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We formulate a version of Beck’s monadicity theorem for abelian categories, which is

applied to the equivariantization of an abelian category with respect to a finite group

action. We prove that the equivariantization is compatible with the construction of quo-

tient abelian categories by Serre subcategories. We prove that the equivariantization of

the graded module category over a graded ring is equivalent to the graded module cat-

egory over the same ring but with a different grading. We deduce from these results

two equivalences between the category of (equivariant) coherent sheaves on a weighted

projective line of tubular type and that on an elliptic curve, where the acting groups are

cyclic and the two equivalences are adjoint to each other.

1 Introduction

The close relationship between weighted projective lines of tubular type and elliptic

curves is known to experts since the creation of weighted projective lines in [10]. Roughly

speaking, the category of coherent sheaves on a weighted projective line of tubular type
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13325

is equivalent to the category of equivariant coherent sheaves on an elliptic curve with

respect to a finite abelian group action. This result is implicitly exploited in [19] using

ramified elliptic Galois coverings over the field of complex numbers; compare [18]. More-

over, the somehow converse result holds true by [14, 15]: the category of coherent sheaves

on an elliptic curve is equivalent to the category of equivariant coherent sheaves on a

weighted projective line of tubular type with respect to a different finite abelian group

action, which contains the action given by the Auslander–Reiten translation.

The goal of this paper is to re-exploit the above-mentioned equivalences in an

explicit form. We emphasize that our treatment of the four tubular types is in a uniform

manner, and that we deduce these equivalences from general results on the equivari-

antization of an abelian category with respect to a finite group action. These general

results are direct applications of the famous Beck’s monadicity theorem which charac-

terizes the module category over a monad; see [16, Chapter VI]. We mention that monads

appear naturally, since the category of equivariant objects is isomorphic to the module

category over a certain monad; see [4, 7].

Let us describe the content of this paper. In Section 2, we collect some basic

facts on monads and modules over monads. We formulate a version of Beck’s monadicity

theorem for abelian categories, which is convenient for applications; see Theorem 2.1.

We give a self-contained proof to Theorem 2.1. In Section 3, we recall the notions of a

group action on a category and the category of equivariant objects. The observation we

need is that the category of equivariant objects is isomorphic to the category of modules

over a certain monad; see Proposition 3.1. In Section 4, we apply Theorem 2.1 to prove

that the equivariantization of an abelian category is compatible with quotient abelian

categories by Serre subcategories; indeed, a slightly more general result on the cate-

gory of modules over an exact monad is obtained; see Proposition 4.3 and Corollary 4.4.

In Section 5, we prove that the equivariatization of the graded module category over a

graded ring with respect to a degree-shift action is equivalent to the graded module cat-

egory over the same ring but with a coarser grading; see Proposition 5.2. This enables

us to recover [17, Theorem 6.4.1] on the graded module category over the correspond-

ing graded group ring; see Corollary 5.5. For the case where the acting group is finite

abelian, we generalize slightly a result in [14] and prove that the equivariantization of

the graded module category over a graded ring with respect to a twisting action is equiv-

alent to the graded module category over the same ring but with a refined grading; see

Proposition 5.7.

In Section 6, we recall some basic facts on the homogeneous coordinate alge-

bra of a weighted projective line. We prove that the quotient graded module category
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13326 J. Chen et al.

over a restriction subalgebra of the homogeneous coordinate algebra is equivalent to a

quotient of the category of coherent sheaves on the weighted projective line by a certain

Serre subcategory; see Proposition 6.6. This motivates the notion of an effective sub-

group of the grading group for the homogeneous coordinate algebra; see Definition 6.5.

For these subgroups, Proposition 6.6 claims an equivalence between the quotient graded

module category over the restriction subalgebra and the category of coherent sheaves

on the weighted projective line.

The final section is devoted to the study of the relationship between weighted

projective lines of tubular type and elliptic plane curves. We prove that the homogeneous

coordinate algebra of an elliptic plane curve is isomorphic to the restriction subalgebra

of the homogeneous coordinate algebra of the weighted projective line with respect to

a suitable effective subgroup; see Theorem 7.4. Applying Theorem 7.4 and the results

in Sections 4 and 5, we prove the main result: the equivariantization of the category of

coherent sheaves on a weighted projective line of tubular type with respect to a certain

degree-shift action is equivalent to the category of coherent sheaves on an elliptic plane

curve; the equivariantization of the category of coherent sheaves on an elliptic plane

curve with respect to a certain twisting action is equivalent to the category of coherent

sheaves on a weighted projective line of tubular type; see Theorem 7.7. We mention that

here the acting groups are cyclic, and that we need two different kinds of group actions

to have these two equivalences. On the other hand, the two equivalences obtained are

somehow adjoint to each other; see Remark 7.8(1).

We emphasize that the two equivalences in Theorem 7.7 are contained in

[10, 14, 15], which are presented in a slightly different form with sketched proofs; com-

pare [12] and Remark 7.8(3). As pointed out in [10], these equivalences link the classifi-

cation of indecomposable coherent sheaves on elliptic curves in [2] to the classification

of indecomposable modules of tubular algebras in [22].

2 Modules Over Monads

In this section, we recall some basic facts from [16, Chapter VI] on monads and modules

over monads. We formulate a version of Beck’s monadicity theorem for abelian cate-

gories, for which we provide a self-contained proof.

Let C be a category. Recall that a monad on C is a triple (M, η, μ) consist-

ing of an endofunctor M : C→ C and two natural transformations, the unit η : IdC→
M and the multiplication μ : M2→M, subject to the relations μ ◦ Mμ=μ ◦ μM and
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13327

μ ◦ Mη= IdM =μ ◦ ηM. We sometimes suppress the unit and the multiplication, and

denote the monad simply by M.

Monads arise naturally in adjoint pairs. Assume that F : C→D is a functor which

admits a right adjoint U : D→ C. We denote by η : IdC→U F the unit and by ε : FU→ IdD
the counit; they satisfy εF ◦ Fη= IdF and Uε ◦ ηU = IdU . We denote this adjoint pair on

C and D by the quadruple (F,U ; η, ε). We suppress the unit and the counit when they are

clear from the context.

Each adjoint pair (F,U ; η, ε) on two categories C and D defines a monad (M, η, μ)

on C, where M=U F : C→ C and μ=UεF : M2 =U FU F →U IdDF =M. The resulting

monad (M, η, μ) on C is said to be defined by the adjoint pair (F,U ; η, ε). Indeed, as

recalled now every monad is defined by some adjoint pair.

For a monad (M, η, μ) on C, an M-module is a pair (X, λ) consisting of an object

X in C and a morphism λ : M(X)→ X subject to the conditions λ ◦ Mλ= λ ◦ μX and λ ◦
ηX = IdX; the object X is said to be the underlying object of the module. A morphism

f : (X, λ)→ (X′, λ′) between two M-modules is a morphism f : X→ X′ in C satisfying

f ◦ λ= λ′ ◦ M( f). This gives rise to the category M-ModC of M-modules; moreover, we

have the forgetful functor UM : M-ModC→ C. The functor UM is faithful.

We observe that each object X in C yields an M-module FM(X)= (M(X), μX),

the free M-module generated by X. Indeed, this gives rise to the free module functor

FM : C→M-ModC sending X to the free module FM(X), and a morphism f : X→Y to the

morphism M( f) : FM(X)→ FM(Y).

We have the adjoint pair (FM,UM; η, εM) on C and M-ModC , where, for an

M-module (X, λ), the counit εM is given such that

(εM)(X,λ) = λ : FMUM(X, λ)= (M(X), μX)−→ (X, λ).

We observe that this adjoint pair (FM,UM; η, εM) defines the given monad (M, η, μ).

The above adjoint pair (FM,UM; η, εM) enjoys the following universal property:

for any adjoint pair (F,U ; η, ε) on C and D that defines the monad M, there is a unique

functor

K : D−→M-ModC

satisfying K F = FM and UM K =U ; see [16, VI.3]. This unique functor K will be referred to

as the comparison functor associated to the adjoint pair (F,U ; η, ε). For its construction,

we have

K(D)= (U (D),UεD), K( f)=U ( f) (2.1)
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13328 J. Chen et al.

for an object D and a morphism f in D. Here, we observe that M=U F and that

(U (D),UεD) is an M-module.

Following [16, VI.3] the adjoint pair (F,U ) is monadic (respectively, strictly

monadic) if the associated comparison functor K : D→M-ModC is an equivalence

(respectively, an isomorphism). In these cases, we might identify D with M-ModC .

The famous monadicity theorem of Beck gives intrinsic characterizations on

(strictly) monadic adjoint pairs; see [16, VI.7]. However, the conditions in Beck’s

monadicity theorem on coequalizers seem rather technical.

In the following result, we formulate a version of Beck’s monadicity theorem for

abelian categories, which is quite convenient for applications.

Theorem 2.1. Let F : A→B be an additive functor on two abelian categories. Assume

that F admits a right adjoint U : B→A which is exact. Denote by M the defined monad

on A. Then the comparison functor K : B→M-ModA is an equivalence if and only if the

functor U : B→A is faithful. �

The “only if” part of Theorem 2.1 is trivial, since U =UM K and the forgetful

functor UM is faithful. We will present two proofs for the “if” part. The first one is an

application of the original version of Beck’s monadicity theorem, while the second one

is more self-contained and seems to be of independent interest.

The following observation is well known.

Lemma 2.2. Let F : A→B be an exact functor on two abelian categories, which is faith-

ful. Then F preserves and reflects cokernels, that is, for two morphisms f : X→Y and

c: Y→ C in A, c is a cokernel of f if and only if F (c) is a cokernel of F ( f). �

Proof. The “only if” part follows from the right exactness of F .

For the “if” part, we assume that F (c) is a cokernel of F ( f). In particular,

F (c ◦ f)= 0, and thus c ◦ f = 0 since F is faithful. By the exactness of F , we have the

following fact: for any complex ξ : X→Y→ Z in A with cohomology H at Y, the com-

plex F (ξ) : F (X)→ F (Y)→ F (Z) in B has cohomology F (H) at F (Y). Since F is faithful,

we infer that the complex F (ξ) is exact at F (Y), that is, F (H)� 0, if and only if H � 0,

that is, the complex ξ is exact at Y. We apply this fact to the complexes X
f→Y

c→ C and

Y
c→ C → 0. We infer that c is a cokernel of f . �

The first proof of the “if” part of Theorem 2.1. Recall that a coequalizer of two paral-

lel morphisms in an additive category equals a cokernel of their difference. Then we
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13329

apply Lemma 2.2 to the functor U , and infer that U preserves and reflects coequalizers.

