
Bull. London Math. Soc. 52 (2020) 816–834 doi:10.1112/blms.12364

Liftable derived equivalences and objective categories

Xiaofa Chen and Xiao-Wu Chen

Abstract

We give two proofs of the following theorem and a partial generalization: if a finite-dimensional
algebra A is derived equivalent to a smooth projective scheme, then any derived equivalence
between A and another algebra B is standard, that is, isomorphic to the derived tensor functor
by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the
derived categories of two module categories, liftable functors coincide with standard functors;
(2) any derived equivalence between a module category and an abelian category is uniquely
factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the
derived category of coherent sheaves on a certain class of projective schemes is triangle-objective,
that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects,
is necessarily isomorphic to the identity functor.

1. Introduction

Let k be a field. For a finite-dimensional k-algebra A, we denote by A-mod the abelian
category of finitely generated A-modules and by Db(A-mod) its bounded derived category.
By a derived equivalence between two algebras A and B, we mean a k-linear triangle
equivalence F : Db(A-mod) → Db(B-mod). It is a well-known open question [20] whether any
derived equivalence is standard, that is, isomorphic to the derived tensor functor by a two-
sided tilting complex. We refer to [8, Introduction] for known cases where the question is
answered affirmatively.

The geometric analogue of a standard functor is a Fourier–Mukai functor, where the two-sided
tilting complex is replaced by the Fourier–Mukai kernel. The famous theorem in [19] states
that any derived equivalence between smooth projective schemes is a Fourier–Mukai functor.

We are inspired by the following theorem, which seems to be known to experts; compare
[21, the proof of Corollary 1.5]. It provides a large class of algebras, for which the above open
question is answered affirmatively.

Theorem. Let A and B be two finite-dimensional algebras. Assume that there is a
derived equivalence between A and a smooth projective scheme. Then any derived equivalence
F : Db(A-mod) → Db(B-mod) is standard.

The goal is to give a detailed proof of this theorem and a partial generalization in the case that
k is algebraically closed; see Theorem 5.7 and Corollary 6.7. Indeed, we give two proofs. The
first proof uses the homotopy category of small dg categories and dg lifts of triangle functors,
while the second one relies on [16, Proposition 9.2] and uses the notion of triangle-objective
triangulated categories.

Let us describe the content of this paper. In Section 2, we recall basic facts about dg categories
and enhancements. In Section 3, we recall the homotopy category of small dg categories and the
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notion of liftable functors. In Section 4, we prove that between the bounded derived categories
of two module categories, liftable functors coincide with standard functors; see Theorem 4.3.
We mention that this result also seems to be known to experts; compare [13, Subsection 9.8].

In Section 5, we prove the following factorization theorem: any derived equivalence between
a module category and an abelian category is uniquely factorized as the composition of a
pseudo-identity in the sense of [7] and a liftable derived equivalence; see Theorem 5.4. Then
we give the first proof of the above theorem.

In Section 6, we introduce the following notion of triangle-objective triangulated categories: a
triangulated category is triangle-objective, if any triangle autoequivalence on it, which preserves
the isomorphism classes of all objects, is isomorphic to the identity functor. We prove that
the bounded derived categories of coherent sheaves on a certain class of projective schemes
are triangle-objective; see Proposition 6.6. It implies the above theorem, when the field k is
algebraically closed.

Throughout, we work over a fixed field k. All algebras, categories and functors are required to
be k-linear. The abbreviation dg stands for ‘differential graded’. In the dg setting, all morphisms
and elements are by default homogeneous. Modules are by default left modules.

2. DG categories and enhancements

In this section, we recall basic facts and notation for dg categories and enhancements. The
standard references for dg categories are [9, 11, 14].

Let C be a dg category. For two objects X and Y , the Hom complex is denoted by C(X,Y ) =
(
⊕

p∈Z
C(X,Y )p, d = dX,Y ), where d is the differential of degree 1 satisfying the graded Leibniz

rule. An element f in the subspace C(X,Y )p will be called a homogeneous morphism of degree
p with the notation |f | = p.

We denote by H0(C) the homotopy category of C, which has the same objects as C and whose
Hom spaces are given by the zeroth cohomology H0(C(X,Y )). Similarly, one has the category
Z0(C), whose Hom spaces are given by the zeroth cocycles Z0(C(X,Y )).

The opposite dg category Cop has the same objects and Hom complexes as C. The composition
f ′ ◦op f of morphisms f ′ and f is given by (−1)|f |·|f

′|f ◦ f ′. For two dg categories C and D, we
have their tensor dg category C ⊗ D, whose objects are the pairs (C,D) with C ∈ C and D ∈ D,
and whose Hom complexes are the tensor products of the corresponding Hom complexes in C
and D.

In the following examples, we fix the notation for the dg categories we will consider. Let A
be a finite-dimensional algebra. Denote by A-Mod the abelian category of left A-modules. In
particular, k-Mod denotes the category of k-vector spaces.

Example 2.1. Let A be an additive category. A complex in A is denoted by
X = (

⊕
p∈Z

Xp, dX), where the differentials dpX : Xp → Xp+1 satisfy dp+1
X ◦ dpX = 0. We denote

by Cdg(A) the dg category formed by complexes in A. The pth component of the Hom complex
Cdg(A)(X,Y ) is given by

Cdg(A)(X,Y )p =
∏

n∈Z

HomA(Xn, Y n+p),

whose elements will be denoted by f = {fn}n∈Z. The differential d acts on f such that d(f)n =
dn+p
Y ◦ fn − (−1)pfn+1 ◦ dnX for each n ∈ Z. We are also interested in the full dg subcategory

Cb
dg(A) formed by the bounded complexes.
We observe that the homotopy category H0(Cdg(A)) coincides with the classical homotopy

category K(A) of complexes in A, where H0(Cb
dg(A)) corresponds to the bounded homotopy

category Kb(A).
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For two complexes X and Y of A-modules, the traditional notation for the Hom complex
Cdg(A-Mod)(X,Y ) is HomA(X,Y ).

Example 2.2. The dg category Cdg(k-Mod) is usually denoted by Cdg(k). Let C be a
dg category. By a left dg C-module, we mean a dg functor M : C → Cdg(k). The following
notation will be convenient: for a morphism f : X → Y in C and m ∈ M(X), the resulting
element M(f)(m) ∈ M(Y ) is written as f ·m. Here the dot indicates the left C-action on M .
We denote by C-DGMod the dg category formed by left dg C-modules, whose Hom complexes
are defined similarly as in Example 2.1.

Denote by C-DGProj the full dg subcategory of C-DGMod formed by dg-projective
C-modules. Here, we recall that a dg C-module is dg-projective if and only if it is isomorphic to
a direct summand of a semi-free dg C-module in Z0(C-DGMod); compare [11, Subsection 3.1]
and [9, Appendix B.1]. We note that dg-projective modules are precisely the cofibrant objects
with respect to the projective model structure on Z0(C-DGMod); compare [14, Subsection 3.2].

