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Abstract

Let K be afield of characteristic 0 containing all roots of unity. We classified all the Hopf structures
on monomialK -coalgebras, or, in dual version, on monomialalgebras.
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Introduction

In the representation theory of algebras, one uses quivers and relations to construct
algebras, and the resulted algebras are elementary, see Auslander, Reiten, and Smalg
[1] and Ringel [15]. The construction of a path algebra has been dualized by Chin and
Montgomery [4] to get a path coalgebra. It is then natural to consider subcoalgebras of a
path coalgebra, which are all pointed.

There are also several works to construct neither commutative nor cocommutative Hopf
algebras via quivers (see, e.g., [5-7,9]). An advantage for this construction is that a natural
basis consisting of paths is available, and one can relate the properties of a quiver to the
ones of the corresponding Hopf structures.
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In [5] Cibils determined all the graded Hopf structures (with length grading) on the
path algebr& Z¢ of basic cycleZ, of lengthz; in [6], Cibils and Rosso studied graded
Hopf structures on path algebras; in [9] E. Green and Solberg studied Hopf structures on
some special quadratic quotients of path algebras. More recently, Cibils and Rosso [7]
introduced the notion of the Hopf quiver of a group with ramification, and then classified
all the graded Hopf algebras with length grading on path coalgebras. It turns out that a path
coalgebrak Q¢ admits a graded Hopf structure (with length grading) if and onl9 ik a
Hopf quiver (here a Hopf quiver is not necessarily finite).

The cited works above stimulate us to look for finite-dimensional Hopf algebra
structures, on more quotients of path algebras, or in dual version, on more subcoalgebras
of path coalgebras.

The aim of this paper is to classify all the Hopf algebra structures on a monomial
algebra, or equivalently, on a monomial coalgebra.

Since a finite-dimensional Hopf algebra is both Frobenius and coFrobenius, we first
look at the structure of monomial Frobenius algebras, or dually, the one of monomial
coFrobenius coalgebras. It turns out that each indecomposable coalgebra component of
a non-semisimple monomial coFrobenius coalgebr@, i6:) with d > 2, whereC,(n)
is the subcoalgebra of path coalgelifa&’ with basis the set of paths of length strictly
smaller thani. See Section 2.

Then by a theorem of Montgomery (Theorem 3.2 in [13]), a non-semisimple monomial
Hopf algebraC is a crossed product of a Hopf structure Gn(r) with a group algebra.
Thus, we turn to study the Hopf structures 6p(n) with d > 2. It turns out that the
coalgebraC;(n), d > 2, admits a Hopf structure if and only # | » (Theorem 3.1).
Moreover, whery runs over primitivedth roots of unity, the generalized Taft algebras
An.4(q) gives all the isoclasses of graded Hopf structure€pn) with length grading;
while the Hopf structures (not necessarily graded with length grading), ¢ are exactly
the algebras denoted by(n, d, ., q), with g a primitive dth root of unity andu € K.

These algebrad(n,d, u, q) have been studied by Radford [14], Andruskiewitsch and
Schneider [2]. See Theorem 3.6.

Note that algebrad(n, d, 1, g) is given by generators and relations. In Section 4,
we prove thatA(n,d, 1, q) is the product ofKZf;/Jd andn/d — 1 copies of matrix
algebraM,(K) whenu # 0, and the product of/d copies ofKZj/Jd whenp =0, see
Theorem 4.3. Hence the Gabriel quiver and the Auslander—Reiten quivienodl, «, q)
are known.

Finally, we introduce the notion of a group datum. By using the quiver construction
of C4(n), the Hopf structure on it, and Montgomery's theorem (Theorem 3.2 in [13]), we
get a one to one correspondence of Galois type between the set of the isoclasses of non-
semisimple monomial Hop -algebras and the isoclasses of group data &vdrhis gives
a classification of monomial Hopf algebras.

1. Preliminaries

Throughoutthis papeK denotes a field of characteristic O containing all roots of unity.
By an algebra we mean a finite-dimensional associd&iagebra with identity element.
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Quivers considered here are always finite. Given a quivet (Qo, Q1) with Qg the
set of vertices and?; the set of arrows, denote ¥ O, K 9%, and K Q°¢, the K-space
with basis the set of all paths i@, the path algebra of), and the path coalgebra ¢f,
respectively. Note that they are all graded with respect to length grading. Eapq, let
s(a) andt (@) denote respectively the starting and ending vertex.of

Recall that the comultiplication of the path coalgekr@c is defined by (see [4])

-1
Ap)= ) BRa=o a1 @s(@)+ Y o ai1®a; a1 +1a) Qa1
Ba=p i=1

for each pattp = ¢ - - - @1 with eachw; € Q1;ande(p) =0if/ > 1,and 1ifl = 0. This is
a pointed coalgebra.
Let C be a coalgebra. The set of group-like elements is defined to be

G(C):={ceC|A()=c®c, c#0}.
Itis cleare(c) =1forc e G(C). Forx,y € G(C), denote by
Pey(O):={ceClA()=c@x+y®c},

the set ofx, y-primitive elements irC. It is clear thate(c) = 0 for ¢ € Py ,(C). Note that
K(x —y) € P, ,(C). An elementc € P, ,(C) is non-trivial if ¢ ¢ K (x — y). Note that
G(K Q) = Qo; and

Lemma 1.1. For x, y € Qg, we have

P y(KQY)=y(KQ1x & K(x —y)

wherey(K Q1)x denotes theK-space spanned by all arrows fromto y. In particular,
there is a non-triviale, y-primitive element irk Q¢ if and only if there is an arrow from
toyin Q.

