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Abstract.We call a triangulated category hereditary provided that it is equivalent to the bounded
derived category of a hereditary abelian category, where the equivalence is required to commute
with the translation functors. If the triangulated category is algebraical, we may replace the
equivalence by a triangle equivalence. We give two intrinsic characterizations of hereditary
triangulated categories using a certain full subcategory and the non-existence of certain paths.
We apply them to piecewise hereditary algebras.
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1. Introduction

Hereditary abelian categories play a central role in the representation theory of finite
dimensional algebras. They are related to piecewise hereditary algebras, an important
class of algebras. If the ground field is algebraically closed and the hereditary abelian
category has a tilting object, then up to derived equivalence, it is the module category
of a path algebra or the category of coherent sheaves on a weighted projective line;
see [9].

We aim to characterize the bounded derived category of a hereditary abelian
category among arbitrary triangulated categories. These triangulated categories
should be called hereditary. More precisely, we call a triangulated category D

hereditary provided that there is an equivalence F between D and the bounded
derived category of a hereditary abelian category, where F is required to commute
with the translation functors. A prior the equivalence F may not be a triangle
equivalence. However, if the triangulated category D is algebraical, that is,
triangle equivalent to the stable category of a Frobenius category, we can replace
the equivalence F by a triangle equivalence.

The main results are two intrinsic characterizations of hereditary triangulated
categories; see Theorems 2.3 and 5.1: one uses a certain full subcategory in the
triangulated category, and the other uses the non-existence of a certain path in
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the triangulated category. These results give new characterizations to piecewise
hereditary algebras.

The paper is structured as follows. In Section 2, we characterize hereditary
triangulated categories using hereditary t -structures and prove Theorem 2.3. In
Section 3, we prove that if the given triangulated category is algebraical, then the
equivalence F mentioned above might be replaced by a triangle equivalence; see
Theorem 3.3. This relies on an existence result in [3] on the realization functor for
a given t -structure. In Section 4, we study paths in a triangulated category. If the
category is a block, that is, indecomposable as a triangulated category, the existence
of a certain path is proved in Proposition 4.9. In Section 5, we prove Theorem 5.1.
We give some applications to piecewise hereditary algebras in the end.

2. Hereditary triangulated categories

In this section, we give various characterizations to hereditary triangulated categories.
In particular, a triangulated category is hereditary if and only if it has a hereditary
t -structure.

2.1. Hereditary t-structures. Let D be a triangulated category with its translation
functor denoted by Œ1�. We denote by Œ�1� the quasi-inverse of Œ1�. For two full
subcategories U and V , we denote by U ? V the full subcategory consisting of
those objects X that fit into an exact triangle U ! X ! V ! U Œ1� with U 2 U

and V 2 V . The operation ? is associative; see [4, Subsection 1.3.9].
Recall from [4, Section 1.3] that a t -structure on D is a pair .D�0;D�0/ of full

additive subcategories satisfying the following conditions:
(T1) HomD.X; Y Œ�1�/ D 0 for all X 2 D�0 and Y 2 D�0;
(T2) D�0 is closed under Œ1�, and D�0 is closed under Œ�1�;
(T3) For each X 2 D , there is an exact triangle A ! X ! BŒ�1� ! AŒ1� with

A 2 D�0 and B 2 D�0.
Set A D D�0\D�0 to be the heart of the t -structure, which is an abelian category.
Moreover, a sequence

�W 0! X
f
! Y

g
! Z ! 0

in A is exact if and only if there is an exact triangle X
f
! Y

g
! Z

!
! XŒ1� in D .

Indeed, the triangle is unique, since such a morphism ! is uniquely determined by f
and g. Then we have an induced isomorphism

Ext1A.Z;X/ �! HomD

�
Z;XŒ1�

�
; Œ�� 7! !: (2.1)

Here, Œ�� denotes the equivalence class of � in Ext1A.Z;X/. We refer to [4, Théo-
rème 1.3.6] for details.
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Let .D�0;D�0/ be a t -structure on D . Set D�n D D�0Œ�n� and D�n D

D�0Œ�n�, n 2 Z. Recall that the truncation functors

��0WD �! D�0 and ��1WD �! D�1

are the right adjoint and the left adjoint of the inclusion functors

incWD�0
! D and incWD�1

! D ;

respectively.
In general, one defines

��nWD �! D�n and ��nC1WD �! D�nC1

by
��n D Œ�n� ı ��0 ı Œn� and ��nC1 D Œ�n� ı ��1 ı Œn�;

respectively. Then ��n and ��nC1 coincide with the truncation functors associated
to the shifted t -structure .D�n;D�n/. In particular, for each object X , the triangle
in (T3) yields an exact triangle

��nX �! X �! ��nC1X
c
�! .��nX/Œ1�; (2.2)

where the morphisms yield natural transformations between functors. The nth
cohomological functor HnWD ! A is defined to be Hn.X/ D .��n��n/.X/Œn�.
We observe thatHn.X/ ' H 0.XŒn�/.

The t -structure .D�0;D�0/ is called bounded, if for each X 2 D , there exist
m � n such thatX 2 D�n\D�m. We observe that an objectX lies in D�n\D�m

if and only ifHp.X/ D 0 for p < m or p > n. Moreover, we have

D�n
\D�m

D AŒ�m� ?AŒ�.mC 1/� ? � � � ?AŒ�n�: (2.3)

Inspired by [15, Section 6], we call a bounded t -structure .D�0;D�0/ hereditary,
provided that HomD.X; Y Œn�/ D 0 for n � 2 andX; Y 2 A. Hereditary t -structures
are called split in [5, Definition 4.1].