We identify a left dg Cop-module with a right dg C-module. Then we obtain the dg category
DGMod-C of right dg C-modules. For a right dg C-module N , a morphism f : X → Y in C and
m ∈ N(Y ), the right C-action on N is given such that m · f = (−1)|f |·|m|N(f)(m) ∈ N(X).
Here, the Koszul sign rule applies.

By a dg C-D-bimodule we mean a left dg C ⊗ Dop-module. We identify a dg C-D-bimodule
M with a dg functor M : Dop ⊗ C → Cdg(k), sending (D,C) to M(D,C). Here, M(D,C) is
covariant in the entry C and contravariant in the entry D. Therefore, for each object C ∈ C,
we have that M(−, C) is a right dg D-module.

Given a dg functor F : C → D, we have a dg C-D-bimodule MF defined such that MF (D,C) =
D(D,F (C)).

Example 2.3. Let C be a dg category. Then we have the dg C-C-bimodule C = MId with
Id the identity functor on C; see Example 2.2. Denote by B the bar resolution of this dg
C-C-bimodule C; see [11, Subsection 6.6]. Then we have the following dg functor

pC = B ⊗C − : C-DGMod −→ C-DGProj.

For each left dg C-module M , pC(M) is a semi-free dg C-module, and there is a canonical
surjective quasi-isomorphism pC(M) → M . We call pC the dg-projective resolution functor of
C.

Let C be a dg category. Recall that both H0(C-DGMod) and H0(C-DGProj) have natural
triangulated structures. The derived category D(C) is the Verdier quotient of H0(C-DGMod)
by the triangulated subcategory of acyclic dg modules. It is well known that the canonical
functor H0(C-DGProj) → D(C) is a triangle equivalence; see [11, Theorem 3.1].

The Yoneda functor

YC : C −→ DGMod-C, X �→ C(−, X)

is a fully faithful dg functor. In particular, it induces a full embedding

H0(YC) : H0(C) −→ H0(DGMod-C).

Recall that H0(DGMod-C) has a natural triangulated structure. The dg category C is said to be
pretriangulated, provided that the essential image of H0(YC) is a triangulated subcategory. The
terminology is justified by the evident fact: the homotopy category H0(C) of a pretriangulated
dg category C has a canonical triangulated structure.

Let T be a triangulated category. By an enhancement of T , we mean a pretriangulated
dg category C together with a triangle equivalence E : T → H0(C); see [2]. In general, an
enhancement is not necessarily unique. We refer to [5, 16] for more details.
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Let A be an abelian category. The bounded derived category Db(A) is by definition the
Verdier quotient Kb(A)/Kb,ac(A), where Kb,ac(A) is the triangulated subcategory of Kb(A)
consisting of bounded acyclic complexes.

As we have seen in Example 2.1, Cb
dg(A) provides a canonical enhancement for Kb(A).

Following [13, Subsection 9.8], we now recall the canonical enhancement of Db(A).

Example 2.4. Consider the dg category Cb
dg(A) of bounded complexes, and its full dg

subcategory Cb,ac
dg (A) formed by acyclic complexes. The bounded dg derived category of A is

defined to be the dg quotient

Db
dg(A) = Cb

dg(A)/Cb,ac
dg (A).

Recall that the dg category Db
dg(A) is obtained from Cb

dg(A) by freely adding new morphisms
εX : X → X of degree −1 for each acyclic complex X, such that d(εX) = 1X ; see [9,
Subsection 3.1] and compare [12, Section 4]. By [16, Lemma 1.5], Db

dg(A) is pretriangulated.
By [9, Theorem 3.4], there is a canonical isomorphism of triangulated categories

canA : Db(A) −→ H0(Db
dg(A)),

which acts on objects by the identity. We will call canA the canonical enhancement of Db(A).

3. The homotopy category and liftable functors

In this section, we recall the notion of liftable triangle functors between bounded derived
categories, and the homotopy category of small dg categories.

Recall that a dg functor F : C → D is a quasi-equivalence, provided that the induced
chain maps C(C,C ′) → D(F (C), F (C ′)) are all quasi-isomorphisms, and that H0(F ) : H0(C) →
H0(D) is dense. In this situation, H0(F ) is an equivalence.

The following well-known result can be found in [18, Lemma 2.5]. We include a proof for
completeness.

Lemma 3.1. Let F : C → D be a dg functor between two pretriangulated dg categories.
Assume that H0(F ) is an equivalence. Then F is a quasi-equivalence.

Proof. It suffices to show that the induced chain map C(C,C ′) → D(F (C), F (C ′)) is a
quasi-isomorphism. Recall that Hi(C(C,C ′)) is isomorphic to HomH0(C)(C,Σi(C ′)), where Σ
denotes the translation functor on the triangulated category H0(C). Similarly, we identify
Hi(D(F (C), F (C ′))) with HomH0(D)(F (C),Σi(F (C ′))). By assumption, H0(F ) is a triangle
equivalence between triangulated categories H0(C) and H0(D); compare [5, Remark 1.8(i)].
Then H0(F ) induces an isomorphism

HomH0(C)(C,Σi(C ′)) −→ HomH0(D)(F (C),Σi(F (C ′))).

We infer the required quasi-isomorphism. �

In the following examples, we fix the notation for some quasi-equivalences, which will be
used in the next section.

Example 3.2. Recall that a right dg D-module M is quasi-representable, provided that
it is isomorphic to D(−, D) in D(Dop) for some object D in D; see [9, Appendix C.16.1].
Denote by D̄ the full dg subcategory of DGProj-D formed by dg-projective quasi-representable
D-modules. Then the Yoneda embedding induces a quasi-equivalence YD : D → D̄.
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We identify a dg algebra B with a dg category with one object. We denote by B-DGModfd the
full dg subcategory of B-DGMod consisting of those left dg B-modules with finite-dimensional
total cohomology. Similarly, we have the dg category B-DGProjfd, whose objects are precisely
dg-projective B-modules with finite-dimensional total cohomology.

The following example is implicitly contained in [11, 6.1 Example].

Example 3.3. Let θ : C → B be a quasi-isomorphism between dg algebras. Then the dg
functor

B ⊗C − : C-DGProj −→ B-DGProj

is a quasi-equivalence. Indeed, we identify H0(C-DGProj) with D(C), and identify
H0(B-DGProj) with D(B). Then H0(B ⊗C −) = C ⊗L

B − is a triangle equivalence by [11,
Subsection 6.1]. By Lemma 3.1, we infer the required quasi-equivalence.

Using infinite devissage, one infers that the natural map P → B ⊗C P is a quasi-isomorphism
for any dg-projective C-module P . Therefore, the above quasi-equivalence restricts to a quasi-
equivalence

B ⊗C − : C-DGProjfd −→ B-DGProjfd.

We identify a usual algebra with a dg algebra concentrated in degree 0. Then dg modules
are just complexes of usual modules.

For a finite-dimensional algebra A, we denote by A-mod the abelian category of finitely
generated left A-modules, and by A-proj its full subcategory formed by finitely generated
projective modules.

