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INTRODUCTION TO COHERENT SHEAVES ON WEIGHTED
PROJECTIVE LINES

XIAO-WU CHEN AND HENNING KRAUSE

ABSTRACT. These notes provide a description of the abelian categories that
arise as categories of coherent sheaves on weighted projective lines. Two dif-
ferent approaches are presented: one is based on a list of axioms and the other
yields a description in terms of expansions of abelian categories.

A weighted projective line is obtained from a projective line by inserting
finitely many weights. So we describe the category of coherent sheaves on a
projective line in some detail, and the insertion of weights amounts to adding
simple objects. We call this process ‘expansion’ and treat it axiomatically.
Thus most of these notes are devoted to studying abelian categories, including
a brief discussion of tilting theory. We provide many details and have tried to
keep the exposition as self-contained as possible.

CONTENTS
Introduction Al
1. Abelian categories A
2. Derived categories [1d
3. Tilting theory [d
4. Expansions of abelian categories ld
5. Coherent sheaves on the projective line 32
6. Coherent sheaves on weighted projective lines l1d
7. Canonical algebras 53
8. Further topics [d
References l6d
Index 61

INTRODUCTION

We begin with a brief description of weighted projective lines and their categories
of coherent sheaves.

Let k be an algebraically closed field, let P} be the projective line over k, let
A = (A1,...,\) be a (possibly empty) collection of distinct closed points of P}, and
let p = (p1,...,pn) be a weight sequence, that is, a sequence of positive integers.
The triple X = (P}, A, p) is called a weighted projective line. Geigle and Lenzing [10]
have associated to each weighted projective line a category coh X of coherent sheaves
on X, which is the quotient category of the category of finitely generated L(p)-
graded S(p, A)-modules, modulo the Serre subcategory of finite length modules.
Here L(p) is the rank 1 additive group

L(p):<flﬂ"'ﬂfn75|plfl :"':pnfn:g);
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and
S, A) = klu,v, @1, ..., 2,) /(2 + Niqu — Aigv),

with grading degu = degv = & and degz; = &;, where \; = [N : A1) in Pj.
Geigle and Lenzing showed that coh X is a hereditary abelian category with finite
dimensional Hom and Ext spaces. The free module S(p, A) yields a structure sheaf
O, and shifting the grading gives twists E(Z) for any sheaf E and & € L(p).

Every sheaf is the direct sum of a torsion-free sheaf and a finite length sheaf. A
torsion-free sheaf has a finite filtration by line bundles, that is, sheaves of the form
O(#%). The finite length sheaves are easily described as follows. There are simple
sheaves S, (z € P~ AX) and S;; (1 <i <n, 1< j <p,;) satisfying for any r € Z
that Hom(O(r¢), Si;) # 0 if and only if j = 1, and the only extensions between
them are

Ext'(S:,S.) =k, Ext’(Si;,Si/) =k (5 =j—1(mod p;)).

For each simple sheaf S and [ > 0 there is a unique sheaf with length [ and top .S,
which is uniserial, meaning that it has a unique composition series. These are all
the finite length indecomposable sheaves.

Categories of the form coh X for some weighted projective line X play a special
role in the study of abelian categories. This follows from a theorem of Happel
[13] which we now explain. Consider a connected hereditary abelian category A
that is k-linear with finite dimensional Hom and Ext spaces. Suppose in addi-
tion that A admits a tilting object, that is some object T' with Exth(T, T)=0
such that Hom (7, A) = 0 and Ext!(T, A) = 0 imply A = 0. Thus the functor
Hom4(T,—): A — mod A into the category of modules over the endomorphism
algebra A = End 4(T") induces an equivalence

D’(A) = Db(mod A)

of derived categories. There are two important classes of such hereditary abelian
categories admitting a tilting object: module categories over path algebras of finite
connected quivers without oriented cycles, and categories of coherent sheaves on
weighted projective lines. Happel’s theorem then states that there are no further
classes. More precisely, an abelian category A as above is, up to a derived equiva-
lence, either of the form mod kT for some finite connected quiver I' without oriented
cycles or of the form coh X for some weighted projective line X.

The following treatment of coherent sheaves on weighted projective lines is based
on a list of axioms (extending the list in Happel’s theorem) which we postpone un-
til §6l Before that we discuss in some detail the necessary background material:
abelian categories, derived categories, tilting theory, expansions of abelian cate-
gories, and coherent sheaves on IP’}C.
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duced. The previously unpublished proof of Theorem [[L7.1] is due to Yu Ye.

1. ABELIAN CATEGORIES

1.1. Additive and abelian categories. A category A is additive if every finite
family of objects has a product, each morphism set Hom4(A, B) is an abelian
group, and the composition maps

HOIn_A(A,B) X HOm_A(B,C) — HOIn_A(A,C)

are bilinear. Given a finite number of objects Aq,..., A, of an additive category
A, there exists a direct sum Ay ® --- @ A,, which is by definition an object A
together with morphisms ¢;: A4; — A and m;: A — A; for 1 < ¢ < r such that
Z:Zl tim; = ida, mit; = ida,, and w54, = 0 for all 4 # j. Note that the morphisms
t; and 7; induce isomorphisms

4= @ =T
=1 =1 1=1

Given any object A in A, we denote by add A the full subcategory of A consisting
of all finite direct sums of copies of A and their direct summands.

A decomposition A = Ay 11 As of an additive category A is a pair of full additive
subcategories A; and As such that each object in A is a direct sum of two objects
from A; and As, and Hom4(A;, A3) = 0 = Hom4(As, A7) for all A7 € A; and
As € Ay, An additive category A is connected if it admits no proper decomposition
A=A 1T As.

A functor F': A — B between additive categories is additive if the induced map
Hom4(A, B) — Homp(F A, FB) is linear for each pair of objects A, B in A. The
kernel Ker F of an additive functor F': A — B is by definition the full subcategory
of A formed by all objects A such that FFA = 0. The essential image Im F of
F: A — B is the full subcategory of B formed by all objects B such that B is
isomorphic to F A for some A in A.

An additive category A is abelian if every morphism ¢: A — B has a kernel and
a cokernel, and if the canonical factorization

Ker¢ —2— A — 3 p—2 Coker ¢

I

Coker ¢/ — Ker @"

of ¢ induces an isomorphism ¢.
Given an abelian category A, a finite sequence of morphisms

Ay 24y 22 O g

in A is ezact if Im ¢; = Ker ¢;41 for all 1 <i < n. An additive functor F': A — B
between abelian categories is exact if F' sends each exact sequence in A to an exact
sequence in B.
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Example 1.1.1. (1) Let A be a right noetherian ring. The category mod A of
finitely generated right modules over A is an abelian category.

(2) Let k be a field and T" a quiver. The category rep(T’, k) of finite dimensional
k-linear representations of I' is an abelian category.

Conventions. Throughout, all categories are supposed to be skeletally small, un-
less otherwise stated. This means that the isomorphism classes of objects form a
set. Subcategories are usually full subcategories and closed under isomorphisms.
Functors between additive categories are always assumed to be additive. The com-
position of morphisms is written from right to left, and modules over a ring are
usually right modules.

1.2. Serre subcategories and quotient categories. Let A be an abelian cate-
gory. A non-empty full subcategory C of A is called a Serre subcategory provided
that C is closed under taking subobjects, quotients and extensions. This means
that for every exact sequence 0 — A" —+ A — A” — 0 in A, the object A belongs
to C if and only if A" and A” belong to C.

Example 1.2.1. The kernel of an exact functor A — B between abelian categories
is a Serre subcategory of A.

Given a Serre subcategory C of A, the quotient category A/C of A with respect
to C is defined as follows. The objects in A/C are the objects in A. Given two
objects A, B in A, there is for each pair of subobjects A’ C A and B’ C B an
induced map Hom4 (A, B) — Hom4(A’, B/B’). The pairs (A’, B’) such that both
A/A" and B’ lie in C form a directed set, and one obtains a direct system of abelian
groups Hom 4(A4’, B/B’). We define

Hom 4/c(A, B) = ,BHBI% Hom 4 (A", B/B’)

(
and the composition of morphisms in A induces the composition in A/C 0

The quotient functor @Q: A — A/C is by definition the identity on objects. The
functor takes a morphism in Hom4(A4, B) to its image under the canonical map
Homu(A, B) — Hom 4,¢(A, B).

Lemma 1.2.2. FEach morphism A — B in A/C is of the form

1 1
(1.2.1) A8 9 gy 90 g
for some pair (A', B") of subobjects with A/A’ and B’ in C and some morphism

¢: A — B/B' in A, where 1: A’ - A and 7: B — B/B’ denote the canonical
morphisms in A.

Proof. For each morphism A — B in A/C, there is by definition a pair (A’, B") of
subobjects and a morphism ¢: A — B/B’ in A such that the following diagram
comimutes.

A—B

QL]\ l@ﬂ
Q¢

A —— B/B’

Now observe that for each object C in A the inclusion ¢: A" — A induces a bijection
Hom 4 /¢ (A, C) — Hom 4,c(A’,C). Thus Qu is invertible. Analogously, one shows
that Qm is invertible. (I

1One needs to verify that A/C is a category, in particular that the composition of morphisms
is associative. This requires some work; see [8] [9].
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The following result summarizes the basic properties of a quotient category and
the corresponding quotient functor.

Proposition 1.2.3. Let A be an abelian category and C a Serre subcategory.

(1) The category A/C is abelian and the quotient functor Q: A — A/C is exact
with kernel Ker Q = C.

(2) Let F: A — B be an exact functor between abelian categories. IfC C Ker F,
then there is a unique functor F': A/C — B such that F = FQ. Moreover,
the functor F is exact.

Proof. (1) It follows from the construction that the morphism sets of the quotient
category A/C are abelian groups. Also, the quotient functor induces linear maps
between the morphism sets and it preserves finite direct sums. Thus the quotient
category and the quotient functor are both additive.

The quotient functor sends a morphism in A to the zero morphism if and only
if its image belongs to C. Thus Ker ) = C.

Let v = (Qm)~'Q#(Qu)~! be a morphism in A/C as in (LZI). Denote by
t': Ker¢p — A’ the kernel and by 7’: B/B’ — Coker ¢ the cokernel of ¢ in A. Then
the kernel of ¢ is Q(u'): Ker¢ — A, whereas the cokernel of ¢ is Q(n'w): B —
Coker ¢. It follows that the category A/C is abelian and that the quotient functor
preserves kernels and cokernels.

(2) The functor F': A/C — B takes an object A to F'A and a morphism of the
form (Qm)71Qp(Qr) ™! as in (L2T)) to (Fr) 1 Fp(Fi)~!. Note that Fr and F'r are
isomorphisms in B, since F is exact and C C Ker F.

The functor F is additive and the description of (co)kernels in (1) shows that F
preserves (co)kernels. Thus F is exact. O

The quotient functor A — A/C is the universal functor that inverts the class
S(C) of morphisms ¢ in A with Kero and Cokero in C. More precisely, for any
class S of morphisms in A, there exists a universal functor P: A — A[S™!] such
that

(1) the morphism Po is invertible for every o € S, and
(2) every functor F': A — B such that Fo is invertible for each o € S admits
a unique functor F': A[S™!] — B such that F = FP.

The category A[S™1] is the localization of A with respect to S and is unique up to
a unique isomorphism; see [9] I.1].

Lemma 1.2.4. Let C be a Serre subcategory of A. The quotient functor Q: A —
A/C is the universal functor that inverts all morphisms in S(C). Therefore

AlS@@)™1 = AJc.

Proof. From Proposition[[.23]it follows that @ inverts all morphisms in S(C). Now
let F: A — B be a functor such that Fo is invertible for each o € S(C). Then for
each pair A, B of objects in A and each pair of subobjects A € A and B’ C B
with A/A” and B’ in C, the map Hom4 (A, B) — Homg(F A, F B) factors through
the canonical map Hom 4 (A, B) — Hom4(A’, B/B’). Thus there are induced maps
Hom 4,¢(A, B) — Homp(F A, FB) which induce a unique functor F: A/C — B
such that F = FQ. It follows that A[S(C)~!] = A/C. O

Example 1.2.5. (1) Let A be a commutative noetherian ring and A, the localiza-
tion with respect to a prime ideal p. The localization functor 7': mod A — mod A,
sending a A-module M to My, = M ®a A, is exact and induces an equivalence
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mod A/ KerT = mod A,. Roughly speaking, restriction of scalars along the mor-
phism A — A, yields a quasi-inverse.

(2) Let A be a right noetherian ring and e? = e € A an idempotent. The
functor T: mod A — mod eAe sending a A-module M to Me = M @, Ae is ex-
act. The kernel KerT identifies with mod A/AeA and T induces an equivalence
mod A/ Ker T' =5 mod eAe. The functor Homa.(Ae, —) yields a quasi-inverse.

(3) Let A be a right artinian ring. Given a set Si,...,S, of simple A-modules,
the A-modules M having a finite filtration 0 = My € My C --- C M, = M
with each factor M;/M;_; isomorphic to one of the simples Sy, ..., S, form a Serre
subcategory of mod A. Moreover, each Serre subcategory of mod A arises in this
way and is therefore of the form mod A/AeA for some idempotent e € A.

1.3. Properties of quotient categories. We collect some further properties of
abelian quotient categories.

Lemma 1.3.1. Let A be an abelian category that is not supposed to be skeletally
small, and let C be a Serre subcategory. Then the following are equivalent:

(1) The category A is skeletally small.
(2) The categories C and A/C are skeletally small. In addition, Exty(A,C)
and Ext!(C, A) are sets for all A€ A and C € C.

Proof. One direction is clear. So suppose that C and A/C are skeletally small, and
that extensions with objects in C form sets. First observe that the morphisms in
Hom 4,¢(A, B) form a set for each pair of objects A, B. Here one uses that the
subobjects A’ C A with A" or A/A’ in C form, up to isomorphism, a set, since C
is skeletally small. Next observe that for each object A in A, there is only a set of
isomorphism classes of objects B with A = B in A/C. This follows from the fact
that each isomorphism A — B in 4/C is represented by a chain

A—~A -1 B/B « B

of epis and monos in A with kernel and cokernel in C; see Lemma Here one
uses that C is skeletally small and that extensions with objects in C form sets. From
this it follows that the isomorphism classes of objects in A form a set, since the
quotient .A4/C has this property. O

The following example gives an abelian category A with a Serre subcategory C
such that C and A/C are skeletally small but A itself is not.

Example 1.3.2. Let k be a field and T a quiver with set of vertices {1,2} and
a proper class of arrows 1 — 2. Each arrow of I' corresponds to a canonical
element of Ext'(S1, Ss), where S; denotes the simple representation supported at
the vertex 7. These extensions are linearly independent and yield pairwise non-
isomorphic two-dimensional representations. The functor T: rep(I', k) — modk
sending a representation of I' to the corresponding vector space at vertex 1 induces
an equivalence rep(I’, k)/ Ker T = mod k, and Ker T is equivalent to mod k.

An abelian category is called noetherian if each of its objects is noetherian (i.e.
satisfies the ascending chain condition on subobjects).

Lemma 1.3.3. Let A be an abelian category and C a Serre subcategory. Then the
following are equivalent:
(1) The category A is noetherian.
(2) The categories C and A/C are noetherian, and each object in A has a largest
subobject that belongs to C.
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Proof. (1) = (2): Suppose A is noetherian. Then C is noetherian. Also, A/C is
noetherian because each ascending chain of subobjects in A/C can be represented
by an ascending chain of subobjects in A; see Lemma Noetherianess implies
that each non-empty set of subobjects has a maximal element. In particular, each
object has a subobject that is maximal among all subobjects belonging to C.

(2) = (1): Let A; C A2 C --- C A be an ascending chain of subobjects in
A. Using that A/C is noetherian, there exists some integer n such that A4,,/A,
belongs to C for all m > n. Let A be the maximal subobject of A/A,, belonging to
C. Then the chain A,1/A, C A,12/A, C --- C A becomes stationary since C is
noetherian. It follows that the original chain of subobjects of A becomes stationary.
Thus A is noetherian. O

Next we give an example of an abelian category A with a Serre subcategory C
such that C and A/C are noetherian but A itself is not.

Example 1.3.4. The ring A = [%’%] is well known to be left but not right
noetherian. Counsider the abelian category mod A of finitely presented (right)
A-modules and the functor T: mod A — modQ sending a A-module M to Me
with e = [{ §]. Then KerT is equivalent to modZ and T induces an equivalence
mod A/ Ker T' = mod Q.

The next lemma provides the analogue of a Noether isomorphism for abelian
categories. The proof is straightforward.

Lemma 1.3.5. Let A be an abelian category and A, As a pair of Serre subcate-
gories such that Ay C A;y. Then the following holds:

(1) The inclusion Ay — A identifies A1/ Az with a Serre subcategory of A As.
(2) The quotient functor A — A/ Ay induces an isomorphism

AJAL =5 (A Ag) /(AL A). 0

Recall that a non-zero object S of an abelian category is simple if S has no proper
subobject 0 £ U C S. The next lemma says that a quotient functor preserves this
property if the object is not annihilated. The proof is straightforward.

Lemma 1.3.6. Let A be an abelian category and C a Serre subcategory. If S is a
simple object not belonging to C, then S is simple in A/C and the quotient functor
induces an isomorphism End 4(S) = End 4¢(S5). O

1.4. Perpendicular categories. Let A be an abelian category. In some cases,
the quotient functor A — A/C with respect to a Serre subcategory C admits a right
adjoint. Then the perpendicular category C provides another description of the
quotient category A/C.

For any class C of objects in A, its perpendicular categories are by definition the
full subcategories

Ct={Ac A|Homy(C,A) =0 = Ext}(C, A) for all C € C},
LC={Ac A|Homy(A,C) =0=Exth(A,C) for all C € C}.
Lemma 1.4.1. Let A be an abelian category and C a Serre subcategory. Then the

following are equivalent for an object B in A:

(1) The object B belongs to C*.
(2) The quotient functor induces a bijection Hom4(A, B) — Hom 4,¢ (A, B) for
every object A in A.
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(3) The map Hom (o, B) is bijective for every morphism o in A with Ker o
and Cokero in C.

Proof. (1) = (2): For each pair of subobjects A” C A and B’ C B such that both
AJ/A" and B’ lie in C, the map Hom 4(A, B) — Hom4(A’, B/B’) is bijective. Thus
the quotient functor induces a bijection Hom 4(A, B) — Hom 4,¢ (A, B).

(2) = (3): The quotient functor sends a morphism o in A with Kero and
Cokero in C to an isomorphism in A/C. Thus Hom 4,¢(0, B) is bijective. Using
the bijections in (2) it follows that Hom 4(c, B) is bijective.

(3) = (1): Let C be an object in C. Then o: 0 — C induces a bijection
Hom (o, B). Thus Homa(C,B) = 0. Let £&: 0 - B - E — C — 0 an exact
sequence in A. The morphism o: B — E induces a bijection Hom 4 (o, B), and
therefore £ splits. Thus Exti‘(C’, B) =0. O

We need the following elementary lemma about pairs of adjoint functors.

Lemma 1.4.2. Let F: A — B and G: B — A be a pair of functors such that G is
a right adjoint of F. Denote by S(F) the class of morphisms o in A such that Fo
is invertible. Then the following are equivalent:

(1) The functor F induces an equivalence A[S(F)™1] = B.
(2) The functor G is fully faithful.
(3) The adjunction morphism F(GA) — A is invertible for each A € B.

Proof. See [9] 1.1.3]. O

The next result provides a useful criterion for an exact functor to be a quotient
functor. Moreover, it describes the right adjoint of a quotient functor.

Proposition 1.4.3. Let F': A — B be an exact functor between abelian categories
and suppose that F' admits a right adjoint G: B — A. Then the following are
equivalent:

(1) The functor F induces an equivalence A/ Ker F = B.
(2) The functor F induces an equivalence (Ker F)* = B.
(3) The functor G induces an equivalence B = (Ker F)L.
(4) The functor G is fully faithful.

Moreover, in that case (Ker F)t =ImG and Ker F = 1 (ImG).

Proof. Let S(F) denote the class of morphisms o in A such that Fo is invertible.
Then it follows from Lemma .24 that A[S(F)~'] = A/Ker F.

(1) = (2): The functor F induces a full and faithful functor (Ker F)* — B by
Lemma [[ZTl For each B € B, we have F(GB) = B by Lemma [[42 and GB
belongs to (Ker F')* by Lemma[[ZIl Thus F induces an equivalence (Ker F)+ =
B.

(2) = (3): Note that ImG C (Ker F)*. Thus G induces a functor B — (Ker F)*
which is a right adjoint of the equivalence (Ker F)t — B. Now one uses that an
adjoint of an equivalence is again an equivalence.

(3) = (4): An equivalence is fully faithful.

(4) = (1): Use Lemma [[42

Observe that (3) implies (Ker F)* = Im G. In particular, Ker F C 1 (Im G). The
other inclusion follows from the isomorphism Homg(F A, B) =2 Hom(A,GB). O

The next result characterizes the fact that the quotient functor admits a right
adjoint.
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Proposition 1.4.4. Let A be an abelian category and C a Serre subcategory. Then
the following are equivalent:

(1) The quotient functor A — A/C admits a right adjoint A/C — A.

(2) Every object A in A fits into an exact sequence

(1.4.1) 0—A —A—A—A —0

such that A', A" € C and A € C*.
(3) The quotient functor induces an equivalence C+ = A/C.
In that case the functor A — C sending A to A’ is a right adjoint of the inclusion
C — A, and the functor A — C* sending A to A is a left adjoint of the inclusion
ct— A

Proof. (1) = (2): We apply Proposition [[L43l Suppose that the quotient functor
F: A — A/C admits a right adjoint G. The functor F inverts the adjunction
morphism n4: A — G(FA) = A, since FG = Id 4/c by Lemmall.42l The exactness
of F then implies that A’ = Kern, and A” = Cokerny belong to C. The object A
belongs to Im G = C* by construction.