Then the comparison functor K is an equivalence by the “equivalence” version of Beck’s

monadicity theorem; see [16, VI.7, Exercise 6].

The second proof is an application of a slightly more general result, which seems

to be standard in relative homological algebra.

Let X be a full subcategory of a category C. Let C be an object in C. Recall that

a right X -approximation of C is a morphism f : X→ C with X ∈X such that any mor-

phism t : T→ C with T ∈X factors through f , that is, there exists a morphism t′ : T→ X

with t= f ◦ t′; compare [3, Section 3]. In case where C is abelian, an X -presentation of C

means an exact sequence X1
g→ X0

f→ C → 0 such that f is a right X -approximation of C

and that the induced morphism ḡ : X1→Ker f is a right X -approximation of Ker f .

For a functor F : C→D and a full subcategory X ⊆ C, we denote by F (X ) the full

subcategory of D consisting of objects that are isomorphic to F (X) for some object X in

X . In particular, we write Im F = F (C), the essential image of F .

Example 2.3. Let (F,U ; η, ε) be an adjoint pair on two categories C and D. Then, for

any object D in D, the counit εD : FU (D)→ D is a right Im F -approximation. Indeed, any

morphism t : F (C )→ D factors through εD as t= εD ◦ F (U (t) ◦ ηC ).

Let us state a special case explicitly. For a monad M= (M, η, μ) on C, we apply

the above to the adjoint pair (FM,UM; η, εM). Then, for any M-module (X, λ), the counit

(εM)(X,λ) = λ : FMUM(X, λ)= (M(X), μX)−→ (X, λ) (2.2)

is a right Im FM-approximation of (X, λ) in M-ModC ; it is an epimorphism, since

λ ◦ ηX = IdX. �

The following general result seems to be standard in relative homological alge-

bra, whose proof is also standard.

Proposition 2.4. Let F : A→B be a right exact functor on two abelian categories. Let X
be a full subcategory of A. We assume that the following conditions are satisfied.

(i) For any object C in A, there exists an epimorphism f : X→ C which is a

right X -approximation such that F ( f) is a right F (X )-approximation of

F (C ).

(ii) The restricted functor F |X : X →B is fully faithful.

Then the functor F : A→B is fully faithful. Assume that in addition the following con-

dition is satisfied.

 at U
niversity of Science and T

echnology of C
hina on D

ecem
ber 16, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


13330 J. Chen et al.

(iii) For any object B in B, there is an epimorphism F (A)→ B for some object A

in A.

Then the functor F : A→B is an equivalence. �

Proof. Let A, A′ be two objects in A. By the right exactness of F and (i), we have two

X -presentations ξ : X1
d→ X0

p→ A→ 0 and ξ ′ : X′1
d′→ X′0

p′→ A′ → 0 such that F (ξ) and F (ξ ′)

are F (X )-presentations of F (A) and F (A′), respectively. To show that F is full, take a

morphism t : F (A)→ F (A′). Since F (ξ ′) is an F (X )-presentation, we have the following

commutative diagram:

F (X1)

t1
��

F (d)
�� F (X0)

t0
��

F (p)
�� F (A)

t

��

�� 0

F (X′1)
F (d′)

�� F (X′0)
F (p′)

�� F (A′) �� 0

By (ii), there exist morphisms si : Xi→ X′i such that F (si)= ti and s0 ◦ d=d′ ◦ s1. The iden-

tity s0 ◦ d=d′ ◦ s1 implies the existence of a morphism s : A→ A′ such that s ◦ p= p′ ◦ s0.

It follows that F (s)= t by comparing commutative diagrams.

The faithfulness of F follows by a converse argument. Indeed, given a mor-

phism s : A→ A′ with F (s)= 0, we have morphisms si : Xi→ X′i such that s ◦ p= p′ ◦ s0

and s0 ◦ d=d′ ◦ s1; here, we use the X -presentation ξ ′. Then, in the above diagram, t=
F (s)= 0 and thus t0 = F (s0) factors through F (d′). By (ii), s0 factors through d′, and thus

s ◦ p= p′ ◦ s0 = 0. We infer that s= 0, since p is epic.

We assume that (iii) is satisfied. Then any object B fits into an exact sequence

F (A′)
g→ F (A)→ B→ 0. By the fully faithfulness of F , there exists a morphism s : A′ → A

satisfying F (s)= g. It follows that F (Cok s)� B. This proves the denseness of F , and thus

F is an equivalence. �

The second proof of the “if” part of Theorem 2.1. Since F has a right adjoint, it is right

exact. Then the endofunctor M=U F on A is right exact. It follows that the category

M-ModA is abelian; indeed, a sequence of M-modules is exact if and only if the corre-

sponding sequence of the underlying objects in A is exact.

Recall from (2.1) that K(B)= (U (B),UεB) and that K( f)=U ( f) for an object

B and a morphism f in B. Since the functor U is exact and faithful, it follows that

the comparison functor K : B→M-ModA is exact and faithful. Consider X = Im F as a
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full subcategory of B. We claim that the pair K and X satisfy the three conditions in

Proposition 2.4. Then we infer that K is an equivalence.

For the claim, we verify the conditions (i)–(iii). For (i), take any object B in B and

consider the counit εB : FU (B)→ B, which is a right X -approximation by Example 2.3.

We observe that K(εB) equals (εM)K(B), the counit εM applied on the M-module K(B). In

particular, by Example 2.3 K(εB) is a right Im FM-approximation of K(B) in M-ModA,

which is an epimorphism. Recall that FM = K F and thus Im FM = K(X ). Hence, the epi-

morphism K(εB) is a right K(X )-approximation of K(B). By Lemma 2.2, the functor K

reflects epimorphisms. It follows that εB is an epimorphism. This is the required mor-

phism in (i).

The condition (ii) is well known, since the restriction of K on X = Im F is fully

faithful; see [4, Lemma 3.3] and compare [16, VI.3 and VI.5]. The condition (iii) follows

from the epimorphism (2.2) for any M-module (X, λ), since FMUM = K FUM and thus

(M(X), μX)= K F (X). Set B = F (X). In particular, we have by (2.2) a required epimor-

phism K(B)→ (X, λ).

3 Equivariant Objects as Modules

In this section, we recall the notions of a group action on a category and the category

of equivariant objects. We give a direct proof of the fact that, in the additive case, the

category of equivariant objects is isomorphic to the category of modules over a certain

monad.

Let G be an arbitrary group. We write G multiplicatively and denote its unit by e.

Let C be an arbitrary category.

The notion of a group action on a category is well known; compare [5, 6, 20]. An

action of G on C consists of the data {Fg, εg,h | g,h∈G}, where each Fg : C→ C is an auto-

equivalence and each εg,h : FgFh→ Fgh is a natural isomorphism such that a 2-cocycle

condition holds, that is,

εgh,k ◦ εg,hFk= εg,hk ◦ Fgεh,k (3.1)

for all g,h,k∈G. We observe that there exists a unique natural isomorphism u: Fe→ IdC ,

called the unit of the action, satisfying εe,e= Feu; moreover, we have Feu=uFe by (3.1).

The given action is strict, provided that each Fg is an automorphism and each

isomorphism εg,h is the identity, in which case the unit is also the identity. Therefore,

a strict action coincides with a group homomorphism from G to the automorphism

group of C.
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Let G act on C. A G-equivariant object in C is a pair (X, α), where X is an object

in C and α assigns, for each g∈G, an isomorphism αg : X→ Fg(X) subject to the relations

αgg′ = (εg,g′)X ◦ Fg(αg′) ◦ αg. (3.2)

These relations imply that αe=u−1
X . A morphism θ : (X, α)→ (Y, β) between two

G-equivariant objects is a morphism θ : X→Y in C such that βg ◦ θ = Fg(θ) ◦ αg for all

g∈G. This gives rise to the category CG of G-equivariant objects, and the forgetful func-

tor U : CG→ C defined by U (X, α)= X. The process forming the category CG of equivariant

objects is known as the equivariantization with respect to the group action; see [6].

In what follows, we assume that the group G is finite and that C is an addi-

tive category. In this case, the forgetful functor U admits a left adjoint F : C→ CG ,

which is known as the induction functor; see [6, Lemma 4.6]. The functor F is defined

as follows: for an object X, set F (X)= (⊕h∈G Fh(X), ε), where, for each g∈G, the iso-

morphism εg :
⊕

h∈G Fh(X)→ Fg(
⊕

h∈G Fh(X)) is diagonally induced by the isomorphism

(εg,g−1h)
−1
X : Fh(X)→ Fg(Fg−1h(X)). Here, to verify that F (X) is indeed an equivariant object,

we need the 2-cocycle condition (3.1). The functor F sends a morphism θ : X→Y to

F (θ)=⊕
h∈G Fh(θ) : F (X)→ F (Y).

For an object X in C and an object (Y, β) in CG , a morphism F (X)→ (Y, β) is of the

form
∑

h∈G θh :
⊕

h∈G Fh(X)→Y satisfying Fg(θh)= βg ◦ θgh ◦ (εg,h)X for any g,h∈G. The

adjunction of (F,U ) is given by the following natural isomorphism:

HomCG (F (X), (Y, β))
∼−→HomC(X,U (Y, β))

sending
∑

h∈G θh to θe ◦ u−1
X . The corresponding unit η : IdC→U F is given such that

ηX = (u−1
X ,0, . . . ,0)t, where ‘t’ denotes the transpose; the counit ε : FU→ IdCG is given

such that ε(Y,β) =
∑

h∈G β
−1
h .

Let us compute the monad M= (U F, η, μ) defined by the adjoint pair (F,U ; η, ε).
This monad is said to be defined by the group action. The endofunctor M : C→ C is given

by M(X)=⊕
h∈G Fh(X) and M(θ)=⊕

h∈G Fh(θ) for a morphism θ in C. The multiplication

μ : M2→M is given by

μX =UεF (X) : M2(X)=
⊕

h,g∈G

FhFg(X)−→M(X)=
⊕
h∈G

Fh(X)

with the property that the corresponding entry FhFg(X)→ Fh′(X) is δhg,h′(εh,g)X; here, δ is

the Kronecker symbol.