Example 3.4. Let A be a finite-dimensional algebra. Then A-DGMod is identified
with Cdg(A-Mod). The dg-projective resolution functor pA : Cdg(A-Mod) → A-DGProj in
Example 2.3 restricts to

pA : Cb
dg(A-mod) → A-DGProjfd.

Since pA sends each acyclic complex X to a contractible complex pA(X), it induces a dg
functor

p′
A : Db

dg(A-mod) −→ A-DGProjfd.

For the construction, we set p′
A(εX) to be any contracting homotopy on pA(X), where εX is

the new generator in defining Db
dg(A-mod); see Example 2.4.

We observe that p′
A is a quasi-equivalence. Indeed, taking H0(p′

A), we obtain the well-known
triangle equivalence Db(A-mod) � H0(A-DGProjfd), and then apply Lemma 3.1.

Denote by C−,b
dg (A-proj) the dg category formed by bounded-above complexes of finitely

generated projective A-modules, which have bounded cohomology. Since bounded-above
complexes of projective modules are dg-projective, we have the inclusion

incA : C−,b
dg (A-proj) −→ A-DGProjfd.

The well-known triangle equivalence between K−,b(A-proj) and Db(A-mod), along with
Lemma 3.1, shows that it is a quasi-equivalence.

We denote by dgcat the category of small dg categories, whose morphisms are dg functors.
The homotopy category Hodgcat is the localization of dgcat with respect to all the quasi-
equivalences. In other words, Hodgcat is obtained from dgcat by formally inverting quasi-
equivalences. By the model structure [22] on dgcat, the morphisms between two objects in
Hodgcat form a set; compare [9, Appendix B.4–6].
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For two dg categories C and D, we denote by [C,D] the corresponding Hom set in Hodgcat,
whose elements are usually denoted by C ��� D. We mention that any such morphism can be
realized as a roof

C F←− C′ F ′
−→ D

of dg functors, where F is a quasi-equivalence; moreover, F can be taken as a semi-free
resolution of C; see [9, Appendix B.5; 22]. For details, we refer to [25].

For the set-theoretical consideration relevant to us, we use the following remark.

Remark 3.5. We call a dg category C quasi-small, provided that the homotopy category
H0(C) is essentially small. We choose for each isomorphism class in H0(C) a representative in
C. These objects form a small full dg subcategory C′. By the construction, the inclusion C′ ↪→ C
is a quasi-equivalence. So, we identify C with C′, and view C as an object in Hodgcat.

Following [25, 2.1, Exercise 2], we denote by [cat] the category of small categories, whose
morphisms are the isomorphism classes of functors. In particular, equivalences of categories
are isomorphisms in [cat]. Therefore, the homotopy functor H0 : dgcat → [cat] inverts quasi-
equivalences. By the universal property of the localization, we have the induced functor

H0 : Hodgcat −→ [cat], C �→ H0(C).

Following [11, Subsection 7.1], a quasi-functor from C to D is a dg C-D-bimodule X
such that for each object C ∈ C, the right D-module X(−, C) is quasi-representable. We
denote by rep(C,D) the full subcategory of D(C ⊗ Dop) formed by quasi-functors; it is a
triangulated subcategory provided that D is pretriangulated; see [9, Appendix E.2]. We denote
by Iso(rep(C,D)) the set of isomorphism classes of quasi-functors.

For each quasi-functor M , we take its dg-projective resolution pM which is again a quasi-
functor. The quasi-functor pM defines a dg functor pM : C → D̄ sending C to (pM)(−, C).
Here, we note that (pM)(−, C) is a right dg-projective D-module; see [17, Proposition 2.10(b)].
The following diagram

C pM−−→ D̄ YD←−− D

defines a morphism ΦM : C ��� D in Hodgcat. Here, we recall the quasi-equivalence YD in
Example 3.2.

The following bijection is fundamental; see [24, Sublemmas 4.4 and 4.5] and [25, p. 279,
Corollary 1]. For an elementary proof, we refer to [4]. As mentioned in [5, Remark 6.6], the
morphism ΦM might be viewed as the generalized Fourier–Mukai transform with M being its
kernel.

Theorem 3.6. Keep the notation as above. Then the following map

Iso(rep(C,D)) −→ [C,D], M �→ ΦM

is a bijection, which identifies derived tensor products of quasi-functors with composition of
morphisms in Hodgcat.

When the small dg categories C and D vary, the above bijection induces an isomorphism
between Hodgcat and the classifying category [1, Subsection 7.2] of the 2-category studied in
[9, Appendix E]; compare [11, Section 7].

The following notion is modified from [5, Definition 6.7]. Since the uniqueness of an
enhancement is not known in general, we have to fix the canonical one as in Example 2.4.
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Definition 3.7. Let F : Db(A) → Db(B) be a triangle functor. We say that F is liftable,
provided that there is a morphism F̃ : Db

dg(A) ��� Db
dg(B) in Hodgcat, called a dg lift of F ,

such that F is isomorphic to can−1
B ◦H0(F̃ ) ◦ canA as triangle functors.

We observe that the composition of liftable functors is still liftable. Using the following
well-known lemma, we infer that a quasi-inverse of a liftable equivalence is also liftable. We
point out that liftable functors are called standard in [13, Subsection 9.8]. However, we reserve
the terminology ‘standard functors’ for the classical ones, that is, derived tensor functors by
complexes; see the next section.

Lemma 3.8. Let F : Db(A) → Db(B) be a triangle equivalence. Then any dg lift F̃ of F is
an isomorphism in Hodgcat.

Proof. We use a roof presentation Db
dg(A) F1←− C F2−→ Db

dg(B) of F̃ , where F1 is a quasi-
equivalence. It follows that the dg category C is also pretriangulated. By assumption, we infer
that H0(F2) is an equivalence. By Lemma 3.1, the dg functor F2 is a quasi-equivalence, which
implies that F̃ is an isomorphism. �

4. Liftable and standard functors

In this section, we prove that the category of quasi-functors between the bounded dg derived
categories of two module categories is triangle equivalent to a certain derived category of
bimodules over the given algebras. Consequently, between the bounded derived categories of
two module categories, liftable functors coincide with standard functors.

Let A and B be two finite-dimensional algebras. We consider the homotopy category
K−,b(A-proj) of bounded-above complexes of projective modules. For each complex P ∈
K−,b(A-proj) and N � 0, we consider the brutal truncation σ�−N (P ), which is the subcomplex
of P consisting of Pn for n � −N . The inclusion incP−N : σ�−N (P ) → P fits into a canonical
exact triangle in K−,b(A-proj)

σ�−N (P )
incP−N−−−−→ P −→ σ<−N (P ) −→ Σσ�−N (P ), (4.1)

where σ<−NP = P/σ�−N (P ) is the quotient complex.
The following result is standard.

Lemma 4.1. Let F : K−,b(A-proj) → K−,b(B-proj) be a triangle functor. Then there is a
natural number N0 such that Hi(F (incP−N )) is an isomorphism for each complex P , i � 0 and
N � N0.

