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1. Introduction

Frobenius extensions between rings are classical in algebra, which extend the notion 
of a Frobenius algebra over a field. For example, the group algebra kG of a finite group 
G over a field k is a Frobenius algebra, and the natural embedding of an arbitrary ring 
R into the group ring RG is a Frobenius extension.

Frobenius bimodules are coordinate-free generalizations of Frobenius extensions [22,
27]. We mention that Frobenius bimodules appear naturally in stable equivalences of 
Morita type [12,33].

Frobenius bimodules correspond bijectively to Frobenius functors between module 
categories [26,8,7]. Therefore, Frobenius functors are viewed as a categorical analogue 
to Frobenius bimodules. The following example, although not so well known, seems 
to be fundamental in the homological study of complexes: the forgetful functor from 
the category of cochain complexes of modules to the category of graded modules is a 
Frobenius functor; consult [23, Subsection 2.2] and Example 2.5.

Gorenstein projective modules are central in relative homological algebra [14,17]. The 
following fact seems to be well known: for a finite group G, a module over RG is Goren-
stein projective if and only if its underlying R-module is Gorenstein projective; compare 
[6, Subsection 8.2] and [11]. This motivates the work [29,30,37], where it is proved that 
Frobenius extensions between rings preserve and reflect Gorenstein projective modules; 
compare [19]. Similarly, the forgetful functor from the category of cochain complexes 
to the category of graded modules preserves and reflects Gorenstein projective objects 
[35,36,29]. This similarity motivates the following natural question: does any Frobenius 
functor between two abelian categories preserve and reflect Gorenstein projective ob-
jects?

The first result gives an affirmative answer to this question, and thus unifies the above 
mentioned results, provided that the Frobenius functor is faithful; see Theorem 3.2. As 
an advantage of our categorical consideration, a similar result for Gorenstein injective 
objects follows by categorical duality. Indeed, our result is slightly stronger, as it is 
shown that a faithful Frobenius functor preserves the Gorenstein projective dimension 
of objects.

For any ring R, there are three triangulated categories measuring its homological sin-
gularity, namely, the stable category of Gorenstein projective R-modules, the singularity 
category [6,28] and the Gorenstein defect category [5]. In a similar manner, these trian-
gulated categories are defined for an abelian category with enough projective objects. It 
is known that under mild conditions, a stable equivalence of Morita type preserves these 
triangulated categories [24,38]. As mentioned above, a stable equivalence of Morita type 
gives rise to a Frobenius functor between module categories. Therefore, it is very natural 
to expect that a certain Frobenius functor preserves these three triangulated categories. 
We confirm this expectation in the second result; see Proposition 4.2.

The structure of this paper is straightforward. In the appendix, we give a direct proof 
of the following known result [3]: for an abelian category with enough projective objects 
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and enough injective objects, the supremum of the Gorenstein projective dimension of all 
objects coincides with the supremum of the Gorenstein injective dimension of all objects. 
We mention that the original proof in [3, Chapter VII] seems to be very indirect and 
nontrivial to follow.

2. Adjoint pairs and Frobenius pairs

In this section, we recall standard facts and examples on Frobenius functors.
Throughout, we assume that both A and B are abelian categories with enough pro-

jective objects. Denote by P(A) and P(B) the full subcategories of projective objects in 
A and B, respectively.

Let F : A → B be an additive functor with a right adjoint G : B → A. We will denote 
the adjoint pair (F, G) by F : A � B : G. We denote the unit by η : IdA → GF , and the 
counit by ε : FG → IdB.

The following results are standard. We include a complete proof for the convenience 
of the reader. For a class S of objects in A, we denote by add S the full subcategory 
consisting of direct summands of finite direct sums of objects in S.

Lemma 2.1. Let F : A � B : G be an adjoint pair. Then the following statements hold.

(1) F (P(A)) ⊆ P(B) if and only if the functor G is exact;
(2) add F (P(A)) = P(B) if and only if the functor G is exact and faithful;
(3) Assume that F is exact. Then F is faithful if and only if the unit η : IdA → GF is 

mono.

Proof. (1) For the “if” part, we assume that G is exact. The adjoint pair implies a 
natural isomorphism

HomB(F (P ),−) ∼−→ HomA(P,G(−)) (2.1)

for object P in A. If P is projective, the functor on the right hand side is exact. It follows 
that F (P ) is projective.

For the “only if” part, we recall that the functor G, as a right adjoint, is automatically 
left exact. Let u : X → Y be an epimorphism in B. We claim that G(u) is also epic. Then 
we are done.

Since A has enough projective objects, the claim is equivalent to the statement that 
HomA(P, G(u)) is surjective for each P ∈ P(A). By assumption, F (P ) is projective and 
thus HomB(F (P ), u) is surjective. Then the claim follows from the natural isomorphism 
(2.1).

(2) For the “if” part, we already have F (P(A)) ⊆ P(B) by (1). Take any object Q ∈ B
and consider the counit εQ : FG(Q) → Q. We observe that G(εQ) is epic by the identity

G(εQ) ◦ ηG(Q) = IdG(Q).
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Since G is exact and faithful, it detects epimorphisms. In particular, we infer that εQ is 
epic.