The following result is essentially due to [15, Proposition 1b)].
Lemma 2.1. Let .D�0;D�0/ be a hereditary t -structure on D with its heart A.
Then the abelian category A is hereditary and each object X 2 D is isomorphic
to
L

p2ZH
p.X/Œ�p�.

Proof. Indeed, by the isomorphism (2.1) the functor Ext1A.Z;�/ is right exact for
each object Z in A. This implies that the abelian category A is hereditary.

We observe that an objectA inD�nC1 necessarily lies inD�r\D�nC1 for some
r > nC1. Similarly, an objectB inD�n�1 lies inD�n�1\D�s for some s < n�1.
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By (2.3) and the hereditary assumption, we infer thatHomD.A;B/ D 0. In particular,
the morphism c in (2.2) vanishes. Then the triangle (2.2) splits and thus

X ' ��nX ˚ ��nC1X:

To prove the last statement, we use induction on l.X/, the cardinality of the set

fp 2 Z j Hp.X/ ¤ 0g:

If l.X/ D 1, we assume that Hp.X/ ¤ 0. Then X lies in D�p \D�p . It follows
that X ' Hp.X/Œ�p�. In general, we take the largest p with Hp.X/ ¤ 0. We
observe that l.��p�1X/ D l.X/ � 1 and l.��pX/ D 1. Applying the induction, we
are done by the isomorphism X ' ��p�1X ˚ ��pX .

The canonical example is as follows.
Example 2.2. Let A be an abelian category. The bounded derived category Db.A/

has a canonical t -structure with

Db.A/�0
D fX 2 Db.A/ j H i .X/ D 0 for i > 0g

and Db.A/�0
D fX 2 Db.A/ j H i .X/ D 0 for i < 0g:

Here,H i denotes the i th cohomology of a complex. The heart is naturally identified
with A. Here, the abelian category A is canonically embedded into Db.A/ by
sending each object A to the stalk complex concentrated on degree zero, which is
still denoted by A.

The canonical t -structure is bounded. Moreover, it is hereditary if and only if
the category A is hereditary. In this case, each object X in Db.A/ is isomorphic toL

i2ZH
p.X/Œ�p� by Lemma 2.1; compare [18, Subsection 1.6].

2.2. Characterizations of hereditary triangulated categories. Let D be a tri-
angulated category. For a full subcategory S , we denote by add S the smallest
additive subcategory containingS and closed under isomorphisms. We do not require
that add S is closed under direct summands. Let S 0 be another full subcategory.
By HomD.S ;S

0/ D 0, we mean that HomD.X; Y / D 0 for each object X 2 S

and Y 2 S 0.
Theorem 2.3. Let D be a triangulated category with A its full additive subcategory.
The following statements are equivalent:
(1) There is a hereditary t -structure on D with A its heart.
(2) D D add .

S
n2Z AŒn�/ and HomD.A;AŒm�/ D 0 for m < 0.

(3) The category A is hereditary abelian with an equivalence F WDb.A/ ! D

of categories, which commutes with the translation functors and respects the
canonical embedding of A into Db.A/.
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We will call a triangulated category D hereditary provided that there is a full
additive subcategory A satisfying one of the above equivalent conditions.

Proof. The implication “.1/) .2/” follows from Lemma 2.1. Example 2.2 implies
“.3/) .1/”.

For “.2/) .1/”, we observe first that any object X 2 A \ .AŒn�/ is necessarily
zero for nonzero n. Set

D�0
D add

�S
n�0 AŒn�

�
and D�0 D add

�S
n�0 AŒn�

�
:

We claim that .D�0;D�0/ is a bounded t -structure on D . Indeed, the conditions
(T1) and (T2) are immediate. Take any object X 2 D . By the assumption, we
have X D A ˚ .BŒ�1�/ with A 2 D�0 and B 2 D�0. Then the split triangle
A ! X ! BŒ�1� ! AŒ1� proves (T3). The boundedness of this t -structure is
evident.

The heart of the above t -structure is A. To prove that the t -structure is hereditary,
we take a morphism uWA! BŒn� with A;B 2 A and n � 2. Form an exact triangle

A
u
! BŒn�! C1 ˚ C2 ! AŒ1�

with
C1 2 add

�S
m�2 AŒm�

�
and C2 2 add

�S
m�1 AŒm�

�
:

We observe that HomD.BŒn�; C2/ D 0 D HomD.C1; AŒ1�/. Then we have u D 0

by Lemma 2.4(3).
It remains to show “.1/ C .2/ ) .3/”. By Lemma 2.1, the category A is

hereditary abelian. In particular, we have

Db.A/ D add
�S

n2Z AŒn�
�
:

We construct an additive functor F WDb.A/ ! D as follows. For each n 2 Z, we
set F.AŒn�/ D AŒn� and F.f Œn�/ D f Œn� for any object A 2 A and any morphism
f WA ! B in A. For a morphism w 2 HomDb.A/.A;BŒ1�/, we consider the exact
triangle

B
a
! E

b
! A

w
! BŒ1�

in Db.A/, where 0! B
a
! E

b
! A! 0 is the short exact sequence corresponding

to w. We define the morphism F.w/ by the unique exact triangle

B
a
! E

b
! A

F .w/
! BŒ1�

in D . More generally, we set F.wŒn�/ D F.w/Œn�. One verifies that F is indeed a
functor, where the bifunctorialness of the isomorphism (2.1) is implicitly used. Then
this functor F is as required.
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The following fact is standard.

