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The notation

A = a finite dimensional algebra over a field k , e.g., kQ/I .

A-mod = the abelian category of f.d. left A-modules

A-proj = the category of f.d. projective A-modules ⊆ A-mod

gl.dim A = the global dimension of A
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Towards the definition of the singularity category

Db(A-mod) = the bounded derived category of A-mod

a well-known triangle equivalence

Db(A-mod) ' K−,b(A-proj),

the homotopy category of bounded-above complexes of

projective modules with bounded cohomologies.

So, we have the bounded homotopy category

Kb(A-proj) ⊆ Db(A-mod)

gl.dim A <∞ if and only if Kb(A-proj) = Db(A-mod).
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The definition of the singularity category

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient triangulated

category

Dsg(A) = Db(A-mod)/Kb(A-proj).

On the terminology: Buchweitz uses the “stable derived

category” in unpublished paper, 155 pages long! Orlov uses

the “singularity category”, defined also for schemes X. The

singularity: Dsg(X) = 0 if and only if X is regular.

The “homological singularity” of A means gl.dim A =∞.

This property will be somehow captured by the singularity

category Dsg(A): Dsg(A) = 0 iff gl.dim A <∞.
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The singularity category via the stablization

A-mod = the stable category of A-mod,

the stable Hom is

given by

HomA(M,N) = HomA(M,N)/P(M,N),

where P(M,N) = {morphisms fatoring through projectives}.

The syzygy functor Ω: A-mod→ A-mod: for each A-module

M, fix an exact sequence

0→ Ω(M)→ P(M)→ M → 0

with P(M) ∈ A-proj.

The stable property of M: the asymptotic behavior of

{Ωn(M)}n≥0
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The singularity category via the stablization, continued

(A-mod,Ω, E) is a left triangulated category in the sense of

[Keller-Vossieck 1987/Beligiannis-Marmaridis 1994]:

the class

of left triangles in E are given by short exact sequences

0→ L→ N → M → 0 in the following manner

0 // Ω(M)

��

// P(M)

��

// M // 0

0 // L // N // M // 0,

where the resulting left triangle is Ω(M)→ L→ N → M.
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The singularity category via the stablization, 2ed continued

The stabilization S(A-mod) in the sense of [Heller 1968] is

triangulated!

The objects are (M, n), M ∈ A-mod and n ∈ Z

The Hom are

Hom((M, n), (N,m)) = colim HomA(Ωi−n(M),Ωi−m(N))

The translation Σ(M, n) = (M, n + 1); triangles are induced

by left triangles, plus a rotation.
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The singularity category via the stablization, 3rd continued

Theorem (Keller-Vossieck 1987)

The canonical functor A-mod→ Dsg(A), sending M to the stalk

complex M concentrated in degree zero, induces a triangle

equivalence

S(A-mod) ' Dsg(A).

For a detailed proof, we refer to [Beligiannis 2000].

The singularity category Dsg(A) captures the stable property

of A!
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The Gorenstein-projective modules

An A-module G is Gorenstein-projective if G ' G ∗∗ reflexive,

and ExtiA(G ,A) = 0 = ExtiAop(G ∗,A) for any i ≥ 1.

On the terminology: [Auslander-Bridger 1969] uses “modules

of G-dimension zero”, [Enochs-Jenda 1995] uses

“Gorenstein-projective modules”, [Avramov-Martsinkovsky

2002] uses “totally-reflexive modules”, [Buchweitz

1987/Happel 1991/Beligiannis 2000...] use “(maximal)

Cohen-Macaulay modules”

A-Gproj = the category of G.-projective modules ⊇ A-proj

A-Gproj is a Frobenius category, and then A-Gproj is

triangulated.
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Buchweitz’s theorem

Theorem (Buchweitz 1987)

The canonical functor A-mod→ Dsg(A) restricts to a fully faithful

triangle functor

A-Gproj −→ Dsg(A), G 7→ G .

It is an equivalence if and only if A is Gorenstein.

A is Gorenstein, if inj.dimAA <∞ and inj.dimAA <∞.

Gorenstein Symmetric Conjecture: if inj.dimAA <∞, then A

is Gorenstein.

Buchweitz’s unpublished theorem applies for Gorenstein rings!

Related: [Rickard 1989] for selfinjective; [Happel 1991].
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The main result

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The Gorenstein defect category of A is the Verdier quotient

triangulated category

Ddef(A) = Dsg(A)/A-Gproj.

Ddef(A) = 0 if and only if A is Gorenstein;

Ddef(A) is NOT intrinsic: there are equivalences

Dsg(A) ' Dsg(B), which do not induce Ddef(A) ' Ddef(B).

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The Gorenstein defect category of A is the Verdier quotient

triangulated category

Ddef(A) = Dsg(A)/A-Gproj.