(2) = (3): The quotient functor induces a fully faithful functor C* — A/C by
Lemma [[4J] This functor is an equivalence, because each object A in A/C is
isomorphic to one in its image via the isomorphism A = A.

(3) = (1): Choose a quasi-inverse G': A/C — C* of the equivalence C+ — A EiN
A/C. For each A in A and B in A/C, there are bijections

Hom4(A,GB) = Hom 4 c(F A, F(GB)) = Hom ¢ (FA, B).

The first map is bijective by Lemma [[L4]] and the second is bijective because
FG =1d 4/c. Thus G is right adjoint to the quotient functor A — A/C.

For any C in C, the induced map Hom4(C, A") — Hom4(C, A) is bijective.
Therefore sending A to A’ provides a right adjoint of the inclusion C — A. On
the other hand, for any B in C*, the induced map Hom4 (A, B) — Hom (A, B)
is bijective. Therefore sending A to A provides a left adjoint of the inclusion
ct— A O

Remark 1.4.5. The objects A’ and A” occurring in (L4 represent certain func-
tors defined on C. We have

Homu(—, A)|c = Home(—, A/) and Exth(f, A/A/)|C = Home(—, A”),
where A’ is viewed as a subobject of A.

1.5. Global dimension. Let A be an abelian category. For a pair of objects A, B
and n > 1, let Ext’ (A, B) denote the group of extensions in the sense of Yoneda.
Set Ext’ (A, B) = Hom4(A, B) and Ext’y (A, B) = 0 for n < 0. Note that there are
composition maps
Ext’y (A, B) x Ext}(B,C) — Ext’{"™(A, C)
for all n,m € Z. The projective dimension of an object A is by definition
proj.dim A = inf{n > 0| EthJrl(A, —) =0}
Dually, one defines the injective dimension inj.dim A.

Lemma 1.5.1. Let A be an abelian category. For A in A and n > 0 the following
are equivalent:

(1) Ext’y (A, —) is right ezact.

(2) Ext’"'(4,—) =0.
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(3) Ext}(A,—) =0 for all m > n.
(4) proj.dim A < n.

Proof. Tt suffices to show that (1) and (2) are equivalent; the rest is straightforward.
We use the long exact sequence for Ext’ (4, —).

(1) = (2): Fix an element ¢ € Ext’{" (4, B) which is represented by an exact
sequence

0—B—FE,y1 —E,— - —F —A—0.

Let C be the image of E,y1 — E, and write £ = £”’¢’ as the composite of ex-
tensions ¢ € Ext’(A4,C) and ¢” € Ext4(C,B). For the connecting morphism
§: Ext’y(4,C) — EX‘CZH(A, B) induced by &”, we have § = 0 since Ext"; (A4, —) is
right exact. Thus £ = §(¢') = 0.

(2) = (1): Clear. O

The global dimension of A is by definition the smallest integer n > 0 such that
Ext""'(—,~) = 0. As usual, the dimension is infinite if such a number n does
not exist. We denote this dimension by gl. dim A and observe that it is equal to
sup{proj.dim A | A € A} and sup{inj.dim A | A € A}. The category A is called
hereditary provided that Exti(f, —)=0.

For a right noetherian ring A, the global dimension of the module category mod A
is called the (right) global dimension of A and denoted by gl. dim A.

Example 1.5.2. (1) Let A be the ring of integers Z or the polynomial ring k[x]
over a field k. Then mod A is hereditary. More generally, mod A is hereditary if A
is a Dedekind domain.

(2) For a field k and a quiver T', the category of representations rep(T', k) is
hereditary.

(3) Let A be a hereditary abelian category and C a Serre subcategory. Then C
and A/C are again hereditary.

1.6. Length categories. Let A be an abelian category. An object A of A has
finite length if there exists a finite chain of subobjects

0=A4CAC---CA, 1CA,=A

such that each quotient A;/A;_1 is a simple object. Such a chain is called a com-
position series of A. A composition series is not necessarily unique but its length
is an invariant of A by the Jordan-Hdolder theorem; it is called the length of A and
is denoted by ¢(A). Note that an object has finite length if and only if it is both
artinian (i.e. satisfies the descending chain condition on subobjects) and noetherian
(i.e. satisfies the ascending chain condition on subobjects).

Every object of finite length decomposes essentially uniquely into a finite direct
sum of indecomposable objects with local endomorphism rings. This follows from
the Krull-Remak-Schmidt theorem.

The objects of finite length form a Serre subcategory of A which is denoted by
Ag. The abelian category A is called a length category if A = Ag.

Let A be a length category. The Ext-quiver or Gabriel quiver of A is a valued
quiver ¥ = 3(A) which is defined as follows. The set g of vertices is a fixed set
of representatives of the isomorphism classes of simple objects in A. For a simple
object S, let A(S) denote its endomorphism ring, which is a division ring. Observe
that Ext'y (S, T) carries a natural A(T)-A(S)-bimodule structure for each pair S, T
in ¥y. There is an arrow S — T with valuation s = (s,t) in X if Exth(S, T)#0
with s = dima (g) Exti‘(S, T) and t = dima (p)or Exth(S, T). We write dgr = (0,0)
if Ext4(S,T) = 0.
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The following observation is easily proved.

Lemma 1.6.1. A length category is connected if and only if its Ext-quiver is con-
nected. O

Example 1.6.2. (1) Let A be a commutative noetherian local ring with maximal
ideal m. Then (mod A)g equals the category of m-torsion modules and A/m is the
unique simple A-module.

(2) For a field k and a quiver T, the category of representations rep(T', k) is
a length category. Suppose that I' has no oriented cycle and no pair of parallel
arrows. Then the Ext-quiver of rep(T', k) is isomorphic to T', with valuation (1,1)
for each arrow.

1.7. Uniserial categories. Let A be a length category. An object A is uniserial
provided it has a unique composition series. Note that any non-zero uniserial
object is indecomposable. Moreover, subobjects and quotient objects of uniserial
objects are uniserial. The length category A is called uniserial provided that each
indecomposable object is uniserial.

The following result characterizes uniserial categories in terms of their Ext-
quivers.

Theorem 1.7.1 (Gabriel). A length category A is uniserial if and only if for each
simple object S, we have

(1.7.1) Z dima sy Ext4(5',5) <1 and Z dima (gryor Extly (S, 87) < 1.
S'eXy S’eXg

The proof of this result requires some preparations and we begin with some
notation. Let A be any object in .A. We denote by rad A the intersection of all its
maximal subobjects and let top A = A/ rad A. Analogously, soc A denotes the sum
of all simple subobjects of A.

Lemma 1.7.2. Let A be a length category and suppose that [(LT1) holds for each
simple object S. Let £: 0 — A — E — S — 0 be a non-split extension such that A
is uniserial and S is simple. Then we have the following:

(1) Every epimorphism A — B # 0 induces an isomorphism
ExtY (S, A) = Ext(S, B).

(2) The object E is uniserial.
(3) Given any non-split extension &' in Extly(S, A), there exists an isomorphism
7: A — A such that £ = 7€.

Proof. (1) It is sufficient to consider the case B = top A. Moreover, it is sufficient
to show that the induced map Extl((S, A) — Ext!;(S,top A) is a monomorphism,
since dima gy Ext4 (S, top A) < 1 by (LZZ1). We use the long exact sequence which
is obtained from the short exact sequence 0 — A" — A — top A — 0 by applying
HOIn_A(S7 7).

If Ext(S,A’) = 0, then the induced map Ext!(S,A4) — Extl (S, top A) is
a monomorphism. Now assume that ExtY(S,4’) # 0. Using induction on the
length, we have that Ext!(S,4") = ExtY4(S,topA’) # 0. Next observe that
Exti‘(top A,top A’) # 0 since A is uniserial. Thus (I’CI]) implies S 2 top A, and
a dimension argument shows that the connecting morphism Hom 4 (S, top A) —
Exti‘(S, A’) is an isomorphism. Thus from the long exact sequence we infer that
the natural map Exti‘(S, A) — Exti‘(S, top A) is a monomorphism.
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(2) Tt suffices to show that every proper subobject U C FE is contained in A.
Otherwise we have an induced extension 0 - ANU — U — S — 0. Thus the
inclusion AN U — A induces a non-zero map Ext((S,ANU) — Ext!y(S, A).
Composing this with the isomorphism Extil(S, A) = Extil(S, A/ANVU) from (1)
gives a non-zero map ExtY (S, ANU) — ExtY (S, A/ANU) which is induced by the
composite ANU — A — A/ANU. This is impossible.

(3) We use induction on the length of A. The case ¢(A) = 1 follows from
the equality dima(a)or Ext! (S, A) = 1. If £(A) > 1, choose a maximal subobject
A" C Aand let A = A/A’. Tt follows from (1) that the canonical morphism
m: A — A induces an isomorphism Exti‘(S, A) = Exth(S,fl) taking £ to w€.
There is an isomorphism 7: A — A such that 7¢’ = 7(7€) since £(A) = 1. We
claim that 7 extends to an isomorphism 7: A — A satisfying 77 = 7. This
implies 7¢’ = 7w€ = 7€, and therefore ¢ = 7¢. Thus it remains to construct
7. To this end consider the non-split extension p: 0 — A’ — A — A — 0. The
induction hypothesis yields an isomorphism 7': A’ — A’ such that 7/(u7) = u since
¢(A’) < £(A). This gives the isomorphism 7 satisfying 77 = 7. O

Lemma 1.7.3. Let A be a length category and suppose that (L) holds for each
simple object S. For two uniserial objects A and B the following are equivalent:
(1) A~ B.
(2) top A = top B and ¢(A) = ¢(B).
(3) soc A= socB and ((A) = ¢(B).

Proof. The condition (I.7.1)) is self-dual. Thus it suffices to show the equivalence
(1) & (2). This equivalence follows from Lemma[[.72lusing induction on the length
L(A). O

Proof of Theorem [1.7.1] Suppose first that A is uniserial. Choose a simple object
S and assume that

Z dimA(S/)op EXt}L‘(S, S/) > 2.

S’eXg
Then there exists an extension £: 0 - S’ @ S” - F — S — 0 with §/,5" € ¥
such that for each non-zero morphism 6: S’ ® S” — T with T € X, the induced
extension A¢ does not split. It is not difficult to check that E is indecomposable
and has at least two different composition series. Thus F is not uniserial which is
a contradiction.

Now assume that (ILZ.I]) holds for each simple object S and fix an indecomposable
object A. We show by induction on £(A) that A is uniserial. The case £(A) =1 is
clear. Thus we choose an exact sequence £: 0 — A" - A — S — 0 with S simple
and fix a decomposition A’ = @é:l A; into indecomposable objects. Note that
each A; is uniserial by our hypothesis. If [ = 1, then A is uniserial by Lemma [[.7.2]
Now assume [ > 1. Denote by &; the pushout of £ along the projection A" —
A;. Note that & # 0; otherwise A; is isomorphic to a direct summand of A.
Therefore Extil(S, A;) # 0 for all ¢, and Lemma implies top A; = top A; for
all . Assume that ¢(A;) > ¢(Az). Then we have an epimorphism 7: A; — Ao
by Lemma which induces an isomorphism Ext!;(S, A;) = ExtY (S, As) by
Lemma [.7.21 Moreover, there exists an isomorphism 7: As — As such that 7&; =
7&. Consider the morphism ¢: A" — Ay with ¢1 = 7, ¢ = —7 and ¢; = 0 for
2 < i < 1I. We have ¢¢ = 0 by construction, and therefore A, is isomorphic to a
direct summand of A. This is a contradiction. Thus A is uniserial. O
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Let A be a uniserial category. Choose a complete set of representatives of the
isomorphism classes of indecomposable objects in A and denote it by ind A. An
object in ind A with top S and length n is denoted by S, Analogously, we write
Sin) for an object in ind A with socle S and length n.

For each simple object S, we have a chain of monomorphisms

S= Sy = Spg = Sy
which is either finite or infinite. Dually, there is a chain of epimorphisms
C S8l g2l L gltl — g

A morphism ¢: A — B in an additive category is called irreducible if ¢ is neither
a split monomorphism nor a split epimorphism and if for any factorisation ¢ = ¢” ¢’
the morphism ¢’ is a split monomorphism or ¢” is a split epimorphism.

Lemma 1.7.4. Let A be a uniserial category. For a morphism ¢: A — B between
indecomposable objects, the following are equivalent:

(1) The morphism ¢ is irreducible.

(2) The object Ker ¢ & Coker ¢ is simple.

(3) There exists a simple object S and an integer n such that ¢ is, up to iso-
morphism, of the form Spn) = Spnyq) or Slrt1] _, glnl,

Proof. (1) = (2): An irreducible morphism is either a monomorphism or an epi-
morphism. It suffices to discuss the case that ¢ is an epimorphism; the other case
is dual. If {(Ker¢) > 1 and S C Ker ¢ is a simple subobject, then ¢ can be written
as composite A — A/S — B of two proper epimorphisms. This is a contradiction,
and therefore Ker ¢ & Coker ¢ is simple.

(2) = (3): Clear.

(3) = (1): Tt suffices to consider the morphism ¢: SI"*1 — Sl the dual
argument works for Sp,,) — S[,41]- Let S [n+1] 2 X E> 5[ be a factorization and
fix a decomposition X = €, X; into indecomposable objects. Then §;, e, is an
epimorphism for at least one index ig. It follows from Lemma[[ 7.3 that X;, = S™
for some m > n. If m = n, then 3,, is an isomorphism, and therefore 3 is a split

; Bi
epimorphism. Otherwise, we obtain a factorization Sn+1 =< X;, —% S+l

S of the epimorphism Bio iy - It follows that 3; a;, is an epimorphism and hence
an isomorphism. Thus « is a split monomorphism. (I

Remark 1.7.5. Let A be a uniserial category and S a simple object. Suppose there
is a bound n such that ¢(A) < n for each indecomposable object with soc A = S.
Then each indecomposable object A of length n with soc A 2 S is injective, since
ExtX (T, A) = 0 for every simple object T in A by Lemma [C7.2

Example 1.7.6. (1) Let A be a Dedekind domain. The finitely generated torsion
modules over A form a uniserial category. We denote this category by modg A
because it coincides with the category (mod A)g of finite length objects of mod A.
Let Spec A denote the set of prime ideals. The functor which takes a A-module M
to the family of localizations (M, )pespeca induces an equivalence

HlOdO A ;> H mOdo(Ap).
0#p€ESpec A

(2) Let k be a field and P € k[z] an irreducible polynomial. For each n > 0,
the finitely generated k[x]/(P™)-modules form a uniserial category with a unique
simple object.
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(3) Let k be a field and T a quiver having no oriented cycle. The category of
representations rep(T', k) is uniserial if and only if for each vertex x of T, there is
at most one arrow starting at = and at most one arrow ending at x.

1.8. Serre duality. Let k be a commutative ring. A category A is k-linear if each
morphism set is a k-module and the composition maps are k-bilinear. A functor
between k-linear categories is k-linear provided that the induced maps between the
morphism sets are k-linear. A k-linear category is Hom-finite if each morphism set
is a k-module of finite length. Suppose now that A is a k-linear abelian category.
Then the extension groups are naturally modules over k, and A is called Ext-finite
if Ext" (A, B) is of finite length over k for all A, B in A and n > 0.

Fix a field k£ and a Hom-finite k-linear abelian category A. The category A is said
to satisfy Serre dualitﬂ if there exists an equivalence 7: A = A with functorial
k-linear isomorphisms

DExtY (A, B) = Hom(B,TA)

for all A,B in A, where D = Homy(—, k) denotes the standard k-duality. The
functor 7 is called Serre functor or Auslander-Reiten translation. Note that a
Serre functor is k-linear and essentially unique provided it exists; this follows from
Yoneda’s lemma.

Recall that Ay denotes the full subcategory consisting of all finite length objects
in A. Denote by A, the full subcategory consisting of all objects A in A satisfying
Hom 4(Ag, A) = 0 for all A in Ay.

Proposition 1.8.1. Let A be a Hom-finite k-linear abelian category and suppose
A admits a Serre functor 7. Then the following holds:

(1) The category A is hereditary.

(2) The category A has no non-zero projective or injective objects.

(3) A noetherian object A has a unique mazimal subobject Ay of finite length.
Moreover, Ag is a direct summand of A and AJ/Ay belongs to A .

(4) For each indecomposable object A in A, there is an almost split sequenCtE
0—>7A—-E—>A—0.

(5) For each object A in A, we have At =17A.

Proof. (1) For each object A, the functor Ext!(A,—) is right exact. Thus the
category A is hereditary by Lemma [[L5.]

(2) Let A be a projective object. Then Hom4(—,7A4) = DExtY4(4,—) = 0.
Thus 7A = 0 and therefore A = 0. The dual argument works for injective objects.

(3) Choose a maximal subobject Ay of finite length. Then A/A; belongs to
A, and every finite length subobject of A is contained in Ag. In particular, Ay is
unique. We have Exti‘(A/Ao, Ap) = 0 by Serre duality, and therefore Ay is a direct
summand of A.

(4) Let A be an indecomposable object. The endomorphism ring End 4(A4) is
local and we denote by m its maximal ideal. Choose any non-zero k-linear map
w: End4(A) — k such that w vanishes on m. The map w corresponds via Serre
duality to a non-split short exact sequence £: 0 - 74 - E — A — 0. We claim
that £ is an almost split sequence. For this one needs to show that each morphism
a: A" — A factors through the morphism E — A, provided that « is not a split
epimorphism. Thus one needs to show that £ = 0. The element £a corresponds

2This is the appropriate notion of Serre duality for hereditary abelian categories. Higher
dimensional analogues involving D Ext”, (A, —) appear in algebraic geometry; see also §3.4.
3For the notion of an almost split sequence, we refer to [I].
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via Serre duality to wa which sends ¢ € Homy (A4, A") to w(ag). Thus o = 0,
since a¢ belongs to m.
(5) This is clear from the definitions. O

Next observe that a Serre functor 7 on A restricts to a Serre functor on the
subcategory Ajg of finite length objects. The following result describes the structure
of a length category with Serre duality. Let us recall the shape of the relevant
diagrams.

Ag; . . . .

Proposition 1.8.2. Let A be a Hom-finite k-linear length category and suppose A
admits a Serre functor . Then A is uniserial. The category A admits a unique
decomposition A = [[;c; Ai into connected uniserial categories with Serre duality,
where the index set equals the set of T-orbits of simple objects in A. The Ext-quiver
of each A; is either of type A (with linear orientation) or of type A,, (with cyclic
orientation).

Proof. We apply the criterion of Theorem [L71] to show that A is uniserial. To
this end fix a simple object S. Then Ext}(S,5") = D Hom4(S’, 7S) # 0 for some
S’ € % if and only if S’ = 7S. Moreover, dimas)Ext(S,75) = 1. Thus the
category A is uniserial.

The structure of the Ext-quiver of A follows from the condition (7). The
Serre functor acts on Xy and the set of T-orbits I = ¥g/7 is the index set of the
decomposition A = [],.; A; into connected components; see Lemma [LEIl The
Ext-quiver of A; is of type AY if the corresponding 7-orbit is infinite. Otherwise,
the Ext-quiver of A; is of type A, where n + 1 equals the cardinality of the 7-
orbit. O

Let A be a Hom-finite k-linear length category and suppose A admits a Serre
functor. Then a complete set of representatives of the isomorphism classes of
indecomposable objects of A is given by {S" | § € ¥g, n > 1} and also by
{Sm | S € Xo, n > 1}; see Remark [L7.5

Example 1.8.3. Let & be a field and T' a quiver of extended Dynkin type A,
with cyclic orientation. Denote by A = repy(T, k) the full subcategory of rep(T', k)
consisting of all nilpotent representations. Then A satisfies Serre duality and the
Ext-quiver of A is isomorphic to I, with valuation (1,1) for each arrow. Note that
the Serre functor on A has order n 4+ 1 and every simple object has endomorphism
algebra k. In fact, a connected Hom-finite k-linear length category with Serre
duality satisfying these properties is equivalent to repy (T, k).

2. DERIVED CATEGORIES

To each abelian category is associated its derived category. This section provides
a brief introduction. We present the definition and discuss two cases where one has
a convenient description: If the abelian category is hereditary, then each complex
is isomorphic to its cohomology. On the other hand, if there are enough projective
objects, then one can compute morphisms in the derived category by passing to the
homotopy category of projective objects.
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2.1. Categories of complexes. Let A be an additive category. A cochain complex
in A is a sequence of morphisms

_ dnfl dTL
ce s X X S X

such that d"d"~! = 0 for all n € Z. We denote by C(A) the category of cochain
complexes, where a morphism ¢: X — Y between cochain complexes consists of
morphisms ¢": X™ — Y™ with dt¢" = ¢"T1d% for all n € Z.

A chain compler in A is a sequence of morphisms

dn dn
= X1 B X, S X —

such that d,d,+1 = 0 for all n € Z. Any chain complex may be viewed as a
cochain complex by changing its indices, and vice versa. Thus we often confuse
both concepts and simply use the term complex.

A morphism ¢: X — Y between complexes is null-homotopic if there are mor-
phisms p": X" — Y"1 such that ¢" = di'p" + p"*t1d% for all n € Z. The
null-homotopic morphisms form an ideal N in C(A), that is, for each pair X,V of
complexes a subgroup

N(X, Y) g Homc(A)(X, Y)
such that any composition ¥¢ of morphisms in C(.A) belongs to N if ¢ or ¥ belongs
to N. The homotopy category K(A) is the quotient of C(A) with respect to this
ideal. Thus
Homg (4)(X,Y) = Homg(4)(X,Y)/N(X,Y)
for every pair of complexes X,Y.

