mathcal{Q})^n = \prod_{p \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}(\mathcal{P}^p, \mathcal{Q}^{p+n}),$$

$$(df)^p = d_Q^{p+n} \circ f^p - (-1)^n f^{p+1} \circ d_P^p, \quad f = (f^p)_{p \in \mathbb{Z}}.$$

- A morphism f = (f^p) is bounded, if f^p = 0 for p ≪ 0; they form a subcomplex Hom_A(P, Q).
- The quotient complex

$$\widehat{\operatorname{Hom}}_{\mathcal{A}}(P,Q) = \operatorname{Hom}_{\mathcal{A}}(P,Q) / \overline{\operatorname{Hom}}_{\mathcal{A}}(P,Q)$$

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

The singularity category via Tate-Vogel cohomology, continued

• For two A-modules M, N, $\widehat{\operatorname{Ext}}_{A}^{i}(M, N) = H^{i}(\widehat{\operatorname{Hom}}_{A}(P_{M}, P_{N}))$ is called the *i*-th Tate-Vogel cohomology [Mislin 1994].

The singularity category via Tate-Vogel cohomology, continued

- For two A-modules M, N, $\widehat{\operatorname{Ext}}_{A}^{i}(M, N) = H^{i}(\widehat{\operatorname{Hom}}_{A}(P_{M}, P_{N}))$ is called the *i*-th Tate-Vogel cohomology [Mislin 1994].
- The dg category formed by complexes in C^{-,b}(Aproj), with Hom being Hom_A is denoted by V_A.

周 ト イ ヨ ト イ ヨ ト

The singularity category via Tate-Vogel cohomology, continued

- For two A-modules M, N, $\widehat{\operatorname{Ext}}_{A}^{i}(M, N) = H^{i}(\widehat{\operatorname{Hom}}_{A}(P_{M}, P_{N}))$ is called the *i*-th *Tate-Vogel cohomology* [Mislin 1994].
- The dg category formed by complexes in C^{-,b}(Aproj), with Hom being Hom_A is denoted by V_A.

Theorem

The dg category V_A is strongly pretriangulated in the sense of Bondal-Kapranov, and there is a triangle equivalence

$$\mathbf{D}_{\mathrm{sg}}(A) \simeq H^0(\mathcal{V}_A).$$

The dg singularity category

• Following [Keller 2018], we consider the Drinfeld dg quotient, called the *dg singularity category* of *A*:

 $Sg(A) = D^{b}_{dg}(A-mod)/\{bounded \text{ complexes of projectives}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

The dg singularity category

• Following [Keller 2018], we consider the Drinfeld dg quotient, called the *dg singularity category* of *A*:

 $Sg(A) = D_{dg}^{b}(A-mod)/\{bounded \text{ complexes of projectives}\}$

To justify the terminology, apply Drinfeld's theorem to obtain the triangle equivalence

 $\mathbf{D}_{\mathrm{sg}}(A)\simeq H^0(\mathbf{Sg}(A)).$

4 冊 ト 4 戸 ト 4 戸 ト

The dg singularity category

• Following [Keller 2018], we consider the Drinfeld dg quotient, called the *dg singularity category* of *A*:

 $Sg(A) = D_{dg}^{b}(A \text{-mod}) / \{\text{bounded complexes of projectives}\}$

To justify the terminology, apply Drinfeld's theorem to obtain the triangle equivalence

 $\mathbf{D}_{\mathrm{sg}}(A)\simeq H^0(\mathbf{Sg}(A)).$

• There is a quasi-equivalence of dg categories

 $\mathbf{Sg}(A) \simeq \mathcal{V}_A.$

4 冊 ト 4 戸 ト 4 戸 ト

The dg singularity category

• Following [Keller 2018], we consider the Drinfeld dg quotient, called the *dg singularity category* of *A*:

 $Sg(A) = D_{dg}^{b}(A-mod)/\{bounded \text{ complexes of projectives}\}$

To justify the terminology, apply Drinfeld's theorem to obtain the triangle equivalence

 $\mathbf{D}_{\mathrm{sg}}(A)\simeq H^0(\mathbf{Sg}(A)).$

• There is a quasi-equivalence of dg categories

 $Sg(A) \simeq \mathcal{V}_A.$

In general, we do NOT know the uniqueness of dg enchancements for the singularity category.