Lemma 2.4. Let A
u
! B

.v
0/
! C1 ˚ C2 ! AŒ1� be an exact triangle in D . Then the

following statements hold.

(1) The object C2 is a direct summand of AŒ1�. In particular, C2 D 0 whenever
HomD.C2; AŒ1�/ D 0.

(2) If A is indecomposable and C2 ¤ 0, then we have u D 0.

(3) If HomD.C1; AŒ1�/ D 0 and HomD.B;A/ D 0, then we have u D 0.

Proof. ThemorphismB ! C1˚C2 is of the form v˚0WB˚0! C1˚C2. It follows
that the given triangle is isomorphic to the direct sum of A0 ! B

v
! C1 ! A0Œ1�

and
C2Œ�1�! 0! C2

Id
! C2:

Then (1) follows immediately. For (2), we just observe that A0 D 0.
For (3), we observe that HomD.C1; A

0Œ1�/ D 0 sinceA0 is a direct summand ofA.
For the same reason, we have HomD.B;A

0/ D 0. However, by [8, Lemma I.1.4]
the morphism A0 ! B is split mono, which is then forced to be zero. Then we are
done.

For a finite dimensional algebra A over a field, we denote by A-mod the abelian
category of finite dimensional left A-modules.

Example 2.5. There does exist a full additive subcategory A of a triangulated
category D such that A is hereditary abelian with D D add .

S
n2Z AŒn�/, whereas

the condition HomD.A;AŒm�/ D 0 for m < 0 is not satisfied.
Namely, let D D Db.A-mod/ with A the path algebra of a quiver of type A2

over a field k. This is the quiver with two vertices, say 1 and 2, and a single arrow
1! 2. Note thatA-mod has precisely three indecomposable modules, say S1; I; S2,
where S1 is simple injective, I has length 2, and S2 is simple projective. Consider
the full subcategory A D add .S1 ˚ S2 ˚ I Œ1�/. Then A is a hereditary abelian
category, which is even semisimple: it is equivalent to the category of H -modules,
whereH D k�k�k: Every indecomposable object of D can be shifted into A, but
there is a nonzero homomorphism A ! BŒ�1� where A;B belong to A; just take
A D S2, B D I Œ1�. Observe that the categories D and Db.A/ are not equivalent.

3. Algebraical hereditary triangulated categories

In this section, we prove that if the triangulated category is algebraical and hereditary,
then it is triangle equivalent to the bounded derived category of a hereditary abelian
category. We use the existence result on the realization functor in [3].
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3.1. The triangle equivalence. Let .D�0;D�0/ be a bounded t -structure on a
triangulated category D with the heart H . By a realization functor of the t -structure,
we mean a triangle functor F WDb.H /! D such that F.H / D H and its restriction
F jH is isomorphic to the identity functor. We observe that F sends Db.H /�0

to D�0, Db.H /�0 to D�0.

Lemma 3.1. Let .D�0;D�0/ be a hereditary t -structure onD . Then any realization
functor F WDb.H /! D is a triangle equivalence.

Proof. The abelian category H is hereditary by Lemma 2.1. For the triangle
equivalence, it suffices to show that F is an equivalence. For the fully-faithfulness,
by applying [8, Lemma II.3.4] it suffices to show that F induces an isomorphism
betweenExtiA.Z;X/ andHomD.Z;XŒi �/ for each i 2 Z. The cases i � 0 are trivial,
and the cases i � 2 are also trivial by the hereditary condition. The remaining case
i D 1 follows from the isomorphism (2.1), since the triangle functor F necessarily
sends Œ�� to !.

The essential image Im F of F is a triangulated subcategory of D containing A.
It is well known that the smallest triangulated subcategory of D containing A is D

itself; compare (2.3). Then we have Im F D D , proving the denseness of F .

Recall from [16, Subsection 8.7] that a triangulated category is algebraical
provided that it is triangle equivalent to the stable category of a Frobenius category.
For example, the bounded derived category of an essentially small abelian category
is algebraical; see [18, Subsection 7.7].

The following result is due to [17, Theorem 3.2], where a detailed proof of
[17, Theorem 3.2(a)] is available in [14, Section 4]. We observe that the result also
follows from the existence result in [3, Subsection A.6], applied to Proposition 3.8.

Proposition 3.2. Let D be an algebraical triangulated category with a bounded
t -structure and its heart H . Then there is a realization functor F WDb.H /! D . �

By combingTheorem2.3, Lemma3.1 and Proposition 3.2, we obtain the promised
triangle equivalence. It generalizes [5, Proposition 4.2], where the triangulated
category D is assumed to be the bounded derived category of some abelian category.

Theorem 3.3. Let D be a hereditary triangulated category, which is algebraical.
ThenD is triangle equivalent to the bounded derived category of a hereditary abelian
category. �
Remark 3.4. (1) The above assumption of being algebraical is natural. Indeed, if
the triangulated category D is essentially small, then it is triangle equivalent to
the bounded derived category of a hereditary abelian category if and only if it is
algebraical and hereditary.

(2) The case described in Theorem 3.3 seems to be one of the rare situations, where
the derived categories of a class of abelian categories can easily be characterized as
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special triangulated categories. Usually, the axioms of a triangulated category tend
to be too broad for such an endeavour.