Proof. For each interval I, we denote by DI
A the full subcategory of K−,b(A-proj) formed

by those complexes X satisfying Hi(X) = 0 for i /∈ I. Similarly, we have the subcategories DI
B

of K−,b(B-proj) . These subcategories are closed under extensions.
Recall the well-known equivalence K−,b(A-proj) � Db(A-mod); compare Example 3.4. Then

the subcategory D[0,0]
A is equivalent to A-mod. Since there are only finitely many simple

A-modules up to isomorphism, it follows that F (D[0,0]
A ) ⊆ D[−N0+1,N0−1]

B for N0 > 0 large
enough. More generally, we have F (D[a,b]

A ) ⊆ D[a−N0+1,b+N0−1]
B . It follows that F (σ<−N (P )) ∈

D(−∞,−2]
B for each N � N0. Applying the triangle functor F to (4.1) and taking cohomological

groups, we infer the required isomorphism. �
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Denote by Aop the opposite algebra of A. Then Aop-Mod is identified with the category
of right A-modules. Recall that the derived category D(Aop) coincides with the unbounded
derived category D(Aop-Mod). Let XA be a complex of right A-modules. The complex XA

is said to be perfect if it is isomorphic in D(Aop) to some object in Kb(Aop-proj), that is, a
bounded complex of finitely generated projective Aop-modules.

The following fact is well known.

Lemma 4.2. Let XA be a complex of right A-modules. Then it is perfect if and only if
X ⊗A P has finite-dimensional total cohomology for each complex P in K−,b(A-proj).

Proof. The ‘only if’ part is clear, since then X ⊗A P is isomorphic to a direct summand of
a finite extension of the complexes Σi(P ).

For the ‘if’ part, taking P = A we infer that X has finite-dimensional total cohomology.
It follows that X is isomorphic to some Q ∈ K−,b(Aop-proj). We fix a natural number
m such that Hi(Q) = 0 for each i < −m. For each finite-dimensional A-module M and
its projective resolution P (M), the complexes X ⊗A P (M) and Q⊗A M are isomorphic in
D(k). In particular, Q⊗A M also has finite-dimensional total cohomology. It follows that
TorAj (Cok d−m−1

Q ,M) = 0 for j large enough. We infer that Cok d−m−1
Q has finite projective

dimension. The complex Q is isomorphic to

0 → Cok d−m−1
Q → Q−m+1

d−m+1
Q−−−−→ Q−m+2 → · · · ,

which is further isomorphic to a bounded complex of finitely generated projective modules, as
required. �

Following [20, Definition 3.4], we say that a triangle functor F : Db(A-mod) → Db(B-mod)
is standard, provided that there is an isomorphism F � X ⊗L

A − of triangle functors for some
complex X of B-A-bimodules.

Here, we identify Db(B-mod) with the full triangulated subcategory of D(B) = D(B-Mod)
formed by complexes with finite-dimensional total cohomology; compare Example 3.4. Then
the derived tensor functor X ⊗L

A − is required to send bounded complexes to complexes with
finite-dimensional total cohomology. It follows from Lemma 4.2 that the underlying complex
XA of right A-modules is necessarily perfect.

We denote by D(B ⊗Aop) the derived category of complexes of B-A-bimodules. The triangle
equivalence in the following theorem is analogous to the one in [24, Theorem 8.15].

Theorem 4.3. There is a triangle equivalence

rep(Db
dg(A-mod),Db

dg(B-mod)) ∼−→ {M ∈ D(B ⊗Aop) | MA is perfect},

sending a dg Db
dg(A-mod)-Db

dg(B-mod)-bimodule X to X(B,A).
Consequently, a triangle functor F : Db(A-mod) → Db(B-mod) is liftable if and only if it

is standard.

Let us comment on the B-A-bimodule structure on X(B,A). We view A as an object in
Db

dg(A-mod). For each a ∈ A, the right multiplication ra : A → A, sending x ∈ A to xa ∈ A, is
a morphism of degree 0 in Db

dg(A-mod). Then

X(B, ra) : X(B,A) −→ X(B,A)

defines the right A-action of a on X(B,A). Similarly, one describes the left B-action on
X(B,A).
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Proof. We use the sequence of quasi-equivalences in Example 3.4

Db
dg(A-mod)

p′
A−−→ A-DGProjfd incA←−−− C−,b

dg (A-proj).

Here, we emphasize that p′
A(A) and incA(A) are isomorphic in H0(A-DGProjfd).

In this proof, we identify Db
dg(A-mod) with A := C−,b

dg (A-proj), Db
dg(B-mod) with B :=

C−,b
dg (B-proj).
We will actually prove that sending X to X(B,A) defines a triangle equivalence

rep(A,B) ∼−→ {M ∈ D(B ⊗Aop) | MA is perfect}.
Moreover, its quasi-inverse sends M to the dg A-B-bimodule XM defined by

XM (Q,P ) = HomB(Q,M ⊗A P )

for P ∈ A and Q ∈ B.
Let us comment on the quasi-inverse. For the notation HomB(−,−) of the Hom complex,

we refer to Example 2.1. Since MA is perfect, the complex M ⊗A P of B-modules has
finite-dimensional total cohomology by Lemma 4.2, and thus is isomorphic to some object
P ′ ∈ K−,b(B-proj). The Hom complexes HomB(Q,M ⊗A P ) and HomB(Q,P ′) are quasi-
isomorphic. Then we conclude that the right dg B-module XM (−, P ) is quasi-representable,
since it is isomorphic to the representable dg B-module B(−, P ′). Since the dg A-B-bimodule
XM ∈ rep(A,B) depends on M up to quasi-isomorphism, the quasi-inverse M �→ XM is well
defined on the subcategory of D(B ⊗Aop).

The proof will be divided into four steps.
Step 1. Take X ∈ rep(A,B). For each P ∈ A, we fix an object F (P ) ∈ B and an isomorphism

ξ−,P : X(−, P ) ∼−→ B(−, F (P ))

in D(Bop). Then we have an isomorphism in D(B)

uP : X(B,P )
ξB,P−−−→ B(B,F (P )) canP−−−→ F (P ), (4.2)

where the canonical isomorphism canP maps g to g(1).
For each morphism f : P → P ′ in H0(A) = K−,b(A-proj), by Yoneda’s lemma there is a

unique morphism F (f) : F (P ) → F (P ′) in H0(B) = K−,b(B-proj) satisfying

ξ−,P ′ ◦X(−, f) = B(−, F (f)) ◦ ξ−,P

in D(Bop). This defines an additive functor

F : K−,b(A-proj) −→ K−,b(B-proj).

We observe that F is canonically a triangle functor. Indeed, the fixed isomorphisms ξ−,P yield
the following commutative diagram up to a natural isomorphism.

Here, the vertical arrows are given by the Yoneda embeddings, both of which are fully faithful
triangle functors. This implies that F is a triangle functor.

Step 2. To each homogeneous element p ∈ P , we associate a morphism rp : A → P in A,
sending x ∈ A to xp ∈ P . We claim that the following natural map

θP : X(B,A) ⊗A P −→ X(B,P ), m⊗ p �→ (−1)|m|·|p|(rp) ·m (4.3)
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is a quasi-isomorphism between complexes of left B-modules. Here, (rp) ·m denotes the left
A-action of rp on X. We mention that θP is induced by an obvious A-balanced map.