An ideal I of K Q“ is admissible if/~¥ < I  J2 for some positive integeN > 2,
whereJ is the ideal generated by all arrows.

An algebraA is elementary ifA/R = K" as algebras for some, whereR is the
Jacobson radical of. For an elementary algebrg, there is a (unique) quive, and
an admissible ideal of K 9¢, such thatA = K 9“/I. See [1,15].

An algebraA is monomial if there exists an admissible idéajenerated by some paths
in QO such thatA = K 9“/I. Dually, we have

Definition 1.2. A subcoalgebr& of K Q¢ is called monomial provided that the following
conditions are satisfied:

(i) C contains all vertices and arrows @,
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(i) C is contained in subcoalgebea (Q) := @¢— K O(i) for somed > 2, whereQ (i)
is the set of all paths of lengthin Q;
(i) C has a basis consisting of paths.

Itis clear by definition that both monomial algebras and monomial coalgebras are finite-
dimensional; andi is a monomial algebra if and only if the linear dutl is a monomial
coalgebra.

In the following, for convenience, we will frequently pass from a monomial algebra to
a monomial coalgebra by duality. For this we will use the following:

Lemma 1.3. The path algebr& Q¢ is exactly the graded dual of the path coalgel&r®°,
ie.,

K= (k%)
and for each! > 2 there is a graded algebra isomorphism
KQ“/J = (Ca(Q))".

1.4. Letg € K be annth root of unity. For non-negative integdrandm, the Gaussian
binomial coefficient is defined to be

m+1l\ — (+m),
1), Lgmly

where

Ng:=14---14, 0y, =1, lq:=1+q+---+ql_l.

Observe tha(”ll)q =0for1<1<d — 1ifthe order ofy is d.

1.5. Denote byZ, the basic cycle of length, i.e., an oriented graph with vertices
eo, ...,en—1, and a unique arrow; from e; to ¢;11 for each 0< i < n — 1. Take the
indices modulo:. Denote bypf the path inZ, of length! starting ate;. Thus we have
p?:ei andp} =q;.

For eachnth rootg € K of unity, Cibils and Rosso [7] have defined a graded Hopf
algebra structur& Z, (¢) (with length grading) on the path coalgetKe&: by

pf-P.’?=q”< l )pii'}”
q

with antipodeS mappingp! to (—Dlg— "7 —ipl
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1.6. In the following, denoteC;(Z,) by C4(n). That is,C4(n) is the subcoalgebra of
K Z¢ with basis the set of all paths of length strictly less thian

Since(’"l*l)q =0form<d—1,1<d—1,l4+m >d,itfollows that if the order of; is
d thenC,(n) is a subHopfalgebra o Z,,(¢). Denote this graded Hopf structure 6p(n)
by Ca(n,q).

Let d be the order ofy. Recall that by definitiom4, 4(¢) is an associative algebra
generated by elemengsandx, with relations

gt =1, x?=0, Xg =qgx.

Then A, 4(q) is a Hopf algebra with comultiplicatios, counite, and antipodes given
by

Alg)=g®g, e(g) =1,

AX)=x®1+¢g®x, e(x)=0,

n—1 1

S@=gt=g""1  Sx)=-xg” !

=—qg " x.
In particular, ifg is annth primitive root of unity (i.e..d = n), then A, 4(q) is the
n?-dimensional Hopf algebra introduced by Taft [17]. For this readpn(q) is called a
generalized Taft algebra in [10].
Observe thaC, (n, q) is generated by, andag as an algebra. Mappingto e; andx
to g, we get a Hopf algebra isomorphism

Ana(g) =Ca(n, q).

1.7. Let ¢ € K be annth root of unity of orderd. For eachu € K, define a Hopf
structureCy (n, 1, g) on coalgebra;(n) by

gfm+1 ,
pll_.p;.":q/l( l > pfi;'?, ifl+m<d,
q

and

I pdtm—dlg m—a _ rm—dy
Pi'P'f'ZW"W(l’H? —Pitjra). Wl+m=>d,

with antipode

Ia+1 —il 1

S(py=Dlq 2z pl .,

where 0< I,m <d —1,and 0< i, j <n — 1. This is indeed a Hopf algebra with identity
elementpg = eg and of dimensiomd. Note that this is in general not graded with respect
to the length grading; and that

Cq(n,0,q9) =Cqy(n,q).
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In [14] and [2] Radford and Andruskiewitsch—Schneider have considered the following
Hopf algebraA (n, d, i, g), which as an associative algebra is generated by two elements
g andx with relations

g"=1  x'=p(1-g%). xg=qgx,

with comultiplicationA, counite, and the antipod§ given as in 1.6.
Itis clear that

A(n,d,0,q) = Ana(q);

and ifd = n thenA(n, d, ., ¢) is then®-dimensional Taft algebra.
Observe thaC,(n, g, 1) is generated by, andwag. By sendingg to e; andx to ap we
obtain a Hopf algebra isomorphism

An,d,u,q)=Cq(n, 1, q).