Assume now that Q is projective in B. Take an epimorphism v : P → G(Q) with P ∈
P(A). Then F (v) is epic by the right-exactness of F . The epimorphism εQ◦F (v) : F (P ) →
Q splits. Consequently, Q is isomorphic to a direct summand of F (P ), as required.

For the “only if” part, by (1) it suffices to show the faithfulness of G. We take a nonzero 
morphism w in B. Since B has enough projective objects, there exists a projective object 
Q satisfying HomB(Q, w) �= 0. By the assumption, we may assume that Q is a direct 
summand of F (P ) for some projective object P in A. Consequently, HomB(F (P ), w) �= 0. 
By the natural isomorphism (2.1), we infer that HomA(P, G(w)) �= 0. In particular, the 
morphism G(w) is nonzero.

(3) The “only if” part follows by a dual argument in the first paragraph of the proof 
of (2).

For the “if” part, we take a morphism a : X → Y in A satisfying F (a) = 0. The 
naturalness of η yields

ηY ◦ a = GF (a) ◦ ηX .

It follows that ηY ◦a = 0. Since ηY is mono, it forces that a = 0, proving the faithfulness 
of F . �

The notions of a Frobenius pair and a Frobenius functor are very classical; see [26,8,7].
Let F : C → D and G : D → C be two additive functors. Assume that α : C → C and 

β : D → D are two autoequivalences.
We say that (F, G) is a Frobenius pair of type (α, β) between C and D, provided that 

both (F, G) and (G, βFα) are adjoint pairs. We call the functor F a Frobenius functor, 
if it fits into a Frobenius pair (F, G). We observe that G is also a Frobenius functor. In 
other words, Frobenius functors always appear in pairs. We mention that a Frobenius 
pair of type (α, β) is called a (α, β−1)-strongly adjoint pair in [26].

By a classical Frobenius pair (F, G), we mean a Frobenius pair of type (IdC , IdD). 
That is, both (F, G) and (G, F ) are adjoint pairs.

The following observations on Frobenius pairs between abelian categories are well 
known.

Corollary 2.2. Let (F, G) be a Frobenius pair of type (α, β) between A and B. Then the 
following statements hold.

(1) Both F and G are exact satisfying F (P(A)) ⊆ P(B) and G(P(B)) ⊆ P(A).
(2) The functor F is faithful if and only if add G(P(B)) = P(A), if and only if the unit 

η : IdA → GF is mono.
(3) The functor G is faithful if and only if add F (P(A)) = P(B), if and only if the 

counit ε : FG → IdB is epic.
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Proof. We observe that F is faithful (resp. left exact) if and only if so is βFα. Then we 
apply Lemma 2.1 to the adjoint pairs (F, G) and (G, βFα). �

The following examples are our main concerns. For an arbitrary ring R, we denote 
by R-Mod the abelian category of left R-modules. By HomR(−, −) we mean the Hom 
bifunctor on R-Mod. As usual, right R-modules are viewed as left Rop-modules. For 
Frobenius extensions and Frobenius bimodules, we refer to [21].

Example 2.3. Let G be a group and H ⊆ G be a subgroup of finite index. Let R
be a ring. Denote by RG and RH the group rings. We have the restriction functor 
Res: RG-Mod → RH-Mod, the induction functor Ind = RG ⊗RH − and coinduction 
functor Coind = HomRH(RG, −) from RH-Mod to RG-Mod. They form well-known 
adjoint pairs (Ind, Res) and (Res, Coind). The functors Ind and Coind are isomorphic. 
Then we have a classical Frobenius pair (Ind, Res).

Indeed, the above example generalizes as follows. For a ring extension θ : R → S, we 
have the scalar-extension functor S ⊗R − : R-Mod → S-Mod and the forgetful functor 
U : S-Mod → R-Mod. Recall that θ is a Frobenius extension, provided that S is finitely 
generated projective as a left R-module and that there is an isomorphism

S � HomR(S,R)

of S-R-bimodules. We observe that the ring extension θ : R → S is Frobenius if and only 
if (S ⊗R −, U) is a classical Frobenius pair.

For another well-known example, let t ≥ 2 and S = R[x]/(xt) be the truncated 
polynomial extension. Then the natural embedding θ : R → S is a Frobenius extension.

Frobenius functors between module categories are determined by Frobenius bimod-
ules. The following example generalizes the above one.

Example 2.4. Let S and R be two rings. An S-R-bimodule M = SMR is called a Frobenius 
bimodule, provided that both SM and MR are finitely generated projective such that 
there is an isomorphism of R-S-bimodules

HomS(M,S) � HomRop(M,R).

Denote the common R-S-bimodule by N . Then (M⊗R−, N⊗S−) is a classical Frobenius 
pair between R-Mod and S-Mod. Indeed, any classical Frobenius pair between these two 
module categories is of this form; see [8, Theorem 2.1]. We observe that a ring extension 
θ : R → S is a Frobenius extension if and only if the natural S-R-bimodule SSR is 
Frobenius.

We mention that Frobenius bimodules arise naturally in stable equivalences of Morita 
type; see [12,33].
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The following non-classical Frobenius pair plays a fundamental role in modern differ-
ential graded theory.