Once the above claim is proved, the isomorphisms (4.2) and (4.3) imply that X(B,A) ⊗A

P has finite-dimensional total cohomology for each P ∈ A. By Lemma 4.2, the underlying
complex X(B,A)A of right A-modules is perfect. This shows that the functor in the theorem
is well defined.

For the claim, we first observe that θP is an isomorphism in the case that P � Σi(A). It
follows that θP is an isomorphism for any object P in A that is a bounded complex. In general,
we will show that Hi(θP ) is an isomorphism. By translation, we will only show that H0(θP ) is
an isomorphism.

We consider the brutal truncation σ�−N (P ), which is a bounded subcomplex of P . The
inclusion incP−N : σ�−N (P ) → P induces the vertical maps in the following commutative
diagram in D(B).

Since X(B,A) has bounded cohomology, the leftmost vertical map induces an isomorphism on
H0 for sufficiently large N . By Lemma 4.1, a similar remark holds for the rightmost one. Then
the claim follows from the isomorphism θσ�−N (P ).

Step 3. For each Q ∈ B and a homogeneous element q ∈ Q, we have a morphism rq : B → Q
in B, sending x ∈ B to xq ∈ Q. We claim that the following natural map

δ : X(Q,P ) −→ HomB(Q,X(B,P )), x �→ (q �→ x.(rq)) (4.4)

is a quasi-isomorphism. Here, x.(rq) denotes the right B-action of rq on X. We observe that
the map q �→ x.(rq) respects the left B-module structures.

Set η−,P = (ξ−,P )−1. We may assume that η−,P is a morphism in Z0(DGMod-B). In
particular, the isomorphism ηQ,P is a chain map. Since HomB(Q, ηB,P ) is a quasi-isomorphism,
the claim follows immediately from the following commutative diagram:

Here, the unnamed arrow is given by the isomorphism HomB(Q, (canP )−1). The commutativity
follows from the naturality of η−,P applied to the morphism rq : B → Q. More precisely, for
any homogenous elements g ∈ B(Q,F (P )) and q ∈ Q, the following equality

(ηQ,P (g)).(rq) = ηB,P (g ◦ rq)

implies the required commutativity.
Step 4. Combining the quasi-isomorphisms (4.3) and (4.4), we obtain a roof of quasi-

isomorphisms

X(Q,P ) δ−→ HomB(Q,X(B,P ))
HomB(Q,θP )←−−−−−−−− HomB(Q,X(B,A) ⊗A P ). (4.5)

Set M = X(B,A). Then we obtain a natural isomorphism

X � XM
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of dg A-B-bimodules in D(A⊗ Bop). From this we deduce that the functors are mutually
quasi-inverse to each other. This completes the proof of the triangle equivalence.

It remains to prove the consequence. The ‘if’ part is well known. Assume that F � M ⊗L

A −
for a complex M of B-A-bimodules with MA perfect; see Lemma 4.2. Using a projective
resolution of B-A-bimodules and then a suitable truncation, we may assume that MA actually
lies in Kb(Aop-proj). Then the dg functor

M ⊗A − : Db
dg(A-mod) −→ Db

dg(B-mod)

is well defined, which is a dg lift of F .
For the ‘only if’ part, we assume that F admits a dg lift F̃ : A ��� B. By Theorem 3.6, we

may assume that F̃ = ΦX for some X ∈ rep(A,B). Take L to be a bounded-above complex
of finitely generated projective B-A-bimodules, which is quasi-isomorphic to X(B,A). The
isomorphism (4.5) yields an isomorphism X � X ′ in D(A⊗ Bop), where the dg A-B-bimodule
X ′ = XL is given by

X ′(Q,P ) = B(Q,L⊗A P ).

From the very definition of ΦX′ and applying [4, Corollary 2.12], we infer that

ΦX′ = L⊗A − : A ��� B.
Here, the equality is in the homotopy category Hodgcat.

Consequently, as a triangle functor, F is isomorphic to H0(ΦX) � H0(ΦX′), which further
coincides with

L⊗A − : K−,b(A-proj) −→ K−,b(B-proj).

This proves that F is standard. �

Remark 4.4. Recall that Cb
dg(A-proj) provides a canonical enhancement for the homotopy

category Kb(A-proj). By a similar argument as above, we have a triangle equivalence

rep(Cb
dg(A-proj), Cb

dg(B-proj)) ∼−→ {N ∈ D(B ⊗Aop) | BN is perfect},

sending a dg Cb
dg(A-proj)-Cb

dg(B-proj)-bimodule Y to its restriction Y (B,A).
Set A′ = Cb

dg(A-proj) and B′ = Cb
dg(B-proj). Since Y (−, A) is quasi-isomorphic to a right

representable dg B′-module B′(−, Q) for some Q ∈ B′, it follows that there are isomorphisms

Y (B,A) � B′(B,Q)
canQ−−−→ Q

in D(B). In particular, the underlying complex BY (B,A) of left B-modules is perfect.
The quasi-inverse sends a complex N of B-A-bimodules to the dg A′-B′-bimodule YN given

by

YN (Q,P ) = HomB(Q,N ⊗A P )

for P ∈ A′ and Q ∈ B′. Since the complex N ⊗A P of left B-modules is perfect, we take
P ′ ∈ B′ which is quasi-isomorphic to N ⊗A P . It follows that the right dg B′-module YN (−, P )
is quasi-representable, since it is isomorphic to B′(−, P ′) in D(B′op). Therefore, YN lies in
rep(A′,B′).

There is an alternative proof of the above equivalence. The dg category A′ and the algebra A
are Morita equivalent, and the dg category B′ and B are Morita equivalent; consult the notion
of a Morita morphism in [14, Subsection 4.6]. By [23, Remark 5.4], both A′ and B′ are Morita
fibrant. Then the above equivalence can be proved using [23, Corollaries 5.7 and 5.10].

As a consequence of the above equivalence, we infer that a triangle functor F : Kb(A-proj) →
Kb(B-proj) is liftable if and only if it is isomorphic to N ⊗A − for some complex N of B-A-
bimodules.
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5. A factorization theorem for derived equivalences

In this section, we prove a factorization theorem for derived equivalences: any derived
equivalence between a module category and an abelian category is the composition of a
pseudo-identity with a liftable derived equivalence.

The following notions are taken from [7, Definitions 3.8 and 5.1]; compare [7, Lemma 5.2].
For an abelian category B, we identify B with the full subcategory of Db(B) formed by stalk
complexes concentrated in degree 0. More generally, we denote by Σn(B) the full subcategory
formed by stalk complexes concentrated in degree −n.

Definition 5.1. We call a triangle functor F : Db(B) → Db(B) a pseudo-identity, pro-
vided that F (X) = X for each complex X, and that for each integer n, the restriction
F |Σn(B) : Σn(B) → Σn(B) is the identity functor.