2. Monomial Frobeniusalgebrasand coFrobenius coalgebras

The aim of this section is to determine the form of monomial Frobenius, or dually,
monomial coFrobenius coalgebras, for later application. This is well-known, but it seems
that there are no exact references.

Let A be a monomial algebra. Thug,= K Q¢/I for a finite quiverQ, wherel is an
admissible ideal generated by some paths of lengtBsForp € K 0¢, let p be the image
of p in A. Then the finite set

{p € A| p does not belong td}
forms a basis ofd. It is easy to see the following
Lemma 2.1. Let A be a monomial algebra. Then

(i) TheK-dimension oo A¢;) is the number of the maximal paths starting at vertex
which do not belong t@.

(i) The K-dimension oBode; A) is the number of the maximal paths ending at vertex
which do not belong t@.

Lemma 2.2. Let A be an indecomposable, monomial algebra. THeis Frobenius if and
onlyif A=k, or A= K z¢/J¢ for some positive integersandd, with d > 2.

Proof. The sufficiency is straightforward.

If A is Frobenius (i.e., there is an isomorphign® A* as left A-modules, or equiva-
lently, as rightA-modules), then the socle of an indecomposable projectivel keftodule
is simple (see, e.g., [8]). It follows from Lemma 2.1 that there is at most one arrow starting
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at each vertex. Replacing “left” by “right” we observe that there is at most one arrow
ending at each vertax

On the other hand, the quiver of an indecomposable Frobenius algebra is a single vertex,
or has no sources and sinks (a source is a vertex at which there are no arrows ending;
similarly for a sink), see, e.qg., [8]. It follows that £ # k then the quiver ofA is a basic
cycle Z, for somen. However it is well-known that an algebfZz¢ /I with I admissible
is Frobenius if and only if = J¢ for somed >2. O

The dual version of Lemma 2.2 gives the following:

Lemma 2.3. Let A be an indecomposable, monomial coalgebra. THeis coFrobenius
(i.e., A* is Frobeniu$ if and only if A =k, or A = C4(n) for some positive integens
andd, withd > 2.

An algebraA is called Nakayama, if each indecomposable projective left and right
module has a unique composition series. It is well known that an indecomposable
elementary algebra is Nakayama if and only if its quiver is a basic cycle or a linear quiver
A, (see [8]). Note that a finite-dimensional Hopf algebra is Frobenius and coFrobenius
(see, e.g., [12, p. 18)).

Corollary 2.4. An algebra is a monomial Frobenius algebra if and only if it is elementary
Nakayama Frobenius. Hence, a Hopf algebra is monomial if and only if it is elementary
and Nakayama.

3. Hopf structureson coalgebra Cy(n)

The aim of this section is to give a numerical description such that coalgglira
admits Hopf structures (Theorem 3.1), and then classify all the (graded, or not necessarily
graded) Hopf structures aty; (n) (Theorem 3.6).

Theorem 3.1. Let K be afield of characteristi®, containing amth primitive root of unity.
Letd > 2 be a positive integer. Then coalgehfa (n) admits a Hopf algebra structure if
and only ifd | n.

The sulfficiency follows from 1.6, or 1.7. In order to prove the necessity we need some
preparations.

Lemma 3.2. Suppose that the coalgeb€y (») admits a Hopf algebra structure. Then

(i) The sefleq, ..., e,—1} Of the vertices irC4(n) forms a cyclic group, say, with identity
elementl = ¢g. Thene; is a generator of the group.

(i) Setg :=e1. Then up to a Hopf algebra isomorphism we have for arsych that
0<i<n-1

g =quiy1+ Ki+1(gi+l - gi+2)
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and

i+l _

gi+2),

g o =1+ Aiva(g
whereg, A;, k; € K, withg" = 1.

Proof. (i) SinceC4(n) is a Hopf algebra, it follows tha; (Cy(n)) = {eo, ..., e,—1} IS @
group, say with identity elemerb. Sincewg is a non-trivialeg, e1-primitive element, it
follows thatage; is a non-trivialey, e%-primitive element, i.e., there is an arrow @y (n)
from e1 to 2. Thuse? = e,. A similar argument shows that = ¢/ for anyi.

(i) Since bothw; ¢ andga; are non-trivialg’+1, g/ +2-primitive elements, it follows that
i+1 _ i+2)

Q8§ = Wi+10i41 + Ki+1(g g

and

g = Yiy10i41 +)»;+l(gi+l _ gi+2)
with w;, ki, i, 4] € K.
Sinceg” - ag = ap, it follows thaty; -y, = 1. Setd; := yj41---yn, 1< j <n — 1,

andg, := 1. Define a linear isomorphis® : Cy(n) — C4(n) by

i 001 p.