Example 2.5. Let A = (⊕p∈ZA
p, dA) be a differential graded ring and A� be its underlying 

Z-graded ring. Recall that a left differential graded A-module M = (⊕p∈ZM
p, dM )

consists of a left Z-graded A-module and a differential dM : M → M of degree one 
subject to the following graded Leibniz rule

dM (a.m) = dA(a).m + (−1)pa.dM (m)

for each a ∈ Ap and m ∈ M .
Denote by A-DGMod the abelian category of left differential graded A-modules, where 

the morphisms respect the grading and differentials. Denote by Σ(M) the translated 
differential graded module, which is given by Σ(M)p = Mp+1, dΣ(M) = −dM and a◦m =
(−1)pa.m for a ∈ Ap; here, “◦” denotes the A-action on Σ(M) and “.” the original 
A-action on M . Then we have the translation functor Σ on A-DGMod, which is an 
automorphism.

Denote by A�-Gr the abelian category of left Z-graded A�-modules, whose morphisms 
respect the grading. Then we have the forgetful functor

U : A-DGMod −→ A�-Gr.

Each Z-graded A�-module X = ⊕p∈ZX
p gives rise to a differential graded A-module 

F (X) as follows:

F (X)p = Xp ⊕Xp−1 , dF (X)

(
x

y

)
=

(
0
x

)
and a.

(
x

y

)
=

(
(−1)qa.x + dA(a).y

a.y

)

for a ∈ Aq, x ∈ Xp and y ∈ Xp−1. This defines a functor

F : A�-Gr −→ A-DGMod.

By [23, Subsection 2.2] we have adjoint pairs (F, U) and (U, ΣF ). In other words, we 
have a Frobenius pair (F, U) of type (IdA�-Gr, Σ) between A�-Gr and A-DGMod.

To be more specific, we assume that R is an ordinary ring, which is viewed as a 
differential graded ring concentrated in degree zero. Then R-DGMod coincides with the 
category C(R-Mod) of cochain complexes of R-modules, and R�-Gr is isomorphic to the 
product 

∏
ZR-Mod of countable copies of R-Mod. Consequently, we have a Frobenius 

pair (F, U) between C(R-Mod) and 
∏

ZR-Mod.
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3. Frobenius pairs and Gorenstein projective objects

In this section, we prove that a faithful Frobenius functor preserves the Gorenstein 
projective dimension of objects; see Theorem 3.2. Consequently, it preserves and reflects 
Gorenstein projective objects.

Let A be an abelian category with enough projective objects. Recall that an acyclic 
complex

P • = · · · −→ Pn+1 −→ Pn −→ Pn−1 −→ · · ·

of projective objects is said to be totally acyclic, provided it remains acyclic after applying 
HomA(−, Q) for any projective object Q ∈ A. An object M ∈ A is Gorenstein projective
[14,17] if there is a totally acyclic complex P • such that M is isomorphic to its zeroth 
cocycle Z0(P •). Denote by GP(A) the full subcategory of A consisting of Gorenstein 
projective objects. We observe P(A) ⊆ GP(A).

For an object X in A, we denote by pdA(X) its projective dimension. The Gorenstein 
projective dimension GpdA(X) of X is defined such that GpdA(X) ≤ n if and only if 
there is an exact sequence 0 → M−n → M−n+1 → · · · → M0 → X → 0 with each 
M−i ∈ GP(A). By definition, GpdA(X) = 0 if and only if X ∈ GP(A).

The following facts are standard. Denote by ⊥P(A) the full subcategory of A formed 
by those objects Y satisfying ExtiA(Y, P ) = 0 for any i ≥ 1 and P ∈ P(A).

Lemma 3.1. Keep the notation as above. Then the following statements hold.

(1) The full subcategory GP(A) of A is closed under extensions, kernels of epimorphisms, 
and direct summands.

(2) An object M is Gorenstein projective if and only if M ∈ ⊥P(A) and there is an 
exact sequence 0 → M → P 0 → P 1 → · · · with each P i ∈ P(A) and each cocycle in 
⊥P(A).

(3) Assume that GpdA(X) ≤ n. Then for each exact sequence 0 → K → P 1−n → · · · →
P−1 → P 0 → X → 0 with P−i ∈ P(A), we have K ∈ GP(A).

(4) Assume that pdA(X) is finite. Then we have GpdA(X) = pdA(X).

Proof. For (1), we refer to [17, Theorem 2.5], and for (2), we refer to [17, Proposition 2.3]. 
For (3), we refer to [17, Theorem 2.20], and for (4), we refer to [17, Proposition 2.27]. �

The main result of this paper is as follows. It strengthens and extends [24, Proposi-
tion 4.5].

Theorem 3.2. Let F : A → B be a faithful Frobenius functor between two abelian cate-
gories with enough projective objects. Then we have

GpdA(X) = GpdB(F (X))
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for each object X ∈ A. In particular, X ∈ GP(A) if and only if F (X) ∈ GP(B).

