Retractions and Gorenstein Homological Properties

Xiao-Wu Chen and Yu Ye, USTC

ICRA, 2012/Bielefeld

Xiao-Wu Chen and Yu Ye, USTC Retractions and Gorenstein Homological Properties

- 4 同 ト 4 ヨ ト 4 ヨ ト

2 Gorenstein Homological Properties

(4月) (4日) (4日)

Localizable modules

• A an artin algebra

イロン イヨン イヨン イヨン

Localizable modules

- A an artin algebra
- A-mod = the category of finite generated left A-modules

イロト イヨト イヨト イヨト

Localizable modules

- A an artin algebra
- A-mod = the category of finite generated left A-modules
- localizable A-module S: simple with $\operatorname{proj.dim}_{\mathcal{A}} S \leq 1$ and $\operatorname{Ext}_{\mathcal{A}}^1(S,S) = 0$

イロト イポト イヨト イヨト

Localizable modules

- A an artin algebra
- A-mod = the category of finite generated left A-modules
- localizable A-module S: simple with $\operatorname{proj.dim}_{\mathcal{A}} S \leq 1$ and $\operatorname{Ext}^1_{\mathcal{A}}(S,S) = 0$
- following [Geigle-Lenzing 1991], the *perpendicular subcategory* $S^{\perp} = \{{}_{A}X \mid \operatorname{Hom}_{A}(S, X) = 0 = \operatorname{Ext}_{A}^{1}(S, X)\}$

Localizable modules

- A an artin algebra
- A-mod = the category of finite generated left A-modules
- localizable A-module S: simple with $\operatorname{proj.dim}_{\mathcal{A}} S \leq 1$ and $\operatorname{Ext}^1_{\mathcal{A}}(S,S) = 0$
- following [Geigle-Lenzing 1991], the *perpendicular subcategory* $S^{\perp} = \{{}_{A}X \mid \operatorname{Hom}_{A}(S, X) = 0 = \operatorname{Ext}_{A}^{1}(S, X)\}$
- an equivalence $S^{\perp} \simeq A \operatorname{-mod}/\operatorname{add} S$

Left retractions of algebras

there is an algebra homomorphism *ι*: A → L(A) such that the functor *i* = Hom_{L(A)}(L(A), -) induces an equivalence L(A)-mod ≃ S[⊥].

Left retractions of algebras

- there is an algebra homomorphism *ι*: A → L(A) such that the functor *i* = Hom_{L(A)}(L(A), -) induces an equivalence L(A)-mod ≃ S[⊥].
- the functor *i* admits an exact left adjoint $i_{\lambda}: A \text{-mod} \to L(A) \text{-mod}$, or equivalently, $L(A)_A$ is flat.

Left retractions of algebras

- there is an algebra homomorphism *ι*: A → L(A) such that the functor *i* = Hom_{L(A)}(L(A), -) induces an equivalence L(A)-mod ≃ S[⊥].
- the functor *i* admits an exact left adjoint $i_{\lambda}: A \text{-mod} \rightarrow L(A) \text{-mod}$, or equivalently, $L(A)_A$ is flat.
- We call *ι*: A → L(A) the *left retraction* of algebras associated to S; compare [C.-Krause 2011]

Left retractions of algebras

- there is an algebra homomorphism *ι*: A → L(A) such that the functor *i* = Hom_{L(A)}(L(A), -) induces an equivalence L(A)-mod ≃ S[⊥].
- the functor *i* admits an exact left adjoint i_{λ} : *A*-mod $\rightarrow L(A)$ -mod, or equivalently, $L(A)_A$ is flat.
- We call *ι*: A → L(A) the *left retraction* of algebras associated to S; compare [C.-Krause 2011]
- Remark: L(A) is Morita equivalent to eAe for an idempotent e

A recollement

ι: A → L(A) is a left localization [Silver 1967], and thus a homological epimorphism [Geigle-Lenzing 1991]: an embedding of derived categories induced by *i*: L(A)-mod → A-mod

 $\mathbf{D}^{b}(L(A)\operatorname{-mod}) \rightarrow \mathbf{D}^{b}(A\operatorname{-mod})$

イロト イポト イヨト イヨト

A recollement

ι: A → L(A) is a left localization [Silver 1967], and thus a homological epimorphism [Geigle-Lenzing 1991]: an embedding of derived categories induced by *i*: L(A)-mod → A-mod

$$\mathbf{D}^{b}(L(A)\operatorname{-mod}) \rightarrow \mathbf{D}^{b}(A\operatorname{-mod})$$

• $\iota: A \to L(A)$ induces a recollement

 $\mathsf{D}^{b}(\mathcal{L}(\mathcal{A})\operatorname{-mod}) \xrightarrow{\longleftarrow} \mathsf{D}^{b}(\mathcal{A}\operatorname{-mod}) \xrightarrow{\longleftarrow} \mathsf{D}^{b}(\Delta\operatorname{-mod})$

where $\Delta = \operatorname{End}_{\mathcal{A}}(S)^{\operatorname{op}}$; compare [C.-Krause 2011].