In particular® (e¢;) = ¢; and® («;) = 6;;. Then® : Cy(n) — C4(n) is a coalgebra map.
Endow C,(n) = ©®(Cy4(n)) with the Hopf algebra structure via the given Hopf algebra
structure ofC;(n) and®. Then in®(C4(n)) we have

g (iaj)) =0(g) - O;) =O(g - ;)
= )i+10(@i41) + A4 (g — g')
= yi+10i+1i+1 + kf+1(8[+1 —-g'").
Sinced; = y;+10;+1, it follows that in® (C,) we have

g o =aip1+hiya(g T — g?)

(with Aj41 = MH/@:’)- Assume that now i® (C;(n)) we have

o8 =qi+10i4+1+ Ki+1(g[+l - gi+2)-

Sinceapg” = ap, it follows thatgs - --¢g, = 1. However,(g - «;) - g = g - (o; - g) implies
qi = qi+1 for eachi. Write ¢; = q. Theng” = 1. This completes the proof.0
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Lemma 3.3. Suppose that there is a Hopf algebra structure@r(n). Then up to a Hopf
algebra isomorphism we have

o (m 41

PPt = q’l( } > Pt (ModCrym(n))
q

for0<i,j<n-—1,andforl,m <d — 1, whereq € K is annth root of unity.

Proof. Use inductiononV :=[+m. ForN =0 or 1, the formula follows from Lemma 3.2.
Assume that the formula holds fof < Ng — 1. Then forN = Np > 1 we have

A(pi - p}') = A(pr) - A(P})
1 m
= (prlf ®p{> - (Zp’}';? ®pj~>
r=0 s=0

No
_ I—r m—s r s
= E E Pitr Pjts ®Pi " P
k=0 r+s=k,0<r<1,0<s<m

1 i+j i+j I
=p;- P} @& + 4o . ph

No—1
I—r m—s r K
+ Z Z Pitr Pjys ®Pi " Pj-
k=1 r4s=k,0<r<1,0<s<m

By the induction hypothesis for eactands with 1 < k :=r + s < No — 1 we have
r s _ _Jjr k k
pi-py=a’| ) pi; (modCy(n))
q

and

; No—k

- -5 _ 1— 0 No—k

pi+£ .p;n+ss :q(.H-s)( r)( i ) pifjJrk (mOdCNO_k(n)).
q

It follows that
A(pf .p;n) — P,l' .p;n ®gi+j +gi+j+No ® le' . pT 4+

(mod &b CNo—k(”)®Ck(n)>

1<k<No—1

where
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3= leO*l sl—sr k No—k No—
=4 Z Z q r), I —r pl+j+k®pl+}

k=1 r+s=k,0<r<1,0<s<m

il
=q’ Z( ) 1+]+k®p1+]

Note that in the last equality the following identity has been used (see, e.g., Proposi-
tion IV.2.3in [11]):

k No—k N
e ()5, i
rbs=k rjg\ =1/, l'/q
Now, putX := pl’.p;’? —q/'(N ) pl+] Then by the computation above we have
AX)=X®g™ +g g X (mod D e ck(n>).
1<k<No—1

Let X = ZU>0CU, wherec, is thevth homogeneous component with respect to the length
grading. Then we have

Y A=) (@ +g g, <mod P e Ck(n)).

1<k < No—1

Since the elements i@y, (7)) ® C(n) are of degrees strictly smaller thaf, it follows
that forv > Ng we have

Alcy) = ® gi+j + gi+j+N0 ® Cy.
Now for eachv > Ng > 1, note that in the right hand side of the above equality the terms
are of degredv, 0) or (0, v); but in the left hand side i€, # 0 then it really contains a

term of degree which is neithép, 0) nor (0, v). This forcesc, = 0 for v > Np. It follows
that

i1( No No\ w
p,’-pT=q”< . ) PR+ X = q”( . ) pro, (modCiy(n)).
q
This completes the proof.O

By a direct analysis from the definition of the Gaussian binomial coefficients we have

Lemma 3.4. Let1 # g € K be annth root of unity of ordew. Then

<’"+l> —0 ifandonlyif [’"—“}—[@}—[f}o,
L), a 4] |a
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where[x] means the integer part of.
3.5. Proof of Theorem 3.1

Assume thatC,(n) admits a Hopf algebra structure. Lgtbe thenth root of unity as
appeared in Lemma 3.3 with ordgy. It suffices to provel = dp. SinceCy(n) has a basis
plwith 7 <d —1and 0<i <n — 1, it follows from Lemma 3.3 that

l
<ml+ > =0 foriim<d-11+m>d.
q

While by Lemma 3.4

(m+l> —0 ifandonlyif [’"“}—[ﬁ}—[i}a
r /], do do do

(Note that here we have used the assumption ghas of characteristic 0: sinc& is
of characteristic zero, it follows tha(f"l”)l can never be zero. Thug# 1, and then
Lemma 3.4 can be applied.)

Takel =1 andm =d — 1. Then we havéd /do] — [(d — 1)/dp] > 0. This meangy | d.
Let d = kdp with k a positive integer. Ik > 1, then by taking = dp andm = (k — 1)do
we get a desired contradictic(ﬁgm)q £0.