Proof. By Corollary 2.2, the result follows directly from Proposition 3.7 below. �
Remark 3.3. By categorical duality, there is a similar result for Gorenstein injective 
dimensions. Here, we assume that both A and B have enough injective objects. Denote 
by Gid the Gorenstein injective dimension. Then a faithful Frobenius functor F : A → B
satisfies

GidA(X) = GidB(F (X))

for any object X in A.

Recall that the global Gorenstein dimension of A is defined as

gl.Gdim(A) = sup{GpdA(X) | X ∈ A}.

It might be also called the global Gorenstein projective dimension. The preference of the 
terminology is justified as follows: if A also has enough injective objects, gl.Gdim(A)
equals the supremum of the Gorenstein injective dimension of all objects in A. We refer 
the details to [3, Chapter VII]; see also Appendix A.

Corollary 3.4. Let (F, G) be a Frobenius pair between A and B. Assume that both F and 
G are faithful. Then gl.Gdim(A) = gl.Gdim(B).

Proof. By Theorem 3.2 we have gl.Gdim(A) ≤ gl.Gdim(B). Since G : B → A is also a 
faithful Frobenius functor, we have gl.Gdim(B) ≤ gl.Gdim(A). �
Remark 3.5. We mention that the above faithful condition is necessary. Take another 
abelian category B′ with enough projective objects. An object (B, B′) in the product 
category B × B′ is Gorenstein projective if and only if so are both B and B′.

Consider the canonical projection Pr: B×B′ → B and the inclusion Inc: B → B×B′. 
Then we have a classical Frobenius pair (Pr, Inc). However, the functor Pr does not 
reflect Gorenstein projective objects in general. We observe that the global Gorenstein
dimension of B × B′ is, in general, larger than the one of B.

Lemma 3.6. Let F : A � B : G be an adjoint pair consisting of exact functors. Assume 
that G(P(B)) ⊆ P(A). Then we have GpdA(X) ≥ GpdB(F (X)) for each object X ∈ A.

Proof. Since F is exact, it suffices to claim that F (X) ∈ GP(B) for any X ∈ GP(A). 
Take a totally acyclic complex P • with X � Z0(P •). By Lemma 2.1(1), the functor 
F preserves projective objects. Hence, the acyclic complex F (P •) consists of projective 
objects. For each projective object Q ∈ B, we have an isomorphism
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HomB(F (P •), Q) ∼−→ HomA(P •, G(Q))

of complexes. By assumption G(Q) is projective in A. It follows that these two Hom 
complexes are acyclic. In particular, the complex F (P •) is totally acyclic. Since F (X) �
Z0(F (P •)), we are done with the claim. �

The following result is slightly stronger than Theorem 3.2, although its assumptions 
seem to be technical.

Proposition 3.7. Let F : A � B : G be an adjoint pair consisting of exact functors. As-
sume that F is faithful and that add G(P(B)) = P(A). Then we have GpdA(X) =
GpdB(F (X)) for each object X ∈ A.

Proof. By Lemma 3.6, it suffices to show that GpdA(X) ≤ GpdB(F (X)). We first claim 
that if F (X) ∈ GP(B), then X ∈ GP(A).

For the claim, we take exact sequence

0 −→ F (X) f ′

−→ P −→ Y −→ 0

in B with P ∈ P(B) and Y ∈ GP(B). Denote by η and ε the unit and counit of the 
adjoint pair (F, G), respectively. Set f = G(f ′) ◦ ηX : X → G(P ). By f ′ = εP ◦F (f), we 
have that F (f) is a monomorphism. Since F is exact and faithful, we infer that f is also 
a monomorphism. Consequently, we obtain an exact sequence in A

0 −→ X
f−→ G(P ) −→ X ′ −→ 0.

The following commutative exact diagram

0 F (X)
F (f)

FG(P )

εP

F (X ′) 0

0 F (X)
f ′

P Y 0

yields an exact sequence

0 −→ FG(P ) −→ F (X ′) ⊕ P −→ Y −→ 0.

By Lemma 2.1(1), the functor F preserves projective objects. It follows that FG(P ) is 
projective. Since Y is Gorenstein projective, it follows from the above exact sequence and 
Lemma 3.1(1) that F (X ′) is Gorenstein projective. Hence, by Lemma 3.1(2), we have 
ExtiB(F (X ′), Q) = 0 for any Q ∈ P(B) and i > 0. However, by the adjoint pair (F, G), 
we infer that ExtiA(X ′, G(Q)) = 0. By the assumption that add G(P(B)) = P(A), we 
conclude that ExtiA(X ′, P ) = 0 for any i > 0 and P ∈ P(A), that is, X ′ ∈ ⊥P(A).



X.-W. Chen, W. Ren / Journal of Algebra 610 (2022) 18–37 27
Set Q0 = G(P ) and repeat the above argument for X ′. We will obtain inductively an 
exact sequence

0 −→ X −→ Q0 −→ Q1 −→ Q2 −→ · · ·

with each Qi ∈ P(A) and cocycle in ⊥P(A). In view of Lemma 3.1(2), we deduce the 
claim.