Algebras with radical square zero

• An algebra with radical square zero $= kQ/J^2$ with $J = kQ_+$;

- A 🗄 🕨

Algebras with radical square zero

An algebra with radical square zero = kQ/J² with J = kQ₊;
 L(Q)= the Leavitt path algebra in the sense of
 Abrams-Aranda Pino, which is a certain graded universal localization of kQ.

伺 ト イ ヨ ト イ ヨ ト

Algebras with radical square zero

- An algebra with radical square zero = kQ/J² with J = kQ₊;
 L(Q)= the Leavitt path algebra in the sense of
 Abrams-Aranda Pino, which is a certain graded universal localization of kQ.
- The singularity category $\mathbf{D}_{\mathrm{sg}}(kQ/J^2)$ is semisimple,

伺 ト イ ヨ ト イ ヨ ト

Algebras with radical square zero

- An algebra with radical square zero = kQ/J² with J = kQ₊;
 L(Q)= the Leavitt path algebra in the sense of
 Abrams-Aranda Pino, which is a certain graded universal localization of kQ.
- The singularity category $\mathbf{D}_{\rm sg}(kQ/J^2)$ is semisimple, and there is a triangle equivalence

$$\mathbf{D}_{\mathrm{sg}}(kQ/J^2) \simeq L(Q^\circ)$$
-grproj,

where Q° the quiver without sinks, by repeatedly removing sinks from Q; see [C. 2011/ Smith 2012/C.-Yang 2015/ Li 2018]; related to the computation in [Avramov-Veliche 2007].

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Algebras with radical square zero, continued

• Any quiver Q admits a decomposition

$$Q = Q^{\mathrm{perf}} \cup Q^{\mathrm{ac}} \cup Q^{\mathrm{def}},$$

where Q^{perf} consists of basic cycles, Q^{ac} consists of acyclic components, and each component of Q^{def} is neither acyclic nor a basic cycle.

Algebras with radical square zero, continued

• Any quiver Q admits a decomposition

$$Q = Q^{\mathrm{perf}} \cup Q^{\mathrm{ac}} \cup Q^{\mathrm{def}},$$

where Q^{perf} consists of basic cycles, Q^{ac} consists of acyclic components, and each component of Q^{def} is neither acyclic nor a basic cycle. Then $A = kQ/J^2$ admits a decomposition

$$A = A^{\text{perf}} \times A^{\text{ac}} \times A^{\text{def}}.$$

Algebras with radical square zero, continued

• Any quiver Q admits a decomposition

$$Q = Q^{\mathrm{perf}} \cup Q^{\mathrm{ac}} \cup Q^{\mathrm{def}},$$

where Q^{perf} consists of basic cycles, Q^{ac} consists of acyclic components, and each component of Q^{def} is neither acyclic nor a basic cycle. Then $A = kQ/J^2$ admits a decomposition $A = A^{\text{perf}} \times A^{\text{ac}} \times A^{\text{def}}$

Lemma

The following statements hold: (1) A- $\underline{\text{Gproj}} = A^{\text{perf}}$ - $\underline{\text{mod}}$; (2) $\mathbf{D}_{\text{def}}(A) = \mathbf{D}_{\text{sg}}(A^{\text{def}})$; (3) $\mathbf{D}_{\text{sg}}(A) = A$ - $\underline{\text{Gproj}} \times \mathbf{D}_{\text{def}}(A)$.

-

 A monomial algebra = kQ/I, with an admissible ideal I generated by paths.

直 と く ヨ と く ヨ と

э

- A monomial algebra = kQ/I, with an admissible ideal I generated by paths.
- The quotient graded module category of an infinite dimensional monomial algebra by [Holdaway-Smith 2012].

・ 同 ト ・ ヨ ト ・ ヨ ト

- A monomial algebra = kQ/I, with an admissible ideal I generated by paths.
- The quotient graded module category of an infinite dimensional monomial algebra by [Holdaway-Smith 2012].
- The complexity of modules over a monomial algebra by [Howard 2015].