The following result shows that the category of equivariant objects is isomor-

phic to the category of M-modules. Roughly speaking, equivariant objects are modules.
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13333

We mention that the result is an immediate consequence of Beck’s monadicity theorem

in [16, VI.7]; see also [4, Lemma 4.3] and compare [7, Proposition 3.10]. We provide a

direct proof for completeness.

Proposition 3.1. Let C be an additive category and G be a finite group acting on C. Keep

the notation as above. Then the adjoint pair (F,U ; η, ε) is strictly monadic, that is, the

associated comparison functor K : CG→M-ModC is an isomorphism of categories. �

Proof. We have just computed explicitly the monad M. Let us take a closer look at

M-modules. An M-module is a pair (X, λ)with λ=∑
h∈G λh : M(X)=⊕

h∈G Fh(X)→ X. The

condition λ ◦ ηX = IdX is equivalent to λe=uX, and λ ◦ M(λ)= λ ◦ μX is equivalent to λhg ◦
εh,g= λh ◦ Fh(λg) for any h, g∈G. Hence, if we set αh : X→ Fh(X) to be (λh)

−1 and compare

(3.2), we obtain an object (X, α) ∈ CG . Roughly speaking, the maps λh’s carry the same

information as αh’s.

Recall from (2.1) that the associated comparison functor K : CG→M-ModC is

constructed such that K(X, α)= (U (X, α),Uε(X,α)), which equals the M-module (X, λ)with

λh= (αh)
−1 by the explicit form of the counit ε. It follows immediately that K induces

a bijection on objects, and is fully faithful. We infer that K is an isomorphism of

categories. �

Remark 3.2. Proposition 3.1 can be extended slightly. Let G be a group whose cardi-

nality |G| might be infinite. Assume that the additive category C has coproducts with

any index set of cardinality less than or equal to |G|. For a G-action on C, we define

the induction functor F and the monad M as above by replacing finite coproducts by

coproducts indexed by a possibly infinite index set. The same argument proves that the

comparison functor K : CG→M-ModC is an isomorphism of categories. �

4 Exact Monads and Quotient Abelian Categories

In this section, we give the first application of Theorem 2.1, which states that the forma-

tion of the module category of an exact monad is compatible with quotient abelian cate-

gories by Serre subcategories. This result applies to the category of equivariant objects

in an abelian category.

4.1

Let A be an abelian category. A Serre subcategory N of A is by definition a full subcate-

gory which is closed under subobjects, quotient objects, and extensions. In other words,
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for an exact sequence 0→ X→Y→ Z→ 0 in A, Y lies in N if and only if both X and Z lie

in N . It follows that a Serre subcategory N is abelian and the inclusion functor N →A
is exact.

For a Serre subcategory N of A, we denote by A/N the quotient abelian category;

see [8]. The objects of A/N are the same as A, and for two objects X and Y, a morphism

in A/N is represented by a morphism X′ →Y/Y′, where X′ ⊆ X and Y′ ⊆Y are subobjects

with both X/X′ and Y′ in N . The quotient functor q : A→A/N sends an object X to X,

a morphism f : X→Y to the morphism q( f), which is represented by f : X→Y; here,

the corresponding X′ and Y′ are X and 0, respectively. The functor q is exact with its

essential kernel Ker q=N . In particular, for a morphism f : X→Y in A, q( f)= 0 if and

only if its image Im f lies in N .

Let F : A→A′ be an exact functor. Then the essential kernel Ker F is a Serre

subcategory of A, and F induces a unique exact functor F ′ : A/Ker F →A′. We say that

F is a quotient functor provided that F ′ is an equivalence.

Let F : A→A′ be an exact functor. Assume that N ⊆A and N ′ ⊆A′ are Serre

subcategories such that F (N )⊆N ′. Then there is a uniquely induced exact functor

F̄ : A/N →A′/N ′.

Lemma 4.1. Keep the notation as above. Assume that F : A→A′ is a quotient functor.

Then the induced functor F̄ : A/N →A′/N ′ is also a quotient functor. �

Proof. Denote by C the inverse image of N ′ under F . Then C is a Serre subcategory of A
containing N and Ker F . The essential kernel Ker F̄ of F̄ equals C/N .

We observe the following isomorphisms of abelian categories:

(A/N )/(C/N )�A/C � (A/Ker F )/(C/Ker F ).

By the assumption, we have the equivalence F ′ : A/Ker F
∼−→A′, which induces an equiv-

alence (A/Ker F )/(C/Ker F )
∼−→A′/N ′. Consequently, we have the required equivalence

(A/N )/Ker F̄
∼−→A′/N ′. �

Let M : A→A be an exact monad on A, that is, M= (M, η, μ) is a monad on

A and the endofunctor M is exact. Recall that the category M-ModA of M-modules

is abelian, where a sequence of M-modules is exact if and only if the corresponding

sequence of underlying objects in A is exact. It follows that both the free module functor

FM : A→M-ModA and the forgetful functor UM : M-ModA→A are exact.

Let N ⊆A be a Serre subcategory such that M(N )⊆N . Then we have the induced

endofunctor M̄ : A/N →A/N ; moreover, the natural transformations η and μ induce
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natural transformations η̄ : IdA/N → M̄ and μ̄ : M̄2→ M̄. Indeed, we obtain a monad

M̄= (M̄, η̄, μ̄) on A/N , called the induced monad of M.

We will need the following standard fact.

Lemma 4.2. Let F : A→A′ be an exact functor between two abelian categories, which

has an exact right adjoint U : A′ →A. Assume that N ⊆A and N ′ ⊆A′ are Serre subcate-

gories such that F (N )⊆N ′ and U (N ′)⊆N . Then the following statements hold.

(1) The induced functor F̄ : A/N →A′/N ′ is left adjoint to the induced functor

Ū : A′/N ′ →A/N .

(2) The monad on A/N defined by the adjoint pair (F̄ , Ū ) coincides with the

induced monad of the one on A defined by the adjoint pair (F,U ).

(3) Denote by U−1(N ) the inverse image of N . Assume that U−1(N )=N ′. Then

the induced functor Ū is faithful. �

Proof. Denote the given adjoint pair by (F,U ; η, ε) and its defined monad by

(M=U F, η, μ). We observe that the unit η (respectively, the counit ε) induces naturally

a natural transformation η̄ : IdA/N → Ū F̄ (respectively, ε̄ : F̄ Ū→ IdA′/N ′ ). Then we apply

[16, IV.1, Theorem 2(v)] to deduce the adjoint pair (F̄ , Ū ; η̄, ε̄). It follows that the monad

defined by this adjoint pair coincides with (M̄, η̄, μ̄), the induced monad of M.

For (3), take any morphism θ : X→Y in A′/N ′ with Ū (θ)= 0. We assume that

θ is represented by a morphism f : X′ →Y/Y′, where X′ ⊆ X and Y′ ⊆Y are subobjects

satisfying that both X/X′ and Y′ lie in N ′. Then Ū (θ) is represented by U ( f) : U (X′)→
U (Y/Y′), and thus q(U ( f))= 0 in A/N , or equivalently, the image Im U ( f) lies in N . We

observe that Im U ( f)�U (Im f) and then Im f lies in N ′, since U−1(N )=N ′. We infer

that θ equals zero in A′/N ′. We are done. �

4.2

Let A be an abelian category, and M : A→A be an exact monad. We will apply Lemma 4.2

to the adjoint pair (FM,UM).

Let N ⊆A be a Serre subcategory with M(N )⊆N . Then we have the restricted

exact monad M : N →N and the category M-ModN of M-modules in N . We view

M-ModN as a full subcategory of M-ModA; in other words, an M-module (X, λ) lies

in M-ModN if and only if the underlying object X lies in N . We observe that M-ModN ⊆
M-ModA is a Serre subcategory.
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Consider the induced monad M̄ on A/N . We observe that an M-module (X, λ)

yields an M̄-module (X,q(λ)) on A/N , where q(λ) : M̄(X)= qM(X)→ X. This gives rise to

an exact functor

Φ : M-ModA −→ M̄-ModA/N , (X, λ) 
→ (X,q(λ)).

The functor Φ sends a morphism θ to q(θ). We observe that Φ vanishes on the Serre sub-

category M-ModN , and induces an exact functor Φ̄ : M-ModA/M-ModN → M̄-ModA/N .

Proposition 4.3. Let M : A→A be an exact monad on an abelian category A, and let

N ⊆A be a Serre subcategory satisfying M(N )⊆N . Keep the notation as above. Then

the induced functor

Φ̄ : M-ModA/M-ModN
∼−→ M̄-ModA/N

is an equivalence of categories. �

Proof. Consider the free module functor FM : A→M-ModA and the forgetful functor

UM : M-ModA→A, both of which are exact. We observe that FM(N )⊆M-ModN , and

U−1
M (N )=M-ModN . We apply Lemma 4.2(1) and (3), and obtain the adjoint pair FM and

UM between quotient abelian categories A/N and M-ModA/M-ModN , where UM is faith-

ful. Moreover, by Lemma 4.2(2) the monad defined by this adjoint pair coincides with the

induced monad M̄ of M. We apply Theorem 2.1 to the adjoint pair (FM,UM) and infer

that the associated comparison functor

K : M-ModA/M-ModN −→ M̄-ModA/N

is an equivalence.

It remains to observe that K = Φ̄. Indeed, by (2.1) the comparison functor K

sends an M-module (X, λ) to an M̄-module (UM(X, λ),UM(ε̄M)(X,λ)), which equals (X,q(λ)).

Hence, the functors K and Φ̄ agree on objects. For the same reason, they agree on

morphisms. �

We now apply Proposition 4.3 to the category of equivariant objects. Let G be

a finite group that acts on an abelian category A by the data {Fg, εg,h | g,h∈G}. Then

the category AG of G-equivariant objects is abelian; indeed, a sequence of equivariant

objects is exact if and only if the corresponding sequence of the underlying objects in A
is exact.

Let N ⊆A be a Serre subcategory that is invariant under this action, that is,

Fg(N )⊆N for any g∈G. Then the quotient category A/N inherits a G-action, which is
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given by the data {F̄g, ε̄g,h | g,h∈G}. The quotient functor q : A→A/N induces an exact

functor
Ψ : AG −→ (A/N )G .

More precisely, Ψ sends a G-equivariant object (X, α) to (X,q(α)), where q(α)g=
q(αg) : X→ F̄g(X)= qFg(X) for each g∈G, and Ψ sends a morphism θ : (X, α)→ (Y, β) to

q(θ) : (X,q(α))→ (Y,q(β)). We observe that the functor Ψ is exact and that its essential

kernel equals N G . Therefore, we have the induced functor Ψ̄ : AG/N G→ (A/N )G .