For the required inequality, we may assume that GpdB(F (X)) = n < ∞. Take an 
exact sequence

ξ : 0 −→ K −→ P 1−n −→ · · · −→ P 0 −→ X −→ 0

with each P i ∈ P(A). Applying the exact functor F to ξ and Lemma 3.1(3), we infer 
that F (K) is Gorenstein projective. The above claim for K implies that K is Gorenstein 
projective, proving that GpdA(X) ≤ n. �

We apply Theorem 3.2 to recover a number of known results.

Example 3.8. Recall from Example 2.3 that a Frobenius extension θ : R → S yields a 
classical Frobenius pair (S⊗R−, U) between S-Mod and R-Mod. Applying Theorem 3.2
to the forgetful functor U , we infer that a left S-module SM is Gorenstein projective if 
and only if the underlying R-module RM is Gorenstein projective. This result is due to 
[30, Theorem 2.2] and [37, Theorem 3.2].

In the Frobenius extension θ : R → S, we assume further that S is a generator as a right 
R-module. Then S⊗R− : R-Mod → S-Mod is faithful. We apply Corollary 3.4 to obtain 
that S is left n-Gorenstein if and only if so is R. This generalizes [30, Theorem 3.3]. Here, 
we use the fact that a ring R is left n-Gorenstein if and only if gl.Gdim(R-Mod) ≤ n.

More concretely, let us take S = RG for a finite group G. We infer the following 
classical result: an RG-module RGM is Gorenstein projective if and only if the underlying 
R-module RM is Gorenstein projective; moreover, the group ring RG is left n-Gorenstein 
if and only if so is R.

Let us mention that applying Theorem 3.2 to the truncated polynomial extension 
R → R[x]/(xt), we might recover some results in [32,34]; compare [29, Section 3] and 
[31].

Example 3.9. Let R be a ring. Consider the Frobenius pair (F, U) between C(R-Mod)
and 

∏
ZR-Mod in Example 2.5. We observe that a Gorenstein projective object in the 

product category 
∏

ZR-Mod is precisely given by a sequence (Gn)n∈Z of Gorenstein 
projective R-modules.

Applying Theorem 3.2 to the forgetful functor U , we infer that a complex X• =
(Xn, dnX)n∈Z is a Gorenstein projective object in C(R-Mod) if and only if each component 
Xn is a Gorenstein projective R-module. This result is due to [35, Theorem 1] and [36, 
Theorem 2.2]; see also [29, Corollary 3.3].
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4. Triangle equivalences induced by Frobenius functors

In this section, we study when a Frobenius functor induces triangle equivalences on 
the stable categories of Gorenstein projective objects, the singularity categories and the 
Gorenstein defect categories, respectively.

Let A be an abelian category with enough projective objects. As GP(A) is closed 
under extensions, it is naturally an exact category in the sense of Quillen. Moreover, it is 
a Frobenius category, whose projective-injective objects are precisely projective objects 
in A. Therefore, by the general result in [16, I.2], its stable category GP(A) is naturally 
a triangulated category.

Denote by Db(A) the bounded derived category. The bounded homotopy category 
Kb(P(A)) is naturally viewed as a triangulated subcategory of Db(A). We denote by 
Db(A)fGd the full subcategory of Db(A) formed by those complexes isomorphic to a 
bounded complex of Gorenstein projective objects. Then we have Kb(P(A)) ⊆ Db(A)fGd.

Following [6,28], the singularity category of A is defined to be the following Verdier 
quotient triangulated category

Dsg(A) = Db(A)/Kb(P(A)).

We observe that Dsg(A) vanishes if and only if each object in A has finite projective 
dimension.

There is a canonical functor

can: GP(A) −→ Dsg(A)

sending a Gorenstein projective object to the corresponding stalk complex concentrated 
in degree zero. The functor is well defined, since projective objects vanish in Dsg(A). 
This canonical functor is a triangle functor in a natural way; see [10, Lemma 2.5].

The following fundamental result is due to [6, Theorem 4.4.1]; compare [2, Corol-
lary 4.13] and [28, Proposition 1.21].

Lemma 4.1. The above canonical functor is fully faithful, and it induces a triangle equiv-
alence

GP(A) � Db(A)fGd/Kb(P(A)).

Proof. For a detailed proof of the fully-faithfulness, we refer to [10, Theorem 2.1]. The 
smallest triangulated subcategory of Dsg(A) containing all Gorenstein projective objects 
is clearly Db(A)fGd/Kb(P(A)). Thus, the denseness follows immediately. �

Following [5], the Gorenstein defect category of A is defined to be

Ddef(A) = Db(A)/Db(A)fGd.
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The terminology is justified by the following fact: Ddef(A) vanishes if and only if each 
object in A has finite Gorenstein projective dimension. In view of Lemma 4.1, we have 
a short exact sequence of triangulated categories

GP(A) can−→ Dsg(A) −→ Ddef(A),

where the unnamed arrow is the quotient functor.
Assume that F : A � B : G is a Frobenius pair of type (α, β). Here, α and β are 

autoequivalences on A and B, respectively. The autoequivalence α induces triangle 
autoequivalences on GP(A), Dsg(A) and Ddef(A), respectively. All the induced autoe-
quivalences will still be denoted by α. Similar remarks apply to β.