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- A monomial algebra = kQ/I, with an admissible ideal I generated by paths.
- The quotient graded module category of an infinite dimensional monomial algebra by [Holdaway-Smith 2012].
- The complexity of modules over a monomial algebra by [Howard 2015].
- A complete classification of indecomposable Gorenstein-projective modules over a Nakayama algebra by [Ringel 2013],

- 4 同 2 4 回 2 4 U

- A monomial algebra = kQ/I, with an admissible ideal I generated by paths.
- The quotient graded module category of an infinite dimensional monomial algebra by [Holdaway-Smith 2012].
- The complexity of modules over a monomial algebra by [Howard 2015].
- A complete classification of indecomposable Gorenstein-projective modules over a Nakayama algebra by [Ringel 2013], and the singularity category of a Nakayama algebra by [C.-Ye 2014/Shen 2015].

< ロ > < 同 > < 三 > < 三 > 、

- A monomial algebra = kQ/I, with an admissible ideal I generated by paths.
- The quotient graded module category of an infinite dimensional monomial algebra by [Holdaway-Smith 2012].
- The complexity of modules over a monomial algebra by [Howard 2015].
- A complete classification of indecomposable Gorenstein-projective modules over a Nakayama algebra by [Ringel 2013], and the singularity category of a Nakayama algebra by [C.-Ye 2014/Shen 2015].

< ロ > < 同 > < 三 > < 三 > 、

Monomial algebras, continued

• Gentle algebras are Gorenstein [Geiss-Reiten 2005],

- A 🗄 🕨

Monomial algebras, continued

 Gentle algebras are Gorenstein [Geiss-Reiten 2005], the singularity category of a gentle algebra [Kalck 2015] is semisimple.

伺 ト イ ヨ ト イ ヨ

Monomial algebras, continued

- Gentle algebras are Gorenstein [Geiss-Reiten 2005], the singularity category of a gentle algebra [Kalck 2015] is semisimple.
- A complete classification of indecomposable
 Gorenstein-projective modules over a monomial algebra,

- 4 B b 4 B b

Monomial algebras, continued

- Gentle algebras are Gorenstein [Geiss-Reiten 2005], the singularity category of a gentle algebra [Kalck 2015] is semisimple.
- A complete classification of indecomposable Gorenstein-projective modules over a monomial algebra, the stable category of Gorenstein-projectives over a quadratic monomial algebra is semisimple [C.-Shen-Zhou 2018]

Monomial algebras, continued

- Gentle algebras are Gorenstein [Geiss-Reiten 2005], the singularity category of a gentle algebra [Kalck 2015] is semisimple.
- A complete classification of indecomposable Gorenstein-projective modules over a monomial algebra, the stable category of Gorenstein-projectives over a quadratic monomial algebra is semisimple [C.-Shen-Zhou 2018]
- Gorenstein monomial algebras [Lu-Zhu 2017]

Quadratic monomial algebras and relation quivers

A = kQ/I be a quadratic monomial algebra, I = (F) with F some set of paths of length two.

伺 ト く ヨ ト く ヨ ト

Quadratic monomial algebras and relation quivers

- A = kQ/I be a quadratic monomial algebra, I = (F) with F some set of paths of length two.
- The *relation quiver* R: vertices are arrows α in Q, for each relation βα ∈ F, there is an arrow [βα]: α → β.

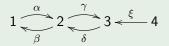
Quadratic monomial algebras and relation quivers

- A = kQ/I be a quadratic monomial algebra, I = (F) with F some set of paths of length two.
- The relation quiver R: vertices are arrows α in Q, for each relation βα ∈ F, there is an arrow [βα]: α → β.
- A is Gorenstein if and only if \mathcal{R} has no defect components [C.-Shen-Zhou].

Quadratic monomial algebras and relation quivers: an example

Example

Consider the following quiver Q and the algebra A = kQ/I with $I = (\beta \alpha, \alpha \beta, \delta \gamma, \gamma \delta, \delta \xi)$.