Corollary 4.4. Let G be a finite group acting on an abelian category A, and let N ⊆A be

a Serre subcategory that is invariant under the action. Keep the notation as above. Then

the induced functor
Ψ̄ : AG/N G ∼−→ (A/N )G

is an equivalence of categories. �

Proof. Denote by M the monad on A that is defined by the group action. Then M is exact

and by the invariance of N , we have M(N )⊆N . We observe that the induced monad M̄

on A/N coincides with the monad defined by the induced G-action on A/N .

By Proposition 3.1, we identify AG with M-ModA, and (A/N )G with M̄-ModA/N .

Then the equivalence follows from Proposition 4.3. Here, one observes that the functor

Φ̄ in Proposition 4.3 corresponds to the functor Ψ̄ . �

5 Graded Module Categories and Graded group Rings

In this section, we give the second application of Theorem 2.1, and prove that the equiv-

ariatization of the graded module category over a graded ring with respect to a certain

degree-shift action is equivalent to the graded module category over the same ring but

with a coarser grading; this result is essentially due to [17, Theorem 6.4.1] in a different

setup. On the other hand, we prove that the equivariantization of the graded module

category over a graded ring with respect to a certain twisting action is equivalent to the

graded module category over the same ring but with a refined grading. All modules are

right modules.

5.1

Let G be an arbitrary group, which is written multiplicatively and whose unit is denoted

by e. Let R=⊕
g∈G Rg be a G-graded ring with a unit. Here, the unit 1R lies in Re, and the

subgroups Rg of R are called the homogeneous components of degree g.
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A G-graded R-module X is an R-module with a decomposition X =⊕
g∈G Xg into

homogeneous components Xg such that Xg.Rg′ ⊆ Xgg′ , where the dot “·” means the right

action. An element x in Xg is said to be homogeneous of degree g, denoted by |x| = g or

deg x= g. The grading support of X is by definition gsupp(X)= {g∈G | Xg �= 0}, which is

a subset of G.

We denote by ModG-R the abelian category of G-graded R-modules, where the

homomorphism between graded modules are module homomorphisms that preserve the

degrees. More precisely, a homomorphism f : X→ X′ is an R-module homomorphism

satisfying f(Xg)⊆ X′g, and we denote by fg : Xg→ X′g its restriction to the corresponding

homogeneous component. We denote by modG-R the full subcategory formed by finitely

presented graded modules.

For a G-graded R-module X and g′ ∈G, the shifted module X(g′) is defined such

that X(g′)= X as an ungraded R-module and that its grading is given by X(g′)g= Xg′g

for each g∈G. This gives rise to an automorphism (g′) : ModG-R→ModG-R, called the

degree-shift functor. For example, we consider R(g′) as a G-graded R-module with 1R

having degree g′−1. Indeed, the set {R(g) | g∈G} is a set of projective generators in the

category ModG-R.

Each subgroup G ′ ⊆G has a strict action on ModG-R by assigning to each g′ ∈G ′

the automorphism Fg′ = (g′−1). Such a G ′-action on ModG-R is referred to as a degree-

shift action; in this case, G ′ acts also on modG-R.

Let π : G→ H be a homomorphism of groups. We define an H-graded ring π∗(R)

as follows: as an ungraded ring π∗(R)= R, while its homogeneous component is given by

π∗(R)h=
⊕

g∈π−1(h) Rg for each h∈ H ; compare [17, Section 1.2]. Then we have the abelian

category ModH -π∗(R) of H-graded π∗(R)-modules and its full subcategory modH -π∗(R)

consisting of finitely presented modules, both of which carry a natural strict H-action

by degree shift.

We define a functor π∗ : ModG-R→ModH -π∗(R) as follows: for a G-graded

R-module X =⊕
g∈G Xg, we assign an H-graded π∗(R)-module π∗(X) such that π∗(X)= X

as an ungraded R-module and that its homogeneous component is given by π∗(X)h=⊕
g∈π−1(h) Xg. The functor π∗ acts on homomorphisms by the identity. We observe that

π∗ sends R to π∗(R), and more generally, π∗ sends R(g) to π∗(R)(h) for each g∈G and

h= π(g). We observe also that the functor π∗ is exact.

The functor π∗ has a right adjoint π∗ : ModH -π∗(R)→ModG-R, which is defined

as follows. For an H-graded π∗(R)-module Y=⊕
h∈H Yh, we define a G-graded abelian

group π∗(Y) such that its homogeneous component π∗(Y)g=Yπ(g) for each g∈G. A homo-

geneous element r ∈ Rg′ acts on an element y∈ π∗(Y)g as the given action y.r on Y, where
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the resulting element y.r ∈Yπ(gg′) is viewed now as an element in π∗(Y)gg′ . This defines a

G-graded R-module π∗(Y). For an H-graded π∗(R)-module homomorphism f : Y→Y′, the

corresponding homomorphism π∗( f) : π∗(Y)→ π∗(Y′) sends an element y∈ π∗(Y)g=Yπ(g)

to f(y) ∈Y′π(g) = π∗(Y′)g for each g∈G. We observe that the functor π∗ is exact.

The adjoint pair (π∗, π∗) is given by the following natural isomorphism:

HomModH -π∗(R)(π∗(X),Y)
∼−→HomModG-R(X, π

∗(Y)),

which sends f : π∗(X)→Y to f ′ : X→ π∗(Y) such that f ′g : Xg→ π∗(Y)g=Yπ(g) is the

restriction of fπ(g) : π∗(X)π(g)→Yπ(g) to the direct summand Xg. It follows that the unit

η : IdModG-R→ π∗π∗ is given such that (ηX)g : Xg→ π∗π∗(X)g=
⊕

g′∈π−1(π(g)) Xg′ is the inclu-

sion of Xg. The counit ε : π∗π∗ → IdModH -π∗(R) is given such that (εY)h : π∗π∗(Y)h=⊕
g∈π−1(h) Yπ(g)→Yh maps each direct summand Yπ(g) identically to Yh if h∈ π(G), and that

(εY)h= 0 otherwise.

Lemma 5.1. Let N be the kernel of π : G→ H . Then the monad defined by the adjoint

pair (π∗, π∗; η, ε) coincides with the monad defined by the degree-shift action of N on

ModG-R. �

Proof. Denote by (M, η′, μ) the monad that is defined by the degree-shift action of N

on ModG-R. As we computed above, π∗π∗(X)g=
⊕

g′∈π−1(π(g)) Xg′ =
⊕

n∈N X(n−1)g for each

g∈G. Indeed, this proves that the endofunctor π∗π∗ equals M, which is by definition⊕
n∈N Fn=

⊕
n∈N(n

−1). It is direct to verify that η= η′ and μ= π∗επ∗. �

We consider the degree-shift action of N on ModG-R, and thus the category

(ModG-R)N of N-equivariant objects. Consider the following functor:

Θ : ModH -π∗(R)−→ (ModG-R)N (5.1)

sending Y to Θ(Y)= (π∗(Y), Id), where Idn: π∗(Y)→ π∗(Y)(n−1) is the identity for each

n∈ N; here, we observe that π∗(Y)(n−1)= π∗(Y). The functor Θ sends a homomorphism f

to π∗( f).

The main observation is as follows. We mention that it is implicitly due to [17,

Theorem 6.4.1]; see Corollary 5.5.

Proposition 5.2. Keep the notation as above. Then the functor Θ is an equivalence if

and only if π : G→ H is surjective. In this case, if in addition N is finite, the equivalence

Θ restricts to an equivalence

Θ : modH -π∗(R)
∼−→ (modG-R)N . �
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Proof. We claim that the functor π∗ is faithful if and only if π is surjective. Recall

that π∗(Y)g=Yπ(g) for each g∈G, and that, for a morphism f : Y→Y′, π∗( f)g= fπ(g). In

particular, π∗( f)= 0 if and only if fh= 0 for all h∈ π(G). This proves the “if” part of the

claim. On the other hand, if π is not surjective, we take h∈ H that is not contained in

π(G). Consider Y= π∗(R)(h) in ModH -π∗(R). Then π∗(Y)= 0, or equivalently, π∗(IdY)= 0.

This shows that π∗ is not faithful in this case.

Set A=ModG-R. Denote by M the monad on A defined by the adjoint pair

(π∗, π∗). We consider the associated comparison functor K : ModH -π∗(R)→M-ModA. By

Lemma 5.1, Proposition 3.1, and Remark 3.2, we identify M-ModA with AN , with which

the functor Θ is identified with this comparison functor K. Here, one compares the

definition of Θ in (5.1) with the construction of K in (2.1). Recall that the functor π∗

is exact. Then we apply Theorem 2.1 to the adjoint pair (π∗, π∗), and infer that Θ is an

equivalence if and only if π∗ is faithful, which by the above claim is equivalent to the

surjectivity of π .

The restricted equivalence follows from Lemma 5.3(2). �

The following fact is well known.

Lemma 5.3. Assume that the homomorphism π : G→ H is surjective with its kernel N

finite. Let X be a G-graded R-module and Y be an H-graded π∗(R)-module. Keep the

notation as above. Then the following statements hold.

(1) The G-graded R-module X is finitely presented if and only if so is π∗(X).

(2) The H-graded π∗(R)-module Y is finitely presented if and only if so

is π∗(Y). �

Proof. Recall that π∗(R(g))= π∗(R)(h) for each g∈G and h= π(g). Thus, the exact func-

tor π∗ preserves finitely generated projective modules. Then the “only if” part of (1)

follows.

We observe that π∗(π∗(R)(h))�
⊕

n∈N R(ng) for h= π(g), and that N is finite. It

follows that the exact functor π∗ preserves finitely generated projective modules. The

“only if” part of (2) follows.

For the “if” part of (1), we assume that π∗(X) is finitely presented, and thus so is

π∗π∗(X). The unit ηX : X→ π∗π∗(X) is a split monomorphism. It follows that X is finitely

presented.

It remains to prove the “if” part of (2). We claim that, for each H-graded π∗(R)-

module Z , if π∗(Z) is finitely generated, so is Z . Indeed, we recall that the exact functor π∗
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preserves finitely generated projective modules. It follows that π∗π∗(Z) is finitely gener-

ated. Since the counit εZ : π∗π∗(Z)→ Z is surjective, we infer that Z is finitely generated.