Theorem 3.6. Assume thak is a field of characteristi®, containing amth primitive root
of unity. Letd | n withd > 2. Then

(i) Any graded Hopf structur@vith length gradinggon C;(n) is isomorphic tqas a Hopf
algebrg someCy(n, q) = A,.a(q), whereCy(n, g) and A, 4(g) are given as irl.6.
(i) Any Hopf structurgnot necessarily gradgdn C,(n) is isomorphic to(as a Hopf
algebrg someCy(n, u,q) = A(n,d, u, q), whereCy(n, u,q) andA(n,d, i1, q) are
given asinl.7.
(i) If A(n1,d1, n1, q1) =~ A(ng, d2, u2, g2) as Hopf algebras, them1 = np, d1 = do,
q1=q2.

If d #n,thenA(n,d, u1,q) ~ A(n, d, u2, q) as Hopf algebrasif and only ji; = 8¢ u»
forsomed#§ € K, andA(n, n, u1,q) >~ A(n,n, u2, q) foranyus, uz € K. In particular,
for eachn, C4(n, q1) is isomorphic taCy (n, g2) if and only ifg1 = ¢».

Proof. (i) By Lemma 3.3 and by the proof of Theorem 3.1 we see that any graded Hopf
algebra ornCy(n) is isomorphic toCy(n, ¢) for some rooy; of unity of orderd.
(i) Assume thatC,(n) is a Hopf algebra. By Lemma 3.2 we have

ao-elzqel-a0+x(el—e%)
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for some primitivedth rootq. SetX := agp + qL_l(l —e1). ThenXe; = ge1 X. Since
AX)=e1® X + X ® 1, it follows that

d
A(Xd)Z(A(X))dZZ([.Z) i XX =0 X+ X' @1,
i—0 \a

where in the last equality we have used the fact that

d
() =0 forl<i<d-1
1/ q

Since there is no non-trivial , k4-primitive element inC,(n), it follows that X =
uw(ld— e‘l’) for someu € K. Hence we obtain an algebra map

F:A(n,d,p,q)— Cq(n)

such thatF'(g) = e1 andF (x) = X. SinceC,(n) is generated by, andag by Lemma 3.3,
it follows that F is surjective, and hence an algebra isomorphism by comparing the
dimensions. It is clear thaF is also a coalgebra map, hence a bialgebra isomorphism,
which is certainly a Hopf isomorphism [16].

(iii) If Cq,(n1, p1, g1) = Cy,(n2, 12, g2), then their groups of the group-like elements
are isomorphic. Thus; = na, and hencel; = d> by comparing thek -dimensions. The
remaining assertions can be easily deduced. We omit the details.

Remark 3.7. The following example shows that, the assumpti@&ni$ of characteristic 0”
is really needed in Theorem 3.1.

Let K be a field of characteristic 2, and let> 2 be an arbitrary integer. Then each
graded Hopf algebra structure éi(n) is given by (up to a Hopf algebra isomorphism):

glai=aig’ =aiyj,  oaj=0,

S@) =an—i—1,  S(g/)=g""

forall0<i,j<n-—1.
(In fact, consider the Hopf algebra structukeZ, (1) on Z,,. Its subcoalgebr&>(n)
is also a subalgebra, which is exactly the given Hopf algebra. On the other hand, for
each graded Hopf algebra ov€p(n), the corresponding in Lemma 3.3 must satisfy
(i)q =1+¢ =0, and hencg = 1. Then the assertion follows from Lemma 3.3.)

Remark 3.8. It is easy to determine the automorphism group of the Hopf algebra
A(n,d,pu,q):itis K — {0} if u =0 ord =n, andZ, otherwise.
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4. The Gabrid quiver and the Auslander—Reiten quiver of A(n, d, u, q)

The aim of this section is to determine the Gabriel quiver and the Auslander—Reiten
quiver of algebraA (n, d, 1, g) = Cq(n, 1, q), whereg is annth root of unity of ordew.
We start from the central idempotent decompositiodoE A(n, d, i1, q).

Lemma 4.1. The center oA has a linear basig1, g¢, g, ..., g"¢}.

Let w € K be a root of unity of ordem/d. Then we have the central idempotent
decompositionl = cg + c1 + - -+ + ¢; With ¢; = (d/n) Z;zo(w’gd)/ forall 0<i <1,
wheret =n/d — 1.

Proof. By 1.7 the dimension of is nd, thus{gix/ |0<i<n—-1,0<j<d—1}isa

basis ofA. An elementc = Za,,g x7 is in the center ofA if and only if xc = cx and

gc = cg. By comparing the coefficients, we ggf = 0 unlessj = 0 andd | i. Obviously,

g% is in the center. It follows that the center afhas a basi¢l, g, g%, ..., "¢},
Since}"!_y(w/)" =0 for each I j <t, it follows that

d t t ) d
=0 = o "\iZo =1 "
and

das
cich = 3 Z gD iy’
0<),j/<t

% ngk i'k Z PRGRY

0<j <minfk,t},0<k—j <t

t
2(2 dk l/k Z w(l 1)]+ Z gdk i’k Z w(ii’)j)

k=0 0<j<k k=t+1 k—t<j<t

| QL

| QL
N

(Z dk l/k Z a)(z z)j+2gdk’w" Z w(ii’)j)

k=0 0<ji<k 1k <<t

d_2< dt lt (1 1)]+ngszk Z (iﬁ)j)
o<t
d
(gdta)”(s /([+1)+ngk(,()lk8 /(t+1))
k=0

dz .,
=@+ 58 ngkwlkzai,i’ci
k=0

whereé; ;7 is the Kronecker symbol. This completes the proafi
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Lemma 4.2. Let B = B(d, »,q) be an algebra generated by and x with relations
{g? =1,x? =i, xg =qgx}, wherexr, g € K, andq is a root of unity of ordet!.