It is natural to ask the following question: is there a non-algebraical hereditary
triangulated category? In view of [3, Subsection A.6] and Lemma 3.1, such
an example will provide a triangulated category, over which there are no filtered
triangulated categories. Recently, this question is answered in the negative in [13],
where it is proved that any hereditary triangulated category is algebraical.

3.2. Filtered objects. We will show that for any algebraical triangulated category,
there is a filtered triangulated category in the sense of [3, Appendix] over it; see
Proposition 3.8. It follows that the existence result of a realization functor in [3,
Appendix] applies for an algebraical triangulated category. We mention that the
treatment here unifies the one in [4, Section 3.1] and [1, Subsection 2.5].

Let A be an additive category. An exact pair .i; d/ consists of two composable
morphisms

X
i
! Y

d
! Z

such that i D Ker d and d D Cok i . An exact structure E on A is a class of
exact pairs, which is closed under isomorphisms and satisfies certain axioms. The
pair .A;E/ is called an exact category in the sense of Quillen. The exact pairs .i; d/
in E are called conflations, where i are inflations and d are deflations. When the
exact structure E is understood, we will call A an exact category. For details on exact
categories, we refer to [14, Appendix A].

The following consideration is inspired by [1, 6, 14]. Let A be an exact category.
A filtered object in A is an infinite sequence in A

� � � �! XnC1

inC1

�! Xn

in
�! Xn�1 �! � � �

such that each morphism in is an inflation and that for sufficiently large n, Xn D 0,
X�n D X and i�n D IdX for some object X . This filtered object is denoted
byX� D .X�; i�/ or .X�; iX� /, whereX is called its underlying object. We denote by
in;�1WXn ! X the canonical morphism for each n 2 Z. As a finite composition of
inflations, this canonical morphism is an inflation.

A morphism f�W .X�; i
X
� / ! .Y�; i

Y
� / between filtered objects consists of

morphisms fnWXn ! Yn satisfying iYn ı fn D fn�1 ı i
X
n . The composition of

morphisms is componentwise. Then we have the category FA of filtered objects; it
is an additive category. We denote by

!WFA �! A

the forgetful functor, which sends each filtered object to its underlying object.
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Each object A in A defines a filtered object j.A/ by j.A/n D 0 for n > 0,
j.A/n D A and ij.A/

n D IdA for n � 0. This gives rise to an additive functor

j WA �! FA;

which is fully faithful.
The proof of the following lemma is by a routine verification; compare [14,

Subsection 5.1].

Lemma 3.5. The category FA of filtered objects has an exact structure such that
the conflations are given by

X�
f�
�! Y�

g�
�! Z�

with each pair .fn; gn/ a conflation inA. Moreover, the forgetful functor!WFA!A

and j WA! FA are exact. �

For a filtered object .X�; i�/, we define a new filtered object s.X�; i�/ by s.X/n D
Xn�1 and i s.X/

n D in�1. This gives rise to an automorphism

sWFA �! FA

of exact categories, called the filtration-shift functor. We observe a natural
transformation ˛W IdF A ! s by .˛.X�;i�//n D in for each n 2 Z.

We denote by FA.� 0/ the full subcategory of FA consisting of objects
.X�; i�/ with Xn=0 for each n � 1. Similarly, the full subcategory FA.� 0/

are formed by objects .X�; i�/ with X�n D X and i�n D IdX for all n � 0,
where X is the underlying object. For d 2 Z, we set FA.� d/ D sdFA.� 0/ and
FA.� d/ D sdFA.� 0/.

The following result is analogous to [1, Lemma 2.7].

Lemma 3.6. The following statements hold.

(1) FA.� 0/ � FA.� 1/, FA.� 1/ � FA.� 0/, andFA D
S

n2Z FA.� n/ DS
n2Z FA.� n/.

(2) We have s.˛X�/ D ˛s.X�/ for each filtered object X�.

(3) For any filtered objects X� 2 FA.� 1/ and Y� 2 FA.� 0/, we have
HomF A.X�; Y�/ D 0. Moreover, we have an isomorphism

HomF A.s.Y�/; X�/
�
�! HomF A.Y�; X�/

sending f� to f� ı ˛Y� .

(4) Any filtered objectX� fits into a conflationA� ! X� ! B� withA� 2 FA.� 1/

and B� 2 FA.� 0/.
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(5) The functor j induces an equivalence j WA
�
�! FA.� 0/ \ FA.� 0/ of exact

categories.

Proof. The statements (1), (2) and (3) are direct. Wemention that in the isomorphism
of (3), both theHomgroups are isomorphic toHomA.!.Y�/;!.X�//. The statement (5)
is direct, since the exact functor j is fully faithful and reflects conflations.

For (4), we consider a filtered object .X�; i�/. Set An D Xn and iAn D in for
n � 2, An D X1 and iAn D IdX1

for n � 1. For each n < 1, we denote by Xn=X1

the cokernel of the inflation

inC1 ı � � � ı i0 ı i1WX1 ! Xn;

and by NinWXn=X1 ! Xn�1=X1 the induced morphism of in, which is also an
inflation. Set Bn D 0 for n � 1, Bn D Xn=X1 and iBn D Nin for n � 0. Then
the canonical morphisms .A�; iA� / ! X� and X� ! .B�; i

B
� / form the required

conflation in FA.