Now let A be an abelian category. The cohomology of a complex X in degree n is
by definition H"X = Kerd"/Imd"~!, and each morphism ¢: X — Y of complexes
induces a morphism H"¢: H"X — H"Y. The morphism ¢ is a quasi-isomorphism
if H"¢ is an isomorphism for all n € Z. Note that two morphisms ¢,¢: X — Y
induce the same morphism H"¢ = H™, if ¢ — 1) is null-homotopic.

The derived category D(A) of A is obtained from K(A) by formally inverting
all quasi-isomorphisms. To be precise, one defines

D(A) = K(A)[qis™]

as the localization of K(.A) with respect to the class of all quasi-isomorphisms. The
full subcategory consisting of objects that are isomorphic to a complex X such that
Xm" =0 for almost all n € Z is denoted by D?(A).

An object A in A is identified with the complex

e — 00— A—0—---

concentrated in degree zero, and this complex is also denoted by A. Given any
complex X in A and p € Z, we denote by X [p] the shifted complex with

X[p]" = X" and  dyp, = (—1)Pdy7.

This operation induces an isomorphism D(A) = D(A) and is called shift.

The derived category D(A) is an additive category with some additional struc-
ture: it is a triangulated category in the sense of Verdier [25]. For instance,
any exact sequence 0 - A — B — C — 0 in A induces an exact triangle
A— B—C— A[l] in D(A).

Given two abelian categories A and A’, a functor F: D(A) — D(A’) is by
definition a derived equivalence if it is an equivalence of triangulated categories,
that is, F is an equivalence, there is a functorial isomorphism (FX)[1] & F(X]1])
for each X in D(A), and F preserves exact triangles.
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The following statement justifies the study of derived categories.
Proposition 2.1.1. Let A, B be objects in A. Then
Ext’ (A, B) 2 Homp (A, Bln]) for all n € Z.
Proof. For the case that A has enough injectives or enough projectives, see [20],

Corollary 10.7.5]. For the general case, see [25] II1.3]. O

2.2. Hereditary abelian categories. Let A be a hereditary abelian category,
that is, Exti(—, —) vanishes. In this case, there is an explicit description of all
objects and morphisms in D®(A) via the ones in A. Every complex X is completely
determined by its cohomology because there is an isomorphism between X and the
following complex with trivial differential.

oo H xS grx S gt

To construct this isomorphism, note that the vanishing of Exti‘(H "X, —) implies
the existence of a commutative diagram

0 X1 E" H"X 0
0 —— Imd" ! —— Kerd" H"X 0

with exact rows. We obtain the following commutative diagram.

0 0 H'X —— 00—
e — () —— xn—1 En 0

I I

..._)Xn72_)Xn71—>Xn—>Xn+1_)...

The vertical morphisms yield two morphisms in D®(A). The upper one is a quasi-
isomorphism, and the lower one induces a cohomology isomorphism in degree n.
This yields for each n € Z a morphism (H"X)[-n] — X in D*(A) and therefore
the following description of X.

Lemma 2.2.1. Let A be a hereditary abelian category and X a complex in A. In
D®(A) there is a (non-canonical) isomorphism

[[E"X)[-n] = X.

nez
Proof. The morphism is a quasi-isomorphism by construction. Il

For an abelian category A one defines its repetitive category ||, o, Aln] as the
additive closure of the union of disjoint copies A[n] of A with morphisms

Hom(A, B) = ExtY "(A,B) for A€ Alp|, B € Alq]
and composition given by the Yoneda product of extensions. It follows from Propo-
sition 2.1l that the family of functors A[n] — D®(A) (n € Z) sending an object A
to A[n] induces a fully faithful functor
| | Aln] — D(A).
ne

Corollary 2.2.2. The canonical functor | |, ., Aln] — D°(A) is an equivalence for
any hereditary abelian category A. O
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2.3. Abelian categories with enough projectives. We describe the derived
category of an abelian category A in terms of its projective objects. The crucial
observation is the following.

Lemma 2.3.1. Let X, Y be a pair of complezes in A. Suppose that each X™ is pro-
jective and X™ = 0 for n > 0. Then the map Homg4)(X,Y) — Homp4)(X,Y)
is bijective.

Proof. See for example [26] Corollary 10.4.7]. O

Let Proj.A denote the full subcategory of A consisting of all objects that are pro-
jective. Denote by K~*(Proj.A) the full subcategory of complexes X in K(Proj.A)
such that X™ =0 for n > 0 and H"X = 0 for almost all n € Z. One says that A
has enough projectives if each object in A is the quotient of some projective object.

Proposition 2.3.2. Let A be an abelian category having enough projectives. Then
the canonical functor K(A) — D(A) induces an equivalence

K~*(Proj A) = Db(A).

Proof. The functor F': K=?(Proj A) — D(A) is by definition the identity on ob-
jects, and F is fully faithful by Lemma [Z3. 1l It is clear that each object in the
image of F' is isomorphic to one in D?(A). To show that each complex X in D?(A)
is isomorphic to one in the image of F', we use induction on

((X)=card{n € Z | X" # 0}.

Note that each bounded complex X # 0 fits into an exact triangle X’ — X" — X —
X'[1] such that ¢(X') =1 and £(X") = (X) — 1. If {(X) = 1, say X™ # 0, then
X = F(P[—n]) where P denotes a projective resolution of X™. Such a resolution
exists since A has enough projectives. If £(X) > 1, then the induction hypothesis
implies that the morphism X’ — X" is up to isomorphism of the form F¢ for some
morphism ¢: P’ — P” in K—*(Proj.A). Completing the morphism ¢ to an exact
triangle P’ — P” — P — P’[1] shows that X belongs to Im F since X 2 FP. [

3. TILTING THEORY

Tilting provides a method to relate a category of coherent sheaves to a category
of linear representations. For instance, a result of Beilinson [2] establishes for the
category cohP}! of coherent sheaves on the projective n-space over a field k an
equivalence of derived categories

RHom(7T, —): D’(coh P}) =5 D’ (mod End(T"))

via a tilting object T' in coh PZH

In this section let k& be a field and A a k-linear abelian category that is Ext-
finite. We show that each tilting object T" in A provides an equivalence of derived
categories

RHom4(T, —): D’(A) = D’(mod End 4(T))
as in the example above. The principal reference for this result is [14], even though

the proof given here is somewhat more direct, avoiding the formalism of torsion
pairs and t-structures.

4Except for n = 1, the object T = O0) @ --- @ O(n) is not a tilting object in the strict sense
of these notes; see Proposition E.8.11
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3.1. Tilting objects. Fix an object T in A. The object T is called tilting object,
provided that

(1) proj.dimT < 1,

(2) ExtY(T,T) =0, and

(3) Homy(T, A) = 0 = ExtY (T, A) implies A = 0 for each object A in A.

A morphism TV — A in A is called right T-approzimation of A if it induces
an epimorphism Hom (7T, T") — Hom4 (T, A) and T” belongs to addT. An exact
sequence 0 =+ A — B — T’ — 0 is called universal T-extension of A if it induces
an epimorphism Homu(T,T') — Extvlél(T, A) and T’ belongs to addT. Such ap-
proximations and extensions exist for all A in A, since A is Ext-finite. Finally,
set

T(T) = {A € A|Exty(T, A) = 0}.
Lemma 3.1.1. Let T € A be a tilting object. Then the following holds:
(1) Let w: T" — A be a right T-approximation. Then Kern is in T(T),
Hom 4 (T, Coker ) = 0, and ExtY (T, A) = Ext!{ (T, Coker ).
(2) Let 0 > A— B — T’ — 0 be a universal T-extension. Then B € T(T).
(3) The objects in T(T) are precisely the factor objects of objects in add T .

T

Proof. (1) Write the sequence 0 - A" - 7" — A — A” — 0 as composite of two
exact sequences 0 - A’ =T - A—0and 0 - A - A — A” — 0. Then apply
Hom 4 (7', —) to both sequences.

(2) Apply Hom4 (7', —) to the sequence 0 - A — B —T' — 0.

(3) Clearly, each factor of an object in addT" belongs to T(T"). For the other
implication one uses (1). O

3.2. A derived equivalence. Let T be an object in A and A = End4(T"). We
consider the functor

Homu (T, —): A — mod A.
This functor induces an equivalence add T — proj A and admits a left adjoint
— @A T: modA — A.

Given a A-module M with projective presentation P, — Py — M — 0, the cokernel
of the corresponding morphism 77 — Tp in add T is by definition M ®, T. For
i > 0, denote by
Tor(—,T): modA — A
the i-th left derived functor of — ®a T and set
V(T) = {M € mod A | Tor}(M,T) = 0}.
Lemma 3.2.1. Let T € A be a tilting object. Then Tor(—,T) =0 fori> 1.

Proof. Let M € mod A and choose a projective resolution

RN SRy Ny NELUNG Ny}

Apply —®@,T and set Z; = Ker(6;@4T). The induced morphism 6;11: Py ®@aT —
Z; is a right T-approximation for ¢ > 0, and therefore Z; belongs to 7 (T') for
i > 1 by Lemma B.IIl Thus 8,4, is an epimorphism for i > 1, and this implies
Torl(—,T) = 0. 0

Lemma 3.2.2. Let T € A be a tilting object. Then Homa(T,—) and — Qx T
restrict to equivalences between T(T') and Y(T).
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Proof. Fix objects A € T(T) and M € Y(T'). We need to show that the adjunction
morphisms

Homu(T, A) @a T 2% A and M 5 Homu(T, M @4 T)

are invertible.
Choose an exact sequence

€T T T 2 A0

such that the induced morphism 7T; — Im §; is a right T-approximation of Im §; for
each ¢ > 0. Such a sequence exists by Lemma B.1.11

The functor Hom4 (T, —) sends the sequence & to a projective resolution of the
A-module Hom 4 (T, A). Applying then —®, T gives back &, that is, the adjunction
morphism 64 is invertible. Moreover, Hom 4(T, A) belongs to Y(T).

Now choose an exact sequence w: 0 — M’ — P — M — 0 such that P is
projective. Note that M’ belongs to Y(T') by Lemma[B.2.1] The sequence 7 ®, T is
exact since M € Y(T), and the sequence Hom4 (T, 7 @4 T) is exact since M’/ @5 T
belongs to T (T'). Thus there is the following commutative diagram with exact rows.

0 M’ P M 0

JUM/ J’ﬂp JUM

O—)HOm_A(T,M/ QA T) — Homuy (T, P A T) — Homa(T,M @, T) — 0

The morphism 7np is an isomorphism and it follows that n,; is an epimorphism for
all M in Y(T). In particular, 7y is an epimorphism. Using the snake lemma, it
follows that 7, is an isomorphism. O
Let A be an object in A. An add T'-resolution of A is by definition a complex
Q: - —Qr— Q1 — Qo —0—0— -
together with a quasi-isomorphism @ — A such that each @,, belongs to add T

Lemma 3.2.3. Let T € A be a tilting object and QQ — A an add T-resolution of
an object A € A. Then

H"Hom4(Q, B) = Ext’j (A, B)
for all B € T(T) and n > 0.

Proof. Use induction on n and dimension shifting. O

Lemma 3.2.4. Let T' € A be a tilting object. Then the functor — @A T induces an
isomorphism
Exty (M, N) = Exty(M @5 T, N @, T)
for all M, N in Y(T) and n > 0.
Proof. Choose a projective resolution P — M of M. Note that N = Hom 4 (T, N®x
T) by Lemma B2:2] since N belongs to Y(T'). Then we obtain the following se-
quence of isomorphisms.
Ext} (M, N) = H" Homy (P, N)

>~ H" Homp (P,Hom4(T, N @, T))

= H"HomA(P XA T,N@A T)

= Exti (M @aT,N@xT)
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The last isomorphism follows from Lemma [3.2.3] since P @, T — M ®p T is an
add T-resolution. O

For a tilting object T in A, let us define the derived functor
— @% T: D’ (mod A) =5 K~ *(projA) — Db(A)

by taking a complex P of projective A-modules with bounded cohomology to PR, T
see Proposition [Z3.2] The cohomology of P®, T is bounded, since Toré\(f, T)=0
for ¢ > 1 by Lemma B.2.1]

Theorem 3.2.5 (Happel-Reiten-Smalg). Let A be a k-linear abelian category that
is Ext-finite. Let T be a tilting object in A and A = End 4(T). Then the functor

— @% T: D’(mod A) — D’(A)

is an equivalence of triangulated categories and its right adjoint RHomu (T, —) is a
quasi-inverse.

We do not give the formal definition of the derived functor RHom 4 (7T, —); all
we use is the fact that it is a right adjoint of — @% T'.

Proof. Set Fr = —@%T. We identify objects in mod A and A with complexes that
are concentrated in degree zero. For instance, Fr M = M ®, T for each M in Y(T).

We need to show that for each pair of complexes X,Y in mod A, the induced
map

Qﬁx,y : Home(mod A) (X, Y) — HOHlDb(_A) (FTX, FTY)
is bijective. Set
UX)=card{n € Z | X,, # 0}

and note that each bounded complex X # 0 fits into an exact triangle X’ — X —
X" — X'[1] such that ¢(X') = £(X) — 1 and £(X") = 1.

Using the five lemma and induction on £(X) 4 ¢(Y'), one shows that ¢x y is
bijective. The case £(X) = £(Y) = 1 follows from Lemma [B:2:4l To be precise, one
uses that each A-module M fits into an exact sequence 0 - M’ — P — M — 0
with M’, P in Y(T), which yields an exact triangle M’ — P — M — M'[1] in
D®(mod A).

Next we show that each object in D?(A) is isomorphic to one in the image of
Fr. In fact, it suffices to show that each object in A belongs to the essential image
Im Fr, since Im Fr is a triangulated subcategory and D?(A) is generated (as a
triangulated category) by the objects from A.

It follows from Lemma B.I.T] that each object A in A fits into an exact triangle
A — B — C — A[l] with B,C in T(T). On the other hand, each A in T(T)
belongs to Im Fr, since A = Fr(Homyu (T, A)) by Lemma O

Example 3.2.6. (1) Let T, 7" be two objects in A with addT = addT’. Then T
is a tilting object if and only if 77 is a tilting object.

(2) Let k be a field and A a finite dimensional k-algebra. Then any free A-module
of finite rank is a tilting object in mod A.

(3) Let k be a field and A = kT" the path algebra of a finite quiver I' without
oriented cycles. For each vertex i € I'y let e; denote the corresponding idempotent.
Fix a vertex ig which is not a sink and consider the following short exact sequence

0— e, A — @ e — T, — 0

a: i9g—1
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where the direct sum runs over all arrows starting at io and each morphism e;, A —
e;\ is given by multiplication with the corresponding arrow «: i9 — . Set T; = e; A
for each vertex i # io. Then T' = @, T; is a tilting object of mod A.

3.3. Grothendieck groups. Let A be an abelian category. Denote by F(A) the
free abelian group generated by the isomorphism classes of objects in A. Let Fy(.A)
be the subgroup generated by [X] — [Y] + [Z] for all exact sequences 0 — X —
Y — Z — 0 in A. The Grothendieck group Ko(A) of A is by definition the factor
group F'(A)/Fy(A).

Lemma 3.3.1. Let A be a length category. Then Ky(A) is a free abelian group
and the isomorphism classes of simple objects in A form a basis.

Proof. Let X be an object in A and 0 = Xg C X; C--- C X,, = X a composition
series. Then [X] = [X1/Xo] + -+ + [Xn/Xn-1] in Ko(A). The Jordan-Holder
theorem implies the uniqueness of this expression. ([

Let T be a triangulated category. Denote by F'(T) the free abelian group gen-
erated by the isomorphism classes of objects in 7. Let Fy(7) be the subgroup
generated by [X] — [Y] + [Z] for all exact triangles X - Y — Z — X[1] in 7. The
Grothendieck group Ko(T) of T is by definition the factor group F(T)/Fo(T).

Lemma 3.3.2. Let A be an abelian category. The inclusion A — DP(A) induces
an isomorphism Ko(A) = Ko(D"(A)).

Proof. Each exact sequence 0 - X — Y — Z — 0 in A induces an exact triangle
X =Y — Z — X[1] in D®(A). This gives a morphism Ko(A) — Ko(D?(A)). The

inverse map sends the class [X] of a complex X to >, (—1)"[H"X]. O

3.4. Serre duality. Let k be a field and A a finite dimensional k-algebra. We
denote by D = Homy(—, k) the standard k-duality.

The Nakayama functor v = D Homp (—, A): mod A — mod A identifies the cat-
egory of projective A-modules with the category of injective A-modules. Note that

D Homp (P, —) = Homp (—, vP)

for every finitely generated projective A-module P, since both functors are left
exact and agree on A. This isomorphism induces for every bounded complex X of
finitely generated projective A-modules a sequence of natural isomorphisms
D Home(mod A) (X7 _) =D Home(mod A) (Xa _)
(341) = Home(modA)(_vl/X)
= Homps (mod a) (—, ¥X),
where the first and the last isomorphism follow from Lemma 2311
A Hom-finite k-linear triangulated category 7T is said to satisfy Serre duality if

there exists an equivalence 7: 7 = 7T of triangulated categories with functorial
k-linear isomorphisms

DHom7(X,Y) = Homy(Y,7X)
for all X,Y in 7. The functor 7 is called a Serre functor. Note that a Serre functor

is k-linear and essentially unique provided it exists; this follows from Yoneda’s
lemma.

Proposition 3.4.1. Let A be a finite dimensional k-algebra. Then D®(mod A)
satisfies Serre duality if and only if A has finite global dimension.
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Proof. If the global dimension of A is finite, then every bounded complex in mod A is
quasi-isomorphic to a bounded complex of finitely generated projective A-modules.
Thus Serre duality for D®(mod A) follows from the isomorphism (B.Z.1). The con-
verse follows immediately from Lemmas and below. O

Lemma 3.4.2. Let A be an abelian category and X,Y € DY(A). Then the following
holds:

(1) Hompe (x4 (X,Y[n]) =0 for n < 0.
ompp ,YIn|) =0 forn>0, 1 as finite global dimension.
2) H (X, Y 0 f 0, if A has fi lobal d

Proof. Use induction on 4(X) + £(Y'), where ¢(Z) = card{n € Z | Z™ # 0} for
any complex Z. The case {(X) = 1 = {(Y) is clear, since Homps (4 (A, B[n]) =
Exty (A, B) for all objects A, B in A; see Proposition 1.1l O

Lemma 3.4.3. Let A be a finite dimensional algebra and S1,...,S, a set of rep-
resentatives of the isomorphism classes of simple A-modules. Then gl. dim A < n if
and only if Exti (S, S;) = 0 for all i, j.

Proof. Use that each A-module M has a finite filtration 0 = My C M; C --- C
M, = M such that M;/M;_, is semisimple for all i. O

Lemma 3.4.4. Let A be an Ext-finite k-linear abelian category and suppose there
exists a tilting object T. If A has finite global dimension, then End4(T') has finite
global dimension.

Proof. Let A = Enda(T). The functor RHom4(7T,—) provides an equivalence
D’(A) = D’(mod A) of triangulated categories by Theorem Thus we have
Ext} (S, T) =0 for n > 0 and each pair S, T of simple A-modules by Lemma 342
It follows from Lemma [3.4.3] that the global dimension of A is finite. O

Proposition 3.4.5. Let A be a k-linear abelian category that is Ext-finite and
admits a tilting object. Then the following are equivalent:

(1) The category A is hereditary and has no non-zero projective object.
(2) The category A satisfies Serre duality.

Proof. (1) = (2): Let T be the tilting object and A = End4(T"). Then A has finite
global dimension by Lemma .44 and therefore D?(mod A) has Serre duality by
Proposition 3.4l There is an equivalence D®(A) = D®?(mod A) by Theorem B.2.5]
and this yields a Serre functor v: D’(A) — D?(A).

Now let A, B be objects in A and view them as complexes concentrated in degree
zero. Then

D Ext} (A, B) = Hompy 4y (B, vA[-1]),

and it remains to show that H*(vA[—1]) for all i # 0. Any complex X in A is quasi-
isomorphic to [ ], ., (H*X)[—1] since A is hereditary; see Lemma 221l Assume that
A is indecomposable. Then vA[—1] 2 A[d] for some d € Z and some object A in A.
We claim that d = 0. First observe that Homps () (B, A[d]) # 0 for some object
B, since A is non-projective. Thus d = 0 or d = 1. The case d = 1 is impossible
since Ext?% (A, —) = 0. Thus vA[—1] is concentrated in degree zero.

(2) = (1): See Proposition [[.81] O



24 XIAO-WU CHEN AND HENNING KRAUSE

3.5. The Euler form. Let k be a field and A a k-linear abelian category. Suppose
that A is Ext-finite and of finite global dimension. The Fuler form associated to
A is by definition the bilinear form Kg(A) x Ko(A) — Z with

(AL, [B]) = ) _(~1)" dimy, Ext’y (A, B).
n>0
Suppose that K((A) is a free abelian group of finite rank and fix a basis by, ..., b,.
The discriminant of the Euler form is then by definition the determinant of the
matrix ((b;,b;));; and we denote it by disc(—, —). Note that this value does not
depend on the choice of the basis since the matrix is defined over Z.

Lemma 3.5.1. Let A be a finite dimensional k-algebra of finite global dimension.
Then the Euler form associated to mod A is non-degenerate.

Proof. Set A =modA. Let Sy, ...,S, be representatives of the isomorphism classes
of simple A-modules and choose a projective cover P; — S; for each i. Then
[Pi],...,[P] form a basis of K((A), since each S; has a finite projective resolu-
tion. Let = ), o;[P;] be a non-zero element of Ky(A) and pick an index j
such that «; # 0. Then (z,[5;]) = «;dim; Homa(P;,S;) # 0. Thus (—,—) is
non-degenerate. O

Let 7 be a k-linear triangulated category. Suppose that 7 is Hom-finite and
that Hom7(X,Y[n]) = 0 for each pair of objects X,Y and |n| > 0. The Euler
form associated to T is by definition the bilinear form Ky(7) x Ko(T) — Z with

(X, [Y]) = D (=1)" dimy, Homy (X, Y [n)).
neZ
It is clear from these definitions that the isomorphism ¢: Ko(A) — Ko(D(A))
from Lemma is an isometry, that is,

(9(x),0(y)) = (z,y) forall z,y € Ko(A).