Here, for the surjectivity of εZ we use the surjectivity of the homomorphism π : G→ H .

We assume that π∗(Y) is finitely presented. By the claim Y is finitely generated.

Take an exact sequence 0→ K→ P →Y→ 0 in ModH -π∗(R) with P finitely generated

projective. Applying the exact functor π∗ and the fact that π∗(P ) is finitely generated

projective, we infer that π∗(K) is finitely generated. By the claim again, we have that K

is finitely generated. This shows that Y is finitely presented. �

5.2

We will relate Proposition 5.2 to [17, Theorem 6.4.1].

Let N be a normal subgroup of a group G. Let R=⊕
g∈G Rg be a G-graded ring.

The graded group ring Rgr[N] is defined as follows: Rgr[N]=⊕
n∈N Run is a free left

R-module with a basis {un |n∈ N}, which is G-graded by means of |run| = |r| · n for a

homogeneous element r in R; the multiplication is given as follows:

(run)(r
′un′)= rr′u(|r′|−1·n·|r′ |)n′ .

We mention that the elements un are invertible.

We observe that Rgr[N] is a G-graded ring, and that the canonical map

R→ Rgr[N], sending r to rue, identifies R as a G-graded subring of Rgr[N]. We refer for

the details to [17, Section 6.1].

The following result establishes the link between the graded group ring Rgr[N]

and the category of N-equivariant objects in ModG-R. We emphasize that here we con-

sider the degree-shift action of N on ModG-R.

Proposition 5.4. Keep the notation as above. Then there is an isomorphism of categories

(ModG-R)N ∼−→ModG-(Rgr[N]). �

Proof. Recall that an N-equivariant object (X, α) is a G-graded R-module X with iso-

morphisms αn: X→ FnX = X(n−1) in ModG-R, subject to the relations Fn(αn′) ◦ αn= αnn′ .

We also view αn as an automorphism on X of degree n−1.

We define a functor Δ : (ModG-R)N ∼−→ModG-(Rgr[N]) as follows. To an N-

equivariant object (X, α), we associate a G-graded Rgr[N]-module Δ(X, α)= X such that

the R-action is the same as X and that

x.un= (α|x|·n·|x|−1)−1(x)
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for each homogeneous element x in X and n∈ N. It is routine to verify that this defines

a G-graded Rgr[N]-module structure on X. The functor Δ acts by the identity on mor-

phisms. Roughly speaking, the functor Δ rearranges the isomorphisms αn’s into the

action of the invertible elements un’s.

The inverse functor of Δ associates to a G-graded Rgr[N]-module Y the N-equi-

variant object (Y, β), where the isomorphism βn: Y→Y(n−1) is given by βn(y)= y ·
(u|y|−1·n−1·|y|) for each homogeneous element y∈Y. �

We combine Propositions 5.2 and 5.4 to recover the following result.

Corollary 5.5 ([17, Theorem 6.4.1]). Let R=⊕
g∈G Rg be a G-graded ring and let N ⊆G

be a normal subgroup. Consider the canonical projection π : G→G/N. Then there is an

equivalence of categories

ModG/N-π∗(R)
∼−→ModG-(Rgr[N]). �

5.3

We will show that in the case where N is a finite abelian group which is a direct sum-

mand of G, one might recover the category of G-graded R-modules from the category of

G/N-graded π∗(R)-modules via the equivariantization with respect to a certain twisting

action; see Proposition 5.7.

Throughout this subsection, we assume that A is a finite abelian group. Let k

be a splitting field of A. In other words, the group algebra kA is isomorphic to a direct

product of copies of k; in particular, the characteristic of the field k does not divide the

order of A. Denote by Â the character group of A, that is, the group of linear characters

of A over k.

Let V be a vector space over k. By a linear Â-action on V we mean a group

homomorphism from Â to the general linear group of V . By an A-gradation on V , we

mean a decomposition V =⊕
a∈A Va into subspaces indexed by A. We have the following

well-known one-to-one correspondence:

{A-gradations on V}←→ {linear Â-actions on V}. (5.2)

The correspondence identifies an A-gradation V =⊕
a∈A Va with the linear Â-action given

by χ.v= χ(a)v for any χ ∈ Â and v ∈ Va. Here, χ.v denotes the left action of χ on v.

We will consider a restriction of this correspondence. Let H be an arbitrary

group and let R=⊕
h∈H Rh be an H-graded algebra over k. By an Â-action as graded
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13343

automorphisms on R we mean a group homomorphism from Â to the automorphism

group of R as an H-graded algebra.

Consider the canonical projection π : H × A→ H which sends (h,a) to h. An

A-refinement of R means an (H × A)-graded algebra R̄ such that π∗(R̄)= R, or equiv-

alently, each homogeneous component Rh=
⊕

a∈A R̄(h,a) has an A-gradation such that

rr′ ∈ R̄(hh′,aa′) for any elements r ∈ R̄(h,a) and r′ ∈ R̄(h′,a′).

The following result is well known; compare [17, Proposition 1.3.13 and

Remarks 1.3.14].

Lemma 5.6. Let R be an H-graded algebra. Then there is a one-to-one correspondence

{A-refinements of R}←→ {Â-actions as graded automorphisms on R}, (5.3)

which identifies an A-refinement R̄ with the Â-action given by χ · r = χ(a)r for χ ∈ Â and

r ∈ R̄(h,a). �

Proof. We apply the correspondence (5.2) to the homogeneous component Rh for each

h∈ H . It suffices to show that the decomposition R=⊕
(h,a)∈H×A R̄(h,a) makes R= R̄ an

(H × A)-graded algebra if and only if the corresponding Â-action on R is given by

H-graded algebra automorphisms. Take the “only if” part, for example. For any two

elements r ∈ R̄(h,a) ⊆ Rh and r ∈ R̄(h′,a′) ⊆ Rh′ , we have

χ · (rr′)= χ(aa′)rr′ = (χ(a)r)(χ(a′)r′)= (χ · r)(χ · r′),

where the leftmost equality uses the (H × A)-gradation on R= R̄. This proves that χ acts

on R by an H-graded algebra automorphism. �

Let σ : R→ R be an automorphism as an H-graded algebra. For each X ∈ModH -R,

the twisted module Xσ is defined such that Xσ = X as an H-graded space and that

it has a new R-action “◦” given by x◦r = x · σ(r). This gives rise to an automorphism

(−)σ : ModH -R→ModH -R . In this way, each subgroup G ′ of the automorphism group

of R as an H-graded algebra has a strict action on ModH -R by assigning to each g∈G ′

the automorphism Fg= (−)g−1
. Such an action is referred to as a twisting action of G ′ on

ModH -R.

Let A be a finite abelian group. Consider an A-refinement R̄ of R, and the cor-

responding Â-action on R. Then there is a strict Â-action on ModH -R by assigning to

each χ ∈ Â the automorphism Fχ = (−)χ−1
; here, we identify χ as an element in the auto-

morphism group of R. We refer to this action as the twisting action of Â on ModH -R
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that corresponds to the A-refinement R̄. We will consider the category (ModH -R)Â of

Â-equivariant objects in ModH -R.

By Proposition 5.2, there is an equivalence of categories

Θ : ModH -R
∼−→ (Mod(H×A)-R̄)A, (5.4)

where we consider the degree-shift action of A on Mod(H×A)-R̄. The following is a differ-

ent equivalence, which is somehow adjoint to (5.4); see Remark 5.8.

Recall that the canonical projection π : H × A→ H satisfies π∗(R̄)= R. We define

the following functor:

Γ : Mod(H×A)-R̄−→ (ModH -R)Â,

which sends an (H × A)-graded R̄-module X̄ to Γ (X̄)= (π∗(X̄), γ ), where each isomor-

phism γχ : π∗(X̄)→ Fχ (π∗(X̄))= π∗(X̄)χ−1
is given by γχ(x)= χ−1(a)x for x∈ X̄(h,a) ⊆ π∗(X̄)h.

The action of Γ on morphisms is given by π∗.

The following result generalizes slightly a result in [14].

Proposition 5.7. Let R be an H-graded algebra over k, and let A be a finite abelian group

such that k is a splitting field of A. Consider an A-refinement R̄ of R and the correspond-

ing twisting action of Â on ModH -R. Then the above functor Γ is an isomorphism of

categories. Moreover, we have a restricted isomorphism

Γ : mod(H×A)-R̄
∼−→ (modH -R)Â. �

Proof. Let us indicate the inverse of Γ . For an Â-equivariant object (X, α) in ModH -R,

we have, for each χ ∈ Â, the isomorphism αχ : X→ Fχ (X)= Xχ−1
in ModH -R; in par-

ticular, αχ induces a k-linear automorphism on each homogeneous component Xh for

each h∈ H . In view of (3.2), we observe that these isomorphisms (αχ)−1 = αχ−1 induce

a linear Â-action on Xh. By the correspondence (5.2) each homogeneous component Xh

has an A-gradation Xh=
⊕

a∈A X̄(h,a) such that αχ−1(x)= χ(a)x for x∈ X̄(h,a). This makes

X̄ = X =⊕
(h,a)∈H×A X̄(h,a) an (H × A)-graded R̄-module; moreover, we have αχ = γχ for

each χ ∈ Â. In other words, (X, α)= Γ (X̄). Then the assignment (X, α) 
→ X̄ defines the

inverse functor of Γ .

The restricted isomorphism follows from Lemma 5.3(1). �

Remark 5.8. We mention that one might infer the equivalence (5.4) from Proposition 5.7

and a general result [7, Theorem 7.2]. Here, we identify A with the character group of Â.

In other words, these two equivalences are somehow adjoint to each other. �

 at U
niversity of Science and T

echnology of C
hina on D

ecem
ber 16, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/
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6 Weighted Projective Lines and Quotient Abelian Categories

In this section, we recall from [10, 11] some basic facts on weighted projective lines. For a

weighted projective line, we study the relationship between the restriction subalgebras

of its homogeneous coordinate algebra and certain quotient categories of the category

of coherent sheaves on it. Here, we work on an arbitrary field k.

6.1

Let t≥ 1 be an integer. A weight sequence p= (p1, p2, . . . , pt) with t weights consists of t

positive integers satisfying pi ≥ 2. We will assume that p1 ≥ p2 ≥ · · · ≥ pt.