The functor j WA ! FA has a right adjoint and a left adjoint, both of which
are exact. The functor pWFA! A, which takes the zero component, is defined by
p.X�/ D X0. We have the adjoint pair .j; p/ by the following natural isomorphism

HomF A

�
j.A/;X�

� �
�! HomA

�
A;p.X�/

�
(3.1)

sending f� to f0. For a filtered object .X�; i�/ with its underlying object X , we
consider the canonical inflation i1;�1WX1 ! X , and set c.X�/ D X=X1 to be its
cokernel. This gives rise to an additive functor cWFA! A. The adjoint pair .c; j /
is given by the following natural isomorphism

HomF A

�
X�; j.A/

� �
�! HomA

�
c.X�/; A

�
(3.2)

sending f� to the induced morphism X=X1 ! A of !.f�/WX ! A. Here, we use
the fact that f0 ı i1 D 0.

Recall that an exact categoryA isFrobenius provided that it has enough projective
objects and enough injective objects such that projective objects coincide with
injective objects. We denote by A the stable category modulo projectives. For
each object X , we fix a conflation

0! X
iX
! I.X/

dX
! S.X/! 0

with I.X/ injective. Then S yields an auto-equivalence SWA ! A. The stable
category A has a canonical triangulated structure such that the translation functor is
given by S and that exact triangles are induced by conflations. For details, we refer
to [8, Section I.2].
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The proof of the following lemma is similar to [6, Lemma 2.1].
Lemma 3.7. Let A be a Frobenius category. Then the exact category FA is
Frobenius. Moreover, a filtered object X� is projective in FA if and only if each
component Xn is projective in A.

Proof. We observe that the functor p is exact. It follows from the adjunction (3.1)
that j.P / is projective for any projective object P in A. Therefore, for each d ,
sdj.P / is projective. For a filtered object .X�; i�/, there exist sufficiently large a
and b such that Xn D 0 for n > a, Xn D X and in D IdX for n � �b. For
each �b � l � a, we denote by Xl=XlC1 the cokernel of ilC1WXlC1 ! Xl . Take a
deflation Pl ! Xl=XlC1 in A with Pl projective. Thus we have a deflation

slj.Pl/! slj.Xl=XlC1/:

We claim that there is a deflation P� D
La

lD�b s
lj.Pl/! .X�; i�/ in FA.

Indeed, there is a sequence of inflations in FA

0 D Y aC1
� �! Y a

� �! Y a�1
� �! � � � �! Y �bC1

� �! Y �b
� D X�

with each factor isomorphic to slj.Xl=XlC1/ for l D a; a � 1; : : : ;�b. More
precisely, we have Y l

n D Xl for n � l , and Y l
n D Xn for n > l . We apply repeatedly

the argument in the Horseshoe Lemma to the deflations

slj.Pl/! slj.Xl=XlC1/:

Then we have the required deflation.
Similarly, using the exact functor c and (3.2), we infer that for each projective

object P in A, sdj.P / is injective. Moreover, each filtered object X� fits into an
inflation X� ! P� with P� a finite direct sum of objects of the form sdj.P /. We
are done by combining the above statements.

The above lemmas allow us to apply the formalism in [3, Appendix] to an
algebraical triangulated category. More precisely, we have the following result.
Proposition 3.8. Let D be an algebraical triangulated category. Then there is a
filtered triangulated category over D in the sense of [3, Definition A.1].

Proof. Take a Frobenius category A such that its stable category A is triangle
equivalent to D . Consider the Frobenius category FA of filtered objects and its
stable category FA. The above functors j , s and ! are exact that send projective
objects to projective objects. By [8, Lemma I.2.8] they induce the corresponding
triangle functors between the stable categories. The stable version of Lemma 3.6
holds, where the conflation in (4) is replaced by an exact triangle and the equivalence
in (5) induces a triangle equivalence. It follows that the stable category FA is a
filtered triangulated category over A and thus over D .
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4. Paths in triangulated categories

Let D be a triangulated category. We will assume from now on that every object
in D is a finite direct sum of indecomposable objects. Denote by Ind D a complete
class of representatives of indecomposable objects. We emphasize that D is not
assumed to have split idempotents.

4.1. Paths and blocks. Let X; Y be two indecomposable objects in D . A path of
length n is a sequence X0; X1; : : : ; Xn of indecomposable objects in D such that for
1 � i � n, we have HomD.Xi�1; Xi / ¤ 0 or Xi D Xi�1Œ1�. We will say that the
path starts at X0 and ends in Xn, or that it is a path from X0 to Xn.

A subclass U � Ind D is called path-closed provided that for each path from X

to Y , X lies in U if and only if so does Y . Equivalently, the class U is closed
under the translation functors Œ1� and Œ�1�, and if for anyX 2 U, an indecomposable
object Y necessarily lies in U whenever HomD.X; Y / ¤ 0 or HomD.Y;X/ ¤ 0.
We observe if U is path-closed, so is the complement V D Ind DnU.

A subclass U � Ind D is called path-connected provided that any two
indecomposable objects in U are connected by a sequence of paths and inverse
paths. More precisely, for each pair X; Y of objects in U, there exists a sequence
X D X0; X1; : : : ; Xt D Y of indecomposable objects such that for 1 � i � t , at
least one of the three conditions HomD.Xi�1; Xi / ¤ 0, HomD.Xi ; XiC1/ ¤ 0, or
Xi D Xi�1Œs� for some s 2 Z, is satisfied.

Lemma 4.1. Let U � Ind D a path-closed class and let V its complement. Set
D1 D add U and D2 D add V . Then both Di are triangulated subcategories, and
D D D1 �D2 is their product.