Now let A and B be k-linear abelian categories that are Ext-finite and of finite
global dimension. A k-linear equivalence F': D?(A) = DY(B) of triangulated cate-
gories induces an isometry Ko(A) — Ko(B) which is defined by the commutativity
of the following diagram.

Ko(A) Ko(B)

¢Al [dm
Ko(F)

Ko(DP(A)) —————— Ko(D?(B))

~

This has the following consequence.

Proposition 3.5.2. Let A be a k-linear abelian category that is Ext-finite and of
finite global dimension. Suppose that A has a tilting object. Then the Grothendieck
group Ko(A) is free of finite rank and the Euler form associated to A is non-
degenerate.

Proof. We identify Ko(A) with Ko(mod A), where A = End 4(7) for a tilting object
T in A. Then the Grothendieck group Ky (A) is free of finite rank by Lemma B3]
and the Euler form is non-degenerate by Lemma B.5.11 O

The following examples show that the existence of a tilting object is an essential
assumption for the Euler form to be non-degenerate.
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Example 3.5.3. Let A be a k-linear length category that is Hom-finite and sat-
isfies Serre duality. Suppose that the Grothendieck group has finite rank, and let
S1,...,5, be a representative set of the simple objects. Then (z,[S;]) = 0 for
z =3;[5;] and all i. Thus the Euler form is degenerate.

Example 3.5.4. Let E be a smooth elliptic curve over some algebraically closed
field. Then the category of coherent sheaves on F is hereditary and satisfies Serre
duality, but the corresponding Euler form is degenerate. In fact, any two simple
sheaves S, T satisfy (—,[S]) = (—,[T]), but [S] # [T] if S and T are concentrated
in different points of E. Indeed, [S] # [T follows from [15, Chap. IT, Exercise 6.11]
and the fact that the set of closed points is naturally identified with a subset of the
Picard group [15] Chap. IV, Example 1.3.7].

Next we collect some further properties of the Grothendieck group and its Euler
form.

Lemma 3.5.5. Let A be a k-linear abelian category that is hereditary, Ext-finite,
and has a non-degenerate Euler form. Suppose also that [A] # 0 for each non-zero
object A in A. Then an object T is a tilting object if and only if Exti‘(T, =0
and the classes of the indecomposable direct summands of T generate Ky(A).

Proof. Suppose first that T is a tilting object with A = End4(T). The isomor-
phism Ko(A) = Ko(mod A) identifies (the classes of) the indecomposable direct
summands of 7" with the indecomposable projective A-modules. Now one uses that
the indecomposable projective A-modules generate Ko(modA); see the proof of
Lemma [35.1]

Conversely, suppose that Ext} (7,7) = 0 and that the indecomposable direct
summands of T generate Ky(A). Then there exists for any non-zero object A in
A some indecomposable direct summand T” of T such that ([T”],[A]) # 0. Thus
Ext’y (T, A) # 0, and it follows that T is a tilting object. O

A full subcategory B of an abelian category A is called exact abelian if B is an
abelian category and the inclusion functor is exact.

Lemma 3.5.6. Let A be an abelian category and B an exact abelian subcategory
such that the inclusion admits an evact left adjoint. Let C = +B. Then Ky(A) =
Ko(B) ® K{)(C), where K|(C) denotes the image of the canonical map Ko(C) —
Ko(A).

Let i: B — A be the inclusion and i its left adjoint. Observe that C = Keriy is
a Serre subcategory of A by Proposition [L43 Thus the inclusion C — A induces
a linear map Ky (C) — Ko(A).

Proof. We have iyi = Idg and therefore K(i) identifies Ko(B) with a direct sum-
mand of Ko(A). The kernel of K(iy) equals K()(C), since there is an exact sequence
0—+ A" — A—iiyA— A” — 0 for each object A in A with A", A” in C; see Propo-
sition [[4.4 O

The following lemma describes more specifically the term K{(C) in the decom-
position Ko(A) = Ko(B) & K\(C).

Lemma 3.5.7. Let A be a k-linear abelian category that is Ext-finite and of finite
global dimension. Suppose that Ko(A) is free of finite rank. Let B be an exact
abelian subcategory such that the inclusion admits an exact left adjoint and ~B is
equivalent to mod A for some division ring A. Then Ko(A) = Ko(B) @ Z and

disc{—, =) 4 = dimy A - disc{—, —) 5.
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Proof. Let i: B — A be the inclusion and denote by iy its left adjoint. Then +B =
Keriy = add S for some simple object S with A = End 4(.5); see Proposition [[L43]
Lemma [B5.8 implies that Ko(A) = Ko(B) ® Z[S]. Observe that n[S] # 0 for n # 0
in Z, since (n[S],[S]) # 0. Thus Ko(A) = Ko(B) @ Z. The formula for disc{—, —) 4
follows since ([S], [B]) = 0 for every object B in B. O

4. EXPANSIONS OF ABELIAN CATEGORIES

In this section we introduce the concept of expansion and contraction for abelian
categoriesﬁ Roughly speaking, an expansion is a fully faithful and exact functor
B — A between abelian categories that admits an exact left adjoint and an exact
right adjoint. In addition one requires the existence of simple objects Sy and S, in
A such that Sy = B =18, where B is viewed as a full subcategory of A. In fact,
these simple objects are related by an exact sequence 0 =+ S, -5 — Sy =+ 0in A
such that S is a simple object in B. In terms of the Ext-quivers of A and B, the
expansion B — A turns the vertex S into an arrow Sy — S,. On the other hand, B
is a contraction of A in the sense that the left adjoint of B — A identifies S, with
S, whereas the right adjoint identifies Sy with S.

In the following we use the term ‘expansion’ but there are interesting situations
where ‘contraction’ yields a more appropriate point of view. So one should think
of a process having two directions that are opposite to each other.

Further material about expansions can be found in [6].

4.1. Left and right expansions. Let A be an abelian category. Recall that a
full subcategory B of A is called exact abelian if 15 is an abelian category and the
inclusion functor is exact.
Now let i: B — A be a fully faithful and exact functor between abelian categories.

It is convenient to identify B with the essential image of 4, which means that B is
an exact abelian subcategory of A. We call the functor i a left expansion if the
following conditions are satisfied:

(1) The functor B — A admits an exact left adjoint.

(2) The category 1 is equivalent to mod A for some division ring A.

(3) Exti‘(A, B) =0 for all A,B € *1B.
The functor B — A is called right ezpansion if the dual conditions are satisfied.

Lemma 4.1.1. Leti: B — A be a left expansion of abelian categories. Denote by
iy its left adjoint and set C = Keriy.
(1) The category C is a Serre subcategory of A satisfying C = +B and C*+ = B.
(2) The composite B SANY/ RSN A/C is an equivalence and the left adjoint iy

induces a quasi-inverse A/C = B.
(3) Extp(irA, B) = Ext’y(A,iB) for all Ac A, Be B, andn > 0.

Proof. Part (1) and (2) follow from Proposition 43l It remains to prove (3). The
case n = 0 is clear. For n > 1, the isomorphism sends a class [{] in Extz(ixA4, B)
to [(i€).na] in Ext’y(A,iB), where n4: A — iix(A) is the unit of the adjoint pair
and (i€).na denotes the pullback of i along n4. (I

An object S in A is called localizable if the following conditions are satisfied:
(1) The object S is simple.
(2) Hom(S, A) and ExtY (S, A) are of finite length over End 4(S) for all A € A.

5The authors are indebted to Claus Michael Ringel for suggesting the terms ‘expansion’ and
‘contraction’.
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(3) ExtY(S,S) = 0 and Ext%(S, A) = 0 for all A € A.
An object S is colocalizable if the dual conditions are satisfied.

Lemma 4.1.2. Let A be an abelian category and B an exact abelian subcategory.
Then the following are equivalent:

(1) The inclusion B — A is a left expansion.
(2) There exists a localizable object S € A such that S*+ = B.

Proof. (1) = (2): Let S be an indecomposable object in 3. Then S is a simple
object and Ext} (S, S) = 0 since *B = add S is semisimple. For each object A in
A, we use the natural exact sequence (4.1

0—A —A™ A A —0

with A’, A” € +B and A € B. This sequence induces the following isomorphisms.

~

HOIn_A(S7 A/) — HOIn_A(S7 A)
ExtYy (S, A) = Ext!{ (S, Tmna) < Hom4(S, A”)

Here we use the condition Ext%(S,S) = 0. Tt follows that Hom(S, A) and
ExtY (S, A) are of finite length over End 4(S). Now observe that the functor sending
A to Hom 4 (S, A”) is right exact. Thus Exti(S, A) = 0 by Lemma [[L51] Finally,
S+ = B follows from Proposition [[4.3

(2) = (1): A left adjoint i) of the inclusion B — A is constructed as follows.
Fix an object A in A. There exists an exact sequence 0 - A - B — S" — 0
for some n > 0 such that ExtY(S, B) = 0 since Ext!(S, A) is of finite length
over End 4(S). Now choose a morphism S™ — B such that the induced map
Hom4(S, S™) — Homy(S, B) is surjective and let A be its cokernel. It is easily
checked that the composite A — B — A is the universal morphism into S+. Thus
we define 1, A = A.

Next observe that the kernel and cokernel of the adjunction morphism A — iy A
belong to C = add S for each object A in A. Moreover, C is a Serre subcategory of
A since S is simple and Exti\(S, S) = 0. Thus we can apply Proposition [Z.4] and

infer that the composite A 2 ¢+ = A/C is the quotient functor with respect to
C. Therefore the left adjoint iy is exact. We have *B = C by Proposition [[Z.3]
and Hom4(S, —) induces an equivalence C — mod End 4(S). Thus the inclusion
B — A is a left expansion. O

4.2. Expansions of abelian categories. A fully faithful and exact functor B —
A between abelian categories is by definition an ezpansion of abelian categories if
the functor is a left and a right expansion.

Let i: B — A be an expansion of abelian categories. Then we identify B with
the essential image of i. We denote by iy the left adjoint of ¢ and by i, the right
adjoint of i. We choose an indecomposable object Sy in *B and an indecomposable
object S, in B+. Thus *B = add S\ and B+ = add S,. Finally, set S =i,(S,).

An expansion i: B — A is called split if B+ = L B. If the expansion is non-split,
then the exact sequences (L41]) for Sy and S, are of the form

(4.2.1) 0= S, = iin(S,) = 85 =0 and 0— S5 —iip(Sy) = Sy =0
for some integers [, > 1. In Lemma .22 we see that [ =1 =r.

Lemma 4.2.1. Let B — A be an expansion of abelian categories. Then the follow-
ing are equivalent:

(1) The expansion B — A is split.
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(2) A= BIIC for some Serre subcategory C of A.
(3) B is a Serre subcategory of A.

Proof. (1) = (2): Take C = +B = B*.

(2) = (3): An object A € A belongs to B if and only if Hom4(A, B) = 0 for all
B € C. Thus B is closed under taking quotients and extensions. The dual argument
shows that B is closed under taking subobjects.

(3) = (1): If the expansion is non-split, then the sequences in ([@21]) show that
B is not a Serre subcategory. (|

Lemma 4.2.2. Leti: B — A be a non-split expansion of abelian categories.
(1) The object S =ix(S,) is a simple object in B and isomorphic to ip(S)).
(2) The functor iy induces an equivalence B+ = add S.
(3) The functor i, induces an equivalence ~B =+ add S.

Proof. (1) Let ¢: ix(S,) — A be a non-zero morphism in B. Adjunction takes this
to a monomorphism S, — A in A since S, is simple. Applying i) gives back a
morphism which is isomorphic to ¢. This is a monomorphism since iy is exact.
Thus ix(S,) is simple.

Now apply i, to the first and ¢y to the second sequence in (£21)). Note that by
adjunction iyi = Idg = i,4. Then we have

ix(Sp) = ip(SA)l and i,(Sx) = iA(5,)"

This implies | = 1 = r and therefore ix(S,) = i,(Sx).
(2) We have a sequence of isomorphisms

Hom 4(S,,S,) = Hom 4(S,,ix(S,)) = Homp(ix(Sp),i1(S,))

which takes a morphism ¢ to iy¢. Thus iy induces an equivalence addS, —
add i, (S,).
(3) Follows from (2) by duality. O

An expansion B — A of abelian categories determines a division ring A such
that B and B* are equivalent to mod A; we call A the associated division ring.

Fix an expansion i: B — A with associated division ring A. We identify the
perpendicular categories of B with mod A via the equivalences B =5 mod A <=
Bt. There are inclusions j: *B — A and k: BY — A with adjoints j, and ky.
These functors yield the following diagram.

ix J

B i A o mod A
Zp L

Note that this diagram induces a recollement of triangulated categories [3]:

D®(4y) D’(j)
D’(B) D (i) DY(A) D’(mod A)
D" (i) D’ (k)

Indeed, the labeled functors are part of a recollement, and therefore the right adjoint
of DY(j) is isomorphic to the left adjoint of D¥(k), both of which are isomorphic to
the quotient functor of D?(.A) with respect to the triangulated subcategory D®(B).
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4.3. Simple objects. Let i: B — A be an expansion. The left adjoint i) induces a
bijection between the isomorphism classes of simple objects of A that are different
from S, and the isomorphism classes of simple objects of B. On the other hand,
all simple objects of A correspond to simple objects of B via i. All this is made
precise in the next lemma.

Lemma 4.3.1. Leti: B — A be an expansion of abelian categories.
(1) If S is a simple object in B and S % S, then iS is simple in A and i5iS = S.
(2) There is an exact sequence 0 — S, — iS — Sx — 0 in A, provided the
expansion B — A is non-split.
(3) If S is a simple object in A and S % Sy, then i)S is simple in B. Moreover,
S=iiSif SES,.

Proof. (1) Let 0 # U C iS be a subobject. Then Homp(i2\U, S) = Hom4(U,iS) # 0
shows that U & Keriy. Thus i,U = S, and therefore iS/U belongs to Keriy =
add Sy. On the other hand, Hom4(iS, Sy) = Homp(S,S) = 0. Thus iS/U = 0,
and it follows that S is simple. Finally observe that ixiA = A for every object A
in B.

(2) Take the exact sequence in ([E2.T]).

(3) This is a general fact: A quotient functor A — A/C takes each simple object
of A not belonging to C to a simple object of A/C; see Lemma [[L3.6] Here, we take
C = Keriy and identify i) with the corresponding quotient functor.

If S22 S5,, then iyS 2 S and therefore ii,S is simple by (1). Thus the canonical
morphism S — 2, S is an isomorphism. (I

The Ext-groups of most simple objects in A can be computed from appropriate
Ext-groups in . This follows from an adjunction formula; see Lemma AT.1l The
remaining cases are treated in the following lemma.

Lemma 4.3.2. Leti: B — A be a non-split expansion of abelian categories.
(1) Homa(S,S)) = Extly(Sx, S,) & Homa(S,, S,).
(2) Exty(S,S) = Ext’y(S,,Sx) forn > 1.
Proof. (1) Applying Hom 4(Sy, —) to the first sequence in ([L2.1]) yields the isomor-

phism Hom 4(Sy, Sy) = Ext'y(S, S,). The other isomorphism is dual.
(2) We have

Ext(ix(5p),ix(Sp)) = Ext4(Sp, 7ix(Sp)) = Ext3(Sp, Sx),

where the first isomorphism follows from Lemma [ T.J]and the second from the first

sequence in ([L2.7]). O

Proposition 4.3.3. Let i: B — A be an expansion of abelian categories.
(1) The functor i and its adjoints iy and i, send finite length objects to finite
length objects.
(2) The restriction By — Ag is an expansion of abelian categories.
(3) The induced functor B/By — A/ Ay is an equivalence.

Proof. (1) follows from Lemma 3] and (2) is an immediate consequence.

(3) Let C = Keriy. The functor iy induces an equivalence .A/C — B. Moreover,
C C Ag and iy identifies Ay/C with By by (1). It follows from Lemma that
iy induces an equivalence A/ Ay — B/By. This is a quasi-inverse for the functor
B/By — A/ Ay induced by i. O

The Ext-quiver 3(A) of A can be computed explicitly from the Ext-quiver X(B),
and vice versa. The following statement makes this precise.
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Proposition 4.3.4. Leti: B — A be a non-split expansion of abelian categories.
The functor induces a bijection

Yo(B) \ {S} = Zo(A) ~ {S», S,},
and for each pair U,V € Yo(B) ~ {S} the following identities:

5iU,iV = 5U,V7 51’U,S>\ = 5U,§7 5Sp,iV = 5§,Va 55,3,5')\ = 5§,§7 5S>\15p = (17 1)
Proof. Combine Lemmas 1.1 3.1l and O

The following diagram shows how %(B) and X(A) are relatedd

5B) - >—§/ : 54 - >‘—sA g

. N . KA

Example 4.3.5. (1) Let k be a field and T',, a quiver of extended Dynkin type
A, with cyclic orientation. Consider the category A = repg(Tp, k) of all finite
dimensional nilpotent representations. Fix a simple object S. This object is
(co)localizable and S+ = +(7.5). Thus the inclusion S+ — rep,(I',,, k) is an expan-
sion, and S+ is equivalent to repy(I'y—1, k).

The following diagram depicts the shape of the Auslander-Reiten quiver of
repg(T'n, k). Thus the vertices represent the indecomposable objects, and there
is an arrow between two indecomposable objects if and only if there exists an irre-
ducible morphism; see Lemma [[.7.4]

AV AW AW AN
AN AN AN AP AN
N WA WA WA
AN AN AN AN AP AN
NN

Note that the two dotted lines are identified and that there are n+ 1 simple objects
which sit at the bottom (n = 5 in this example). The Serre functor 7 induces
an automorphism of order n + 1, that is, 7"*! = Id4. The indecomposables not
belonging to S+ are represented by circles. Thus S and 7S disappear, while S
becomes a simple object in S+.

Suppose that n > 1. Then S is a (co)localizable object of S+ and this gives
another expansion S+ — S*. Iterating this formation of perpendicular categories
yields a chain A% — Al — ... — A" = A of expansions such that A’ is equivalent
to repy(L'y, k) for each i. The category A° has a unique simple object Sy which the
inclusion A° — A sends to S["*U. The induced map Ko(A°) — Ko(A) sends the
class [So] to S0 [725][1

(2) Let k be a ﬁeld and consider a finite quiver I without oriented cycles having
two vertices a,b that are joined by an arrow £: a — b which is the unique arrow

6The expansion of the vertex S into an arrow linking Sy with S, justifies the term ‘expansion
of abelian categories’.

"This expansion of the class [So] in Ko(A) again explains the term ‘expansion of abelian
categories’.
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starting at a and the unique arrow terminating at b.

3

..
a b

\I/

We obtain a new quiver I by identifying a and b and removing £. Let A = rep(T, k)
and consider the full subcategory B of representations such that £ is represented
by an isomorphism. Note that B is equivalent to rep(I”, k).

The simple representations S, and Sy are (co)localizing objects of A and they are
joined by an almost split sequence 0 — S, — E — S, — 0. The Auslander-Reiten
formulae

DExtYy(—,Sy) = Homa(S,, —) and DExtY(S,, —) = Hom4(—,Sh)
imply that S} = B = 1S;. Thus the inclusion functor B — A is an expansion.

4.4. An Auslander-Reiten formula. Given a non-split expansion B — A, the
corresponding simple objects Sy and S, in A are related by an Auslander-Reiten
formula.

Proposition 4.4.1. Let B — A be a non-split expansion of abelian categories and
A its associated division ring. Then

DExtly(—,S,) 2 Homu(Sy,—) and DExtly(Sy,—) = Homy(—,S,),

where D = Homa (—, A) denotes the standard duality. In particular, any non-split
extension 0 — S, — E — S\ — is an almost split sequence.

Proof. Recall that 1B = add S, and B+ = addS,. Fix an object A in A and
consider the corresponding exact sequence (4T

0—A —A4A—A— A" —0.

with A’, A” in *B and A in B. The morphism A’ — A induces the first and the
third isomorphism in the sequence below, while the second isomorphism follows
from the isomorphism Hom 4(Sy, Sy) = Exti‘(S,\, S,) in Lemma £3.2

DExtY(4,S,) = DExtY(A’,S,) = Hom4(Sy, A’) = Hom 4 (S, A).

The isomorphism D ExtY (S, —) = Hom4(—, S ,) follows from the first by duality.
The argument given in the proof of Proposition [[L.81] shows that any non-split
extension 0 — S, =+ E — S) — is an almost split sequence. O

4.5. Decompositions. Expansions of abelian categories respect decompositions of
abelian categories. The following lemma is a precise formulation of this fact.

Lemma 4.5.1. Let i: B — A be a non-split expansion of abelian categories.

(1) If A= Ay 1T As is a decomposition, then there exists a decomposition i =
[i& 102] : By I By — Ay I Ay such that one of iy and iz is a non-split
expansion and the other is an equivalence.

(2) If B =By 1By is a decomposition, then there exists a decomposition i =
[i& 102] : By I By — Ay I Ay such that one of iy and iz is a non-split
expansion and the other is an equivalence.

(3) Ifi': B — A’ is an equivalence of abelian categories, then |
AT A" is a non-split expansion.

0] : BIIB —

i
014

Therefore A is connected if and only if B is connected.
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Proof. We identify B with the essential image of ¢ and choose a simple object S in
A with S+ = B.