The abelian category B is called D-standard, provided that any pseudo-identity on Db(B)
is isomorphic, as a triangle functor, to the identity functor.

We observe that a pseudo-identity is necessarily an autoequivalence, and even an automor-
phism; see [7, Lemma 3.6].

The main motivation of introducing D-standard categories is the following result: the module
category A-mod of a finite-dimensional algebra A is D-standard if and only if any derived
equivalence F : Db(A-mod) → Db(B-mod) is standard; see [7, Theorem 5.10]. Therefore, the
well-known open question [20] about standard derived equivalences is equivalent to the
conjecture that any module category A-mod is D-standard. On the other hand, there exists a
triangle functor between the bounded derived categories of module categories, which is neither
an equivalence nor standard; see [21, Corollary 1.5].

In what follows, A will be a finite-dimensional algebra and A an abelian category. Recall
that each element a ∈ A gives rise to a morphism ra : A → A of left A-modules, which sends
x ∈ A to xa ∈ A.

Proposition 5.2. Let F : Db(A-mod) → Db(A-mod) be a triangle functor. Assume that
there is an isomorphism θ : F (A) → A in Db(A-mod) satisfying ra ◦ θ = θ ◦ F (ra) for each
a ∈ A. Then F is isomorphic to a pseudo-identity.

Proof. We observe that F induces an isomorphism

HomDb(A-mod)(A,Σ
n(A)) −→ HomDb(A-mod)(F (A), FΣn(A))

for each integer n. The cases n 
= 0 are trivial, since both sides equal zero. If n = 0, we just
use the assumption F (ra) = θ−1 ◦ ra ◦ θ and the fact that every endomorphism A → A of left
A-modules is of the form ra.

We identify Kb(A-proj) with the smallest triangulated subcategory of Db(A-mod) containing
A and closed under direct summands. By the isomorphism θ, we infer that F (Kb(A-proj)) ⊆
Kb(A-proj). By Beilinson’s Lemma, the restriction F |Kb(A-proj) : Kb(A-proj) → Kb(A-proj)
is an equivalence. Then F is an autoequivalence by applying the last statement in [6,
Proposition 3.4] or, alternatively by the equivalence in [15, Theorem 6.2].

Recall that a complex X lies in A-mod if and only if HomDb(A-mod)(A,Σn(X)) = 0 for
any n 
= 0. It follows from the equivalence F and the isomorphism A � F (A) that F (X)
lies in A-mod for each X ∈ A-mod. So, we have the restriction F |A-mod : A-mod → A-mod,
which is necessarily an exact functor. By the isomorphism θ, we infer that F |A-mod preserves
projective modules; moreover, its restriction F |A-proj : A-proj → A-proj on projective modules
is isomorphic to the identity functor.
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It is a standard fact that any exact functor between module categories is completely
determined by its restriction on projective modules. It follows that F |A-mod is isomorphic
to the identity functor. Then we are done by [7, Corollary 3.9]. �

We will need the following fact, due to [7, Lemma 5.9].

Lemma 5.3. Let F : Db(A-mod) → Db(A-mod) be a pseudo-identity. Assume further that
F is standard. Then as a triangle functor, F is isomorphic to the identity functor. �

The following factorization theorem extends [7, Proposition 5.8], which is essentially due to
[20, Corollary 3.5].

Theorem 5.4. Let F : Db(A-mod) → Db(A) be a triangle equivalence. Then there is
a factorization F � F2 ◦ F1 of triangle functors, where F1 : Db(A-mod) → Db(A-mod) is a
pseudo-identity and F2 : Db(A-mod) → Db(A) is a liftable equivalence.

Moreover, such a factorization is unique. More precisely, for another factorization F � F ′
2 ◦

F ′
1 with F ′

1 a pseudo-identity on Db(A-mod) and F ′
2 a liftable equivalence, we have F1 � F ′

1

and F2 � F ′
2.

Proof. We will divide the proof of the existence of the required factorization into three steps.
Step 1. Set T = F (A), and Γ = EndDb

dg(A)(T )op to be the opposite dg endomorphism algebra

of T in Db
dg(A).

Recall that Hn(Γ) is isomorphic to HomDb(A)(T,Σn(T )) for each integer n. By the
equivalence F , we infer that Hn(Γ) = 0 for n 
= 0 and that H0(Γ) is isomorphic to A. The
isomorphism φ : A → H0(Γ) sends a ∈ A to F (ra). Here, the right multiplication ra : A → A,
sending x ∈ A to xa ∈ A, is viewed as a morphism in Db(A-mod). We implicitly use the
canonical enhancement canA; see Example 2.4.

Denote by τ�0(Γ) the good truncation of Γ, that is, τ�0(Γ) =
⊕

i<0 Γi ⊕ Kerd0
Γ. Then τ�0(Γ)

is a dg subalgebra of Γ, and H0(Γ) is a quotient algebra of τ�0(Γ). Therefore, we have quasi-
isomorphisms of dg algebras

Γ ←↩ τ�0(Γ) � H0(Γ)
φ−1

−→ A.

These quasi-isomorphisms induce a triangle equivalence

Δ: D(Γ)
(Γ⊗L

τ�0(Γ))−)−1

−−−−−−−−−−→ D(τ�0(Γ))
A⊗L

τ�0(Γ))−
−−−−−−−−→ D(A),

which sends Γ to A; see [11, Subsection 6.1]. More precisely, there is an isomorphism δ : Δ(Γ) →
A in D(A) satisfying

ra ◦ δ = δ ◦ Δ(sa) (5.1)

for each a ∈ A. Here, sa : Γ → Γ is given by the right multiplication of an element b ∈ Kerd0
Γ,

whose class b̄ in H0(Γ) equals φ(a) = F (ra). The morphism sa in D(Γ) is independent of the
choice of b.

Step 2. For each object X ∈ Db
dg(A), Db

dg(A)(T,X) is naturally a left dg Γ-module. We
observe that Hn(Db

dg(A)(T,X)) is isomorphic to HomDb(A)(T,Σn(X)), which is further iso-
morphic to HomDb(A-mod)(A,Σ

nF−1(X)) by the equivalence F . It follows that Db
dg(A)(T,X)

lies in Γ-DGModfd.
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We define a morphism F̃ : Db
dg(A) ��� Db

dg(A-mod) by the following diagram:

For the dg-projective resolution functor pΓ, we refer to Example 2.3. For the quasi-equivalence
p′
A, we refer to Example 3.4. The other two quasi-equivalences are induced by quasi-

isomorphisms between dg algebras; see Example 3.3. The four dg categories Γ-DGModfd,
Γ-DGProjfd, τ�0(Γ)-DGProjfd and A-DGProjfd are all quasi-small. So we have to apply
Remark 3.5 in order to view them in Hodgcat.