Ddef(A) = 0 if and only if A is Gorenstein;

Ddef(A) is NOT intrinsic: there are equivalences

Dsg(A) ' Dsg(B), which do not induce Ddef(A) ' Ddef(B).

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The Gorenstein defect category of A is the Verdier quotient

triangulated category

Ddef(A) = Dsg(A)/A-Gproj.

Ddef(A) = 0 if and only if A is Gorenstein;

Ddef(A) is NOT intrinsic:

there are equivalences

Dsg(A) ' Dsg(B), which do not induce Ddef(A) ' Ddef(B).

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The Gorenstein defect category

Definition (Bergh-Jorgensen-Oppermann 2015)

The Gorenstein defect category of A is the Verdier quotient

triangulated category

Ddef(A) = Dsg(A)/A-Gproj.

Ddef(A) = 0 if and only if A is Gorenstein;

Ddef(A) is NOT intrinsic: there are equivalences

Dsg(A) ' Dsg(B), which do not induce Ddef(A) ' Ddef(B).

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The singularity category via Tate-Vogel cohomology

For each P,Q ∈ K−,b(A-proj), we denote by HomA(P,Q) its

Hom complex

HomA(P,Q)n =
∏

p∈ZHomA(Pp,Qp+n),

(df )p = dp+n
Q ◦ f p − (−1)nf p+1 ◦ dp

P , f = (f p)p∈Z.

A morphism f = (f p) is bounded, if f p = 0 for p � 0; they

form a subcomplex HomA(P,Q).

The quotient complex

ĤomA(P,Q) = HomA(P,Q)/HomA(P,Q)
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ĤomA(P,Q) = HomA(P,Q)/HomA(P,Q)

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The singularity category via Tate-Vogel cohomology,

continued

For two A-modules M,N, Êxt
i

A(M,N) = H i (ĤomA(PM ,PN))

is called the i-th Tate-Vogel cohomology [Mislin 1994].

The dg category formed by complexes in C−,b(Aproj), with

Hom being ĤomA is denoted by VA.

Theorem

The dg category VA is strongly pretriangulated in the sense of

Bondal-Kapranov, and there is a triangle equivalence

Dsg(A) ' H0(VA).
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The dg singularity category

Following [Keller 2018], we consider the Drinfeld dg quotient,

called the dg singularity category of A:

Sg(A) = Db
dg (A-mod)/{bounded complexes of projectives}

To justify the terminology, apply Drinfeld’s theorem to obtain

the triangle equivalence

Dsg(A) ' H0(Sg(A)).

There is a quasi-equivalence of dg categories

Sg(A) ' VA.

In general, we do NOT know the uniqueness of dg

enchancements for the singularity category.

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The dg singularity category

Following [Keller 2018], we consider the Drinfeld dg quotient,

called the dg singularity category of A:

Sg(A) = Db
dg (A-mod)/{bounded complexes of projectives}

To justify the terminology, apply Drinfeld’s theorem to obtain

the triangle equivalence

Dsg(A) ' H0(Sg(A)).

There is a quasi-equivalence of dg categories

Sg(A) ' VA.

In general, we do NOT know the uniqueness of dg

enchancements for the singularity category.

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The dg singularity category

Following [Keller 2018], we consider the Drinfeld dg quotient,

called the dg singularity category of A:

Sg(A) = Db
dg (A-mod)/{bounded complexes of projectives}

To justify the terminology, apply Drinfeld’s theorem to obtain

the triangle equivalence

Dsg(A) ' H0(Sg(A)).

There is a quasi-equivalence of dg categories

Sg(A) ' VA.

In general, we do NOT know the uniqueness of dg

enchancements for the singularity category.

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The dg singularity category

Following [Keller 2018], we consider the Drinfeld dg quotient,

called the dg singularity category of A:

Sg(A) = Db
dg (A-mod)/{bounded complexes of projectives}

To justify the terminology, apply Drinfeld’s theorem to obtain

the triangle equivalence

Dsg(A) ' H0(Sg(A)).

There is a quasi-equivalence of dg categories

Sg(A) ' VA.

In general, we do NOT know the uniqueness of dg

enchancements for the singularity category.

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

Algebras with radical square zero

An algebra with radical square zero = kQ/J2 with J = kQ+;

L(Q)= the Leavitt path algebra in the sense of

Abrams-Aranda Pino, which is a certain graded universal

localization of kQ.