Singularity categories

following [Buchweitz 1987/Orlov 2003]: the singularity category of A is D_{sg}(A) = D^b(A-mod)/perf(A)

イロン イヨン イヨン イヨン

Singularity categories

- following [Buchweitz 1987/Orlov 2003]: the singularity category of A is D_{sg}(A) = D^b(A-mod)/perf(A)
- a *singular equivalence* means a triangle equivalence between singularity categories

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Singularity categories

- following [Buchweitz 1987/Orlov 2003]: the singularity category of A is D_{sg}(A) = D^b(A-mod)/perf(A)
- a *singular equivalence* means a triangle equivalence between singularity categories
- the left retraction $\iota: A \to L(A)$ induces a singular equivalence

$$\mathsf{D}_{\mathrm{sg}}(L(A)) \simeq \mathsf{D}_{\mathrm{sg}}(A)$$

Gorenstein projective modules

• An A-module G is Gorenstein projective (or MCM) provided that $\operatorname{Ext}_{A}^{i}(G, A) = 0 = \operatorname{Ext}_{A^{\operatorname{op}}}^{i}(G^{*}, A)$ for $i \geq 1$ and G is reflexive, where $G^{*} = \operatorname{Hom}_{A}(G, A)$; [Auslander-Bridger 1969/ Enochs-Jenda 1995]

A (10) A (10)

Gorenstein projective modules

• An A-module G is Gorenstein projective (or MCM) provided that $\operatorname{Ext}_{A}^{i}(G, A) = 0 = \operatorname{Ext}_{A^{\operatorname{op}}}^{i}(G^{*}, A)$ for $i \geq 1$ and G is reflexive, where $G^{*} = \operatorname{Hom}_{A}(G, A)$; [Auslander-Bridger 1969/ Enochs-Jenda 1995]

•
$$A$$
-proj $\subseteq A$ -Gproj $\subseteq A$ -mod

A (10) A (10)

Gorenstein Homological Properties Nakayama Algebras

Gorenstein projective modules

• An A-module G is Gorenstein projective (or MCM) provided that $\operatorname{Ext}_{A}^{i}(G, A) = 0 = \operatorname{Ext}_{A^{\operatorname{op}}}^{i}(G^{*}, A)$ for $i \geq 1$ and G is reflexive, where $G^{*} = \operatorname{Hom}_{A}(G, A)$; [Auslander-Bridger 1969/ Enochs-Jenda 1995]

•
$$A$$
-proj $\subseteq A$ -Gproj $\subseteq A$ -mod

• A-Gproj is Frobenius, and thus A-Gproj is triangulated

Gorenstein Homological Properties Nakayama Algebras

Gorenstein projective modules

• An A-module G is Gorenstein projective (or MCM) provided that $\operatorname{Ext}_{A}^{i}(G, A) = 0 = \operatorname{Ext}_{A^{\operatorname{op}}}^{i}(G^{*}, A)$ for $i \geq 1$ and G is reflexive, where $G^{*} = \operatorname{Hom}_{A}(G, A)$; [Auslander-Bridger 1969/ Enochs-Jenda 1995]

•
$$A$$
-proj $\subseteq A$ -Gproj $\subseteq A$ -mod

- A-Gproj is Frobenius, and thus A-Gproj is triangulated
- there exists a canonical triangle embedding

$$F_A: A$$
-Gproj \rightarrow **D**_{sg}(A);

[Buchweitz 1987/Keller-Vossieck 1987/Happel 1991]

Gorenstein algebras

• Gorenstein algebras: algebras with finite self-injective dimension on both sides

Gorenstein algebras

- Gorenstein algebras: algebras with finite self-injective dimension on both sides
- Gorensteinness ⇔ finite resolutions by Gorenstein projectives

- 4 同 6 4 日 6 4 日 6

Gorenstein algebras

- Gorenstein algebras: algebras with finite self-injective dimension on both sides
- Gorensteinness ⇔ finite resolutions by Gorenstein projectives
 ⇔ the functor F_A: A-<u>Gproj</u> → D_{sg}(A) is dense, and thus a triangle equivalence

Gorenstein homological properties: a trichotomy

• CM-free algebras: Gorenstein projective = projective, or equivalently, *A*-Gproj is trivial.