Step 3. We observe that F̃ is compatible with the triangle equivalence Δ. More precisely, we
have a commutative diagram up to a natural isomorphism,

where (Γ ⊗τ�0(Γ) −)−1 and (p′
A)−1 denote the inverse of Γ ⊗τ�0(Γ) − and p′

A in Hodgcat,
respectively, and the vertical arrows are the canonical functors. From this and the isomorphism
δ, we infer an isomorphism θ : H0(F̃ )(T ) → A in Db(A-mod), which satisfies

ra ◦ θ = θ ◦H0(F̃ )(b̄). (5.2)

Here, we recall that b̄ = F (ra) in H0(Γ); compare (5.1).
Consider the following composition:

F1 : Db(A-mod) F−→ Db(A)
(canA-mod)−1◦H0(F̃ )◦canA−−−−−−−−−−−−−−−−−−→ Db(A-mod).

In view of (5.2), the isomorphism θ : F1(A) = H0(F̃ )(T ) → A satisfies the required identity

ra ◦ θ = θ ◦ F1(ra).

Applying Proposition 5.2, we infer that F1 is isomorphic to a pseudo-identity. In particular,
F1 is an autoequivalence. Therefore, H0(F̃ ) is also an equivalence, and thus by Lemma 3.1 F̃
is an isomorphism in Hodgcat.

Take a quasi-inverse (F1)−1 of F1. We observe that F2 = F ◦ (F1)−1 is liftable, since a dg
lift is given by (F̃ )−1. This completes the proof for the required factorization of F .

For the uniqueness of factorizations, we observe an isomorphism

F ′
1 ◦ (F1)−1 � (F ′

2)
−1 ◦ F2.

Here, (F1)−1 really means the inverse of F1, since F1 is assumed to be a pseudo-identity. Since
both F ′

2 and F2 are liftable, we infer by Theorem 4.3 that F ′
1 ◦ (F1)−1 is standard. In the same

time, it is a pseudo-identity, as a composition of two pseudo-identities. By Lemma 5.3, we infer
that F ′

1 ◦ (F1)−1 is necessarily isomorphic to the identity functor. Then we are done. �

Corollary 5.5. Let A be a finite-dimensional algebra, and A and B be two abelian
categories. Assume that there are triangle equivalences among Db(A-mod), Db(A) and Db(B).
Then the following statements are equivalent:

(1) the category A-mod is D-standard;
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(2) any triangle equivalence Db(B) → Db(A) is liftable;
(3) any triangle autoequivalence on Db(A) is liftable.

Proof. For ‘(1) ⇒ (2)’, we apply Theorem 5.4 to infer that all derived equivalences
Db(A-mod) → Db(A) and Db(A-mod) → Db(B) are liftable. Then (2) follows immediately,
since by assumption any triangle equivalence Db(B) → Db(A) factors through Db(A-mod).
The implication ‘(2) ⇒ (3)’ is trivial.

For ‘(3) ⇒ (1)’, we take a pseudo-identity F1 on Db(A-mod). By Theorem 5.4, there is a
liftable equivalence F2 : Db(A-mod) → Db(A). Then F2 ◦ F1 ◦ (F2)−1 is a triangle autoequiva-
lence on Db(A), which is necessarily liftable by the assumption in (3). It follows that F1 is also
liftable. By Lemma 5.3 we infer that F1 is isomorphic to the identity functor, proving (1). �

Remark 5.6. Keep the assumptions as above. We do not know the relationship between
these equivalent statements and the D-standardness of the abelian categories A and B. Recall
the general question from [7, p. 182] whether the D-standardness of abelian categories is
invariant under derived equivalences.

We are in a position to give the first proof of the theorem in the introduction. For a locally
noetherian scheme X, we denote by coh-X the abelian category of coherent sheaves on X.

Theorem 5.7. Let A and B be two finite-dimensional algebras. Assume that there
is a triangle equivalence between Db(A-mod) and Db(coh-X) with X a smooth projective
scheme. Then A-mod is D-standard, or equivalently, any triangle equivalence F : Db(A-mod) →
Db(B-mod) is standard.

Proof. Recall from [19] that any triangle autoequivalence on Db(coh-X) is a Fourier–Mukai
functor, and thus liftable by [5, Proposition 6.11]; compare [24, Corollary 8.12 and the following
paragraph]. Applying Corollary 5.5 and [7, Theorem 5.10], we are done. �

6. The objective categories

In this section, we introduce the notions of objective categories and triangle-objective
triangulated categories. The basic examples of triangle-objective triangulated categories are
the bounded derived categories of coherent sheaves on projective varieties over an algebraically
closed field.

We say that an endofunctor F on a category A is iso-preserving, if F (X) � X for each object
X ∈ A.

Definition 6.1. A category A is called objective, provided that any iso-preserving
autoequivalence on A is isomorphic to the identity functor IdA.

Similarly, a triangulated category T is called triangle-objective, provided that any iso-
preserving triangle autoequivalence on T is isomorphic, as a triangle functor, to the identity
functor IdT .

The above properties are invariant under equivalences. For example, if two triangulated
categories T and T ′ are triangle equivalent, then T is triangle-objective if and only if so is T ′.

The following observation motivates the above notions.

Lemma 6.2. Let A be an abelian category. Consider the following statements:

(1) the abelian category A is D-standard and objective;
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(2) the bounded derived category Db(A) is triangle-objective;
(3) the abelian category A is D-standard.

Then we have the implications ‘(1) ⇒ (2) ⇒ (3)’.

Proof. To see ‘(1) ⇒ (2)’, we take an iso-preserving triangle autoequivalence F on Db(A).
The restriction F |A : A → A is an iso-preserving autoequivalence. By the assumptions in (1), we
infer that F |A is isomorphic to the identity functor IdA. By [7, Corollary 3.9], F is isomorphic
to a pseudo-identity on Db(A). Since A is D-standard, we infer that F is isomorphic to the
identity functor. The implication ‘(2) ⇒ (3)’ is clear, since any pseudo-identity on Db(A) is
iso-preserving. �

Let R be a commutative noetherian k-algebra. Denote by R-mod the abelian category of
finitely generated R-modules.

Given a k-algebra automorphism σ : R → R and an R-module M , we denote by σ(M) the
twisted module: the new R-action is given by a◦m = σ−1(a).m, where the dot ‘.’ denotes the
R-action on M . This gives rise to the twist automorphism

σ(−) : R-mod −→ R-mod.

Example 6.3. Denote by k[ε] the algebra of dual numbers. By [7, Theorem 7.1], k[ε]-mod
is D-standard. However, k[ε]-mod is not objective and Db(k[ε]-mod) is not triangle-objective,
provided that the field k contains at least three elements.

Fix a ∈ k satisfying a 
= 0, 1. Consider the k-algebra automorphism σ on k[ε] such that
σ(ε) = aε. The twist automorphisms σ(−), defined on k[ε]-mod and Db(k[ε]-mod), are both
iso-preserving, but neither is isomorphic to the identity functor.

The following condition arises naturally.
Condition (Obj): any k-algebra automorphism σ : R → R satisfying σ(I) = I for each ideal

I, necessarily equals IdR.

Lemma 6.4. Let R be a commutative noetherian k-algebra satisfying Condition (Obj). Then
R-mod is objective.