The string group L(p) associated to a weight sequence p is an abelian group

with generators �x1, �x2, . . . , �xt subject to the relations p1�x1 = p2�x2 = · · · = pt�xt. This com-

mon element is denoted by �c, called the canonical element. The abelian group L(p) is

of rank 1, where the canonical element �c has infinite order. We observe an isomorphism

L(p)/Z�c�∏t
i=1 Z/piZ of abelian groups. From these facts, we infer that each element �x

in L(p) is uniquely expressed in its normal form

�x= l�c+
t∑

i=1

li �xi (6.1)

with l ∈Z and 0≤ li < pi. Set φ(�x)= l; this gives rise to a map φ : L(p)→Z. For each

1≤ i ≤ t, we define a homomorphism πi : L(p)→Z/piZ such that πi(�xj)= δi, j1̄; it is

surjective.

We denote by N= {0,1,2 · · · } the set of natural numbers. Define the following

map:
mult : L(p)−→N, �x 
→max{φ(�x)+ 1,0}.

We set p= lcm(p)= lcm(p1, p2, . . . , pt) to be the least common multiple of p. The

following homomorphism of abelian groups, called the degree map, is well defined

δ : L(p)−→Z, �xi 
→ p

pi
.

The degree map is surjective and its kernel coincides with the torsion subgroup of L(p).

We observe that δ(�c)= p.

Recall that the dualizing element �ω in L(p) is defined as �ω= (t− 2)�c−∑t
i=1 �xi; its

normal form is �ω=−2�c+∑t
i=1(pi − 1)�xi. One computes that δ( �ω)= p((t− 2)−∑t

i=1
1
pi
).

The string group L(p) is partially ordered such that �x≤ �y if and only if �y− �x∈
N{�x1, �x2, . . . , �xt}, which is further equivalent to φ(�y− �x)≥ 0. Here, for a subset S of an

abelian group A, we denote by NS the submonoid of Agenerated by S. We denote by L(p)+
the positive cone of L(p), which by definition equals the submonoid N{�x1, �x2, . . . , �xt}.
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6.2

Let k be an arbitrary field. A weighted projective line X=X(p, λ) is given by a parame-

ter sequence λ= (λ1, λ2, . . . , λt), that is, a collection of pairwise distinct rational points

on the projective line P1
k, together with a weight sequence p= (p1, p2, . . . , pt). We will

assume that the parameter sequence λ is normalized such that λ1 =∞, λ2 = 0, and λ3 = 1.

The homogeneous coordinate algebra S= S(p, λ) of a weighted projective line

X is by definition k[X1, X2, . . . , Xt]/I , where I is the ideal generated by X pi
i − (X p2

2 −
λi X

p1
1 ),3≤ i ≤ t. We write xi = Xi + I in S.

The algebra S is L(p)-graded by means of deg xi = �xi. Hence, S=⊕
�x∈L(p) S�x,

where S�x is the homogeneous component of degree �x. We observe that S�x �= 0 if and

only if �x≥ �0; in this case, if �x= l�c+∑t
i=1 li �xi is in its normal form, then the subset

{xap1
1 xbp2

2 xl1
1 xl2

2 · · · xlt
t |a+ b= l,a,b≥ 0} is a basis of S�x. We infer that

dimkS�x=mult(�x) (6.2)

for any �x∈ L(p).

For an irreducible monic polynomial f(X) ∈ k[X], we define its homogenization

fh(X,Y)= Xd f(Y/X) ∈ k[X,Y], where d is the degree of f . The set of all homogeneous

prime ideals of S is given by SpecL(p)(S)= {(0), (xi), ( fh(xp1
1 , xp2

2 )),m= (x1, x2, . . . , xt) | f �=
X − λi,1≤ i ≤ t}; compare [10, Proposition 1.3]. Here, m is the unique homogeneous max-

imal ideal of S.

The following observation is direct. Recall that, for an L(p)-graded S-module X,

we denote by gsupp(X) its grading support; see Section 5.1.

Lemma 6.1. Consider the graded S-modules S/p(�x) for p ∈ SpecL(p)(S) and �x∈ L(p). Write

�x= l�c+∑t
j=1 l j �xj in its normal form. Then the following statements hold.

(1) Assume that p= (0) or ( fh(xp1
1 , xp2

2 )). Then gsupp S/p(�x)= L(p)+ − �x. In partic-

ular, N(m0�c)⊆ gsupp S/p(�x) for sufficiently large m0 > 0.

(2) Assume that p= (xi). Then gsupp S/p(�x)=∑
j �=i N�xj − �x. In particular,

N(m0�c)− li �xi ⊆ gsupp S/p(�x)⊆ π−1
i (−l̄i) for sufficiently large m0 > 0.

(3) Assume that p=m. Then gsupp S/p(�x)= {−�x}. �

Proof. We use the facts that gsupp(X(�x))= gsupp(X)− �x, and that the quotient algebra

S/p is a graded domain which is generated as an algebra by xi’s that are not contained in

p. It follows that gsupp(S/p)= L(p)+ for p= (0) or ( fh(xp1
1 , xp2

2 )), and that gsupp(S/(xi))=∑
j �=i N�xj. The remaining statements are evident. �
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13347

Let H ⊆ L(p) be an infinite subgroup. Consider the restriction subalgebra SH =⊕
�x∈H S�x of S, which will be viewed as an H-graded algebra. For example, SZ�c is isomor-

phic to the polynomial algebra k[X,Y] by identifying X with xp1
1 and Y with xp2

2 . More

generally, for m≥ 1 the restriction subalgebra SZ(m�c) is isomorphic to the subalgebra of

k[X,Y] generated by monomials of degree m.

Lemma 6.2. Let H ⊆ L(p) be an infinite subgroup. Then the restriction subalgebra SH is

a finitely generated k-algebra, and as an SH -module, S is finitely generated. �

Proof. Assume that H ∩ Z�c=Z(m�c) for some m≥ 1. Recall from [10, Proposition 1.3]

that S is a finitely generated SZ�c-module, and thus a finitely generated SZ(m�c)-module.

Since the algebra SZ(m�c) is noetherian, the algebra SH , viewed as an SZ(m�c)-submodule of

S, is finitely generated. Then the statements follow immediately. �

Recall that modL(p)-S denotes the abelian category of finitely generated

L(p)-graded S-modules. Consider the restriction functor

res: modL(p)-S→modH -SH ,

which sends an L(p)-graded S-module X to XH =
⊕

h∈H Xh, which is naturally an H-

graded SH -module. The functor “res” is well defined by the following fact.

Lemma 6.3. Let H ⊆ L(p) be an infinite subgroup and let X be a finitely generated L(p)-

graded S-module. Then the H-graded SH -module XH is finitely generated. �

Proof. Assume that H ∩ Z�c=Z(m�c) for some m≥ 1. We observe that X, viewed as an

SZ(m�c)-module, is finitely generated. Thus, as its submodule, XH is a finitely generated

SZ(m�c)-module. In particular, XH is a finitely generated SH -module. �

The following fact is well known.

Lemma 6.4. Let H ⊆ L(p) be an infinite subgroup. Then the restriction functor

res: modL(p)-S→modH -SH is a quotient functor. �

Proof. Indeed, the functor “res” admits a left adjoint S⊗SH − : modH -SH→modL(p)-S.

Moreover, the counit res ◦ S⊗SH −−→ IdmodH-SH
is an isomorphism. It follows from

[9, 1.3 Proposition (iii)] that the restriction functor is a quotient functor. �
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6.3

Let S= S(p, λ) be the homogeneous coordinate algebra of a weighted projective line

X=X(p, λ). Set L = L(p). Denote by modL
0 -S the full subcategory of modL-S consisting

of finite-dimensional modules; it is a Serre subcategory. The corresponding quotient

category is denoted by qmodL-S=modL-S/modL
0 -S, and the quotient functor is denoted

by q : modL-S→ qmodL-S.

For each �x∈ L, the degree-shift functor (�x) on modL-S induces an automorphism

on the quotient category qmodL-S, which is also denoted by (�x). Consequently, each

subgroup of L has a strict action on qmodL-S. Set Si = q(S/(xi)) for 1≤ i ≤ t.

We mention that the quotient category qmodL-S is equivalent to the category

coh-X of coherent sheaves on X, and the object Si corresponds to a simple sheaf concen-

trated at the homogeneous prime ideal (xi); see [10, Sections 1.8 and 1.7].

Let H ⊆ L be an infinite subgroup. Consider the H-graded restriction subalge-

bra SH . We have the quotient category qmodH -SH =modH -SH/modH
0 -SH . The restriction

functor res: modL-S→modH -SH induces the corresponding functor between the quo-

tient categories

res: qmodL-S→ qmodH -SH ,

which will also be referred to as the restriction functor.

We will consider the following Serre subcategory of qmodL-S

NH = 〈Si(l �xi) |1≤ i ≤ t,0≤ l ≤ pi − 1 with − l̄ /∈ πi(H)〉.

That is, NH is the Serre subcategory generated by these simple sheaves Si(l �xi).

Recall that, for each 1≤ i ≤ t, the surjective homomorphism πi : L→Z/piZ is

defined by πi(�xj)= δi, j1̄. The following concept is related to the general notion of a wide

subcategory of the category formed by all the line bundles on a weighted projective line

in [13].

Definition 6.5. Let p be a weight sequence and L(p) be the string group. An infinite

subgroup H ⊆ L(p) is said to be effective provided that, for each 1≤ i ≤ t, πi(H)=Z/piZ,

or equivalently, 1̄ lies in πi(H). �

For example, any infinite subgroup of L(p) containing the dualizing element �ω is

effective, while the subgroup Z�c generated by �c is not effective for t≥ 1.

The following result justifies the terminology “effective subgroup”. We men-

tion that in spirit it is close to [11, Proposition 8.5]; compare the argument in
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13349

[10, Example 5.8]. The equivalence part of the following proposition is contained in a

more general result in [13].

Proposition 6.6. Let L = L(p). Keep the notation as above. Then the restriction functor

res: qmodL-S→ qmodH -SH induces an equivalence of categories

qmodL-S/NH
∼−→ qmodH -SH .

In particular, the restriction functor res: qmodL-S→ qmodH -SH is an equivalence if and

only if the subgroup H ⊆ L is effective. �

Proof. The restriction functor res: modL-S→modH -SH is a quotient functor by

Lemma 6.4. Then, by Lemma 4.1 the induced functor res: qmodL-S→ qmodH -SH is also

a quotient functor. It suffices to calculate its essential kernel. Instead, we will compute

the essential kernel of the composite F : modL-S
q→ qmodL-S

res→ qmodH -SH . Indeed, for

an L-graded S-module X, F (X)= 0 if and only if XH is a finite-dimensional SH -module,

which is equivalent to the condition that gsupp(X) ∩ H is a finite set.