(i) If =0, thenB~KZ4/J9.
(i) If 20, thenB ~ M;(K).

Proof. (i) Note that ifA =0, thenB ~ A(d,d,0,q) = C4(d, 0, g), which is ad?-dimen-

sional Taft algebra. By the self-duality of the Taft algebras (see [5, Proposition 3.8]) we
have algebra isomorphisms

B=A(d,d,0,q)~ A(d,d,0,q)* ~ Cq(d,0,q)* ~ KZ%/J%.

(i) If A #£0, then define an algebra homomorphismB — M;(K):

1
i 2
(g = q
g1
and
0 1
0 1
P(x) =
.. 0 1
A 0

Note that¢ is well-defined. It is easy to check thatg) and¢(x) generate the algebra
My(K). Thusg is a surjective map. However, the dimensionBois at mosi/?, thuse is
an algebra isomorphism.o

Now we are ready to prove the main result of this section.

Theorem 4.3. Write A= A(n,d, u,q) andt =n/d — 1.

(i) If w50, thenA~KZ%/J9 x Mg(K) x --- x My(K) (with  copies ofM,(K)).
(i) If o =0, thenA ~ KZ4%/J? x KZ4/J? x --- x KZ%/J¢ (with n/d copies of
KZz4/J9).

Proof. By Lemma 4.1 we havd = ¢gA x c1A x --- x ¢;A as algebras. Writd; = ¢; A.
Note thatc;g? = wi¢; for all 0 <i <. It follows that{c;gkx/ |0<k <d —1,0< j <
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d—1}is alinear basis ofi;. Letwg € K be amth primitive root of unity such that? = w.
Obviously, as an algebra eadh is generated bwgci g andc; x, satisfying

(@heig)' =ci. () =cn(l-g?) =cinl-o™)
and
(cix) (wheig) = q(wheig) (cix).
Note thatc; is the identity ofA;. Thus we have an algebra homomorphism
6i:B(d, n(l—w™),q) > A

such thab; (g) = a)gcig andé; (x) = c¢;x. A simple dimension argument shows tlfatis
an algebra isomorphism. Note thatl — » ) =0 if and only if x = 0 ori = 0. Then the
assertion follows from Lemma 4.2.0

Corollary 4.4. The Gabriel quiver of algebra (n, d, u, q) is the disjoint union of a basic
d-cycle and: isolated vertices ifu # 0, and the disjoint union of/d basic d-cycles if
w=0.

Since the Auslander—Reiten quivE(K Z4/J9) is well-known (see, e.g., [1, p. 111]),
it follows that the Auslander—Reiten quiver &fn, d, u, ¢) is clear.

5. Hopf structures on monomial algebrasand coalgebras

The aim of is section is to classify non-semisimple monomial H&phlgebras,
by establishing a one-to-one correspondence between the set of the isoclasses of non-
semisimple monomial HopK -algebras and the isoclasses of group data &ver

Theorem 5.1.

(i) Let A be a monomial algebra. The# admits a Hopf algebra structure if and only if
A=k x ---x kas analgebra, or

A=KZY)J % x KZ9)J?
as an algebra, for some > 2 dividingn.
(i) LetC be a monomial coalgebra. The&nhadmits a Hopf algebra structure if and only
fC=k®---®kasacoalgebra, or

C=Cin)®---®Cy(n)

as a coalgebra, for some > 2 dividingn.
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Proof. By duality it suffices to prove one of them. We prove (ii).

If C=C1®---® C; as acoalgebra, where eaCh= C; as coalgebras, anch admits
Hopf structureH1, then H1 ® K G is a Hopf structure orC, whereG is any group of
orderl. This gives the sufficiency.

Let C be a monomial coalgebra admitting a Hopf structure. Since a finite-dimensional
Hopf algebrais coFrobenius, it follows from Lemma 2.3 that as a coalgebes the form
C=C1®---@®C; with eachC; indecomposable as coalgebra, &nd= k or C; = Cy, (n;)
for somen; and d; > 2.

We claim that if there exists &; = k, thenC; =k for all j. Thus, ifC #k @ --- Bk,
thenC is of the form

C=Cy4(n)®---®Cq ()

as a coalgebra, with eaeh > 2.

(Otherwise, letC; = Cy4(n) for somej. Leto be an arrow inC; fromx to y. Leth be
the unique group-like element if; = k. Since the seG (C) of the group-like elements
of C forms a group, it follows that there exists an elemert G(C) such thath = kx.
Thenka is ah, ky-primitive element inC. But according to the coalgebra decomposition
C=C1®---®C;with C; = Kh, C has noh, ky-primitive elements. A contradiction.)

