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Abstracts

Keller’s conjecture for singular Hochschild cohomology

Xiao-Wu Chen

(joint work with Huanhuan Li, Zhengfang Wang)

Let A be a finite dimensional algebra over a field k. Denote by Ae = A⊗k A
op its

enveloping algebra. Recall that the Hochschild cohomology algebra of A is defined
to be the graded algebra

HH∗(A) =
⊕

n≥0

ExtnAe(A,A),

whose multiplication is known as the cup product which makes HH∗(A) a graded-
commutative algebra.

Let T be a small k-linear triangulated category with Σ its suspension functor.
For any integer n, we denote by Hom(IdT ,Σ

n) the k-space formed by all natural
transformations η : IdT → Σn between triangle functors. The graded center of T
is a graded algebra

Z∗(T ) =
⊕

n∈Z

Hom(IdT ,Σ
n),

whose multiplication is defined such that η′η = Σn(η′) ◦ η with η′ ∈ Zm(T ). We
observe that ηη′ = (−1)mnη′η, that is, Z∗(T ) is also graded-commutative.

Denote by A-mod the abelian category of finite dimensional left A-modules,
and by Db(A-mod) its bounded derived category. The characteristic morphism of
A is the following homomorphism between graded algebras

χA : HH∗(A) −→ Z∗(Db(A-mod)), ζ 7→ ζ ⊗L

A −.

The homomorphism χA plays a role in support varieties and deformation theory.
Let C be a small dg category. Its Hochschild cohomolgy algebra is defined to be

HH∗(C) =
⊕

n∈Z

HomD(Ce)(C,Σ
n(C)),

where D(Ce) is the derived category of right dg modules over the enveloping dg
category Ce = C ⊗k Cop.

Denote by D(C) the derived category of right dg C-modules. By the Yoneda
embedding, the homotopy category H0(C) is viewed as a full subcategory of D(C).
The dg category C is called pretriangulated if H0(C) is a triangulated subcategory
ofD(C), in which case, C is called a dg enhancement ofH0(C). We have a canonical
morphism

can: HH∗(C) −→ Z∗(H0(C)), ζ 7→ ζ ⊗L

C −.

Here, each morphism ζ : C → Σn(C) in D(Ce) gives rise to a natural transformation

ζ ⊗L

C − : IdD(C) −→ Σn,

which restricts to the required element ζ⊗L

C− : IdH0(C) → Σn in the graded center.
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The bounded dg derived category Db
dg(A-mod) is a canonical dg enhancement

of Db(A-mod). Furthermore, we have the following well known result.

Proposition 1. There is an isomorphism φA of graded algebras making the fol-
lowing triangle commutative.

HH∗(A)

χA ((❘❘
❘❘❘

❘❘
φA

// HH∗(Db
dg(A-mod))

cantt✐✐✐✐
✐✐✐✐

Z∗(Db(A-mod))

Set D = Db
dg(A-mod). By [2], the isomorphism φA is induced by a fully-faithful

triangle functor

Db(Ae-mod) −→ D(De), X 7→ D(−, X ⊗L

A −).

Denote by C∗(A,A) the Hochschild cochain complex of A, and by C∗(D,D)
the Hochschild cochain complex of D. They are both brace B∞-algebras [1], with
their cup products and brace operations. We recall that a B∞-algebra structure
on a graded space V is equivalent to a dg bialgebra structure (T c(sV ),∆, D, µ) on
the tensor coalgebra (T c(sV ),∆). The inverse of φA is induced by the restriction
C∗(D,D) → C∗(A,A), where we identify A with the full dg subcategory of D
given by the single object A.

We have the following fundamental result.

Theorem 2. (Keller, Lowen-Van den Bergh) The isomorphism φA above lifts to
an isomorphism

C∗(Aop, Aop) ≃ C∗(D,D)

in the homotopy category of B∞-algebras.

To better understand the appearance of the opposite algebra Aop above, we
define the transpose B∞-algebra V tr of a given B∞-algebra V : they have the same
underlying graded space, and the dg bialgebra corresponding to V tr is isomorphic
to (T c(sV ),∆op, D, µ). This definition is motivated by the following fact: there is
a strict B∞-isomorphism

C∗(A,A)tr ≃ C∗(Aop, Aop).

For a B∞-algebra V , its opposite B∞-algebra V opp corresponds to the dg bial-
gebra (T s(sV ),∆, D, µopp). In particular, V opp and V have the same underlying
A∞-algebra structure. We have the following duality theorem [1].