Proof. By their path-closedness, we have

HomD.D1;D2/ D 0 D HomD.D2;D1/:

Then we have the decomposition D D D1 �D2 of additive categories. We observe
that bothDi are closed under Œ1� and Œ�1�. To complete the proof, we take amorphism
uWA! B in D1 and form an exact triangle

A
u
! B ! C ! AŒ1�:

We assume that C D C1 ˚ C2 with Ci 2 Di . Then C2 D 0 by Lemma 2.4(1). This
proves that D1 is a triangulated subcategory.

The triangulated category D is called a block provided that it is nonzero and does
not admit a proper decomposition into two triangulated subcategories.
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Proposition 4.2. Let D be a nonzero triangulated category. Then the following
statements are equivalent:

(1) The triangulated category D is a block.

(2) The only nonempty path-closed subset U � Ind D is Ind D itself.

(3) The set Ind D is path-connected.

Proof. The implication “.1/ ) .2/” follows from Lemma 4.1. For “.2/ ) .3/”,
let X be an indecomposable object. Denote by X � Ind D the class formed by
those objects Y , which can be connected to X by a sequence of paths and inverse
paths. We observe that X is path-closed. Then we have X D Ind D . This proves
that Ind D is path-connected.

To prove “.3/) .1/”, we assume on the contrary that D D D1 �D2 is a proper
decomposition. Both Di ’s contain indecomposable objects. Take indecomposable
objects X 2 D1 and Y 2 D2. Then there are no sequences which connect X with Y
and consist of paths and inverse paths. This contradicts to the path-connectedness.

For a division ringD and n � 1, consider the direct productDn D D � � � � �D

of n copies ofD. The module categoryDn-mod is semisimple. An automorphism �
on D yields an automorphism �nWDn ! Dn sending .x1; x2; : : : ; xn/ to
.x2; : : : ; xn; �.x1//. We denote by .�n/�WDn-mod ! Dn-mod the automorphism
of twisting theDn-action by �n.

Recall from [7, Lemma 3.4] that any semisimple abelian category A becomes
a triangulated category with the translation functor being any prescribed auto-
equivalence† on A. The exact triangles are direct sums of trivial ones. The resulted
triangulated category is denoted by .A; †/. In particular, we have the triangulated
category .Dn-mod; .�n/�/.

We say that a block D is degenerate provided that there is an indecomposable
object X satisfying the condition: any nonzero morphisms Y ! X and X ! Y 0,
with Y; Y 0 indecomposable, are invertible.

Lemma 4.3. Let D be a degenerate block with the above indecomposable object X .
Then the following statements hold.

(1) Ind D D fXŒs� j s 2 Zg and EndD.X/ D D
op, whereD is a division ring.

(2) IfX is not isomorphic toXŒs� for each s > 0, then there is a triangle equivalence
D

�
�! Db.D-mod/.

(3) If n is the smallest natural number such that X is isomorphic to XŒn�, then there
is a triangle equivalence D

�
�! .Dn-mod; .�n/�/ for some automorphism �

ofD.
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Proof. From the assumption, we observe that U D fXŒs� j s 2 Zg is path-closed.
Then (1) follows from Proposition 4.2(2) immediately. The equivalences in (2)
and (3) are evident. We omit the details. We mention that in (3), the automorphism �
onD is induced by the action of Œn� on morphisms in D .

4.2. The existence of paths. We will study paths in a non-degenerate block. We
keep the assumption that in the triangulated category D , any object is a finite direct
sum of indecomposable objects.
Lemma 4.4. Let uWX ! Y be a nonzero non-invertible morphism between
indecomposable objects in D . Then there is an exact triangle

X
u
�! Y

.�v/
�! Z0 ˚Z

.�;w/
�! XŒ1�

such that Z is indecomposable and that both morphisms v and w are nonzero non-
invertible.

Proof. Since u is non-invertible, its cone is not zero. Since
�
�

v

�
ı u D 0 and

uŒ1� ı .�; w/ D 0, we infer that both v and w are non-invertible. Since u ¤ 0,
Lemma 2.4(2) implies that v ¤ 0. By a dual argument, we have w ¤ 0.

We also observe the dual of Lemma 4.4.
Lemma 4.5. Let uWX ! Y be a nonzero non-invertible morphism between
indecomposable objects in D . Then there is an exact triangle

Y Œ�1�
.�v/
�! Z0 ˚Z

.�;w/
�! X

u
�! Y

such that Z is indecomposable and that both morphisms v and w are nonzero non-
invertible. �
Lemma 4.6. LetD be a triangulated categorywhich is a non-degenerate block. Then
for any indecomposable object X , there is a sequence X D X0; X1; X2; X3 D XŒ1�

of indecomposable objects with HomD.Xi�1; Xi / ¤ 0:

Proof. By the non-degeneration of D , we assume that there exists a nonzero and
non-invertible morphism uWX ! Y or uWY ! X with Y indecomposable. In the
first case, we apply Lemma 4.4 and then the morphisms u; v;w yield the required
sequence. In the second case, we apply Lemma 4.5 to obtain a sequence fromXŒ�1�
to X . Applying Œ1� to this sequence, we are done.