Assume that the identity element 1 6f(C) is contained inCy = Cg4, (n). It follows
from a theorem of Montgomery [13, Theorem 3.2] tidatis a subHopfalgebra af', and
that

g *Ca, (i) = C4;(ni)g; * = Cay (n1)

foranyg; € G(Cg (n;)) and for eachi. By comparing the numbers of group-like elements
in glflcd,. (n;) and inCg, (n1) we haven; = n1 = n for eachi. While by comparing the
K-dimensions we see that = d1 = d for eachi. Now, sinceC1 = C4(n) is a Hopf
algebra, it follows from Theorem 3.1 thatdividesn. O

5.2. For convenience, we call a Hopf structure on a monomial coalgélaranonomial
Hopf algebra. Note that a monomial Hopf algebra is not necessarily graded with length
grading, by Lemma (iii) below.

Lemma. Let C be a non-semisimple, monomial Hopf algebra.

(i) LetC; bethe indecomposable coalgebra component containing the identity element
ThenG(Cy) is a cyclic group contained in the centerG{C).
(i) There exists a unique elemenie C such that there is a non-trivial, g-primitive
elementinC. The elemeng is a generator olG(C1).
(iif) As an algebraC is generated byG (C) and a non-triviall, g-primitive element,
satisfying

x=p(g! - 1)

for someu € K, whered = dimg C1/0(g), o(g) is the order ofg.
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(iv) There exists a one-dimensioritrepresentatiory of G such that
x-h=xMh-x, VYhegG,
andu =0if o(g) =d (note thatd = o(x(g))); andx? = 1if u #0andg? # 1.

Proof. (i) Note that C; is a subHopfalgebra o by Theorem 3.2 in [13]. By
Theorem 5.1(ii) we hav€1 = C4(n) as a coalgebra. It follows from Lemma 3.3 tidatC1)
is a cyclic group. By Theorem 5.1(ii) we can identify each indecomposable coalgebra
component; of C with C4(n). For anyh € G(C) with h € C;, note thathag is a non-
trivial &, he1-primitive element inC;, andagh is a non-trivial, e1h-primitive element
in C;. This implies that there is an arrow @& = C;(n) from h to he1, and that there is
an arrow inC; from i to e1h. Thus by the structure of a basic cycle we have = e1h.
While e1 is a generator of; (C1). Thus,G(C1) is contained in the center @f(C).

(ii) One can see this assertion from Theorem 5.1(ii) by identify@agvith C,(n), and
the claimedg is exactlyes in Cy(n).

(iif) By Theorem 3.2in [13], as an algebr@,is generated by'1 andG (C). By the proof
of Theorem 3.1(ii)C1 is generated by = ¢1 and a non-trivial 1e1-primitive elementx,
satisfying the given relation, together with

xey1=gqeix
with ¢ a primitivedth root of unity.

(iv) For anyh € G, since bothy -  andh - x are non-trivialk, gh-primitive elements
in C (notegh = hg), it follows that there exist& -functionsy andy’ on G such that

x-h=x(Wh-x+x ()L~ gh.

We claim thaty is a one-dimensional representation®find x’ = 0.
By x - (h1-h2) = (x - h1) - ho, one infers that

x(h1-h2) = x(h1)x (h2)
and
x'(h1-h2) = x(h1) x'(h2) + x'(hy).

Sincey (g) =q andy’(g) =0, it follows thaty’(h - g) = x'(h) forall h € G. Thus, we
have

X' (W)y=x"(h-g)=x"(g-h)=x(x' (h),
which impliesy’ = 0.

Sincex? = u(1— g%, it follows that one can make a choice such that 0 if d = n.
By x4 - h = x?(h)h-x¢ andx? = u(g¢ — 1) weseex? =1lif u#0andg? #1. O
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In order to classify non-semisimple monomial Hoff-algebras, we introduce the
notion of group data.

Definition 5.3. A group datumx = (G, g, x, ) overK consists of

(i) afinite groupG, with an elemeng in its center;
(i) a one-dimensionak -representatiory of G; and

(iif) an elementy € K, such thatu = 0 if o(g) = 0o(x(g)), and that ifu # 0 then
o(x(8) =1
X .

Definition 5.4. Two group datax = (G, g, x, n) ando’ = (G', ¢/, x/, ') are said to be
isomorphic, if there exist a group isomorphiginG — G and some @ § € K such that

f@)=¢g,x=x'fandu= 5dpf.
Lemma 5.2 permits us to introduce the following notion.

Definition 5.5. Let C be a non-semisimple monomial Hopf algebra. A group datum
a=(G, g, x, ) is called an induced group datum@fprovided that

() G=G(O);
(ii) there exists a non-trivial Jg-primitive elementx in C such that

xI=pu1-g%,  xh=x(hx, Vheg,
whered is the multiplicative order of (g).

For example(Z,, 1, x, ) with x (1) = ¢ is an induced group datum &f(n, d, i, q)
(as defined in 1.7).

Lemma5.6.