Gorenstein homological properties: a trichotomy

- CM-free algebras: Gorenstein projective = projective, or equivalently, *A*-Gproj is trivial.
- Gorenstein + CM-free = finite global dimension

A (10) A (10)

Gorenstein homological properties: a trichotomy

- CM-free algebras: Gorenstein projective = projective, or equivalently, *A*-Gproj is trivial.
- Gorenstein + CM-free = finite global dimension
- a trivial trichotomy from Gorenstein homological algebra:
 - (1) Gorenstein algebras
 - (2) non-Gorenstein CM-free algebras
 - (3) non-Gorenstein algebras, that are not CM-free

- 4 同 6 4 日 6 4 日 6

The results

イロン イヨン イヨン イヨン

æ

Theorem

Let S, L(A) be as above. Then A is Gorenstein if and only if L(A) is Gorenstein and proj.dim $L(A) \otimes_A E(S) < \infty$.

Theorem

Let S, L(A) be as above. Then A is Gorenstein if and only if L(A) is Gorenstein and proj.dim $L(A) \otimes_A E(S) < \infty$.

Remark: Similar results appear in [Nagase 2011] in different terminology.

Theorem

Let S, L(A) be as above. Then A is Gorenstein if and only if L(A) is Gorenstein and proj.dim $L(A) \otimes_A E(S) < \infty$.

Remark: Similar results appear in [Nagase 2011] in different terminology.

Proposition

The CM-freeness of L(A) implies the CM-freeness of A.

イロン イヨン イヨン イヨン

Theorem

Let S, L(A) be as above. Then A is Gorenstein if and only if L(A) is Gorenstein and proj.dim $L(A) \otimes_A E(S) < \infty$.

Remark: Similar results appear in [Nagase 2011] in different terminology.

Proposition

The CM-freeness of L(A) implies the CM-freeness of A.

The proof: the functor i_{λ} : *A*-mod $\rightarrow L(A)$ -mod sends Gorenstein projectives to Gorenstein projectives

• A a connected Nakayama algebra: Q(A) is a line or an oriented cycle

イロト イヨト イヨト イヨト

æ

- A a connected Nakayama algebra: Q(A) is a line or an oriented cycle
- the admissible sequence of A: $c(A) = (c_1, c_2, \dots, c_n)$, where n = n(A) the number of simples, $c_i = l(P_i)$ and $P_{i+1} = P(\operatorname{rad} P_i)$.

ヘロン 人間と 人間と 人間と

- A a connected Nakayama algebra: Q(A) is a line or an oriented cycle
- the admissible sequence of A: $c(A) = (c_1, c_2, \dots, c_n)$, where n = n(A) the number of simples, $c_i = l(P_i)$ and $P_{i+1} = P(\operatorname{rad} P_i)$.
- c(A) is normalized if $c_n = 1$ (line algebra), $c_1 = \cdots = c_n$ (self-injective algebra), or $c_1 \leq c_j$ and $c_n = c_1 + 1$ (the interesting case).

- A a connected Nakayama algebra: Q(A) is a line or an oriented cycle
- the admissible sequence of A: $c(A) = (c_1, c_2, \dots, c_n)$, where n = n(A) the number of simples, $c_i = l(P_i)$ and $P_{i+1} = P(\operatorname{rad} P_i)$.
- c(A) is normalized if $c_n = 1$ (line algebra), $c_1 = \cdots = c_n$ (self-injective algebra), or $c_1 \leq c_j$ and $c_n = c_1 + 1$ (the interesting case).
- from now on, assume that A is non-self-injective and c(A) is normalized.

Retractions of Nakayama algebras

• $S = S_n$ is localizable: $0 \rightarrow P_1 \rightarrow P_n \rightarrow S_n \rightarrow 0$

イロト イヨト イヨト イヨト

æ

Retractions of Nakayama algebras

- $S = S_n$ is localizable: $0 \rightarrow P_1 \rightarrow P_n \rightarrow S_n \rightarrow 0$
- L(A) is connected Nakayama with n(L(A)) = n 1 and $c(L(A)) = (c'_1, c'_2, \cdots, c'_{n-1})$, where $c'_j = c_j [\frac{c_j+j-1}{n}]$.