Remark 4.7. The following immediate consequence of Lemma 4.6 is of interest.
In a non-degenerate block D , any path from X to Y can be refined to a path
X D X0; X1; : : : ; Xt D Y such that HomD.Xi�1; Xi / ¤ 0 for 1 � i � t .
Lemma 4.8. Let D be a triangulated category which is a block. Assume that there
is a path from X to Y . Then there is a path from Y to XŒn� for some n � 0.
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Proof. If D is degenerate, the statement is immediate by Lemma 4.3(1). We assume
that D is non-degenerate.

We first prove that if there is a nonzero morphism uWX ! Y , then there is a path
from Y to XŒ1�. Indeed, if u is invertible, there is nothing to prove. Otherwise, we
use the morphisms u; v;w in Lemma 4.4 to obtain the required path.

In general, by Remark 4.7 we assume that there is a pathXDX0; X1; : : : ; XtDY

with HomD.Xi�1; Xi / ¤ 0 for 1 � i � t . By the above argument, we have paths
from Xi to Xi�1Œ1�. By applying the translation functors and gluing the paths, we
obtain a path from Y to XŒt�.

The following result claims the existence of certain paths in a block.
Proposition 4.9. Let D be a triangulated category which is a block. Let X; Y
be indecomposable objects in D . Then there exists a path from X to Y Œn� for
some n � 0.

Proof. By the path-connectedness, there is a sequence X D X0; X1; : : : ; Xt D Y

such that for 1 � i � t there is a path from Xi�1 to Xi , or a path from Xi to Xi�1.
In the latter case, applying Lemma 4.8, we have a path from Xi�1 to Xi Œm� for
some m � 0. We now adjust the given sequence as

X0; : : : ; Xi�1; Xi Œm�; XiC1Œm�; : : : ; Xt Œm�:

Repeating this procedure, we obtain the required path.

Recall that we do not assume that the triangulated category D has split
idempotents. However, the following observation implies that nontrivial idempotents
on indecomposable objects lead to some unexpected paths; compare Remark 5.2(2).
Lemma 4.10. LetX be an indecomposable object in D with a nontrivial idempotent
eWX ! X . Then there is a path of length two from XŒ1� to X .

Proof. We form the exact triangle

X
e
! X

u
! C

v
! XŒ1�:

There exist morphisms aWXŒ1�! C and bWC ! X such that IdC D u ı b C a ı v

(this can be proved in the idempotent completion [2] of D , where e equals IdA ˚ 0W

A˚ B ! A˚ B for some objects A and B in the idempotent completion.)
Write C D

Ls
iD1 Ci as a direct sum of indecomposable objects Ci in D , thus

a D .a1; : : : ; as/
t with ai WXŒ1� ! Ci and b D .b1; : : : ; bs/ with bi WCi ! X . We

can assume that ai ¤ 0 if and only if 1 � i � r . If there is i with 1 � i � r such
that also bi ¤ 0, then we obtain a path XŒ1�! Ci ! X of length two, as we want
to show.

Assume now that no such path exists. LetC 0 D
Lr

iD1 Ci andC 00 D
Lt

iDrC1 Ci ,
let a D .a0; 0/t with a0WXŒ1�! C 0 and b D .0; b00/ with b00WC 00 ! X: Also, write
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u D .u0; u00/t and v D .v0; v00/. Then we have a0 ı v0 D IdC 0 and u00 ı b00 D IdC 00 :

First, assume that C 0 ¤ 0: The equality a0 ı v0 D IdC 0 shows that v0 is split mono.
Since XŒ1� is indecomposable, it follows that v0 is an isomorphism and therefore v
is split epic. This implies that e D 0, a contradiction. Thus, we can assume that
C 0 D 0. But this implies that u D u00 is split epic, and therefore e is split mono,
thus e D IdX , again a contradiction.

5. Hereditary triangulated categories which are blocks

In this section, using the non-existence of certain paths, we characterize hereditary
triangulated categories which are blocks.

Throughout, D is a triangulated category, in which each object is a finite direct
sum of indecomposable objects.

For an indecomposable objectX , denote by ŒX !� the class of all indecomposable
objects U in D with a path fromX to U . Then ŒX !� is closed under the translation
functor Œ1�. The complement of ŒX !� in Ind D is closed under Œ�1�.

Theorem 5.1. Let D be a triangulated category which is a block. Then the following
conditions are equivalent:

(1) The triangulated category D is hereditary.

(2) If X is indecomposable in D , then there is no path from XŒ1� to X .

(3) There is an indecomposable object X in D with no path from XŒ1� to X .

(4) There are indecomposable objects X; Y in D with no path from Y to X .

Proof. The implication “.1/) .2/” is obvious. By Theorem 2.3(3), we identify D

with Db.H / for a hereditary abelian category H . Since X is indecomposable, it
is of the form X D AŒn� for some indecomposable object A 2 H and n 2 Z. By
induction on the length of paths, we observe that ŒX !� �

S
i�n H Œi �. In particular,

we have that XŒ�1� does not belong to ŒX !�.
The implications “.2/) .3/” and “.3/) .4/” are trivial. For “.4/) .3/”, we

consider the given indecomposable objects X; Y . By Proposition 4.9, there is a path
from Y to XŒn� for some n � 0. By assumption, we infer that n � 1. If there is a
path from XŒ1� to X , we obtain a path from XŒn� to X . This yields a path from Y

to X , a contradiction.
It remains to show “.3/ ) .1/”. Write U D ŒX !� and V D Ind DnV its

complement. Let
A D add

�
U \ V Œ1�

�
:

We will prove that A satisfies the conditions in Theorem 2.3(2). Then we are done.
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Step 1. For a nonzero morphism uWA ! B between indecomposable objects
with A 2 A, we observe that B 2 U. We claim that B … UŒ2�.