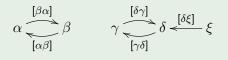
Quadratic monomial algebras and relation quivers: an example

Example

Consider the following quiver Q and the algebra A = kQ/I with $I = (\beta \alpha, \alpha \beta, \delta \gamma, \gamma \delta, \delta \xi)$.



Its relation quiver \mathcal{R} is as follows.



The main theorem

Theorem (C. 2018)

Let A = kQ/I be a quadratic monomial algebra and $B = kR/J^2$ the radical square zero algebra of the relation quiver R. There is a triangle equivalence

$$\mathbf{D}_{
m sg}(\mathcal{A})\simeq \mathbf{D}_{
m sg}(\mathcal{B}), \quad \mathcal{A}lpha\mapsto \mathcal{S}_lpha, \,\, ext{for all } lpha\in \mathcal{Q}_1,$$

which restricts to a triangle equivalence A- $\underline{\text{Gproj}} \simeq B$ - $\underline{\text{Gproj}}$ and induces a triangle equivalence $\mathbf{D}_{\text{def}}(A) \simeq \mathbf{D}_{\text{def}}(B)$.

(人間) ト く ヨ ト く ヨ ト

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

•
$$\mathbf{D}_{\mathrm{sg}}(A) \simeq A \operatorname{-}\underline{\mathrm{Gproj}} \times \mathbf{D}_{\mathrm{def}}(A);$$

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

•
$$\mathbf{D}_{\mathrm{sg}}(A) \simeq A \operatorname{-} \operatorname{\underline{Gproj}} \times \mathbf{D}_{\mathrm{def}}(A);$$

• A-<u>Gproj</u> $\simeq B^{\text{perf}}$ -<u>mod</u>;

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

- $\mathbf{D}_{\mathrm{sg}}(A) \simeq A \operatorname{-} \underline{\mathrm{Gproj}} \times \mathbf{D}_{\mathrm{def}}(A);$
- A-<u>Gproj</u> $\simeq B^{\text{perf}}$ -<u>mod</u>;
- $\mathbf{D}_{def}(A) \simeq \mathbf{D}_{sg}(B^{def}) \simeq L((\mathcal{R}^{def})^{\circ})$ -grproj.

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

•
$$\mathbf{D}_{\mathrm{sg}}(A) \simeq A\operatorname{-}\underline{\mathrm{Gproj}} \times \mathbf{D}_{\mathrm{def}}(A);$$

- A-Gproj $\simeq B^{\text{perf}}$ -mod;
- $\mathbf{D}_{def}(A) \simeq \mathbf{D}_{sg}(B^{def}) \simeq L((\mathcal{R}^{def})^{\circ})$ -grproj.

Example

Recall the relation quiver $\ensuremath{\mathcal{R}}$ is as follows.

$$\alpha \underbrace{\stackrel{[\beta \alpha]}{\overbrace{[\alpha \beta]}}}_{[\alpha \beta]} \beta \qquad \gamma \underbrace{\stackrel{[\delta \gamma]}{\overbrace{[\gamma \delta]}}}_{[\gamma \delta]} \delta \underbrace{\stackrel{[\delta \xi]}{\longleftarrow}}_{[\gamma \delta]} \xi$$

Consequences and an example

Recall that $B = B^{\text{perf}} \times B^{\text{ac}} \times B^{\text{def}}$.

•
$$\mathbf{D}_{\mathrm{sg}}(A) \simeq A\operatorname{-}\underline{\mathrm{Gproj}} \times \mathbf{D}_{\mathrm{def}}(A);$$

- A-<u>Gproj</u> $\simeq B^{\text{perf}}$ -<u>mod</u>;
- $\mathbf{D}_{def}(A) \simeq \mathbf{D}_{sg}(B^{def}) \simeq L((\mathcal{R}^{def})^{\circ})$ -grproj.