We observe that Z(m�c)⊆ H for a sufficiently large m> 0. Let �x= l�c+∑t
i=1 li �xi be

an arbitrary element in L that is written in its normal form. It follows from Lemma 6.1

that gsupp(S/p(�x)) ∩ H is finite if and only if p=m, or p= (xi) and −l̄i /∈ πi(H).

Recall that a finitely generated L-graded S-module X has a finite filtration with

factors isomorphic to S/p(�x) for some p ∈ SpecL(S) and �x∈ L. Recall that Ker F is a Serre

subcategory of modL-S. It follows that

Ker F = 〈S/m(�y), S/(xi)(�x) | �y∈ L ,1≤ i ≤ t, �x satisfying that − l̄i /∈ πi(H)〉.

Then we are done by using the fact that the essential kernel of “res” equals q(Ker F ),

which equals NH . Here, we recall from [10, Section 1.6] the well-known fact that

Si(�x)= Si(li �xi) for each 1≤ i ≤ t. �

7 Weighted Projective Lines of Tubular Type

In this section, we study weighted projective lines of tubular type. They are explic-

itly related to elliptic plane curves via two different equivariantizations. We emphasize

that the idea goes back to [10, Example 5.8] and more explicitly to [14, 15]; compare

[12, 18, 19].
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7.1

We recall that a weight sequence p= (p1, p2, . . . , pt) is of tubular type provided that the

dualizing element �ω in L(p) is torsion, or equivalently, δ( �ω)= 0. An elementary calcu-

lation yields a complete list of weight sequences of tubular type: (2,2,2,2), (3,3,3),

(4,4,2), and (6,3,2). We observe that in each case the order of �ω equals p= lcm(p),

which further equals p1.

We have the following easy observation.

Lemma 7.1. Let p be a weight sequence of tubular type and let n≥ 1. Recall that

p= lcm(p). Then the following equation holds:

p−1∑
j=0

mult(n�x1 + j �ω)=n. �

Proof. We observe that mult(�x+ �c)=mult(�x)+ 1, provided that φ(�x)≥−1. For a weight

sequence p of tubular type, we recall that p= p1 and thus p�x1 = �c. We compute case by

case that φ(n�x1 + j �ω)≥−1 for each n≥ 1 and 0≤ j < p− 1. Denote the left-hand side of

the equation by f(n). It follows that f(n+ p)= f(n)+ p for each n≥ 1.

Therefore, to show the required equation, it suffices to prove that f(i)= i for

1≤ i ≤ p. These p equations are easy to verify for each of the four cases. Take the case

p= (6,3,2) for example. We have that f(4)=∑5
j=0 mult(4�x1 + j �ω)= 1+ 0+ 1+ 1+ 1+

0= 4 and that f(5)=∑5
j=0 mult(5�x1 + j �ω)= 1+ 0+ 1+ 1+ 1+ 1= 5. We omit the details.�

The following consideration is inspired by [10, Example 5.8]. Let p be a weight

sequence of tubular type. We consider the subgroup H(p)=Z(3�x1)⊕ Z �ω of L(p) gener-

ated by 3�x1 and �ω. It inherits the partial order from L(p) such that its positive cone

equals H(p)+ = H(p) ∩ L(p)+, which is a submonoid of H(p). We consider the subset

3�x1 + Z �ω= {3�x1 + j �ω | j = 0,1, . . . , p− 1} of H(p). We list in Table 1 all the positive ele-

ments in 3�x1 + Z �ω explicitly.

Table 1. The list of generators of H(p)+

The weight sequence p The elements in (3�x1 + Z �ω) ∩ H(p)+

(2,2, 2, 2) 3�x1 3�x1 + �ω= �x2 + �x3 + �x4

(3,3, 3) 3�x1 3�x1 + 2 �ω= �x1 + �x2 + �x3

(4,4, 2) 3�x1 3�x1 + 2 �ω= �x1 + 2�x2 3�x1 + 3 �ω= �x2 + �x3

(6,3, 2) 3�x1 3�x1 + 2 �ω= �x1 + �x2 3�x1 + 3 �ω= �x3
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Monadicity Theorem and Weighted Projective Lines of Tubular Type 13351

We have the following elementary observation, for which we include an

elementary proof here. For a conceptual reasoning, we refer the reader to Remark 7.5.

Lemma 7.2. Let p be a weight sequence of tubular type. Then we have

H(p)+ =N((3�x1 + Z �ω) ∩ H(p)+).

In other words, the monoid H(p)+ is generated by the subset (3�x1 + Z �ω) ∩ H(p)+. �

Proof. Recall that p= lcm(p)= p1 equals the order of �ω. For each 0≤ j ≤ p− 1, we

define m( j) to be the least natural number m such that m(3�x1)+ j �ω≥ �0. We observe

that m(0)= 0 and m( j)≥ 1 for j �= 0.

We claim that m( j)(3�x1)+ j �ω lies in N((3�x1 + Z �ω) ∩ H(p)+) for each 0≤ j ≤ p− 1.

Then we are done. Indeed, for any positive element �x=m(3�x1)+ j �ω, we have m≥m( j),

and thus �x= (m−m( j))(3�x1)+ (m( j)(3�x1)+ j �ω), which lies in N((3�x1 + Z �ω) ∩ H(p)+).

The claim is easily verified case by case. �

7.2

We recall that a weighted projective line X=X(p, λ) over a field k is of tubular type

provided that the weight sequence p is of tubular type. Recall that S= S(p, λ) is the

homogeneous coordinate algebra of X.

We fix the notation for S in the four tubular types. For the weight type (2,2,2,2),

there exists a parameter λ �= 0,1 in the presentation of the corresponding homoge-

neous coordinate algebra S. In the other three cases, we omit the normalized parameter

sequences. Hence, we refer to (2,2,2,2; λ), (3,3,3), (4,4,2), and (6,3,2) as the type of S.

We emphasize that λ ∈ k, which is not equal to 0 or 1.

We list the homogeneous coordinate algebras S explicitly, according to their

types. We define the associated Z-graded algebras R of the same type on the right-hand

side, where all the variables are of degree 1.

S(2,2,2,2; λ)= k[X1, X2, X3, X4]

(X2
3 − (X2

2 − X2
1), X2

4 − (X2
2 − λX2

1))
,

R(2,2,2,2; λ)= k[X,Y, Z ]

(Y2 Z − X(X − Z)(X − λZ))
;

S(3,3,3)= k[X1, X2, X3]

(X3
3 − (X3

2 − X3
1))
, R(3,3,3)= k[X,Y, Z ]

(X3 − (Y2 Z − Z2Y))
;
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S(4,4,2)= k[X1, X2, X3]

(X2
3 − (X4

2 − X4
1))
, R(4,4,2)= k[X,Y, Z ]

(Y2 Z − X(X − Z)(X + Z))
;

S(6,3,2)= k[X1, X2, X3]

(X2
3 − (X3

2 − X6
1))
, R(6,3,2)= k[X,Y, Z ]

(Y2 Z − (X3 − Z3))
.

We denote by E the projective plane curve defined by R. By Serre’s theorem,

there is an equivalence between the category coh-E of coherent sheaves on E and the

quotient category qmodZ-R of modZ-R by the Serre subcategory modZ

0 -R consisting of

finite-dimensional modules.

Remark 7.3. We mention that E(2,2,2,2; λ) is an elliptic curve for λ �= 0,1. For other

types, we have requirement on the characteristic of the field k; see also [14]. If char k �= 3,

E(3,3,3) is an elliptic curve with j-invariant 0; if char k �= 2, E(4,4,2) is an ellip-

tic curve with j-invariant 1728; if char k �= 2,3, E(6,3,2) is an elliptic curve with

j-invariant 0. �

We define three homogeneous elements x, y, and z in S according to Table 2. By

comparing with Table 1, all their degrees lie in (3�x1 + Z �ω) ∩ H(p)+. For an explanation

of the term “extra degree” in Table 2, we refer the reader to Remark 7.6.

We consider the subalgebra k[x, y, z] of S generated by x, y, and z. We observe

that k[x, y, z]⊆ SH(p). Consider the surjective homomorphism π : H(p)→Z defined by

π(3�x1)= 1 and π( �ω)= 0.

The central technical result of this section is as follows.

Theorem 7.4. Let S be the homogeneous coordinate algebra of a weighted projective

line X of tubular type and let R be the associated Z-graded algebra of the same type.

Let H = H(p). Keep the above notation. Then we have k[x, y, z]= SH , and that there is an

isomorphism of Z-graded algebras

R
∼−→ π∗(SH ). �

Table 2. The elements x, y, and z in S and their extra degrees

The types of S and R x y z deg x deg y deg z

(2, 2,2, 2; λ) x1x2
2 x2x3x4 x3

1 (1, 0̄) (1, 1̄) (1, 0̄)

(3, 3,3) x1x2x3 x3
2 x3

1 (1, 2̄) (1, 0̄) (1, 0̄)

(4, 4,2) x1x2
2 x2x3 x3

1 (1, 2̄) (1, 3̄) (1, 0̄)

(6, 3,2) x1x2 x3 x3
1 (1, 2̄) (1, 3̄) (1, 0̄)
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Proof. We claim that k[x, y, z]⊆ S is an integral extension. Recall that an integral exten-

sion preserves Krull dimensions and that the Krull dimension of the algebra S is 2. Hence

the Krull dimension of k[x, y, z] is also 2.

Recall that SZ�c= k[xp1
1 , xp2

2 ] and that S is a finitely generated SZ�c-module. Hence

S is integral over SZ�c and thus over the subalgebra k[x1, x2]. For the claim, it suffices to

show that both x1 and x2 are integral over k[x, y, z]. Since x3
1 = z, the element x1 is integral

over k[x, y, z].

We consider the element x2 case by case. We take p= (2,2,2,2) for example,

while other cases are similar and even easier. Observe in Table 2 that y2 = x2
2(x

2
2 − x2

1)

(x2
2 − λx2

1). This implies that x2 is integral over k[x, y, z, x1] and thus over k[x, y, z]. We are

done with the claim.