By Corollary 2.2, both the exact functors F and G respect projective objects. By 
Lemma 3.6, both functors respect Gorenstein projective objects. Consequently, we have 
the following commutative diagram.

GP(A)

F

can Dsg(A)

F

Ddef(A)

F

GP(B)

G

can Dsg(B)

G

Ddef(B)

G

The vertical induced functors form three adjoint pairs of triangle functors. They are 
all Frobenius pairs of type (α, β). Here, we use the same letter to denote the induced 
triangle functors.

The following results study when the induced adjoint pairs give rise to equivalences. 
Recall that η : IdA → GF and ε : FG → IdB are the unit and counit of the adjoint pair 
(F, G), respectively.

Proposition 4.2. Let F : A � B : G be a Frobenius pair with both F and G faithful. Then 
the following statements hold.

(1) The induced adjoint pair F : GP(A) � GP(B) : G yields mutually inverse equiva-
lences if and only if Cok(ηX) has projective dimension at most one and Ker(εY ) is 
projective for any X ∈ GP(A) and Y ∈ GP(B);

(2) The induced adjoint pair F : Dsg(A) � Dsg(B) : G yields mutually inverse equiva-
lences if and only if both Cok(ηX) and Ker(εY ) have finite projective dimension for 
any X ∈ A and Y ∈ B;

(3) The induced adjoint pair F : Ddef(A) � Ddef(B) : G yields mutually inverse equiv-
alences if and only if both Cok(ηX) and Ker(εY ) have finite Gorenstein projective 
dimension for any X ∈ A and Y ∈ B.

Proof. By the faithfulness assumption and Corollary 2.2, the unit η is mono and the 
counit ε is epic.



30 X.-W. Chen, W. Ren / Journal of Algebra 610 (2022) 18–37
(1) For the statement, it suffices to study when precisely ηX : X → GF (X) and 
εY : FG(Y ) → Y become isomorphisms in the stable categories for any X ∈ GP(A) and 
Y ∈ GP(B).

As ηX is mono, we have a short exact sequence in A

0 −→ X
ηX−→ GF (X) −→ Cok(ηX) −→ 0.

It induces an exact triangle in Dsg(A).

X
ηX−→ GF (X) −→ Cok(ηX) −→ Σ(X)

where Σ is the suspension functor. Therefore, ηX is an isomorphism in GP(A), or equiv-
alently via the canonical functor “can”, ηX is an isomorphism in Dsg(A) if and only 
if Cok(ηX) is zero in Dsg(A). The latter condition means exactly that Cok(ηX) has fi-
nite projective dimension. As both X and FG(X) are Gorenstein projective, we have 
GpdA(Cok(ηX)) ≤ 1. By Lemma 3.1(4), we infer pdA(Cok(ηX)) ≤ 1. In summary, we 
have proved that ηX is an isomorphism in GP(A) if and only if pdA(Cok(ηX)) ≤ 1.

Since εY is epic, we infer by Lemma 3.1(1) that Ker(εY ) is Gorenstein projective, 
that is, GpdB(Ker(εY )) = 0. Then the same argument as above will prove that εY is an 
isomorphism in GP(B) if and only if pdB(Ker(εY )) = 0.

(2) Similarly as above, we have to study when ηX• and εY • becomes isomorphisms in 
the singularity categories for any bounded complex X• in A and any bounded complex 
Y • in B.

The following short exact sequence of bounded complexes

0 −→ X• ηX•−→ GF (X•) −→ Cok(ηX•) −→ 0

yields an exact triangle in Dsg(A)

X• ηX•−→ GF (X•) −→ Cok(ηX•) −→ Σ(X•).

Then ηX• is an isomorphism if and only if Cok(ηX•) is zero in Dsg(A). The latter con-
dition means exactly that Cok(ηX•), as an object in Db(A), is isomorphic to a bounded 
complex of projective objects for any bounded complex X•. As each component of 
Cok(ηX•) is given by Cok(ηXi), we infer that the previous condition is equivalent to 
the condition that for each object X ∈ A, Cok(ηX) has finite projective dimension. In 
summary, we have proved that each ηX• is an isomorphism in Dsg(A) if and only if each 
Cok(ηX) has finite projective dimension.

Similarly, we can prove that each εY • is an isomorphism in Dsg(B) if and only if 
Ker(ηY ) has finite projective dimension for each Y ∈ B. This completes the proof of (2).

We omit the proof of (3), as it is very similar to the one of (2). �
Let us mention a particular case.
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Corollary 4.3. Let F : A � B : G be a Frobenius pair with both F and G faithful. Assume 
that Cok(ηX) and Ker(εY ) are projective for any X ∈ A and Y ∈ B. Then F and G
induce the following triangle equivalences

GP(A) � GP(B), Dsg(A) � Dsg(B), and Ddef(A) � Ddef(B).

For a finite dimension algebra A over a field k, we denote by A-mod the abelian 
category of finite dimensional left A-modules. The corresponding categories GP(A-mod), 
Dsg(A-mod) and Ddef(A-mod) are usually denoted by A-Gproj, Dsg(A) and Ddef(A), 
respectively.