Example

Recall the relation quiver $\ensuremath{\mathcal{R}}$ is as follows.

$$\alpha \underbrace{\stackrel{[\beta \alpha]}{\overbrace{\alpha \beta]}} \beta \qquad \gamma \underbrace{\stackrel{[\delta \gamma]}{\overbrace{\gamma \delta]}} \delta \xleftarrow{[\delta \xi]} \xi$$

Therefore, A- $\underline{\mathrm{Gproj}} \simeq \mathcal{T}_2$, and $\mathbf{D}_{\mathrm{def}}(A) \simeq (L(Z_2)$ -grproj, (-1)), which is also equivalent to \mathcal{T}_2 .

The main theorem: the proof

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

э

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

 Step 1: B-<u>ssmod</u> = the stable category of semisimple B-modules;

/□ ▶ < 글 ▶ < 글

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

Step 1: B-<u>ssmod</u> = the stable category of semisimple
 B-modules; B-<u>ssmod</u> → B-<u>mod</u> is a pre-triangle equivalence, that is, equivalence up to stabilization.

- A 3 N

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

Step 1: B-<u>ssmod</u> = the stable category of semisimple
 B-modules; B-<u>ssmod</u> → B-<u>mod</u> is a pre-triangle equivalence, that is, equivalence up to stabilization.

 $F: B\operatorname{-\underline{ssmod}} \to A\operatorname{-\underline{mod}}, \quad S_{\alpha} \mapsto A\alpha, \ \alpha \in Q_1.$

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

Step 1: B-<u>ssmod</u> = the stable category of semisimple
 B-modules; B-<u>ssmod</u> → B-<u>mod</u> is a pre-triangle equivalence, that is, equivalence up to stabilization.

 $F: B\operatorname{-\underline{ssmod}} \to A\operatorname{-\underline{mod}}, \quad S_{\alpha} \mapsto A\alpha, \ \alpha \in Q_1.$

It is also a pre-triangle equivalence!

$$A = kQ/I$$
 and $B = k\mathcal{R}/J^2$

Step 1: B-<u>ssmod</u> = the stable category of semisimple
 B-modules; B-<u>ssmod</u> → B-<u>mod</u> is a pre-triangle equivalence, that is, equivalence up to stabilization.

 $F: B\operatorname{-\underline{ssmod}} \to A\operatorname{-\underline{mod}}, \quad S_{\alpha} \mapsto A\alpha, \ \alpha \in Q_1.$

It is also a pre-triangle equivalence!

Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein projective modules!

The main theorem: at the dg level

Recently, Liu observes that the result can be "enhanced" to the dg level.

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The main theorem: at the dg level

Recently, Liu observes that the result can be "enhanced" to the dg level.

Theorem (Liu 2019, in progress)

Let A = kQ/I be a quadratic monomial algebra and $B = kR/J^2$ the radical square zero algebra of the relation quiver R. Then there is an isomorphism of dg categories in the homotopy category **Hodgcat** of dg categories

$$\mathbf{Sg}(A)\simeq \mathbf{Sg}(B), \quad Alpha\mapsto \mathcal{S}_lpha, \,\, ext{ for all } lpha\in \mathcal{Q}_1,$$

which induces the triangle equivalence in the previous theorem.

(日) (同) (三) (三)

-

- R.O. BUCHWEITZ, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, unpublished manuscript, 1987.
- X.W. CHEN, The singularity category of an algebra with radical square zero, Doc. Math. **16** (2011), 921–936.
- X.W. CHEN, The singularity category of a quadratic monomial algebra, Quart. J. Math. **69** (2018), 1015–1033.
- X.W. CHEN, D. SHEN, AND G. ZHOU, The
 - *Gorenstein-projective modules over a monomial algebra*, Proc. Roy. Soc. Edin. Sect. A **148** (2018), 1115–1134.

- X.W. CHEN, AND D. YANG, Homotopy categories, Leavitt path algebras and Gorenstein projective modules, Inter. Math. Res. Not. **10** (2015), 2597–2633.
- D. ORLOV, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Trudy Steklov Math. Institute 204 (2004), 240–262.
- S.P. SMITH, Equivalence of categories involving graded modules over path algebras of quivers, Adv. Math. 230 (2012), 1780–1810.

A B > A B >

Thank You!

$http://home.ustc.edu.cn/^{\sim}xwchen$

/□ ▶ < 글 ▶ < 글