The singularity category Dsg(kQ/J2) is semisimple, and there

is a triangle equivalence

Dsg(kQ/J2) ' L(Q◦)-grproj,

where Q◦ the quiver without sinks, by repeatedly removing

sinks from Q; see [C. 2011/ Smith 2012/C.-Yang 2015/ Li

2018]; related to the computation in [Avramov-Veliche 2007].
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Algebras with radical square zero, continued

Any quiver Q admits a decomposition

Q = Qperf ∪ Qac ∪ Qdef ,

where Qperf consists of basic cycles, Qac consists of acyclic

components, and each component of Qdef is neither acyclic

nor a basic cycle.

Then A = kQ/J2 admits a decomposition

A = Aperf × Aac × Adef .

Lemma

The following statements hold: (1) A-Gproj = Aperf -mod; (2)

Ddef(A) = Dsg(Adef); (3) Dsg(A) = A-Gproj×Ddef(A).
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Monomial algebras

A monomial algebra = kQ/I , with an admissible ideal I

generated by paths.

The quotient graded module category of an infinite

dimensional monomial algebra by [Holdaway-Smith 2012].

The complexity of modules over a monomial algebra by

[Howard 2015].

A complete classification of indecomposable

Gorenstein-projective modules over a Nakayama algebra by

[Ringel 2013], and the singularity category of a Nakayama

algebra by [C.-Ye 2014/Shen 2015].
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Monomial algebras, continued

Gentle algebras are Gorenstein [Geiss-Reiten 2005],

the

singularity category of a gentle algebra [Kalck 2015] is

semisimple.

A complete classification of indecomposable

Gorenstein-projective modules over a monomial algebra, the

stable category of Gorenstein-projectives over a quadratic

monomial algebra is semisimple [C.-Shen-Zhou 2018]

Gorenstein monomial algebras [Lu-Zhu 2017]
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Quadratic monomial algebras and relation quivers

A = kQ/I be a quadratic monomial algebra, I = 〈F〉 with F

some set of paths of length two.

The relation quiver R: vertices are arrows α in Q, for each

relation βα ∈ F, there is an arrow [βα] : α→ β.

A is Gorenstein if and only if R has no defect components

[C.-Shen-Zhou].
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Quadratic monomial algebras and relation quivers: an

example

Example

Consider the following quiver Q and the algebra A = kQ/I with

I = (βα, αβ, δγ, γδ, δξ).

1
α
((
2

β

hh

γ
((
3

δ

hh 4
ξoo

Its relation quiver R is as follows.

α

[βα]
((
β

[αβ]

hh γ

[δγ]
((
δ

[γδ]

hh ξ
[δξ]oo

There are one perfect component and one defect component;
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The main theorem

Theorem (C. 2018)

Let A = kQ/I be a quadratic monomial algebra and B = kR/J2

the radical square zero algebra of the relation quiver R. There is a

triangle equivalence

Dsg(A) ' Dsg(B), Aα 7→ Sα, for all α ∈ Q1,

which restricts to a triangle equivalence A-Gproj ' B-Gproj and

induces a triangle equivalence Ddef(A) ' Ddef(B).
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Consequences and an example

Recall that B = Bperf × Bac × Bdef .

Dsg(A) ' A-Gproj×Ddef(A);

A-Gproj ' Bperf -mod;

Ddef(A) ' Dsg(Bdef) ' L((Rdef)◦)-grproj.

Example

Recall the relation quiver R is as follows.

α

[βα]
((
β

[αβ]

hh γ

[δγ]
((
δ

[γδ]

hh ξ
[δξ]oo

Therefore, A-Gproj ' T2, and Ddef(A) ' (L(Z2)-grproj, (−1)),

which is also equivalent to T2.
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The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules; B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules;

B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules; B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules; B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules; B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: the proof

A = kQ/I and B = kR/J2

1 Step 1: B-ssmod = the stable category of semisimple

B-modules; B-ssmod ↪→ B-mod is a pre-triangle equivalence,

that is, equivalence up to stabilization.

2 Step 2: There is an explicit functor

F : B-ssmod→ A-mod, Sα 7→ Aα, α ∈ Q1.

It is also a pre-triangle equivalence!

3 Step 3: By [C.-Shen-Zhou 2018], it preserves Gorenstein

projective modules!

Xiao-Wu Chen, USTC The singularity category of a quadratic monomial algebra



The singularity category: a detailed introduction
Some known results

The main result

The main theorem: at the dg level

Recently, Liu observes that the result can be “enhanced” to

the dg level.

Theorem (Liu 2019, in progress)

Let A = kQ/I be a quadratic monomial algebra and B = kR/J2

the radical square zero algebra of the relation quiver R. Then
there is an isomorphism of dg categories in the homotopy category

Hodgcat of dg categories

Sg(A) ' Sg(B), Aα 7→ Sα, for all α ∈ Q1,

which induces the triangle equivalence in the previous theorem.
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Thank You!

http://home.ustc.edu.cn/∼xwchen
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