(1) The decomposition of A restricts to a decomposition of B by taking B, =
BN A, for « =1,2. Now suppose without loss of generality that S belongs to A;.
Then 47 is a non-split expansion and 75 is an equivalence.

(2) Let S = i,S and suppose without loss of generality that S belongs to Bj.
Then By € +S and this yields a decomposition A = A; II A, if we set Ay = Bo
and A7 = Ay = 1Ay. Tt follows that i; is a non-split expansion and iy is an
equivalence.

(3) Clear. O

4.6. Dimensions. We compute the global dimension for an expansion of abelian
categories.

Lemma 4.6.1. Let i: B — A be a non-split expansion of abelian categories.
(1) gl.dim A = max{1, gl. dim B}.
(2) A has non-zero projective objects if and only if B has non-zero projective
objects.

Proof. (1) Use the adjunction formula for Ext"(—, —) from Lemma [LT1] together
with the fact that proj.dim A <1 for all A in +B. Note also that Ext}(—, —) # 0
by Lemma

(2) We use the general fact that a functor between abelian categories preserves
projectivity if it admits an exact right adjoint. Thus ¢ and its left adjoint iy
preserve projectivity. Note that there are no non-zero projectives in the kernel of
ix by Lemma O

Next we discuss Ext-finiteness for expansions of abelian categories.

Lemma 4.6.2. Let k be a commutative ring and i: B — A a non-split expansion
of k-linear abelian categories. Then A is Ext-finite if and only if B is Ext-finite.

Proof. We use the adjunction formula for Ext™(—, —) from Lemma [Tl Note
that these isomorphisms are k-linear since we assume the functor ¢ to be k-linear.
It is clear that B is Ext-finite if A is Ext-finite. To prove the converse, fix a
simple object S in A such that S+ = B, and an arbitrary object C' in A. Then
End4(S) = Endp(S) for some simple object S in B; see Lemma Thus
End 4(S) is of finite length over k, and it follows that Exty (S, C) is of finite length
over k for all n > 0 since the object S is localizable; see Lemma[ZT.2l On the other
hand, Ext’; (B, C) is of finite length over k for all B in B by the adjunction formula
for Ext"(—, —) from Lemma Tl Now choose A in A and apply Ext’(—, C) to
the natural exact sequence (([L4T)

0—A —AM A A —0

with A, A” in 1B = add S and A in B. It follows that Ext’y(A, C) is of finite length
over k for all n > 0. O

5. COHERENT SHEAVES ON THE PROJECTIVE LINE

In this section we discuss the category of coherent sheaves on the projective line
IP’}€ over an arbitrary base field k. This is a hereditary abelian category with finite
dimensional Hom and Ext spaces. Moreover, the category satisfies Serre duality
and admits a tilting object. Various structural properties can be derived from these
basic facts.
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The projective line P} is covered by two copies of the affine line A}. Using this
fact, we identify sheaves on P} with ‘triples’, that is, pairs of modules over the
polynomial ring k[z] which are glued together by a glueing morphism. In this way,
basic properties of sheaves are easily derived from properties of modules over a
polynomial ring in one variable.

Every coherent sheaf is the direct sum of a torsion-free sheaf and a finite length
sheaf. An indecomposable torsion-free sheaf is a line bundle and an indecomposable
finite length sheaf is uniserial. The simple sheaves are parametrized by the closed
points of P}, and for each simple sheaf S and r > 0 there is a unique sheaf with
length r and top S. This yields a complete classification of all indecomposable
sheaves.

A classical theorem of Serre identifies the category of coherent sheaves on P},
with the quotient category of the category of finitely generated Z-graded k[zq, 21]-
modules modulo the Serre subcategory of finite length modules. We use the concept
of dehomogenization to pass from graded k[zg, z1]-modules to modules over k[z].
In geometric terms, this reflects the passage from the projective to an affine line.

5.1. Coherent sheaves on A}. Let k be a field and A}, the affine line over k. The
polynomial ring k[z] is the ring of regular functions and the category of coherent
sheaves coh A}C is equivalent to the module category mod k[x] via the global section
functor.

Let Spec k[z] denote the set of prime ideals of k[z]. Note that k[x] is a principal
ideal domain. Thus irreducible polynomials correspond to non-zero prime ideals by
taking a polynomial P to the ideal (P) generated by P. A closed point of A} is by
definition a non-zero prime ideal p and the generic point is the zero ideal.

The following result describes the category modg k[z] of torsion modules and the
corresponding quotient category.

Proposition 5.1.1. Let k[x] be the polynomial ring over a field k.

(1) The functor which sends a k[x]-module M to its family of localizations
(Mp)pespec klz] induces an equivalence

modg k[z] — H modo (k[z]).
0#£pESpec k[z]

(2) The localization functor mod k[x] — mod k(x) induces an equivalence

mod k[z] ~

Proof. (1) The assertion follows from standard properties of finitely generated mod-
ules over principal ideal domains. Note that the quasi-inverse functor takes a family
of modules (Np)pESpeCk[z] to @p N,.

(2) Set A = mod k[z]/ modg k[z]. The kernel of the localization functor T =
— ®pz) k(2) is the category modg k[z]. Thus T induces a faithful functor T: A —
mod k(x). The functor is dense, since a k(x)-module of rank r is isomorphic to
T(k[z]"). To show that T is full, it suffices to show that T induces a surjective map

[+ Hom(k[x], k[z]) — Homyy) (k(2), k() = k(x).

Given any non-zero polynomial P € k[x], let pup: k[z] — k[z] denote the multipli-
cation by P. The kernel and cokernel of up belong to mody k[x], and therefore pp
becomes invertible in A. Thus f (ugl) = P! It follows that f is surjective. [
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5.2. Coherent sheaves on P,lv. Let k£ be a field and IE"}C the projective line over
k. We view Pi as a scheme and begin with a description of the underlying set of
points.

Let k[xo,x1] be the polynomial ring in two variables with the usual Z-grading
by total degree. Denote by Projk[zo, z1] the set of homogeneous prime ideals of
klxo,x1] that are different from the unique maximal ideal consisting of positive
degree elements. Note that k[zo,x1] is a two-dimensional graded factorial domain.
Thus homogeneous irreducible polynomials correspond to non-zero homogeneous
prime ideals by taking a polynomial P to the ideal (P) generated by P. A closed
point of P}, is by definition an element p # 0 in Proj k[zo, z1], and the generic point
is the zero ideal. Using homogeneous coordinates, a rational point of IE"}C is a pair
[Ao : A1] of elements of k subject to the relation [Ag : A1] = [aAg : @] for all a € k,
a # 0. We identify each rational point [A\g : A;] with the prime ideal (A zg — Aoz1)
of k[l‘o, 1'1] .

Using the identification y = 1 /xo, we cover P}, by two copies U’ = Spec k[y] and
U" = Spec k[y~1] of the affine line, with U’ N U” = Spec k[y,y~!]. More precisely,
the morphism k[zg,z1] — k[y] which sends a polynomial P to P(1,y) induces a
bijection

Proj k[zo, x1] ~ {(x0)} — Spec k[y];
see §5.5 for details. Analogously, the morphism k[zg,z1] — k[y~!] which sends a
polynomial P to P(y~!,1) induces a bijection

Proj k[zo, z1] ~ {(z1)} — Spec k[y™'].

Based on the covering P} = U’ U U”, the category cohP} of coherent sheaves
admits a description in terms of the following pullback of abelian categories

coh Py ———— coh U’

| ]

cohU"” —— cohU'NnU"”

where each functor is given by restricting a sheaf to the appropriate open subset;
see [8 Chap. VI, Prop. 2]. More concretely, this pullback diagram has, up to
equivalence, the form

A——— mod kly]

| |

mod k[y~!] —— mod k[y, y ]

where the category A is defined as follows. The objects of A are triples (M’, M" | 1),
where M’ is a finitely generated k[y]-module, M" is a finitely generated k[y~!]-
module, and p: M, = M"_, is an isomorphism of k[y, y~!]-modules. Here, we use
for any R-module M the notation M, to denote the localization with respect to an
element € R. A morphism from (M', M", u) to (N, N"”,v) in A is a pair (¢, ¢")
of morphisms, where ¢': M’ — N’ is k[y]-linear and ¢”: M" — N" is k[y~!]-linear
such that v = qﬁ;’,lu.

Given a sheaf F on P}, we denote for any open subset U C P}, by I'(U, F) the
sections over U.

Lemma 5.2.1. The functor which sends a coherent sheaf F on IP’}C to the triple
(LU, F),LU", F),idrwnur,F)) gives an equivalence coh P}, = A.
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Proof. The description of a sheaf F on PL = U’UU" in terms of its restrictions F|,
Flur, and Flyqun is classical; see [8, Chap. VI, Prop. 2]. Thus it remains to ob-
serve that taking global sections identifies coh U’ = mod k[y], coh U"" = mod k[y~!],
and cohU' NU" = mod k[y,y~1]. O

From now on we identify the categories coh P and A via the above equivalence.

5.3. Serre’s theorem and Serre duality. Let mod?” k[xo, x1] denote the category
of finitely generated Z-graded k[zo, 21]-modules and let modZ k[, z1] be the Serre
subcategory consisting of all finite length objects.

There is a functor

(5.3.1) mod” k[zg, ;] — coh P}

that takes each graded k[zo,z1]-module M to the triple ((Mx,)o, (Mz,)o,0n),
where y acts on the degree zero part of M., via the identification y = z1/xo,
the variable y~! acts on the degree zero part of M, via the identification y~! =

xo/x1, and the isomorphism oy equals the obvious identification [(Mz,)olz, /2o =
[(Mih )0]10/11‘

Proposition 5.3.1 (Serre). The functor (B3.1) induces an equivalence

d"k ~
moc Mito. Tl 7 [20, 21] 5 coh P}
modg k[xo, z1]

Proof. We refer to [24] for the proof. It is clear from the definition that the functor
(5:31) is exact having kernel modZ k[xo, z;]. This fact yields the induced functor
which is faithful by construction. O

For any n € Z and F = (M’', M"”, ;1) in coh P}, denote by F(n) the twisted sheaf
(M, M", 1)), where u(™ is the map p followed by multiplication with y~". Given
a module M in mod” k[xzo,x1], the twisted module M(n) is obtained by shifting
the grading, that is, M(n); = M4, for i € Z. Note that the functor (B3] is
compatible with the twist functors defined on mod” k[zg, z1] and coh P}.

Proposition 5.3.2 (Serre). The category cohIP’}C is a Hom-finite k-linear abelian
category satisfying Serre duality. More precisely, there is a functorial k-linear iso-
morphism

DExt'(F,G) = Hom(G, F(—2)) for all F,G € cohP}.
Proof. See [15] T11.7]. O

5.4. Locally free and torsion sheaves. A sheaf (M’, M" ;) in cohP} is called
locally free or vector bundle if M’ and M" are free modules over k[y] and k[y—1]
respectively. We denote the full subcategory of vector bundles in coh IP’}C by vect IP’}C.

The structure sheaf is the sheaf O = (k[y], k[y~'],idk[y,y-11). For any pair m,n €
Z, we have a natural bijection

(5.4.1) k[zo, z1]n—m — Hom(O(m), O(n)).

The map sends a homogeneous polynomial P of degree n — m to the morphism
(¢',¢"), where ¢': k[y] — k[y] is multiplication by P(1,y) and ¢": k[y~!] — k[y~1]
is multiplication by P(y~!,1). This bijection is a special case of the next result.
Let R = k[xg, 21] and denote by projZ R the category of finitely generated pro-
jective Z-graded R-modules. Note that R is a graded local ring since the homo-
geneous elements of positive degree form the unique maximal homogeneous ideal.
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Thus finitely generated projective R-modules are up to isomorphism of the form
R(n1) @--- & R(n;).

Proposition 5.4.1 (Grothendieck). The functor (B30) induces an equivalence
projZ k[zo, z1] —» vect P;.

In particular, each locally free coherent sheaf on P} is isomorphic to a sheaf of the
form O(n1) & --- & O(n,).

Proof. We need to show that the functor (5.3.0)) is fully faithful when it is restricted
to proj” R, where R = k[zo,z,]. Every finitely generated projective R-module is
up to isomorphism of the form R(n1) @ --- ® R(n,). Thus it suffices to show that
E3T) induces a bijection Hompg(R(m), R(n)) — Hom(O(m), O(n)) for each pair
m,n € Z. But this is clear since the map coincides with the bijection (5.4.1]).

It remains to show that the functor is dense, that is, each locally free coherent
sheaf is isomorphic to one of the form O(n;)&- - -® O(n,). For this we refer to [12].
An elementary proof is based on an argument due to Birkhoff [4,[7]. A vector bundle
F = (M',M",p) is basically determined by an invertible matrix over kly,y 1],
which represents the isomorphism p. Now one uses the fact that such a matrix can
be transformed into a diagonal matrix with entries (y~™*,...,y ") by multiplying
it with an invertible matrix over k[y] from the right and an invertible matrix over
k[y~1] from the left. This yields an isomorphism F — O(n1) @ ---® O(n,). O

A sheaf (M, M", i) in coh P}, is called torsion if M’ and M" are torsion modules
over kly] and k[y~!] respectively. We denote the full subcategory of torsion sheaves
in cohP} by cohgP}. Note that each sheaf F = (M’, M"”, ;) admits a unique
maximal subobject tor F in cohP}, that is torsion. One obtains tor F by taking the
torsion parts of M’ and M" respectively. Clearly, F/tor F is locally free.

Proposition 5.4.2. Each coherent sheaf F on Pi admits an essentially unique
decomposition F = F' & F" such that F' is torsion and F"' is locally free. The
torsion sheaves are precisely the objects of finite length in coh IP’}C.

Proof. We use elementary facts about finitely generated modules over k[y] and
k[y~!] respectively. Take F' = torF and F” = F/torF. Serre duality implies
Ext!(F”,F') = 0, since there are no non-zero morphisms from torsion to locally
free sheaves. Thus the canonical exact sequence 0 — F' — F — F” — 0 splits.
Let F = (M’,M",u) be a coherent sheaf. If F is torsion, then it is a finite
length object in coh P}, since the corresponding torsion modules M’ and M" have
finite length. On the other hand, the structure sheaf has infinite length, since it
admits factor objects of arbitrary length. Thus each non-zero locally free sheaf is
of infinite length, by Proposition .41 O

5.5. Dehomogenization. Let R be a Z-graded commutative ring and z € R a
non-nilpotent element of degree 1. The dehomogenization of R with respect to z is
the ring R/(x — 1).

Lemma 5.5.1. The canonical morphism n: R — R/(z—1) induces an isomorphism
(Rz)o — R/(z—1). Moreover, 7 induces a bijection between the set of homogeneous
(prime) ideals of R modulo which the element x is reqular and the set of all (prime)
ideals of R/(x —1).

Proof. The morphism 7 induces a morphism S = R, — R/(xz — 1) and its kernel
is the ideal generated by z — 1. Now observe that Sy = S/(x — 1), since z isin S a
unit of degree 1.
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The bijective correspondence between ideals of R and R/(x — 1) sends an ideal
a C R to w(a), and its inverse sends an ideal b C (R,)o = R/(z—1) to bR, NR. O

Let us consider the dehomogenization of the polynomial ring k[zg, 21] with re-
spect to the variable zg. Then Lemma [5.5.]] implies an isomorphism

kl[zo, x1]/ (w0 — 1) = (K[xo, 21]z0)o = K[y]
via the identification y = x1/x9. Denote by m: k[zg,z1] — k[y] the canonical
morphism which sends a polynomial P to P(1,y). The morphism 7 induces a
bijection
(5.5.1) Proj k[zg, z1] ~ {(70)} — Spec k[y]

and for any prime ideal p # (z9) in Projk[zo,21] an isomorphism

(5.5.2) (klzo, z1]p)o — k[yln(p)-

Here, k[zo, 1], denotes the homogeneous localization with respect to p which in-
verts all homogeneous elements not lying in p.

The following lemma describes the dehomogenization for graded modules over
klxo, x1] with respect to xp. This functor induces an equivalence if one passes to
the localization with respect to a prime ideal p # (zg).

Lemma 5.5.2. Let p # (x9) be in Projklxo,x1]. The functor sending a graded
klxo, z1])-module M to FM = (M,,)o induces the following commutative diagram
of exact functors

mod” k[zg, 1] mod k[y]

|, . |

mod” k[xg, 1], —— mod(k[zo, z1]p)o —— mod k[y] ()

where the vertical functors are the localization functors with respect to p and w(p)
respectively. Moreover, the functors F,; and F; are equivalences.

Proof. The composite k[zo, 21] = k[y] — k[y]x(p) induces a morphism k[zo, z1], —
E[yl(py and therefore F' composed with localization at 7(p) induces a functor

Fy: mod” k[zo, 1], — mod k[y]ﬂ'(p)'

This functor can be written as composite F),'Fy. The first functor Iy takes a graded
k[xo, z1]p-module to its degree zero part; it is an equivalence since k[zo,x1]p is
strongly graded. The second functor F}' is an equivalence thanks to the isomor-

phism (5.5.2). O

Remark 5.5.3. There are analogous results for the dehomogenization of k[xg, z1]
with respect to z; which is denoted by k[y~—1].

Next we describe the category cohg P} of torsion sheaves more explicitly. Note
that cohg P}, is uniserial because it is a length category with Serre duality; see
Proposition[L82l The category decomposes into connected abelian categories, and
each component has a unique simple object since it is equivalent to the category of
finite length modules over a local ring.

Proposition 5.5.4. (1) The functor (B3J) induces an equivalence

]_[ mod5 k[xo, 1], — cohg P}
0#p€EProj k[xo,z1]
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(2) The functor taking a sheaf (M', M", ji) to M' @y, k(y) = M" @gpy-11k(y~")
induces an equivalence

cohP}, ~
dk(y).
cohg P}, — mod k(y)

Proof. (1) We denote the functor (31 by F. Dehomogenization with respect
to xp and x1, respectively, induces the functors Fy, Fi, and Fp 1, which make the
following diagram commutative.

[T modg k[zo, 1], #]([ )mOdg klzo, z1]p
p p#(x

\F) ° ‘ &

cohy P} modg k[y]
[ mod5 kl[zo, 1], 11 mod5 k[zo, 1],
p#(z1) i (wo)#p#(21) .
\1) %
modg k[y~!] modg [y, y~!]

Here, p runs through all non-zero prime ideals in Projk[xg,x1]. Note that the
front square and the back square are pullback diagrams of abelian categories. The
functors Fy, F1, and Fp 1 are equivalences. This follows from Proposition [5.1.Tland
Lemma [5.5:2] in combination with the bijection (E51). Thus F is an equivalence.

(2) The functor coh P}, — mod k(y) is exact and its kernel is the category cohg P}
1
of torsion sheaves. Thus there is an induced functor ;OT}LI%— — mod k(y) which is
k
faithful. The structure sheaf is the unique indecomposable object, and the argument
given in the proof of Proposition 5.1l shows that the functor is an equivalence. [

5.6. Support. Given a point p € Projk[zo,z1] of P}, the associated local ring
Op: , is by definition (k[zo, #1]p)o. Denote by k(p) the residue field at p which is
by definition the residue field of the local ring Opi,p.

Note that dehomogenization induces isomorphisms

o o (Ml iR # ()
Pi,p - ]{J —1 f
[y e ifp # (21),
where
p'={P(Ly) €klyl| Pep} and p”"={P(y~".1) €kly™]| P €p}.
The stalk of a sheaf F = (M', M", 1) at p is the Op1 ,-module

P
7, = {ﬁ‘;’ ip # (x0),
o ifp # (21),
where M, and M), are identified via y, if p # (2;) for i = 0,1. The support of F
is by definition
supp F = {p € Projk[zo,z1] | Fp # 0}.
Note that a torsion sheaf F admits a unique decomposition

F= ) Fipy

0#p€Proj k[zo,z1]
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such that each Fyp, is a sheaf supported at p. This follows directly from properties
of torsion modules over a polynomial ring in one variable.

The functor sending a sheaf F to the family (Fy)peproj kzo,z;] Provides an equiv-
alence

(5.6.1) cohg P} =5 11 mody Ops -
0#£p€Proj k[zo,z1]

Note that this yields a quasi-inverse for the equivalence from Proposition5.5.4]if the
functor is composed with the family of equivalences mody Opi » =5 mod” k[zo, z1]p
from Lemma

Let p be a closed point and choose a homogeneous irreducible polynomial P of
degree d that generates p. The bijection (B4T) identifies for each integer r > 0
the polynomial P with a morphism ¢: O(—rd) — O(0) = O. Denote by O, . the
cokernel of this morphism. Thus there is an exact sequence

(5.6.2) 0— O(=rd) -2 O — 0, — 0.

Proposition 5.6.1. Let p be a closed point of Pi and r > 0 an integer. An
indecomposable sheaf in cohP} has support {p} and length r if and only if it is
isomorphic to Oy .

Proof. We compute the support and the length of O,,. We may assume that
p # (20). The morphism ¢ is given by multiplication with P"(1,y) and P"(y~*,1)
respectively. Thus for each point q # p, the stalk morphism ¢4 is an isomorphism,
and therefore (Opr)q = 0. On the other hand, the Op: ,-module (Oy;)p is iso-
morphic to O]P’k p/m", where m denotes the maximal ideal of O]P’k p- Note that this
module is indecomposable. Thus O, ;, has length r and is indecomposable.

The equivalence (B.6.]) shows that an indecomposable torsion sheaf is uniquely
determined by its support and its length. (I

Remark 5.6.2. Let S, = O, 1 be the simple sheaf concentrated at p. The sequence

(5:6.2) induces an isomorphism End(S,) — Hom(O,S,). Moreover, we have an
isomorphism End(S,) = k(p) of algebras.