Theorem 3. Let V be a B∞-algebra. Then there is a B∞-quasi-isomorphism
V tr → V opp.

Combining the two theorems above, we obtain an isomorphism

C∗(A,A)opp ≃ C∗(D,D)

in the homotopy category of B∞-algebras.
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Recall that the singularity category of A is defined by the Verdier quotient
triangulated category

Dsg(A) = Db(A-mod)/Kb(A-proj).

Denote by P the full dg subcategory of D formed by perfect complexes. Then the
dg singularity category Sdg(A) = D/P canonically enhances Dsg(A).

The singular Hochschild cohomology algebra ofA is defined to the graded algebra

HH∗
sg(A) =

⊕

n∈Z

HomDsg(Ae)(A,Σ
n(A)).

It is graded-commutative. The following result is analogous to Theorem 2.

Theorem 4. (Keller [2]) Assume that D is smooth. Then there is an isomorphism

ψA : HH∗
sg(A) ≃ HH∗(Sdg(A))

of graded algebras.

In view of Theorems 2 and 4, Keller conjectures that the isomorphism ψA lifts
to the B∞-level. To make it more precise, we recall that both the left singu-

lar Hochschild cochain complex C
∗

sg,L(A,A) and right singular Hochschild cochain

complex C
∗

sg,R(A,A) compute HH∗
sg(A), and are brace B∞-algebras.

Conjecture. (Keller [2]) Assume that D is smooth and set S = Sdg(A). Then
there is an isomorphism

C
∗

sg,L(A
op, Aop) ≃ C∗(S,S)

in the homotopy category of B∞-algebras.

There is a stronger version of Keller’s conjecture, which claims that the isomor-
phism above lifts ψA. We only treat the weak version. The following invariance
theorem [1] justifies Keller’s conjecture to some extent.

Theorem 5. Keller’s conjecture is invariant under one-point (co-)extensions and
singular equivalences with level.

Since any derived equivalence induces a singular equivalence with level, then
Keller’s conjecture is invariant under derived equivalences.

Let Q be a finite quiver without sinks. Denote by AQ = kQ/J2 the correspond-
ing algebra with radical square zero. The Leavitt path algebra L(Q) is naturally
Z-graded, and is viewed as a dg algebra with trivial differential. We verify Keller’s
conjecture for AQ; see [1].

Theorem 6. Let Q be a finite quiver without sinks. Write SQ = Sdg(AQ). Then
there are isomorphisms

C
∗

sg,L(A
op
Q , A

op
Q ) ≃ C∗(L(Q), L(Q)) ≃ C∗(SQ,SQ)

in the homotopy category of B∞-algebras.

Theorems 5 and 6 imply that finite dimensional gentle algebras satisfy Keller’s
conjecture.
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A generalization of cyclic homology for operads

Vladimir Dotsenko

Similar to how associative algebras give an abstraction of the notion of an endo-
morphism of a vector space V , (symmetric) operads [6] give an abstraction of the
notion of a multilinear map. Matrices of the given size can be multiplied, and the
product is bilinear and associative, which is precisely how one defines an associa-
tive algebra. A multilinear map has a certain number of arguments, say n, and
one has the following structural features:

• an action of the symmetric group Sn on multilinear operations with n
arguments,

• if we consider all multilinear operations together, one can substitute op-
erations into one another, forming operations with more arguments,

• moreover, substitutions of multilinear operations in one another are linear
in each of the operations, are, in a sense, associative, and are reasonably
equivariant with respect to the symmetric group actions.

Graphically, it is convenient to visualize iterated substitutions of multilinear
operations using rooted trees.
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Here, one can decorate each vertex with k incoming edges by a multilinear
map with k arguments, and then compose them “along the tree”, and the proper-
ties above (associativity and equivariance) simply mean that the result of such a
composition does not depend on the order of “partial” calculations that contract
edges of a tree one by one. Now if we replace multilinear maps by a collection
O = {O(n)} of representations of symmetric groups that can be composed along
trees, we obtain an operad. Moreover, if we assume that O is augmented, one
can define the bar construction B(O), which is the chain complex made of rooted

trees whose vertices with k inputs are decorated by elements of sO(k), the ho-
mological shift of the k-th component of the augmentation ideal of O, with the
differential that computes the alternating sum of edge contractions. This chain
complex carries all crucial information on the homotopy theory of O. If O(k) = 0
for k 6= 1, this recovers the usual bar construction of an augmented associative
algebra A = O(1); that chain complex computes TorA• (k, k).