Example 4.4. Let A and B be two finite dimensional algebras over a field k. By [12, 
Proposition 2.2 and Corollary 3.1], under very mild conditions, a stable equivalence of 
Morita type is a stable equivalence of adjoint type [33]. It yields a classical Frobenius 
pair between A-mod and B-mod, which satisfies the conditions in Corollary 4.3; here, 
we use the standard fact that tensoring any module with a projective bimodule always 
yields a projective module. So, we have three induced triangle equivalences

A-Gproj � B-Gproj, Dsg(A) � Dsg(B), and Ddef(A) � Ddef(B).

For the leftmost equivalence, one might compare [24, Section 4]; for the middle singular 
equivalence, one might compare [38, Corollary 3.6].
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Appendix A. The global Gorenstein dimension of an abelian category

We fix an arbitrary abelian category A which has enough projective objects and 
enough injective objects. We will give a new and direct proof to the following known 
result [3]: the supremum of the Gorenstein projective dimension of all objects in A
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coincides with the supremum of the Gorenstein injective dimension of all objects in A. 
The common value is called the global Gorenstein dimension of A.

The above mentioned result appears first in [3, Proposition VII.1.3], while its proof is 
indirect and seems nontrivial to follow. The result for the module category is rediscovered 
in [4] via a completely different method; compare [13, Theorem 4.1].

We will abbreviate GpdA and GidA as Gpd and Gid, respectively. Let us start with 
a well-known fact; see [18, Theorem 2.2] for assertion (2).

Lemma A.1. Assume that M ∈ A satisfies id(M) < ∞. Then the following statements 
hold.

(1) ExtiA(G, M) = 0 for any Gorenstein projective object G and i > 0;
(2) Gpd(M) = pd(M).

Proof. The Ext-vanishing in (1) is well known, which follows by a dimension-shift 
argument. For (2), it suffices to prove pd(M) ≤ Gpd(M). We may assume that 
Gpd(M) = n < ∞. By [1, Theorem 1.1], there is a short exact sequence

0 −→ M −→ Q −→ G −→ 0

with pd(Q) ≤ n and G Gorenstein projective. This sequence splits due to the Ext-
vanishing condition in (1). Then the required inequality follows. �

Denote by spdi(A) the supremum of projective dimension of all injective objects in 
A, and by sidp(A) the supremum of injective dimension of all projective objects in A.

The following fact is also well known; compare [15, 1.6].

Lemma A.2. Assume that both spdi(A) and sidp(A) are finite. Then we have spdi(A) =
sidp(A).

Proof. By duality, we may assume on the contrary that spdi(A) < sidp(A) = m. Take 
a projective object P satisfying id(P ) = m. Hence, we have ExtmA (X, P ) �= 0 for some 
object X. Take a short exact sequence

0 −→ X −→ I −→ X ′ −→ 0

with I injective. By Extm+1
A (X ′, P ) = 0, the induced map

ExtmA (I, P ) −→ ExtmA (X,P )

is surjective. Consequently, we have ExtmA (I, P ) �= 0. This implies that pd(I) ≥ m, 
contradicting to the inequality. �
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Lemma A.3. Assume that sidp(A) < ∞. Suppose that there is an exact sequence 0 →
M → P 0 → P 1 → · · · with each P i projective. Then M is Gorenstein projective.

Proof. By assumption, each projective object P has finite injective dimension. Then by 
a dimension-shift argument, we have ExtiA(M, P ) = 0 for any i ≥ 1. Due to the same 
reason, each kernel Kj of P j → P j+1 satisfies ExtiA(Kj , P ) = 0. By Lemma 3.1(2), this 
implies that M is Gorenstein projective. �
Lemma A.4. Assume that sup{Gpd(M) | M ∈ A} = n < ∞. Then we have spdi(A) =
sidp(A) ≤ n.

Proof. For any injective object I, we have pd(I) = Gpd(I) by Lemma A.1. Then 
spdi(A) ≤ n follows from the assumption.

For any projective object P , take an exact sequence

0 −→ P −→ I0 −→ · · · −→ In−1 −→ In −→ L −→ 0

with each Ii injective. By the assumption, we have Gpd(L) ≤ n. It follows that 
Extn+1

A (L, P ) = 0. By a dimension-shift, we have

Extn+1
A (L,P ) � Ext1A(L,L′)

where L′ is the image of In−1 → In. Therefore, the short exact sequence

0 −→ L′ −→ In −→ L −→ 0

splits, and thus L′ is injective. This proves that id(P ) ≤ n and then sidp(A) ≤ n. Then 
we are done by Lemma A.2. �

The following proof seems to be new, where the argument is similar to the one in [9, 
Section 3].

Lemma A.5. Assume that spdi(A) ≤ m and sidp(A) ≤ m for some integer m. Then we 
have sup{Gpd(M) | M ∈ A} ≤ m.