5.7. Automorphisms. Let PGL(2, k) denote the projective linear group, that is,
the group of invertible 2 x 2 matrices over £ modulo the subgroup of matrices of
the form [& Y]. Any element o = [5% 51 ] in PGL(2, k) induces an automorphism
k[zo,z1] = k[zo, 1] by sending x; to o0xo + os1w1 (i = 0,1). This yields a map
PGL(2,k) — AutP}, into the automorphism group of the projective line. Recall
that a rational point [Ag : A1] is identified with the prime ideal (A\zg — Aox1).
Then the automorphism corresponding to o sends a rational point [Ag : A1] to
[000A0 + 00121 : 0100 + 011 A1)

Proposition 5.7.1. The map PGL(2,k) — Aut P} is an isomorphism.

Proof. Tt is clear that the map is injective. We provide an inverse map as follows.
Let ¢: P, = P be an automorphism. This morphism sends rational points to
rational points. In particular for i = 0,1 the inverse ¢! sends the prime ideal
(z;) to an ideal of the form (P;) for some homogenous irreducible polynomial P; =
oi0%o + o121 in kf[zg, z1]. Let U; = ]P’,l€ ~ {(z;)} and denote by U its image under
¢. Then ¢ induces isomorphisms of affine lines

d)o: Spec k[Pl/Po] = Ué ; Uo = Spec k[SCl/ZL'()]

and
d)l: Speck[Po/Pl] = U{ ; U1 = Speck[:co/zl]
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which preserve the origins. Thus there are non-zero scalars a,b such that
¢o(z1/x0) = a(P1/FPy) and  ¢i(xo/z1) = b(Po/Pr).

Here, ¢} denotes the induced morphism between the rings of regular functions
(i = 0,1). The morphisms ¢y and ¢; agree on Uy N Uy, and therefore b = a=1. It
follows that ¢ is given by the linear transformation [ 4oty aniy | in PGL(2, k). O

5.8. Tilting objects. The category coh IE"}C admits a tilting object which is actually
unique up to a shift and up to multiplicities of its indecomposable direct summands.

Proposition 5.8.1. An object T in cohP}. is a tilting object if and only if
(5.8.1) addT = add(O(n) ® O(n+1)) for some n € Z.

For each n € Z, the endomorphism algebra of the tilting object O(n) ® O(n+ 1) is
isomorphic to the Kronecker algebra A (i.e. the path algebra of the quiver - —= - ),
and this yields a derived equivalence D°(cohPt) = D°(mod A).

Proof. Consider T'= O @& O(1). We apply the bijection (41 and Serre duality.
This yields Extl(T, T) = 0. Let F be an indecomposable sheaf. If F is torsion, then
Hom(O, F) # 0; see §5.61 If F is locally free, say F = O(n), then Hom(O, O(n)) #
0 if n > 0, and Ext'(O(1),0(n)) # 0if n < 0. Thus T = O @ O(1) is a tilting
object, and its endomorphism algebra equals the Kronecker algebra. From this it
follows that any object 7" in coh IP’}€ satisfying (58] is a tilting object.

Now let T' be any tilting object in cohPL. Then T is locally free since any
non-zero torsion sheaf F has Ext*(F, F) # 0. Another application of the bijection
(E40) and Serre duality yields the condition (B.8T]).

The derived equivalence is a consequence of Theorem (I

Corollary 5.8.2. The Grothendieck group of cohP} is free of rank two and the
corresponding Fuler form is non-degenerate. ([

6. COHERENT SHEAVES ON WEIGHTED PROJECTIVE LINES

Following work of Lenzing [I7], we describe the abelian categories that arise as
categories of coherent sheaves on weighted projective lines. We provide two different
approaches: a list of axioms and a description in terms of expansions of abelian
categories.

The axioms basically say that these abelian categories are hereditary and noe-
therian, admit a tilting object, and have no non-zero projective objects. We collect
some direct consequences of these axioms. In particular, we investigate the quo-
tient category modulo the Serre subcategory of finite length objects; it is a length
category with a unique simple object.

An abelian category satisfying these axioms has a Grothendieck group that is
free of finite rank. We show that the rank is minimal if and only if the category is
equivalent to the category of coherent sheaves on the projective line.

The axioms are invariant under forming expansions. Moreover, an expansion
increases the rank of the Grothendieck group by one. Thus the formation of ex-
pansions reflects the insertion of weights for specific points of the projective line.
These observations provide the basis for the final description of categories of coher-
ent sheaves on weighted projective lines.

Throughout this section we fix an arbitrary field k.
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6.1. Weighted projective lines. A weighted projective line over a field k is by
definition a triple X = (Pi, A, p), where A = (A1,...,\,) is a (possibly empty)
collection of distinct closed points of the projective line Py, and p = (p1,...,pn)
is a weight sequence, that is, a sequence of positive integers. In this work we make
the additional assumption that the closed points of A are supposed to be rational.
This assumption simplifies our exposition. In fact, there is no substantial difference
between this case and the case where the field k is algebraically closed.

We refer to the introduction for the definition of the category coh X of coherent
sheaves on a weighted projective line X.

Let us remark that since the field k is not necessarily algebraically closed, the
L(p)-graded algebra S(p, A), even up to isomorphism, might depend on the choice
of the homogeneous coordinates A, A;1 for each \; = [Ajo : A;1]. However, up to
equivalence the associated category coh X of coherent sheaves is independent of this
choice; see Corollary [[L4.4]

6.2. Hereditary noetherian categories with tilting object. Let A be a k-
linear abelian category. We consider the following set of axioms:

(H1) The category A is skeletally small, connected, and Ext-finite.
) The category A is noetherian, that is, each object of A is noetherian.
3) The category A is hereditary and has no non-zero projective object.
4) The category A has a tilting object.
5) The Euler form associated to A is non-degenerate and has discriminant +1.

Let us collect the basic properties of a category satisfying (H1)—(H4) so that we
can use them from now on freely without any further reference.

Recall that Ay denotes the full subcategory consisting of all finite length objects
in A and that A, is the full subcategory consisting of all objects A in A satisfying
Hom 4(Ag, A) = 0 for all Ap in Ay.

One should think of objects in Ag as torsion objects, whereas the objects in A,
are torsion-free or vector bundles.

Proposition 6.2.1. A k-linear abelian category A satisfying (H1)—(H4) has the
following properties:

(1) The category A admits a Serre functor 7: A — A.

(2) The Grothendieck group Ko(A) is free of finite rank and the Euler form
associated to A is non-degenerate.

(3) Every object in A is a direct sum of an object in Ay and an object in A, .

(4) The category of finite length objects admits a decomposition Ag = [[,cx A
into connected uniserial categories.

Proof. (1) follows from Proposition B4H (2) from Proposition B52 (3) from
Proposition [[8T] and (4) from Proposition [[L82 O

The noetherianness of A implies that Ay is non-trivial. On the other hand,
A # Ay because a length category with Serre duality and a Grothendieck group of
finite rank has a degenerate Euler form; see Example B.5.3

Denote by Y a set of representatives of the isomorphism classes of simple objects
of A. We identify the set X /7 of T-orbits with the index set X of the decomposition
Ao = [[,ex Az Foreach x € X, let p(z) denote the number of isomorphism classes
of simple objects of A,.

Lemma 6.2.2. Each p(z) is finite. More precisely, . x(p(x) —1) is bounded by
the rank of Ko(A).



42 XIAO-WU CHEN AND HENNING KRAUSE

Proof. First observe that for two simple objects S, T € A, we have Extil(S, T)#0
if and only if T' = 7.5; see Theorem [[.7.1] and Proposition [L81l Now choose for
each z € X a simple object S, € Ay N3Yg and let ¥ = Xo \ {S; | z € X}. The
set 3 admits a linear ordering such that S > T implies ([S], [T]) = 0. It follows
that the corresponding classes [S], S € X, are linearly independent in K((A); see
Lemma below. Thus cardXj = > _x(p(z) — 1) is bounded by the rank of
Ko(A). O

Lemma 6.2.3. Let G be an abelian group and X C G a subset. Suppose there
is a non-degenerate bilinear form ¢ on G and a linear ordering on X such that
d(z,x) £ 0 for all x € X and ¢(x,y) =0 for all x > y in X. Then X is linearly
independent.

Proof. Straightforward. O

Lemma 6.2.4. There exists a linear map p: Ko(A) = Z such that

(1) p([A]) >0 for all A€ A;
(2) p([4]) =0 if and only if A € Ao;
(3) p([TA]) = p([A]) for all A€ A.

Proof. For each z € X choose a simple object S, € A, and let w, = fol) [78S.].
Choose elements 1, ..., 2, from X such that the subgroup of K(A) generated by
Wy, ..., Wy, contains each w, and set w = wy, + -+ + wy,.

Serre duality implies that ([4],w) = 0 for all A in Ay. If A is a non-zero
object in A4, then A has a simple quotient, say S,, by noetherianness. Using that
Ext! (A, Ag) = 0 for all Ag in Ay by Serre duality, this yields ([A],w,) > 0 and
therefore ([A],w) > 0. Thus the map p = (—, w) has the desired properties. O

Proposition 6.2.5. The abelian category A/ Ag is a length category.

Proof. Let A be an object in A. We prove by induction on p([4]) that A has finite
length in A/Ag. If p([4]) = 0, then A = 0 in A/ Ay. Now suppose p([A4]) > 0.
The category A/ Ap is noetherian and therefore each non-zero object has a simple
quotient. Thus there exists a subobject A’ C A such that A/A’ is simple in A/ Ay.
Then p([A’]) < p([4]) and therefore A’ has finite length in A/ Ay. It follows that
A has finite length in A/ Ay. O

For each object A in A, we denote by rank A the length of A in A4/A( and call
it the rank. This function extends to a linear map Ko(A) — Z. This linear map
is surjective and satisfies the conditions in Lemma Indeed, such a map is
unique by Proposition [6.3.7

6.3. Line bundles. Let A be a k-linear abelian category satisfying (H1)—(H4). An
indecomposable object in A of rank one is called line bundle. Thus line bundles
are precisely the objects in A4 of rank one; they form the building blocks of the
category A4. Let us collect their basic properties.

Proposition 6.3.1. Every object A in Ay admits a filtration 0 = Ag C A; C--- C
A, = A of length n = rank A such that each factor A;/A;—1 is a line bundle.

Proof. We proceed by induction on n. The case n < 1 is clear. If n > 1, choose
a monomorphism U — A in A/ Ay with simple cokernel. This morphism is rep-
resented by a morphism ¢: U’ — A/A’ in A such that U’ C U and A’ C A are
subobjects with U/U’ and A’ in Ag; see Lemma [[L2Z2 Tt follows that A" = 0 since
A € A,. Passing from U’ to the image of ¢, we may assume that Ker ¢ = 0. The
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cokernel C' = Coker ¢ is simple in .4/ Ag. Thus there is a decomposition C = Co&Cy
with Cy of finite length and C; a line bundle. Forming the pullback of the exact se-
quence 0 — U’ — A — C' — 0 along the inclusion Cy — C yields a monomorphism
A,_1 — A with cokernel C;. Clearly, A,,_1 belongs to A, and has rank n—1. O

Lemma 6.3.2. Let A be a non-zero object in Ay and suppose that Extil(S’, A)#0
for some simple object S.

(1) There exists a chain of monomorphisms A = Ag o, Ay 22 in A such
that A; € Ay and A;/Im¢; = 7718 for all i > 0.

(2) For each n > 0, there exists an exact sequence 0 A — B - C =0 in A
such that B € Ay and [C] =Y [77%S].

Proof. (1) Choose a non-split exact sequence 0 — A LN A; — S — 0. For each
simple object T, the induced morphism Hom 4 (7, A) — Hom (7, A1) is an isomor-
phism. Thus A; belongs to A;. Serre duality implies that Exth(f’lS,Al) #+
0. Thus we can iterate the construction and obtain a sequence of morphisms
it A1 — A;

(2) Apply (1) by taking the composite ¢y, 11 ... ¢1 for the morphism A — B. O

Lemma 6.3.3. Let L,L’ be line bundles and 0 - L — L' — S — 0 an exact
sequence such that S is simple. Then for each x € X, Homu4(L, A;) = 0 if and
only if Homu (L', A,) = 0.

Proof. Note that Hom 4 (L, A,) # 0 if and only if Hom 4 (L, S;) # 0 for some simple
object S, € A,. The assumptions imply Hom4 (L', S) # 0 and Homu (L, 7.5) # 0.
If T is a simple object not lying in the 7-orbit of S, then L — L’ induces an
isomorphism Hom4 (L', T) = Hom4 (L, T). O

Lemma 6.3.4. Let L, L’ be line bundles. Then the following are equivalent:
(1) For each x € X, Homy (L, A;) = 0 if and only if Hom4 (L', A,) = 0.
(2) There exists x € X such that Hom4(L, A;) # 0 and Hom 4 (L', A;) # 0.
(3) There exists n € Z such that L' = 7L in A/ Ay.

Proof. (1) = (2): Observe that Hom 4(L, A,) # 0 if and only if Hom4(L, S) # 0 for
some simple object S € A,. Thus noetherianness of L implies that Hom 4(L, A, ) #
0 for some =z € X.

(2) = (3): Choose a simple object S and a non-zero morphism ¢: L — S.
Modulo some power of 7, there is a non-zero morphism ¢’: L' — S. Forming the
pullback of ¢ and ¢’, one obtains the following commutative diagram with exact
rows.

0 K P r 0
¢
0 K L S 0

If the top row splits, then Hom 4(L’, L) # 0 and therefore L’ = L in A/Aj. Other-
wise, Hom 4 (K, 7L') = DExtY (L', K) # 0. Thus L = 7L’ in A/ Ay.

(3) = (1): Suppose that L' = 7L in A/Aq. Then there is a subobject L"” C L’
with L' /L" of finite length and there is a monomorphism L’ — 7™ L with cokernel
of finite length. For each z € X, it follows then by iterating Lemma that
Hom 4 (L, A;) # 0 if and only if Hom 4 (L', A;) # 0. O

Proposition 6.3.5 (Lenzing). Let L be a line bundle and x € X. Then we have
HOm_A(L,.AI) 7& 0.
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Proof. Let X; be the set of all y € X such that Hom (L, A,) # 0, and let Xy =
X \ X;. We show that X; = X. Let £; be the class of line bundles L’ such
that L' =2 7L in A/ Ap for some n € Z, and let Lo be the class of all remaining
line bundles. Denote by A; (i = 1,2) the full subcategory consisting of objects
A € A having a filtration with factors in £; or UzGXi A.. There are no non-zero
morphisms between objects from different A;’s, and therefore also no extensions
by Serre duality. This follows from Lemma [6.3.4] and the fact that each non-
zero morphism between line bundles in A induces an isomorphism in 4/ A4y. On
the other hand, each indecomposable object belongs to one of the A;’s. This is
clear for objects of finite length. An object A from A, has a finite filtration
0 =Ay C --- C A, = A such that each factor A;/A;_1 is a line bundle; see
Proposition [6.3.11 The factors belong to a single £; since there are no non-split
extensions between different £;’s. Thus A = A; I1. A5, but this implies Ay = 0 since
A is connected. O

Lemma 6.3.6. Let L be a line bundle and 0 # A € A,. Then there are monomor-
phisms L — A’ and A — A’ such that A’ belongs to Ay and the cokernel of A — A’
belongs to Ag. Moreover, each non-zero morphism L — A is a monomorphism.

Proof. The object A has a simple quotient since it is noetherian. Thus Ext (S, A) #
0 for some simple object S by Serre duality. Depending on the value of ([L], [A]) and
using that L admits a non-zero morphism to the 7-orbit of S by Proposition [6.3.5]
we choose in Lemma the number n sufficiently big so that there exists an
exact sequence 0 »+ A — B — C — 0in A with Be€ Ay, [C] =Y [77"5], and

([L], [B]) = (L], [A]) + ([L], [C]) > 0.

Now set A’ = B.
If ¢: L — A is a non-zero morphism, then rank Ker ¢ = 0. Thus Ker ¢ = 0 since
L belongs to A.. O

The discussion of line bundles yields further properties of A/ Ay and Kg(A).

Proposition 6.3.7. Let A be a k-linear abelian category satisfying (H1)—(H4).
Then the following holds:

(1) The abelian category A/ Ay has, up to isomorphism, a unique simple object.

(2) Each non-zero object A in A satisfies [A] # 0 in Ko(A).

(3) Let L be a line bundle in A. Then Ko(A) = Z[L] ® K|(A), where Kj(A)
denotes the image of the canonical map Ko(Ag) — Ko(A).

Proof. (1) Let L, L’ be line bundles in A. There are monomorphisms L — L” and
L’ — L" with both cokernels in Ag, by Lemma[6.3.6l Thus L = L"” = [/ in A/ Ay.
(2) Let A be a non-zero object. If A is not of finite length, then rank[A] # 0
and therefore [A] # 0. Now suppose that A is of finite length. It follows from
Proposition [6:35 that Hom 4 (L, A) # 0 for some line bundle L. On the other hand,
ExtY (L, A) = 0 by Serre duality. Thus ([L], [A]) # 0, and it follows that [A] # 0.
(3) We have Z[L]N K| (A) = 0 since rank L > 0 and rankz = 0 for all z € K{j(A).
We show by induction on the rank that each class [A] belongs to Z[L] + K| (A).
This is clear if rank A = 0. If rank A > 0, then there is an exact sequence 0 —
L - A — A” — 0 such that A’ = A in A/ Ap; see Lemma It follows that
rank A” = rank A’ — 1, and therefore [A'] = [L] + [A”] belongs to Z[L] + K{(A).
Finally observe that [A] — [A’] belongs to K{(.A). O

An immediate consequence is the fact that the rank of Ky(A) is at least two.
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6.4. Exceptional objects. Let A be a k-linear abelian category that is Hom-finite
and hereditary. An object A is called exceptional if Ext!y(A, A) = 0 and End 4(A)
is a division ring.
Lemma 6.4.1 (Happel-Ringel). Let A, B be indecomposable objects in A. If
Exti‘(B,A) = 0, then each non-zero morphism A — B is a monomorphism or
an epimorphism.

Proof. Let ¢: A — B be a non-zero morphism and A 2, Im ¢ 2, B its canonical
factorization. We obtain the following commutative diagram with exact rows

0 A E B/Tmé —— 0
41
0 Imé—2— B B/Im¢ ——0

since ExtY(B/Im¢,—) is right exact. The induced exact sequence 0 — A —
Im¢ @ E — B — 0 splits. Thus ¢’ or ¢” is a split monomorphism since End 4(A)
is local. In the first case ¢ is a monomorphism, and in the second case ¢ is an
epimorphism. (I

Let us collect some immediate consequences.

Proposition 6.4.2. Let A be a k-linear abelian category that is Hom-finite and
hereditary. Then the following holds:
(1) An indecomposable object A satisfying Extly(A, A) = 0 is exceptional.
(2) Let A, B be non-isomorphic exceptional objects. Suppose that Exti‘(A, B) =
0 and Ext'{(B, A) = 0. Then Hom4(A, B) =0 or Hom4(B, A) = 0.
(3) Assume further that A is Ext-finite. Let A, B be exceptional objects and
[A] = [B] in Ko(A). Then A= B.

Proof. We apply Lemmal6.4.Tland use the fact that for each indecomposable object,
an endomorphism is either nilpotent or invertible. In particular, an endomorphism
that is a monomorphism or an epimorphism is invertible. From this, (1) and (2)
are clear.

(3) Observe that Hom 4(A, B) # 0 since ([4], [B]) > 0. Let ¢: A — B be a non-
zero morphism and B’ = Im¢. Applying the right exact functor ExtYy(—, B) to
the inclusion B’ — B shows that ExtY(B’, B) = 0. Thus ([B'],[A]) = ([B'],[B]) >
0. Composing a non-zero morphism B’ — A with the epimorphism A — B’
induced by ¢ yields an isomorphism since End4(A) is a division ring. Thus ¢
is a monomorphism. The dual argument shows that ¢ is an epimorphism. Thus
A= B. O

6.5. Expansions of abelian categories. We consider expansions of abelian cat-
egories that satisfy the axioms (H1)—-(H4).

Lemma 6.5.1. Let A be a k-linear abelian category satisfying (H1)—-(H4). For a
full subcategory B of A, the following are equivalent:

(1) The inclusion B — A is a non-split expansion of abelian categories.
(2) There exists a simple object S such that 7S % S and S+ = B.

Proof. Apply Lemma If B — A is an expansion, then B = S+ for some
localizable object S, and Serre duality implies 7.5 22 S. Conversely, if S is simple
and 75 2 S, then S is a (co)localizable object with S+ = +7S. Thus the inclusion
S+ — A is an expansion, and this is non-split since A is connected. O
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Let i: B — A be a non-split expansion of k-linear abelian categories satisfy-
ing (H1)—(H4). Then i restricts to an expansion By — Ag by Proposition €33
Let Ay = HIEX_A A, and By = HIEXB B, be the decompositions into connected
uniserial categories; see Proposition [[.8.21

Proposition 6.5.2. Let i: B — A be a non-split expansion of k-linear abelian
categories satisfying (H1)—(H4). There exists a bijection ¢: Xg — X 4 and xg € Xp
such that i restricts to an expansion By, — Ag(a,) and to equivalences B, = Ag(a)
for all x # xq in Xpg.

Proof. Apply Lemma L5711 O

Next we investigate the existence of tilting objects for expansions of abelian
categories.

Lemma 6.5.3. Leti: B — A be a non-split expansion of k-linear abelian categories
that are Ext-finite.
(1) If B admits a tilting object, then A admits a tilting object.
(2) Suppose in addition that A is hereditary and has no non-zero projective
object. If A admits a tilting object, then B admits a tilting object.

Proof. (1) Let T be a tilting object in B. Choose an exact sequence 0 — S —
T — iT — 0 in A with S in add Sy such that the induced map Hom 4(S, S)) —
Exti‘(iT, Sy ) is an epimorphism. We claim that U = T’ @ S, is a tilting object for
A.