- 4 同 6 4 日 6 4 日 6

Retractions of Nakayama algebras

- $S = S_n$ is localizable: $0 \rightarrow P_1 \rightarrow P_n \rightarrow S_n \rightarrow 0$
- L(A) is connected Nakayama with n(L(A)) = n 1 and $c(L(A)) = (c'_1, c'_2, \cdots, c'_{n-1})$, where $c'_j = c_j [\frac{c_j+j-1}{n}]$.
- Similar consideration in [Zacharia 1983/Burgess-Fuller-Voss-Zimmmermann 1985/Nagase 2011]

Retractions of Nakayama algebras

- $S = S_n$ is localizable: $0 \rightarrow P_1 \rightarrow P_n \rightarrow S_n \rightarrow 0$
- L(A) is connected Nakayama with n(L(A)) = n 1 and $c(L(A)) = (c'_1, c'_2, \cdots, c'_{n-1})$, where $c'_j = c_j [\frac{c_j+j-1}{n}]$.
- Similar consideration in [Zacharia 1983/Burgess-Fuller-Voss-Zimmmermann 1985/Nagase 2011]
- set *r*(*A*) to be the number of simples with infinite projective dimension

A retraction sequence

イロン イヨン イヨン イヨン

æ

A retraction sequence

Theorem

There is a sequence of of homomorphisms between connected Nakayama algebras

$$A = A_0 \xrightarrow{\eta_0} A_1 \xrightarrow{\eta_1} A_2 \longrightarrow \cdots \xrightarrow{\eta_{r-1}} A_r$$
(1)

such that each η_i is a left retraction, and A_r is self-injective. If gl.dim $A = \infty$, r = r(A) and A_r is unique up to isomorphism.

イロン イヨン イヨン イヨン

A retraction sequence

Theorem

There is a sequence of of homomorphisms between connected Nakayama algebras

$$A = A_0 \xrightarrow{\eta_0} A_1 \xrightarrow{\eta_1} A_2 \longrightarrow \cdots \xrightarrow{\eta_{r-1}} A_r$$
(1)

such that each η_i is a left retraction, and A_r is self-injective. If gl.dim $A = \infty$, r = r(A) and A_r is unique up to isomorphism.

Corollary

A triangle equivalence $\mathbf{D}_{sg}(A) \simeq A_r \operatorname{-mod}$, a truncated tube of rank n(A) - r(A).

Dichotomy for Nakayama algebras: n(A) = 2

for a non-self-injective algebra A, c(A) = (c, c + 1)

イロト イポト イヨト イヨト

for a non-self-injective algebra A, c(A) = (c, c + 1)

Proposition

We are in two cases.

- c(A) = (2k, 2k + 1), A is Gorenstein with self-injective dimension two;
- 2 c(A) = (2k + 1, 2k + 2), A is non-Gorenstein CM-free.

for a non-self-injective algebra A, c(A) = (c, c + j, c + 1) for j = -1, 0, 1.

イロト イポト イヨト イヨト

for a non-self-injective algebra A, c(A) = (c, c + j, c + 1) for j = -1, 0, 1.

Proposition

• A Gorenstein: $\mathbf{c}(A) = (2,2,3), (2,4,3), (3k,3k,3k+1), (3k,3k+1,3k+1), (3k,3k+2,3k+1) \text{ or } (3k+1,3k+2,3k+2) \text{ for } k \ge 1;$

2 A non-Gorenstein CM-free:
$$\mathbf{c}(A) = (2,3,3)$$
,
 $(3k + 1, 3k + 1, 3k + 2)$, $(3k + 1, 3k + 3, 3k + 2)$,
 $(3k + 2, 3k + 2, 3k + 3)$ or $(3k + 2, 3k + 4, 3k + 3)$ for $k \ge 1$;

 in case (3), all indecomposable non-projective Gorenstein projective modules are S₂^[3m], 1 ≤ m ≤ k.

- in case (3), all indecomposable non-projective Gorenstein projective modules are S₂^[3m], 1 ≤ m ≤ k.
- The proof uses some results in [Gustafson 1985].

・ロト ・ 同ト ・ ヨト ・ ヨト

- in case (3), all indecomposable non-projective Gorenstein projective modules are S₂^[3m], 1 ≤ m ≤ k.
- The proof uses some results in [Gustafson 1985].
- more classification/ information on Gorenstein projective modules over Nakayama algebras is in [Ringel, 2012], using minimal projective modules and resolution quivers!

Thank You!

http://home.ustc.edu.cn/~xwchen

(日) (部) (E) (E)

æ