Proof. Fix an arbitrary object M . Consider an injective resolution

0 −→ M −→ I0 ∂0

−→ I1 ∂1

−→ I1 −→ · · ·

of M . For each i ≥ 0, we choose a projective resolution

πi : P i,• −→ Ii
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such that P i,• = (P i,j , di,j0 )j≤0 satisfies P i,j = 0 for j ≤ −(m + 1). Here, we use the 
assumption spdi(A) ≤ m. By Comparison Theorem, there exists a cochain map

di,•h : P i,• −→ P i+1,•

extending the differential ∂i. Set di,j1 = (−1)jdi,jh .
The bigraded objects P •,• are endowed with two endomorphisms d0 of degree (0,1) 

and d1 of degree (1,0), which satisfy d0 ◦d0 = 0 and d1 ◦d0 +d0 ◦d1 = 0. However, d1 ◦d1
is not necessarily zero. Therefore, P •,• is not a bicomplex in general.

The cochain map

di+1,•
h ◦ di,•h : P i,• −→ P i+2,•

extends the zero map 0 = ∂i+1 ◦∂i : Ii → Ii+2. Therefore, it is homotopic to zero. Hence 
the homotopy maps give rise an endomorphism d2 of P •,• with degree (2, −1) which 
satisfying

d0 ◦ d2 + d1 ◦ d1 + d2 ◦ d0 = 0.

It is routine to check that d1 ◦ d2 + d2 ◦ d1 commutes with d0. In other words,

di+2,•−1
1 ◦ di,•2 + di+1,•

2 ◦ di,•1 : P i,• −→ P i+3,•(−1)

is a cochain map, where (−1) denote the degree-shift functor of complexes (that is, 
(−1) does not change the sign of the differentials). However, any cochain map P i,• →
P i+3,•(−1) is necessarily homotopic to zero. The homotopy for the above cochain map 
yields an endomorphism d3 of P •,• of degree (3, −2) satisfying

d0 ◦ d3 + d1 ◦ d2 + d2 ◦ d1 + d3 ◦ d0 = 0.

We repeat the above process to construct for each l ≥ 0 an endomorphism dl on P •,•

with degree (l, −l + 1) such that 
∑l

i=0 di ◦ dl−i = 0. The bigraded objects P •,• together 
with such endomorphisms dl becomes a quasi-bicomplex in the sense of [9, p.2725].

We form the total complex Q• of the quasi-bicomplex P •,• as follows: each component 
Qs is given by a finite direct sum ⊕i+j=sP

i,j ; the differential Qs → Qs+1 is given by ∑
l≥0 dl, more precisely, its restriction to P i,j is given by 

∑
l≥0 d

i,j
l , where we observe 

that di,jl = 0 whenever l ≥ j+m +2. By [9, Proposition 3.4], the morphisms πi : P i,0 → Ii

induce a quasi-isomorphism

π• : Q• −→ I•.

In other words, the total complex Q• is quasi-isomorphic to M , viewed as a stalk complex 
concentrated in degree zero.
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By the very definition, the total complex Q• is of the form

0 −→ Q−m −→ Q−m−1 −→ · · · −→ Q0 −→ Q1 −→ · · ·

where each Qs is projective. As it is quasi-isomorphic to M , we obtain a short exact 
sequence

0 −→ B0 −→ Z0 −→ M −→ 0,

where B0 is the image of Q−1 → Q0 and Z0 is the kernel of Q0 → Q1. Moreover, we 
observe that pd(B0) ≤ m − 1, and that Z0 is Gorenstein projective by the assump-
tion sidp(A) ≤ m and Lemma A.3. Then the above short exact sequence implies that 
Gpd(M) ≤ m, as required. �

The main result is as follows, which slightly reformulates the one in [3, Proposi-
tion VII.1.3]; compare [13, Theorem 4.1].

Theorem A.6. Let A be an abelian category with enough projective objects and enough 
injective objects. Then we have

sup{Gpd(M) | M ∈ A} = max{spdi(A), sidp(A)} = sup{Gid(M) | M ∈ A}.

This common value is call the global Gorenstein dimension of A, denoted by 
gl.Gdim(A).

Proof. The inequality sup{Gpd(M) | M ∈ A} ≤ max{spdi(A), sidp(A)} follows from 
Lemma A.5, while max{spdi(A), sidp(A)} ≤ sup{Gpd(M) | M ∈ A} follows from 
Lemma A.4. This establishes the left equality. By duality, we have the right equality. �

Let d ≥ 0. The abelian category A is d-Gorenstein if gl.Gdim(A) ≤ d. In view 
of Theorem A.6 and Lemma A.2, this is equivalent to spdi(A) = sidp(A) ≤ d. The 
terminology is justified by the following fact: a ring R is left d-Gorenstein in the sense of 
[2] if and only if the abelian category R-Mod of left R-modules is d-Gorenstein; compare 
[2, Theorem 6.9] and [3, Definition VII.2.5].

In view of Lemma A.2, we remind the following open question; see [3, p.123].

Question. Let A be an abelian category with enough projective objects and enough injective 
objects. Does the equality spdi(A) = sidp(A) hold always?

Let A be an artin algebra over a commutative artinian ring. The famous Gorenstein 
symmetry conjecture for A states that the injective dimension of A as the left regular 
A-module coincides with the injective dimension of A as the right regular A-module. We 
observe that the above question for the abelian category A-mod of finitely generated left 
A-modules is equivalent to the Gorenstein symmetry conjecture for A.
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