The formula Exty (iT, A) = Extz(T,i,A) for all A € A and n > 0 implies
proj.dimsT < 1. Therefore proj.dimU < 1. The construction of 7" implies
Extl(T7,5\) = 0, and ExtY(Sx,T’) = 0 is clear since Ext{(Sx,S) = 0 and
Ext!(Sx,iT) = 0. We have

ExtY (T, T") = ExtYy (T",iT) = Extg(ixT',T) = Extg(T,T) = 0,
and therefore Exty (U, U) = 0. Finally, assume that Ext; (U, A) = 0 for some A in
A (n=0,1). The condition Ext’; (S, A) = 0 implies that A belongs to the image
of i, say A =1iB, and that Ext’y (7, A) = 0. Then 0 = Exty(¢T,iB) = Extg(T, B)
implies B = 0. Thus U is a tilting object.

(2) Let T be a tilting object in \A. We intend to show that i\T is a tilting object
for B. The formula Exti(izT, B) = Ext’y(T,iB) for all B € B and n > 0 shows
that proj.dimi T < 1 and that Extyi(inT,B) = 0 (n = 0,1) implies B = 0. It
remains to show that Exty(ixT,i\T) = 0. In fact, it is equivalent to show that
ExtY (T, ii\T) = 0.

We proceed by cases. First assume that Extil(S »» ) = 0. Thus the adjunction
morphism np: T — #i)\T is an epimorphism, and therefore Exti‘(T, 1i,3T) = 0 since
ExtY (T, —) is right exact.

Next assume that ExtYy (T, Sx) = 0. Then ExtYy (T, iixT) = 0 follows since Ker 5y
and Coker nr belong to add S).

Finally, assume that Exti‘(S »T) # 0. We apply the Auslander-Reiten formula
from Proposition B4l and have Hom4 (7, S,) # 0. Thus there is an epimorphism
T — S,, and this implies Exth(T, S,) = 0. The category A admits a Serre functor
7: A= A by Proposition 345, and the Auslander-Reiten formula implies 7.5y =
S,. Thus Exty (7717, S)) = 0. The object U = 7~ T is a tilting object for A, and
the above argument shows that i\U is a tilting object for B. O

The following result says that the concept of an expansion of abelian categories
is compatible with the list of axioms (H1)-(H5).
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Theorem 6.5.4. Let k be a field and B — A a non-split expansion of k-linear
abelian categories with associated division ring k. Then A satisfies (H1)—(H5) if
and only if B satisfies (H1)—(H5). In that case the rank of Ko(B) is one less than
that of Ko(A).

Proof. We provide the references for each axiom. The final assertion about the
rank of Ky(B) follows from Lemma 357
(H1) Lemmas [T E5T] and

(H2) Lemma
(H3) Lemma 611
(H4) Lemma
(H5) Proposition and Lemma B.5.7 O

6.6. An equivalence via tilting. We give a criterion so that an equivalence of
derived categories D?(A) = D?(A’) restricts to an equivalence A — A’

Let A be a k-linear abelian category satisfying (H1)—(H4) and consider its
bounded derived category D?(A). Recall that

D'(A) = | | Aln]
nez

with non-zero morphisms A[i] — A[j] only if j —i € {0,1} since A is hereditary;
see Corollary

The isomorphism Ko(A) = Ko(D(A)) yields a rank function Ko(D®(A)) — Z.
Note that for each complex X concentrated in degree n, we have (—1)"-rank [X] > 0.

Let T be an indecomposable object in A and view it as a complex concentrated
in degree zero. Define £(T) to be the class of indecomposable objects L € D?(A)
of rank one such that Homps(4)(L’, L) # 0 for some indecomposable object L’ €
DP(A) of rank one satisfying Hompu 4y (L',T') # 0.

Lemma 6.6.1. Let T be an indecomposable object in Ay. Then the objects in L(T)
are precisely those that are isomorphic to a line bundle in A, viewed as a complex
concentrated in degree zero.

Proof. Let L' be a complex in D¥(A) that is concentrated in one degree, say n. If
Hompy 4y (L', T) # 0, then n = 0 or n = 1. If the rank of L’ is positive, then n = 0.
The same argument shows that every indecomposable object L in D¥(A) of rank
one and satisfying Homps(4)(L’, L) # 0 is isomorphic to a line bundle, viewed as a
complex concentrated in degree zero.

Conversely, let L be a line bundle. Then there exists a non-zero morphism
L — T’ for some object T” that admits an exact sequence 0 - T =T — C — 0
such that C has finite length; see Lemmal6.3.6 The pullback of T — T" and L — T’
yields a line bundle L’ with non-zero morphisms to 7' and L. Thus L belongs to
L(T). 0

Lemma 6.6.2. Let T be an indecomposable object in Ay. Then the following are
equivalent for an indecomposable object X in DP(A):

(1) H'X =0 for all i # 0.

(2) rank [X] > 0 and Hompe (4 (L, X) # 0 for some L € L(T).

Proof. We apply Lemma Because X is indecomposable, there exists an inte-
ger n such that H*X = 0 for all i # n.

(1) = (2): If n = 0, then rank [X] > 0 and Hom4(L, H°X) # 0 for some line
bundle L in A. Thus Homps (4 (L, X) # 0 for some L € L(T).
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(2) = (1): If Homps(4)(L, X) # 0 for some L € L(T), then n =0 orn = 1. It
follows that n = 0 if X has positive rank. If the rank of X is zero, then H" X has
finite length and therefore ExtY (H°L, H"X) = 0. Thus n = 0. O

Proposition 6.6.3. Let A, A’ be abelian categories satisfying (H1)—(H4) with tilt-
ing objects T € A and T" € A’. Suppose that End4(T) = End a4/ (T’) and that
the induced equivalence addT = add T’ preserves the rank. Then A and A’ are
equivalent categories.

Proof. We identify A = End 4(T") = End 4/(T”) and obtain equivalences

RHom 4 (T,—) RHom(T’
_—

D(A) D’ (mod A) =) Db,
This yields an equivalence F: DY(A) = DY(A’) taking 7 to T’. The functor F
preserves the rank since the indecomposable direct summands of T" form a basis of
Ko(Db(A)). It follows from Lemma that F identifies A with A’ O

6.7. The homogeneous case. Let A be a k-linear abelian category satisfying
(H1)-(H4). Call A homogeneous if TA = A for each object A of finite length, or
equivalently, 7.5 =2 S for each simple object S. This property together with the con-
ditions (H1)—(H5) characterizes the category coh P}C. The following characterization
of the property of A to be homogeneous will be useful.

Proposition 6.7.1. Let A be a k-linear abelian category satisfying (H1)—(H4).
Then the following are equivalent:

(1) If S is a simple object in A, then 7S = S.

(2) If A, B are finite length objects in A, then ([A],[B]) = 0.

(3) The rank of Ko(A) equals two.

(4) If A has infinite length and S is a simple object in A, then Hom 4(A, S) # 0.

Proof. (1) = (2): It suffices to show that ([S],[T]) = 0 for each pair of simple
objects S,T. The equality ([S],[T]) = 0 is an immediate consequence of Serre
duality if 77" = T.

(2) = (3): Let K\(A) be the image of the canonical map K(Ay) — Ko(A). We
have Ky(A) 2 Z @& K{(A) by Proposition [6.3.7 Now apply Lemma below.

(3) = (1): Suppose there exists a simple object S such that 7S % S. Then
B = S+ satisfies (H1)-(H4) and Ko(A) = Z[S] @ K¢(B), by Theorem and
LemmaB51 If B is homogeneous, then Kq(A) = Z3 by the first part of the proof.
Otherwise, we proceed as before and reduce to the homogeneous case. In any case,
the rank of Ky(A) is at least 3.

(1) = (4): This follows from Proposition since each infinite length object
A admits a subobject A’ such that A/A’ is a line bundle.

(4) = (1): Suppose there exists a simple object S such that 75 % S. Then
B = S+ = 178 yields an expansion B — A by Lemma [6.5.1] and this induces an
equivalence B/By — A/ Ag by Proposition .33l Thus any infinite length object in
A yields one in B, say A, satisfying Hom 4 (A, 7S) = 0 by construction. O

Lemma 6.7.2. Let G be a free abelian group of finite rank with a non-degenerate
bilinear form ¢. Suppose there is a subgroup 0 # H C G such that G/H = 7 and
é(x,y) =0 for all v,y € H. Then G = Z2.

Proof. The assumption on H implies that for each pair of non-zero elements x,y €
H, there are non-zero integers o, o, with a,x = ayy. This implies H = Z since
H is free. (|
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Lemma 6.7.3. Let A be a k-linear abelian category satisfying (H1)—(H4) and sup-
pose that A is homogeneous. Then the following holds:

(1) FEach line bundle L is exceptional.
(2) There exists a simple object S such that in Ko(A) the class of each simple
object S” is of the form [S'] = n - [S] for some n > 0.

Proof. (1) Set e; = [L] and choose a second basis vector es of Ko(A) = Z? lying in
the image of the map K¢(Ag) — Ko(A); see Proposition[6.3.71 For a = aje; + ages
in Ko(A), we have (a,a) = a(e1,e;1) since {e1,e2) = —{ea,e1) and (e, e) = 0.
From the existence of a tilting object T in A, it follows that (e1,e;) > 0 since
(IT],[T]) > 0. Now observe that (ej,e;) = dimy Hom4(L, L) — dimy, Ext’(L, L)
is divisible by dimy End 4(L) since the endomorphism ring of any line bundle is a
division ring by Lemma [6.3.61 Thus ExtY (L, L) = 0.

(2) Choose a simple object S such that d = ([L],[S]) is minimal. Given any
simple object S’, there are integers ¢, > 0 with ([L],[S']) = ¢-d + r and r < d.
Applying Proposition and Lemma [6.3.2] we obtain extensions 0 — L — E —
C—-0and 0 - L - E' — C" — 0 such that E, E' are line bundles, [C] = ¢ - [5],
and [C'] = [S’]. Hence

([E], [E']) = ([L], [L]) + {[L], [S']) — ¢ - ([L], [S]) > 0.
This gives an exact sequence 0 - E — E' — F — 0, where F is an object of

finite length and ([L], [F]) = r < d. The minimality of ([L], [S]) implies F' = 0, and
therefore [S'] = ¢ - [5]. O

The class [S] in Lemma yields a generator for the image of the map
Ko(Ag) — Ko(A). Thus for any finite length object A in A, there exists some
n > 0 with [4] = n - [S]. We call this number the degree of A and observe that it
is independent of the choice of S.

Next we describe tilting objects for an abelian category that satisfies (H1)—(H5)
and is homogeneous.

Proposition 6.7.4. Let A be a k-linear abelian category satisfying (H1)—(H5) and
suppose that A is homogeneous. Let L be a line bundle and S a simple object of
degree one. Then

Hom(L,S) =k, Ext4(S,L)=4k, Enda(L)=%k, and Enda(S)=k.

Let 0 = L — L' — S — 0 be a non-split extension. Then L & L' is a tilting
object and its endomorphism algebra is isomorphic to the Kronecker algebra (i.e.
the path algebra of the quiver - == - ). Moreover, the simple objects of degree one
are precisely the objects that arise as the cokernel of a non-zero morphism L — L’.

Proof. Tt follows from Proposition and Lemma that [L] and [S] form a

basis of Ko(A). The corresponding matrix “%Hﬂi E%g”g; has determinant +1.

Thus 1 = ([L],[S]) = —([S],[L]). This implies Hom4(L, S) = k and Ext’(S, L) =
k. The space Hom 4(L, S) is a module over End 4 (L) and over End 4(.5). It follows
that End 4(L) = k and End4(S) = k.

Next we show that T'= L® L' is a tilting object. An application of Hom 4 (L, —)
to0— L — L' — S — 0 yields Ext! (L, L’) = 0, while application of Hom4(—, L)
implies ExtY (L', L) = 0. Thus ExtY(T,T) = 0. For any non-zero object A in A,
we have ([L], [A]) # 0 or ([L’], [A]) # 0 since [L] and [L'] form a basis of K((A) and
[A] # 0. Thus T is a tilting object.

A simple computation shows that dimy Hom4 (L, L’) = 2, while Hom 4(L’, L) =
0. Thus End 4(7T) is isomorphic to the Kronecker algebra.
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Let ¢: L — L' be a non-zero morphism. This is a monomorphism since L is a
line bundle. The cokernel C' = Coker ¢ is of finite length since L and L’ have the
same rank. The degree of C is one since [C] = [L] — [L] = [S]. In particular, C' is
simple.

Now let S’ be a simple object of degree one. Choose a non-split extension
0L - FE — S — 0. Then E is a line bundle and therefore exceptional by
Lemma 6731 We have [E] = [L'] in K(A) since [S] = [S'], and it follows from
Proposition that £ = L’. Thus S’ arises as the cokernel of a morphism
L— L. O

The next theorem provides an axiomatic description of the category coh ]P’,lv.

Theorem 6.7.5 (Lenzing). Let A be a k-linear abelian category satisfying (H1)—
(H5) and suppose that A is homogeneous. Then A is equivalent to cohPy..

Proof. The categories coh P}, and A admit each a tilting object such that its en-
domorphism algebra is isomorphic to the Kronecker algebra, see Propositions 5.8.1]
and Note that in both cases the indecomposable direct summands of a tilting
object have rank one. Now apply Proposition O

6.8. Coherent sheaves on weighted projective lines. The following theorem
characterizes the abelian categories that arise as categories of coherent sheaves on
weighted projective lines in the sense of Geigle and Lenzing [10].

Theorem 6.8.1 (Lenzing). Let k be a field and A a k-linear abelian category.
Then the following are equivalent:
(1) The category A satisfies (H1)—(H5).
(2) There is a finite sequence A° C A C --- C A" = A of full subcategories
such that A° is equivalent to cohP}. and A" is a non-split expansion of
A with associated division ring k for 0 <i <r — 1.
(3) The category A is equivalent to cohX for some weighted projective line
X = (P}, A p).
Proof. (1) = (2): Suppose that A satisfies (H1)—(H5). The rank of K(.A) is finite,
say n. So one constructs a filtration A C A C ... C A" = A of length r = n—2 by
reducing the rank of the Grothendieck group as follows. If A is homogeneous, then
A is equivalent to cohP} by Theorem Otherwise, there is a simple object S
such that S 2 7.5 by Proposition Then put A"~! = S+ and the inclusion
A™~1 — A is a non-split expansion by Lemma Moreover, A"~! satisfies
(H1)—-(H5) by Theorem[6.5.4] and the associated division ring is k£ by Lemma [B.5.7]
Note that the rank of Ky(A"~!) is one less than that of Ko(A). So one proceeds
and constructs a sequence of subcategories A*. The process stops after r steps when
A° is homogeneous.

(2) = (1): Suppose that A admits a filtration A° C A' C ... C A" = A
such that A° is equivalent to cohP} and A“*! is a non-split expansion of A’ with
associated division ring k for 0 < ¢ < r — 1. The discussion in §5lshows that coh IE"}C
satisfies (H1)—(H5). An iterated application of Theorem [6.5: 4 yields that A satisfies
(H1)—(H5).

(2) = (3): Suppose again that A admits a sequence A° C A* C .- C A" = A
of expansions such that A" is equivalent to cohP}. This yields a fully faithful
exact functor cohPy — A, and it follows from Proposition that this functor
identifies the index set of the decomposition (5.6.1])

cohg P} ]_[ mody Op1 ,
0#p€Proj k[zo,z1]
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into connected components with the index set of the decomposition Ag = [], .x Az-
Thus there is a canonical bijection between the set of closed points of P}, and the
set X. Moreover, if z € X is a point with p(xz) > 1, then the corresponding closed
point p of P} is rational since the residue field of the corresponding local ring OPbP
equals k. This follows from the fact that in the filtration A C A' C ... C A" =A
the associated division ring of each expansion equals k.

Let A be the finite collection of points {x € X | p(z) > 1}, viewed as points of
P}, and denote by p the corresponding sequence of positive integers p(z). Then
there exists a tilting object T' such that End 4(T") = Sq(p, A); see Proposition [6.9.1]
below. On the other hand, let X = (P}, A, p) be the weighted projective line that
is determined by the parameters A and p. The category coh X of coherent sheaves
on X admits the following tilting object

O@O(E’)@(SP] @---@S&pl_l]) S-®SHep. . @ g1

with endomorphism algebra Sq(p, A), where the notation is taken from the intro-
duction with S; = S;1; see [20, Example 4.4]. This yields a derived equivalence
D’(A) = DY(cohX) which restricts to an equivalence A =3 cohX by Proposi-
tion

(3) = (1): See [10]. O

Remark 6.8.2. Let A be a k-linear abelian category satisfying (H1)-(H5).

(1) The reduction to the homogeneous case in the proof of Theorem shows
that the rank of the Grothendieck group of Ais 243 _x(p(x) —1).

(2) Let z € X and p(xz) > 1. Then A, is equivalent to the category of finite
dimensional nilpotent representations of a quiver of extended Dynkin type AP(I), 1
with cyclic orientation; see Example

6.9. A tilting object. Let k be a field and A a k-linear abelian category satisfying
(H1)—(H5). We construct a tilting object and compute its endomorphism algebra,
which is a squid algebra in the sense of Brenner and Butler [5].

Given a collection A = (Aq, ..., \,) of distinct rational points A\; = [Ao : Ai1] of
P}, and a sequence p = (p1,...,pn) of positive integers, we define Sq(p, A) to be
the finite dimensional associative algebra given by the quiver

ngfll S£P1*2] SP]

[y ° « o e °

Sépzfll S£P2*2] Sél]

SLpnfll SL;"’Q] SLl]
modulo the relations
Ci()\iobl — )\ilbO) =0 (’L = 1, ceey n)

Proposition 6.9.1 (Lenzing-Meltzer). A k-linear abelian category satisfying (H1)—
(H5) admits a tilting object with endomorphism algebra isomorphic to Sq(p,A) for
some pair p, A.
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Proof. Fix a k-linear abelian category A satisfying (H1)—(H5). We apply Theo-
rem [6.8.1)2) and follow its proof. Thus there exists a sequence B = A° C A! C
.-+ C A" = A of expansions such that B is equivalent to cohP}. Let (z1,...,2x)
be the collection of distinct points € X with p(z) > 1 and set p = (p1,...,pn)
with p; = p(z;) for each i. Choose line bundles L and L’ in B forming a tilting
object L@ L' for B, and choose a basis by, by of Hom4(L, L); see Proposition [G.7.41
The inclusion F': B — A restricts to a family of inclusions B,, — A.,; see Propo-
sition Note that each inclusion B,, — A,, is a composite of p; non-split
expansions. Thus there are simple objects S! € By, and S; € A, such that
FS, = Sz[p"']. Here, Sz[p"] denotes the uniserial object with top S; and length p;,
and we use that an expansion sends a specific simple object to an object of length
two; see Lemma .37l In particular, S’l[j] belongs to +B for 1 < j < p;. Note that
End4(S!) = k since the division ring of each expansion is k. In cohP}, a simple
object with trivial endomorphism ring has degree one. Thus each simple object S!
fits into an exact sequence

(6.9.1) 0 — [ 2iotizdubo, pr L gr

by Proposition [G.7.4] and this yields a collection A = (A1,..., A,) of rational points
Ai = [Xio : Aia] in PL. Moreover, there are canonical morphisms ¢;: L' — Sz[p i,
Sz[p"'fu in A satisfying the relations ¢;(Aipb1 — Ai1bg) = 0. It is straightforward to
verify that the object

T:LEBL’@(SF]@...@Sgpl_l])@...@(ggl@...@Sllpnfl])

is a tilting object for A, using the criterion of Lemma3.5.0l Indeed, Exti‘(T, T) =0,
the indecomposable direct summands of T yield a basis of K(.A), and [A] # 0 for
each object A # 0 by Proposition 637 Finally, one checks that End4(T) is
isomorphic to Sq(p, A). Here, one uses that each epimorphism Sz[p LN Sz[j] induces

an isomorphism Hom 4(L & L/, Sz[p"']) = Homu (L& L, Sz[j])- 0

7. CANONICAL ALGEBRAS

The canonical algebras in the sense of Ringel [22] 23] provide a link between
weighted projective lines and the representation theory of finite dimensional alge-
bras. In fact, Geigle and Lenzing constructed in [I0] for each weighted projective
line X = (P;, A, p) a tilting object in coh X such that its endomorphism algebra is
isomorphic to the canonical algebra with the same parameters; see Example [[.4.3]
It turns out that this tilting object is somehow canonical. From this it follows that
the parameters A and p can be reconstructed from the category coh X. To be more
precise, we consider an abelian category A that is equivalent to cohX for some
weighted projective line X. For each line bundle L in A one constructs a canonical
tilting object 17, such that its endomorphism algebra is a canonical algebra. Then
one shows that for each pair of line bundles L, L’ there is a sequence of tubular mu-
tations in the sense of Lenzing and Meltzer [19] 21] [I8] that yields an equivalence
A =5 A taking L to L’ and therefore T, to Tr,. In particular, the endomorphism
algebras of T, and T/ are isomorphic and therefore an invariant of A. Finally one
observes that the parameters A and p form an invariant of the canonical algebra
End4(T%).

Throughout this section we fix an arbitrary field k.
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7.1. Canonical algebras from weighted projective lines. Consider a collec-
tion A = (A1,..., A,) of distinct rational points A; = [Ajo : Ai1] of P}, and a sequence
p = (p1,...,pn) of positive integers. We define the canonical algebra C(p, A) to be
the finite dimensional associative algebra given by the quiver

1 2 (p1—1)
L(l ) 1 Lg ) ZT1 ZT1 Lll71
1 ( Tl
1 2 -
L gy LY g, @ LN
bo
./ \.
. by . L'
T . . . Tn
lel) Tn Lg) Tn Tn lepnfl)

modulo the relationd
xfi :)\iobl_)\ilbo (i:l,...,n).
Theorem 7.1.1 (Geigle-Lenzing). A k-linear abelian category satisfying (H1)—

(H5) admits a tilting object T such that T is a direct sum of line bundles and the
endomorphism algebra of T is isomorphic to C(p, ) for some pair p, .