We define a homomorphism θ : R→ S of algebras by sending X to x, Y to y, and

Z to z; see Table 2. The relation of R is satisfied by an elementary calculation. The image

of θ is k[x, y, z]. Recall that R is an integral domain of Krull dimension 2. Comparing

the Krull dimensions of R and the image of θ , we infer that θ is injective. Consequently,

we have an injective homomorphism of Z-graded algebras θ : R→ π∗(SH ). Here, we recall

that k[x, y, z]⊆ SH .

We claim that the injective homomorphism θ : R→ π∗(SH ) is an isomorphism.

Then the two required statements follow. Indeed, it suffices to show that, for each

n≥ 1, dimk Rn= dimkπ∗(SH )n. Recall that π∗(SH )n=
⊕p−1

j=0 S3n�x1+ j �ω, and thus has dimen-

sion
∑p−1

j=0 mult(3n�x1 + j �ω); see (6.2). By Lemma 7.1 we have dimkπ∗(SH )n= 3n. On the

other hand, it is well known that dimkRn= 3n. Then we are done. �

Remark 7.5. Recall that �x∈ H(p) is positive if and only if (SH(p))�x= S�x �= 0. We deduce

from the equality k[x, y, z]= SH(p) that each �x∈ H(p)+ lies in the submonoid generated by

the degrees of x, y, and z. This gives another proof of Lemma 7.2. �

Remark 7.6. We now explain the “extra degrees” of x, y, and z in SH(p). We recall that

p= lcm(p) equals the order of �ω. So we have the following isomorphism of abelian

groups:

ψ : H(p)=Z(3�x1)⊕ Z �ω ∼−→Z× Z/pZ, (7.1)

such that ψ(3�x1)= (1, 0̄) and ψ( �ω)= (0, 1̄). By this isomorphism, the H(p)-graded algebra

SH(p) is Z× Z/pZ-graded. This yields the extra degrees of x, y, and z, which are computed

by applying ψ to the degrees of x, y, and z; compare Table 1.
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We observe that the algebras R are naturally Z× Z/pZ-graded according to the

degrees in Table 2; here, we identify X, Y, and Z with x, y, and z, respectively. We denote

the resulting Z× Z/pZ-graded algebras by R̄; it is a Z/pZ-refinement of R.

Then the isomorphism θ in the above proof, which is given according to Table 2,

yields an isomorphism of Z× Z/pZ-algebras

θ : R̄
∼−→ SH(p). (7.2)

�

Let p be a weight sequence of tubular type. Recall that p= lcm(p). Denote by

C p= 〈g | gp= 1〉 the cyclic group of order p.

We assume that k is a splitting field of C p. Equivalently, p is invertible in k which

contains a primitive pth root of unity. Fix ω ∈ k a primitive pth root of unity. For example,

if p= (2,2,2,2), then the characteristic of k is not equal to 2 and ω=−1.

We identify C p with the character group Ẑ/pZ of Z/pZ such that g(1̄)=ω.

Applying the correspondence (5.3) to the above Z/pZ-refinement R̄ of the Z-graded

algebra R, we obtain in Table 3 the corresponding C p-action on R as Z-graded algebra

automorphisms.

We mention that the cyclic group action on R corresponds to a ramified Galois

covering from the elliptic curve E to the projective line P1
k, where the Galois group is

isomorphic to the acting cyclic group; compare [19, Section 1.3].

7.3

We will formulate the main result of this paper. As mentioned earlier, the result is

implicitly contained in [10, Example 5.8] and later explicitly in [14] with more details;

see also [15]. The treatment here is slightly different from [14, 15], and we strengthen

slightly the results therein; compare Remark 7.8(3). We mention that related results

appear in [12].

Table 3. The cyclic group action on R

The types of R The action of C p= 〈g | gp= 1〉 on generators The order of ω ∈ k

(2, 2, 2,2; λ) g · x= x, g · y=ωy, g.z= z 2

(3, 3, 3) g · x=ω2x, g · y= y, g · z= z 3

(4, 4, 2) g · x=ω2x, g · y=ω3y, g · z= z 4

(6, 3, 2) g · x=ω2x, g · y=ω3y, g · z= z 6
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Let k be an arbitrary field. Let S be the homogeneous coordinate algebra of a

weighted projective line X of tubular type, and R be the associated Z-graded algebra

of the same type. Let p be the weight sequence and define p= lcm(p). Recall that the

dualizing element �ω in L = L(p) has order p. The subgroup Z �ω acts on modL-S by the

degree-shift action, which induces the degree-shift action of Z �ω on qmodL-S. We con-

sider the category (qmodL-S)Z �ω of equivariant objects.

Assume that k is a splitting field of the cyclic group C p of order p. Consider the

C p-action on R as Z-graded algebra automorphisms in Table 3. Such an action induces

the twisting action of C p on modZ-R, which further induces the twisting action of C p on

qmodZ-R. We consider the category (qmodZ-R)C p of equivariant objects.

Theorem 7.7 (Lenzing–Meltzer). Let k be a field. Let S be the homogeneous coordinate

algebra of a weighted projective line X of tubular type, and let R be the associated

Z-graded algebra of the same type, where we keep the notation as above. Then the

following statements hold.

(1) There is an equivalence of categories

(qmodL-S)Z �ω
∼−→ qmodZ-R.

(2) Assume that k is a splitting field of C p. Then there is an equivalence of cate-

gories

qmodL-S
∼−→ (qmodZ-R)C p. �

Proof. Recall the subgroup H = H(p)=Z(3�x1)⊕ Z �ω of L from Section 7.1; it is an effec-

tive subgroup in the sense of Definition 6.5. By Proposition 6.6, the restriction functor

is an equivalence

res: qmodL-S
∼−→ qmodH -SH .

Recall from Remark 7.6 the Z/pZ-refinement R̄ of the Z-graded algebra R. By the

isomorphism θ in (7.2) we have an isomorphism of categories

θ∗ : qmodH -SH
∼−→ qmod(Z×Z/pZ)-R̄.

Consider the following composite equivalence:

θ∗ ◦ res: qmodL-S
∼−→ qmod(Z×Z/pZ)-R̄. (7.3)

We observe that this equivalence transfers the degree-shift action of Z �ω on qmodL-S

to the degree-shift action of Z/pZ on qmod(Z×Z/pZ)-R̄. Consequently, this equivalence
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induces an equivalence of categories

(qmodL-S)Z �ω
∼−→ (qmod(Z×Z/pZ)-R̄)Z/pZ. (7.4)

By Proposition 5.2, we have an equivalence of categories

(mod(Z×Z/pZ)-R̄)Z/pZ ∼−→modZ-R,

which restricts to an equivalence (mod(Z×Z/pZ)

0 -R̄)Z/pZ
∼−→modZ

0 -R of full subcategories

consisting of finite-dimensional modules. Applying Corollary 4.4, we have an equiva-

lence of categories

(qmod(Z×Z/pZ)-R̄)Z/pZ ∼−→ qmodZ-R.

We combine this equivalence with (7.4) to obtain (1).

For (2), we assume that k is a splitting field of C p. Recall that C p is identified with

the character group of Z/pZ. By Proposition 5.7, we have an isomorphism of categories

mod(Z×Z/pZ)-R̄
∼−→ (modZ-R)C p,

which restricts to an isomorphism mod(Z×Z/pZ)

0 -R̄
∼−→ (modZ

0 -R)C p of full subcategories

consisting of finite-dimensional modules. Applying Corollary 4.4, we have an equiva-

lence of categories

qmod(Z×Z/pZ)-R̄
∼−→ (qmodZ-R)C p.

We combine this equivalence with (7.3) to obtain (2). �

Remark 7.8. (1) We recall that X is the weighted projective line defined by S and that

E is the projective plane curve defined by R. If k is a splitting field of C p, then E is an

elliptic plane curve. Then Theorem 7.7 relates the categories of coherent sheaves on X

and E via two equivariantizations.

We emphasize that the two group actions on relevant categories are completely

different: one is the degree-shift action and the other is the twisting action. However,

as in Remark 5.8 the two equivalences obtained in Theorem 7.7 are somehow adjoint to

each other. We mention that by Remark 7.3 the assignment X 
→E is not a bijection up

to isomorphism; see also [15].

(2) For the L-graded algebra S and the associated Z-graded R one might consider

the quotient categories “QMod” of arbitrary graded modules, which are equivalent to the
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categories of quasi-coherent sheaves on X and E, respectively. Then a similar result as

Theorem 7.7 holds for these two quotient categories “QMod.”

(3) Let us mention the version of Theorem 7.7 in [15].

Consider the degree map δ : L→Z whose kernel equals the torsion subgroup

tor(L) of L; moreover, we have a decomposition L =Z�x1 ⊕ tor(L), which is isomorphic

to Z× tor(L). Consider the Z-graded algebra S= δ∗(S); see Section 5.1. We view the

L-graded algebra S as a tor(L)-refinement of S. Observe that Z �ω⊆ tor(L).

If k is a splitting field of C p, then it is also a splitting field of tor(L). In this case,

we denote by A the character group of tor(L). Then A acts on S as Z-graded algebra auto-

morphisms by Lemma 5.6. We consider the degree-shift action of tor(L) on qmodL-S, and

the twisting action of A on qmodZ-S. Then, under the same assumptions as Theorem 7.7,

the same argument yields the following two adjoint equivalences:

(qmodL-S)tor(L) ∼−→ qmodZ-S, qmodL-S
∼−→ (qmodZ-S)A. (7.5)

Indeed, the argument here is easier since it does not rely on Proposition 6.6 and

Theorem 7.4.

The major difference between the two equivalences (7.5) and the ones in

Theorem 7.7 is the fact that the acting groups in (7.5) are not cyclic except the case

p= (6,3,2), while all the acting groups in Theorem 7.7 are cyclic.

We mention that, for the cases p= (4,4,2) and (6,3,2), the variables of the

Z-graded algebra S are not all of degree 1. Therefore, to verify that qmodZ-S is equiva-

lent to the category of coherent sheaves on an elliptic curve, one might need the general

fact on Veronese subalgebras [1, Proposition 5.10], or the axiomatic description of the

category of coherent sheaves on an elliptic curve in [21, Theorem C]. If the characteris-

tic of k is not equal to 2, the Z-graded algebra S for the case p= (2,2,2,2) defines an

elliptic space curve in its Jacobi form. If the characteristic of k is not equal to 3, the

Z-graded algebra S for the case p= (3,3,3) defines an elliptic curve as a Fermat curve of

degree 3. �
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