(i) Let C,C’ be non-semisimple monomial Hopf algebrgs,C — C’ a Hopf algebra
isomorphism, andx = (G, g, x, #) an induced group datum of. Then f(«@) =
(f(G), f(g), xf~L, w) is aninduced group datum @f .

(i) f o« =(G,g,x,n) andB =(G', ¢, x’, ) both are induced group data of a non-
semisimple monomial Hopf algeb€g thena is isomorphic tos.

Thus, we have a mag from the set of the isoclasses of non-semisimple monomial
Hopf K-algebras to the set of the isoclasses of group data &/eby assigning each
non-semisimple monomial Hopf algelfato its induced group datuma(C).

Proof. The assertion (i) is clear by definition.
(i) By definition we haveG = G(C) = G'. By definition there exists a non-trivial 1,
g-elementr, and also a non-trivial ,J¢’-elementx’. But according to Theorem 5.1(ii)
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suchg andg’ turn out to be unique, i.eg = g’ = e1 if we identify C; with C;(n). And
according to the coalgebra structuretdfand ofC1 = C,(n), we have

x=8x"+k(l—g)
for somes £ 0, k € K. It follows that
x-h=xWh-x=x)bsh-x"+x(Wxh-(1—g)
and
x-h=(x"+x1=g) -h=8x"(Wh -x'+xh-(1-g)
and hencer = x’ andk = 0. Thus
p(l-g)=x?=@x)" ="' (1-g),
i.e., . =8, which implies thatr and 8 are isomorphic. O

5.7. For a group datunx = (G, g, x, u) over K, define A(«) to be an associative
algebra with generatonsand alli € G, with relations

xdz,u,(l—gd), xh=x(h)hx, VheQaG,

whered = o(x(g)). One can check that digh(«x) = |G|d by Bergman’s diamond
lemma in [3] (here the conditiony? = 1 if u # 0" is needed). EndowA («) with
comultiplicationA, counite, and antipode by

AX)=g@x+x®1, g(x) =0,
Ah)y=h®h, e(hy=1, Vheg,
Sx)y=g X, Sh=h"t Vhed.

It is straightforward to verify tha#i («) is indeed a Hopf algebra.
Lemma 5.8.

(i) For each group daturx = (G, g, x, 1) over K, A(«) is a non-semisimple monomial
Hopf K -algebra, with the induced group datum

(ii) If « and g are isomorphic group data, theAa(«) and A(8) are isomorphic as Hopf
algebras.

Thus, we have a map from the set of the isoclasses of group data oketo the set
of the isoclasses of non-semisimple monomial HofHlgebras, by assigning each group
datumo to A(@).
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Proof. (i) Since dim A(a) = |G|d, itfollows that{hx’ | h € G, i < d} is a basis fol ().
Let {a1 =1,...,a;} be a set of representatives of cosetsGofespect toG;. For each
1<i <, let A; be theK-span of the sefu;g/x* |0< j <n—1,0< k <d — 1}, where
n =|G1|. Itis straightforward to verify that

Al@) =A1®---D A
as a coalgebra, amtl = A ; as coalgebrasforall& i, j <!/. Note that there is a coalgebra

isomorphismA1 = C4(n), by sending’x/ to (j!y) p/, wherep/ is the path starting af;
and of length;. This proves that

Al)=Cin)®---®Cy(n)
as coalgebras.

(i) Let o = (G, g, xf,8%n) = B = (f(G), f(g), x, ) With a group isomorphism
f:G — G'. ThenF:A(x) — A(B) given by F(x) = 8x', F(h) = f(h), h € G, is a
surjective algebra map, and hence an isomorphism by comparirig-tlimensions. This
is also a coalgebra map, and hence a Hopf algebra isomorphism.

The following theorem gives a classification of non-semisimple, monomial lepF
gebras via group data ové.

Theorem 5.9. The maps and A above gives a one to one correspondence between sets
{the isoclasses of non-semisimple monomial HogIgebrag
and
{the isoclasses of group data ovEl.

Proof. By Lemmas 5.6 and 5.8, it remains to prove tha® A(«a(C)) as Hopf algebras,
which are straightforward by constructionsa

5.10. A group datume = (G, g, x, 1) is said to be trivial, ifG = (g) x N, and the
restriction ofy to NV is trivial.

Corollary. Let o = (G, g, x, ) be a group datum oveK. Then A(x) is isomorphic
to A(o(g),0(x(g), 1, x(8)) ® KN as Hopf algebras, if and only i& is trivial with
G = (g) x N, whereA(o(g), o(x(g)), u, x(g)) is as defined ini.7.

Proof. If « is trivial with G = (g) x N, then

a(A(o(g), 0(x(9)), 1, x () ® KN) =a,
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it follows from Theorem 5.9 that

A(@) = A(o(g),0(x(8)). 1. x(8)) ® KN.

Conversely, we then have

a=a(A@)=a(A(o(g), 0(x(2), 1, x(8)) ® KN)

istrivial. O

Remark 5.11. It is easy to determine the automorphism group Afx) with o« =
(G, g, x,w:itisK*x I'if u=0,andZ; x I' if u#0, wherel" :={f € Aut(G) |
@ =g xf=x}
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