Proof. Fix a k-linear abelian category A satisfying (H1)-(H5). We adapt the proof

of Proposition [6.9.1] and modify the tilting object constructed in that proof as

follows. Consider for each point x; € X with p(z;) > 1 the exact sequence ([6.9.1))
0— L2 — sk 0

in A, where ¢; = A\jpb1 — A\j1bg. We form successively the pullback along the chain
of monomorphisms

(T8 = (TS = = (TS ey (7718 = S

and obtain the following commutative diagram with exact columns.

(7.1.1) 0 0 0 0
L L e L L

¢i
L(l) L(2) . L(Pi_l) - L/

(r71 S —— (TS —— = (TS —— (TS

0 0 0 0

Note that each object Ll(.j ) is a line bundle. It is straightforward to verify that the
object

T=LoLlo(LPe oLV e --o@lPe - oLPD)

8Note that the relations do not generate an admissible ideal of the path algebra, except when
the collection X is empty. In that case C(p, A) equals the Kronecker algebra.
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is a tilting object for A, following the line of arguments in the proof of Proposi-
tion [6.9.1] O

Corollary 7.1.2. Let A be a k-linear abelian category satisfying (H1)—(H5). Then
there exists for some pair p, A an equivalence of derived categories

D’(A) =5 Db(mod C(p, A)). O

7.2. Vector bundle presentations. Let A be a k-linear abelian category satisfy-
ing (H1)—(H4). The category A consisting of the vector bundles in .4 determines
together with its exact structure the category A. In fact, every object A in A
admits a presentation 0 — 47 — Ay — A — 0 with Ag, A; in A,. Introducing ap-
propriate morphisms between complexes in A, , one can make these presentations
functorial.

Lemma 7.2.1. Every object in A is a factor object of an object in Ay .

Proof. Every object of A decomposes into an object of A4 and an object of finite
length. Thus it suffices to show that for an indecomposable object A of finite
length there is an epimorphism F — A with F in A;. We use induction on
the length ¢(A) of A. Up to certain power of 7, the case ¢(A) = 1 follows from
Proposition [6.35 Assume that ¢(A) > 1. Take a maximal subobject A’ C A. By
the induction hypothesis there is an epimorphism ¢: E' — A’. Note that ¢ induces
an epimorphism ExtYy (A/A/, E') — ExtY(A/A’, A"). In particular, we obtain the
following commutative diagram with exact rows.

0 E E AjA 0
ol
0 A’ A A/A 0.

Note that the upper row does not split since A is indecomposable. Thus the mor-
phism E’ — FE induces a bijection Hom4 (S, E') — Hom4(S, F) for each simple
object S. It follows that E belongs to A4, and therefore A is a quotient of an
object in A, . O

The following result says that the subcategory A, determines .A. However, it
is important to notice that one uses the exact structure on A, that is inherited
from A. To be precise, a morphism of complexes in A, is by definition a quasi-
isomorphism if it is a quasi-isomorphism of complexes in A.

Proposition 7.2.2. Let A be a k-linear abelian category satisfying (H1)—(H4).
The inclusion Ay — A induces an equivalence

K'(A4)[qis™'] = DI (A).

Proof. The subcategory A of A is closed under forming extensions and taking
kernels of epimorphisms. Moreover, each object A in A fits into an exact sequence
0—>A,— - — A = Ag — A — 0 with each A; in Ay; see Lemma [T2.1l With
these properties, the assertion follows from [25, Chap. III, Prop. 2.4.3]. O

Corollary 7.2.3. Let F: A, = A, be an equivalence and suppose that a se-
quence € in Ay is exact if and only if F€ is exact. Then F extends uniquely to an
equivalence A =5 A.



COHERENT SHEAVES ON WEIGHTED PROJECTIVE LINES 55

Proof. We apply Proposition Thus the assumption on F' implies that the
functor extends to an equivalence D?(A) = D’(A). This equivalence restricts to
an equivalence A —+ A because A identifies with the full subcategory consisting of
complexes

---—>0—>A1£>A0—>0—>---
with Ap, A1 in Ay and § a monomorphism; see Lemma [[.2.7] O

7.3. Line bundles and tubular mutations. Let A be a k-linear abelian cate-
gory satisfying (H1)-(H5) and Ay = ][, x Az be the decomposition of Ay into
connected uniserial components. For each « € X denote by T, the direct sum of a
representative set of simple objects in A, and set T, = add T,.

Note that 7, is a Hom-finite semisimple abelian category with finitely many
simple objects. Thus each additive functor 7, — modk is representable. This
observation yields two functors d,,&,: A — T, such that for each object A in A

Homy (A, —)|7, & Homry, (ng, —) and EXt}L‘(f, A)|r, =2 Homr, (—,&,A).

Fix an object A in A,. The identity morphism of 6, A corresponds to a mor-
phism A — 6, A. This is an epimorphism and we complete it to an exact sequence
0 — 6,A =+ A — 6,A — 0. On the other hand, the identity morphism of £, A
corresponds to an exact sequence 0 - A — ¢, A — £, A — 0. It is easily checked
that this defines two functors d,,¢,: AL — A.

The following lemma shows that &, and ¢, yield equivalences A, — A .

Lemma 7.3.1. Let £: 0 —+ A — A" — T — 0 be an exact sequence in A with T in
Tz for some x € X. Then the following are equivalent:

é mauces an 18 Al—, — EXt - A an A el()ngs t() .

1 d €S a ] II()II] j ] = A 5 ] d b AJ,-

é mauces an 18 A y — EXt j - ] an A € Ongs t() .

2 d €S a ] II()II] A Tz = A 5 d b l AJ,-
anuc@s an 1so I]Om_A ] y ] — I]Om_A A y T and A D@lo'ngs 150 .

Proof. (1) < (2): Apply Serre duality and observe that 77, = T,.

(1) & (2) = (3): Let S be any simple object in A and apply Hom4 (S, —) to
. Using (1) and the fact that A belongs to A, it follows that Hom 4(S, A’) = 0.
Thus A’ is in A,.

Now let S be any object in T, and apply Hom4(—,S) to £. This yields the
following exact sequence

0 — Homu (T, S) % Hom (4, S) LN Hom4 (4, S) 5 ExtY(T,8) = 0

where « is an isomorphism if and only if «y is an isomorphism. Thus (3) holds.
(3) = (2): The object A is in A4 since Ay is closed under taking subobjects.
The rest follows as before by choosing S in 7T, and applying Hom4(—,S) to §&. O

Proposition 7.3.2. The functors d, and €, form a pair of mutually inverse equiv-
alences A, = A.. Moreover, 6, and . take exact sequences in A, to evact
sequences.

Proof. The first assertion is an immediate consequence of Lemma [Z.3.1l For the
exactness observe that §, and &, are exact when restricted to A,. The exactness
of §, and &, then follows from the 3 x 3 lemma. O

Using Corollary [.2.3] the functors §,,¢e, yield equivalences A —+ A. These
functors are called tubular mutations and were introduced by Lenzing and Meltzer
[19, 21, 18],
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Corollary 7.3.3. The equivalences §,,c,: Ay — Ay extend to a pair of mutually
inverse equivalences A = A. O

Next we show that for each pair of line bundles L, L’ there exists a sequence of
tubular mutations taking L to L’. We need the following proposition which is of
independent interest.

Proposition 7.3.4. Let L be a line bundle. For each x € X there exists up
to isomorphism a unique simple object S, in A, such that Homyu(L,S,) # 0.
Moreover, any non-zero morphism L — S, induces an isomorphism End 4(S,) —
HOmA(L,Sz).

Proof. For the purpose of this proof, call a line bundle L Hom-simple if the assertion
of the proposition holds for L. We begin by showing that a specific line bundle is
Hom-simple.

Fix a sequence of subcategories A C A! C --- C A" = A as in Theorem [6.81]
and choose a line bundle L in A°. Note that the inclusion A — A sends L to a
line bundle of A by Proposition For each z € X, there is at least one simple
object S, € A, with Hom4(L, S,) # 0 by Proposition 635 On the other hand,
the intersection of (A%)% with A, is a Serre subcategory having p(x) — 1 simple
objects. In particular, Hom 4 (L, —) vanishes on them. Thus there is a unique simple
object S, in A, with Hom4 (L, S,) # 0.

Let i,: A — A° denote the right adjoint of the inclusion A° — A. Then 7,5, is
a simple object by Lemma 3Tl Choose a non-zero morphism L — S,,. This yields
the following commutative square, where 7: ¢,5, — S, denotes the adjunction
morphism.

End_Ao (ZpSz) —— Hoon (L, ZpSz)

ip]\ lHomA(La"])

EndA(Sz) — HomA(L, SI)

The map Hom4 (L, 7) is an isomorphism since L belongs to A°, and i, induces an
isomorphism End 4(S;) = End40(i,5,) since i, is a quotient functor and S, is
simple; see Lemma [[ 3.6l Finally observe that A" is equivalent to cohP}. Thus the
induced map End 40(%,55) — Hom 40(L,?,5;) is an isomorphism because we may
assume that L corresponds to the structure sheaf; see Remark [5.6.20 It follows that
End 4(S;) = Hom4 (L, Sy).

Having shown the assertion for a specific line bundle, we apply Lemma to
verify the assertion for an arbitrary line bundle. Thus we need to show that for any
pair L, L’ of line bundles and each monomorphism ¢: L — L’ with cokernel in Ay,
the object L is Hom-simple if and only if L’ is Hom-simple.

Using induction on the length of the cokernel of ¢, we may assume that the
cokernel is simple. The exact sequence 0 — L % I’ = S — 0 induces for each
simple object T" an exact sequence

0 — Homu(S,T) % Homu (L', T) 2> Hom4(L,T) 2 D Hom4(T, 7S) — 0.

If L is Hom-simple, then a simple calculation shows that v is an isomorphism. Thus
a is an isomorphism and it follows that L’ is Hom-simple. The same argument shows
that L is Hom-simple if L’ is Hom-simple. O

The following result is due to Kussin; see [16, Proposition 4.2.3].
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Proposition 7.3.5. Let L,L’ be two line bundles in A. Then there exists an
equivalence A = A taking L to L'. In particular, each line bundle is exceptional.

Proof. We apply Lemmal6.3.6 Thus we may assume that there is an exact sequence
£:0— L — L' - C — 0 with C of finite length. Using induction on the length
of C, we may even assume that C is simple. Suppose that C belongs to A, with
x € X. Then ¢ induces an isomorphism Hom(—,C)|r, — Ext%(—,L)|r, by
Proposition [[L3.4] and Serre duality. Thus L' = e,L and the tubular mutation
given by e, sends L to L'; see Corollary [7.3.3 O

7.4. Weight functions. Let k be a field and A a k-linear abelian category satisfy-
ing (H1)—(H5). We associate to A a weight function and show that it is an invariant
of A which determines A up to equivalence.

In the following we identify the projective linear group PGL(2, k) with AutPj;
see Proposition (.71

A weight function w: P} — 7 is a map which assigns to each closed point x of P}
a positive integer w(z) such that w(z) = 1 for almost all . Two weight functions
w,w’ are equivalent if there exists some linear transformation o € PGL(2, k) such
that w'(x) = w(ox) for every closed point z. Given a collection A = (Ay,...,A,) of
distinct closed points A; € P}C, and a sequence p = (p1,...,p,) of positive integers,
there is associated a weight function wp x, where wp A(A;) = p; for 1 <4 <n and
wp,a(z) =1 otherwise.

It follows from our convention that each weight function w corresponding to a
weighted projective line satisfies w(z) = 1 if the point x is not rational.

Theorem 7.4.1 (Lenzing). Let A be a k-linear abelian category satisfying (H1)—
(H5). For each line bundle L, there exists a canonicallgﬂ defined tilting object T,
which is unique up to isomorphism. Moreover:

(1) The object Ty, determines parameters p, A such that End4(Tr) = C(p, A).
The parameters p, A depend on a choice and any other choice gives param-
eters p', X' such that the weight functions wp x and Wy A are equivalent.

(2) Let M be a second line bundle. Then there exists an equivalence A —»
A taking L to M. Thus End4(Tr) is isomorphic to End4(Tyr) and the
associated weight functions are equivalent.

Proof. Let (z1,...,2,) be the collection of distinct points x € X with p(z) > 1
and set p = (p1,...,pn) With p; = p(x;) for each i. We apply Proposition [(.3.4]
and choose for each i a simple object S; = Sz, such that Hom4(L, S;) # 0. Thus
Exti‘(T’lSi, L) # 0 by Serre duality, and Lemma [6.3.2] yields a chain of monomor-
phism

(7.4.1) AN SO RN SO NN 2

with Cokert; = 7775; for all j. Note that each object LZ(-j ) is a line bundle and
therefore exceptional.

The class [LZ(-p i)] = [L] - Zf(jl) [77.5;] does not depend on i since the inclusion
Ko(A%) — Ko(A) sends the class of the simple object S} of A2, to Zf(jl) [775;]; see
Lemma A3l Here, we use that S} is a simple object of degree one; so its class in

Ko(A%) is independent of i by Lemma[B.7.3l Thus the object LZ(-p ) does not depend
on ¢ by Proposition [6.4.2] and we denote it by L'.

9This canonical choice provides another justification for the term ‘canonical algebra’.
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The construction of the LZ(-] ) is parallel to the construction in the proof of The-
orem [(.TT] and we refer to the commutative diagram (ZL]) illustrating it.

Next observe that each object Ll(.] ) depends only on L and z; because its class
has this property and the object is exceptional. Thus the object

Ty, :LQBL’EB(LEI)@...@Lgpl_l))@...@@;l)@...@Lgpnﬂ))

depends up to isomorphism only on L. In particular, the object equals up to
equivalence the tilting object constructed in the proof of Theorem [Tl because
for each pair of line bundles M, N there exists an equivalence A — A taking M to
N, by Proposition [[.35 Tt follows that T is a tilting object for A.

(1) Choosing a basis by, by of Hom 4(L, L"), we obtain rational points A; = [M\o :
Ai1] in P} such that ¢; = Ajob1 — \i1bo, where ¢; is the composite of the morphisms
in (T4IJ)). Note that each ¢; depends on the choice of the ;, but it is unique
up to a non-zero scalar. It follows that End 4(77) is isomorphic to C(p, ), where
A= (A1,...,A\n). Any other choice of the basis by, b gives another set of parameters
A" and a linear transformation o € PGL(2, k) such that A\, = o();) for each 7. Thus
the weight function wp x is unique up to equivalence.

(2) Apply Proposition [[35] d

Remark 7.4.2. There is an analogue of Theorem [T.4.1] with the canonical algebra
C(p, A) replaced by the squid algebra Sq(p, A).

The following example gives an explicit description of the tilting object for the
category of coherent sheaves on a weighted projective line; see [10, Proposition 4.1].

Example 7.4.3. Let X = (P}, \,p) be a weighted projective line. Then Tp =
D« 7<= O(Z) is the tilting object for coh X that is associated to the line bundle O.
The endomorphism algebra is isomorphic to the canonical algebra C(p, A).

It is now a consequence of Theorem [[.4.1] that a k-linear abelian category satis-
fying (H1)—(H5) is determined up to equivalence by its associated weight function.

Corollary 7.4.4. For two weighted projective lines X = (P, A, p) and X' =
(PL, X', p’) over a field k, the following are equivalent:

(1) The weight functions wp x and wp x are equivalent.

(2) The algebras C(p,A) and C(p’,X) are isomorphic.

(3) The categories coh X and coh X' are equivalent.
Proof. (1) = (2): Suppose that wp x and wp x are equivalent via some linear
transformation o = [ 5% ] in PGL(2, k). Thus we may assume that the points
of X and X" are related via o(\;) = X, for 1 < i < n. The algebra C(p, ) is
generated by a collection of arrows by, b1, z;; analogously C(p’, \’) is generated by
arrows bj), bj, z}. We obtain an isomorphism f: C(p,A) — C(p’,\’) by defining
f(bo) = 0’11[)6 - 0’01511, f(bl) = 0‘00[)/1 — 0‘10[)6 and f(:z:z) = x; (1 S 7 S n)

(2) = (3): The category cohX admits a tilting object T' with endomorphism

algebra C(p, A), which is obtained from the tilting object

0e0@a e asP Ne...o6We. . osP-1)

by modifying it as in the proof of Theorem [Tl Analogously, cohX’ admits
a tilting object 7" with endomorphism algebra C(p’,X’). If both algebras are
isomorphic, then Proposition [6.6.3] implies that coh X and coh X’ are equivalent.
(3) = (1): Suppose that there is an equivalence F': cohX — cohX'. We apply
Theorem [.Z.Jl Thus the functor F takes for any line bundle L of coh X the canon-
ically defined tilting object 17, to Trr. The associated weight function for 77, is
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equivalent to wp,x, whereas for Try, it is equivalent to wp/ x. It follows that wp x
and wp x are equivalent. O

8. FURTHER TOPICS

In this section we list a few topics which have attracted interest in the past, and
which are areas of present research. The lists of papers is certainly not complete
and we refer to the references in the listed papers for more information.

1. The classification of indecomposable vector bundles on weighted projective lines:
the trichotomy ‘domestic/tubular/wild’ based on the Euler characteristic.

W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation
theory of finite-dimensional algebras, in Singularities, representation of algebras, and vec-
tor bundles (Lambrecht, 1985), 265-297, Lecture Notes in Math., 1273, Springer, Berlin,
1987.

H. Lenzing and J. A. de la Pena, Wild canonical algebras, Math. Z. 224 (1997), no. 3,
403-425.

H. Lenzing, Hereditary categories, in Handbook of tilting theory, 105-146, Cambridge Univ.
Press, Cambridge, 2007.

2. Noncommutative curves of genus zero: the study of weighted projective lines
over arbitrary base fields.

H. Lenzing, Representations of finite dimensional algebras and singularity theory, in
Trends in ring theory (Miskolc, 1996), 71-97, Amer. Math. Soc., Providence, RI, 1998.

H. Lenzing and J. A. de la Pefia, Concealed-canonical algebras and separating tubular
families, Proc. London Math. Soc. (3) 78 (1999), no. 3, 513-540.

D. Kussin, Noncommutative curves of genus zero: related to finite dimensional algebras,
Mem. Amer. Math. Soc. 201 (2009), no. 942, x+128 pp.

3. Graded singularities: the study of weighted projective lines in terms of graded
singularities (maximal Cohen-Macaulay modules, vector bundles, the triangulated
category of singularities in the sense of Buchweitz and Orlov).

H. Kajiura, K. Saito and A. Takahashi, Matrix factorization and representations of quivers.
II. Type ADEFE case, Adv. Math. 211 (2007), no. 1, 327-362.

H. Lenzing and J. A. de la Pena, Extended canonical algebras and Fuchsian singularities,
arXiv:math/0611532, Math. Z., to appear.

H. Lenzing and J. A. de la Pefia, Spectral analysis of finite dimensional algebras and
singularities, in Trends in representation theory of algebras and related topics, 541-588,
Eur. Math. Soc., Ziirich, 2008.

A. Takahashi, Weighted projective lines associated to regular systems of weights of dual
type, larXiv:0711.3907, Adv. Stud. Pure Math., to appear.

4. Kac’s theorem, Hall algebras: the theorem characterizes the dimension types
of indecomposable coherent sheaves over weighted projective lines in terms of loop
algebras of Kac-Moody Lie algebras; the proof uses Hall algebras.

W. Crawley-Boevey, Kac’s Theorem for weighted projective lines, jarXiv:math/0512078,
J. Eur. Math. Soc., to appear.

W. Crawley-Boevey, Quiver algebras, weighted projective lines, and the Deligne-Simpson
problem, in International Congress of Mathematicians. Vol. II, 117-129, Eur. Math.
Soc., Ziirich, 2006.

O. Schiffmann, Noncommutative projective curves and quantum loop algebras, Duke
Math. J. 121 (2004), no. 1, 113-168.
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http://arxiv.org/abs/math/0512078
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dehomogenization, 36
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derived equivalence, 16
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global, 10

injective, 9

projective, 9
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essential image, 3
Euler form, 24
discriminant of, 24
expansion, 27
division ring of, 28
split, 27
Ext-quiver, 10

functor
k-linear, 14
additive, 3
exact, 3

Gabriel quiver, 10
Grothendieck group, 22

homotopy category, 16

ideal, 16
isometry, 24

kernel, 3

left expansion, 26
length, 10
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length category, 10
line bundle, 42
localization, 5

module
twisted, 35
morphism
irreducible, 13

null-homotopic, 16
Nakayama functor, 22

object
artinian, 10
colocalizable, 27
exceptional, 45
finite length, 10
localizable, 26
noetherian, 10
simple, 7
torsion, 41
torsion-free, 41
uniserial, 11

perpendicular category, 7
point

closed, 33, 34

generic, 33, 34

local ring at, 38

rational, 34

residue field of, 38
projective linear group, 39

quasi-isomorphism, 16
quotient category, 4
quotient functor, 4

rank, 42

repetitive category, 17
right approximation, 19
right expansion, 26

sequence
exact, 3
Serre duality, 14, 22
Serre functor, 14, 22
Serre subcategory, 4
sheaf
locally free, 35
sections of, 34
torsion, 36
twisted, 35
shift, 16
squid algebra, 51
stalk, 38
structure sheaf, 35
subcategory
exact abelian, 25
support, 38

tilting object, 19
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tubular mutation, 55
universal extension, 19
vector bundle, 35, 41

weight function, 57
equivalent, 57

weight sequence, 1, 41

weighted projective line, 1, 41
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