From the claim, we infer that B lies in A or A[1]. Indeed, if B 2 V Œ1�, we have
B 2 A. Otherwise, we have B 2 UŒ1� and by the claim, B 2 V Œ2�. Hence, we
have B 2 AŒ1�.

To prove the claim, we assume on the contrary that B 2 UŒ2�. Then we have a
path from XŒ1� to BŒ�1�. By the facts that A … UŒ1� and UŒ2� � UŒ1�, we infer
that u is not an isomorphism. We obtain by Lemma 4.5 a path of length two from
BŒ�1� toA. Then we have a path fromXŒ1� toA, that is,A 2 UŒ1�. A contradiction!

Step 2. To show D D add .
S

n2Z AŒn�/, we claim that each indecomposable object
Y 2 D is of the form BŒm� for some B 2 A and m 2 Z.

We observe by assumption that X 2 A. Assume first that Y 2 U D ŒX !�.
Then there is a path X D X0; X1; : : : ; Xt D Y . By induction on the length of
paths, we may assume that Xt�1 D AŒn� for A 2 A and some n 2 Z. If Y D
Xt�1Œ1�, then we are done by Y D AŒnC 1�. If HomD.Xt�1; Y / ¤ 0, equivalently
HomD.A; Y Œ�n�/ ¤ 0, we infer from Step 1 that Y Œ�n� lies in A or AŒ1�. This also
proves the statement in this case.

For the general case, by Proposition 4.9 there is a path from X to Y Œd � for some
d � 0, that is, Y Œd � 2 ŒX !�. Applying the above argument to Y Œd �, we are done
for the claim.

Step 3. We claim that HomD.A;AŒm�/ D 0 for m < 0. We assume the contrary.
Take two indecomposable objectsA;B 2 A with HomD.A;BŒm�/ ¤ 0. Then BŒm�
lies in U. On the other hand, BŒm� lies in V Œm C 1�. Since m C 1 � 0, we have
V ŒmC 1� � V . We conclude that BŒm� 2 U \ V , a contradiction! This completes
the whole proof.

Remark 5.2. (1) The equivalence of the conditions in Theorem 5.1(2) and (3) is
somehow surprising: the existence of a single indecomposable object with a special
property forces all the indecomposable objects to have this property! This indicates
a rather unusual character of homogeneity.

(2) It is well known that the bounded derived category of an abelian category has split
idempotents. In particular, a hereditary triangulated category has split idempotents.
Then Theorem 5.1(3) allows us to strengthen Lemma 4.10. Assume that the block D

does not have split idempotents. Then there are paths from XŒ1� to X for any
indecomposable object X in D .

In the remaining part, we draw some immediate consequences of Theorem 5.1.
Let us call a path X0; X1; : : : ; Xn proper provided that for 1 � i � n, there

exists a nonzero and non-invertible map Xi�1 ! Xi or else Xi D Xi�1Œ1�. An
indecomposable objectX in a triangulated category D will called directing provided
there is no proper path of length at least one starting and ending in X .
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The corresponding notion of directing objects in an abelian category iswell known
and has been found useful in [19], where the paths are of the form X0; X1; : : : ; Xn

such that for 1 � i � n, there exists a nonzero and non-invertible map Xi�1 ! Xi .
The following observation is immediate: for a hereditary abelian category H , an
indecomposable object X in H is directing if and only if X is directing in Db.H /.

Hereditary abelian categories with directing objects are studied in [10]. The
following result characterizes their bounded derived categories.

Proposition 5.3. Let D be an algebraical triangulated category which is a block.
Then the following two statements are equivalent:

(1) The triangulated category D has a directing object.

(2) There is a triangle equivalence Db.H /! D , where H is a hereditary abelian
category with a directing object.

Proof. The implication “.2/ ) .1/” is already indicated by the above discussion.
For the converse, letX be a directing object in D . Any path fromXŒ1� toX could be
composed with the pathX;XŒ1�. After deleting some repetitions, we obtain a proper
path from X to X of length at least one. Thus, no path from XŒ1� to X exists. We
are done by Theorems 5.1 and 3.3.

Let k be a field. Recall from [11] that a finite dimensional k-algebraA is piecewise
hereditary provided that the bounded derived category Db.A-mod/ of the module
category is triangle equivalent to Db.H / for a hereditary abelian category H . If k
is algebraically closed, such a hereditary abelian category H is derived equivalent
to the module category over a path algebra or the category of coherent sheaves on a
weighted projective line; see [9].

It is well known that Db.A-mod/ is an algebraical triangulated category.
Theorems 5.1 and 3.3 yield the following characterization of piecewise hereditary
algebras.

Corollary 5.4. LetA be a finite dimensional connected k-algebra. Then the following
conditions are equivalent:

(1) The algebra A is piecewise hereditary.

(2) For any indecomposable object X in Db.A-mod/, there is no path from XŒ1�

to X .

(3) There exists an indecomposable object X in Db.A-mod/ with no path from XŒ1�
to X . �

We mention that in [12], the characterization of piecewise hereditary algebras in
terms of finite strong global dimension relies on the above result.

We observe the following immediate consequence of combining Proposition 5.3
and [10, Theorem].
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Corollary 5.5. LetA be a finite dimensional connected k-algebra. Then Db.A-mod/
contains a directing object if and only ifA is derived equivalent to a finite dimensional
hereditary algebra. �
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