Proof. Assume that F : R-mod → R-mod is an iso-preserving autoequivalence. Since
F (R) � R, it follows that F is isomorphic to the twist automorphism σ(−) for some
automorphism σ on R. This can be proved by the well-known Eilenberg–Watts theorem.

We observe that σ(R/I) � R/σ(I) for each ideal I, which sends r + I to σ(r) + σ(I). By the
isomorphisms F (R/I) � σ(R/I) � R/I, we infer the following isomorphism

R/σ(I) � R/I.

Taking the annihilator ideals on both sides, we infer that σ(I) = I. By Condition (Obj), we
have σ = IdR. Consequently, F is isomorphic to the identity functor. �

Here are some examples of rings satisfying Condition (Obj).

Example 6.5. (1) The polynomial algebras satisfy Condition (Obj). More generally, we
assume that R is a k-algebra, which is an integral domain such that any invertible element is
a scalar. Then R satisfies Condition (Obj).

To verify the condition, we take an automorphism σ : R → R satisfying σ(I) = I. For any
non-scalar a ∈ R, we have Ra = σ(Ra) = Rσ(a). It follows that σ(a) = λa for some λ ∈ k.
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Similarly, σ(1 + a) = λ′(1 + a) for some λ′ ∈ k. By comparing these two identities, we infer
that λ = 1 = λ′. This implies that σ fixes all non-scalars, and hence σ = IdR.

(2) Any reduced affine algebra over an algebraically closed field satisfies Condition (Obj).
More generally, we assume that the Jacobson radical of R is zero and that for each maximal
ideal m, the natural homomorphism k → R/m is an isomorphism. Then R satisfies Condition
(Obj).

For the verification, let a ∈ R. It is enough to show that a− σ(a) is contained in any maximal
ideal m. By assumption, there is some λ ∈ k satisfying a− λ ∈ m. Then we have σ(a) − λ ∈
σ(m) = m, completing the verification.

The following result shows that objective categories are ubiquitous in algebraic geometry.
For a sheaf F , we denote by supp(F) its support, and by T0(F) ⊆ F the maximal torsion
subsheaf of dimension zero; see [10, Definition 1.1.4].

Proposition 6.6. Let (X,O) be a locally noetherian scheme such that there is an affine
open covering X =

⋃
Ui, where Ui = Spec(Ri) with each Ri satisfying Condition (Obj). Then

coh-X is objective.
Assume further that X is projective such that the maximal torsion subsheaf T0(O) of

dimension zero is trivial. Then Db(coh-X) is triangle-objective.

Proof. Let F : coh-X → coh-X be an iso-preserving autoequivalence. In particular, F fixes
the structure sheaf O. It is well known that there is a unique automorphism θ on X such
that F � θ∗, the pullback functor; see [3, Theorem 5.4]. Here, we use the fact that a locally
noetherian scheme is quasi-separated.

For each closed subset Z ⊆ X, we have an ideal sheaf I with supp(O/I) = Z. Then we have
supp(θ∗(O/I)) = θ−1(Z). By the isomorphism θ∗(O/I) � O/I, we infer that θ−1(Z) = Z. In
particular, for the given affine open subsets Ui, we have θ−1(Ui) = Ui. Therefore, the restriction
θ|Ui

: Ui → Ui corresponds to an k-algebra automorphism σi on Ri, that is, θ|Ui
= Spec(σi).

We have the following commutative diagram

where ‘res’ is the restriction functor, and we identify coh-Ui with Ri-mod. The restriction
functor ‘res’ induces the well-known equivalence between coh-Ui and the Serre quotient category
of coh-X by those sheaves supported on the complement of Ui; compare [3, Example 4.3]. It
follows that (θ|Ui

)∗ and thus σi(−) are iso-preserving. By the assumption on Ri and the proof
of Lemma 6.4, it follows that σi = IdRi

and thus θ|Ui
= IdUi

for each i. Therefore, θ = IdX,
proving the first statement.

For the second statement, we apply [16, Proposition 9.2] to infer that coh-X has an ample
sequence in the sense of [19, Definition 2.12]. By [7, Proposition 5.7], we deduce that coh-X is
D-standard. Using the proved statement and Lemma 6.2, we are done. �

By Example 6.5(2), an integral projective scheme of positive dimension over an algebraically
closed field satisfies the above conditions. Hence, the following immediate consequence of
Proposition 6.6 and Lemma 6.2 gives the second proof of the theorem in the introduction,
when the field k is algebraically closed. As a consequence, the smoothness hypothesis of the
scheme can be relaxed.
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Corollary 6.7. Let A be a finite-dimensional algebra. Assume that there is a triangle
equivalence between Db(A-mod) and Db(coh-X) for a projective scheme X satisfying the
following conditions: the maximal torsion subsheaf T0(O) of dimension zero is trivial, and
there is an affine open covering X =

⋃
Spec(Ri) with each Ri satisfying Condition (Obj). Then

Db(A-mod) is triangle-objective, and thus A-mod is D-standard.

Acknowledgements. The authors are very grateful to the referee for many helpful sugges-
tions, which greatly improve the exposition. The authors thank Bernhard Keller and Henning
Krause for helpful comments and their continued support. The paper was revised when the
second author visited University of Bielefeld, with a research stay partially supported by the
Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach.

References

1. J. Benabou, Introduction to bicategories, Midwest Category Seminar 1–77, Lecture Notes in Mathematics
47 (Springer, Berlin, 1967).

2. A. I. Bondal and M. M. Kapranov, ‘Enhanced triangulated categories’, Mat. Sb. 181 (1990) 669–683
(Russian), Math. USSR-Sb. 70 (1991) 93–107 (English).

3. M. Brandenburg, ‘Rosenberg’s reconstruction theorem’, Expo. Math. 36 (2018) 98–117.
4. A. Canonaco and P. Stellari, ‘Internal hom via extensions of dg functors’, Adv. Math. 277 (2015)

100–123.
5. A. Canonaco and P. Stellari, ‘A tour about existence and uniqueness of dg enhancements and lifts’, J.

Geom. Phys. 122 (2017) 28–52.
6. X. W. Chen, ‘Representablity and autoequivalence groups’, Preprint, 2018, arXiv:1810.00332v2.
7. X. W. Chen and Y. Ye, ‘The D-standard and K-standard categories’, Adv. Math. 333 (2018) 159–193.
8. X. W. Chen and C. Zhang, ‘The derived-discrete algebras and standard equivalences’, J. Algebra 525

(2019) 259–283.
9. V. Drinfeld, ‘DG quotients of DG categories’, J. Algebra 272 (2004) 643–691.

10. D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, 2nd edn (Cambridge University
Press, Cambridge, 2010).

11. B. Keller, ‘Deriving DG categories’, Ann. Sci. École Norm Sup. (4) 27 (1994) 63–102.
12. B. Keller, ‘On the cyclic homology of exact categories’, J. Pure Appl. Algebra 136 (1999) 1–56.
13. B. Keller, ‘On triangulated orbit categories’, Doc. Math. 10 (2005) 551–581.
14. B. Keller, On differential graded categories, International Congress of Mathematicians II (European

Mathematical Society, Zürich, 2006) 151–190.
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