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1. Introduction

One can construct three kinds of important graded Hopf algebras TH (M),
CotH (M) and SH (M) for a given Hopf algebra H and an H -Hopf bimodule
M , which will be, respectively, referred as the tensor Hopf algebra, the cotensor
Hopf algebra and the quantum symmetric algebra associated to the given couple
(H,M). These constructions go back to Nichols [13], and they are highlighted in
Rosso’s paper [15], who proves that the non-negative part of the quantum envel-
oping algebra U�0

q (g) (q not a root of unity) of a complex semisimple Lie algebra
g is a quantum symmetric algebra.

A special case of the above Hopf algebras is of particular interest to represent-
ationists. If the Hopf algebra H � K ×· · ·× K as algebras, then TH (M) is a path
algebra of some quiver, and so the quantum symmetric algebra SH (M) is also a
quotient of the path algebra (e.g., see [5,6,9]). Dually, if the Hopf algebra H is
group-like (not necessarily of finite dimension), then CotH (M) is a path coalgebra
[4] of some quiver, and hence SH (M) is a large subcoalgebra of the path coalge-
bra. Note that both of the above observations will lead to the concept of Hopf
quivers by Cibils and Rosso [7]. In fact, these quiver presentations of the above
Hopf algebras are very useful to study certain Hopf algebras, see [1,14], and they
also could be used to classify some comodules of quantum groups, see [3].

Inspired by the above cited works, we study the three kinds of graded Hopf
algebras and their universal properties. Moreover, using their universal properties,
we can build up a large class of graded Hopf pairings for the quantum symmetric
algebras, which can be seen as a generalization of a result by Nichols [13, Propo-
sition 2.2.1] and the self-duality of U�0

q (g) (and its variants) via Rosso’s isomor-
phism [15, Theorem 15] (and the remarks thereafter).
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The paper is organized as follows: Section 2 is devoted to recall the three known
constructions of graded Hopf algebras from a given couple. We also include
their universal properties. In Section 3, we prove the main results of this paper:
Theorems 3.1 and 3.2, which claim that there exists graded Hopf pairings between
certain quantum symmetric algebras, and furthermore, the existence of two-sided
non-degenerated Hopf pairings characterizes quantum symmetric algebras. Note
that the proof uses the technical notion of algebra–coalgebra pairings. As a special
case, the self-duality of Hopf algebras is briefly discussed in Section 3.7.

All algebras and coalgebras will be over a fixed field K , and ⊗ means ⊗K .
Graded algebras (respectively, coalgebras · · · ) will always mean positively graded
algebras (respectively, coalgebras · · · ).

2. Three Constructions of Graded Hopf Algebras

This section is devoted to fix some notation and to recall three constructions of
graded Hopf algebras from a given couple.

2.1 Let us recall some basic definitions in Hopf algebras (see [12,16]). Throughout
H will be a Hopf algebra with comultiplication �H , counit εH and antipode SH .
Sometimes we denote the multiplication of H by m H and the unit of H by 1H .

An H -Hopf bimodule M is an H -bimodule (with the H -actions denoted by “·”)
and H -bicomodule with structure maps ρl : M −→ H ⊗ M and ρr : M −→ M ⊗ H
such that

ρl(h ·m ·h′)=
∑

h1m−1h′
1 ⊗h2 ·m0 ·h′

2

ρr (h ·m ·h′)=
∑

h1 ·m0 ·h′
1 ⊗h2m1h′

2,

where h,h′ ∈ H and m ∈ M , and we use the Sweedler notation, i.e., �(h)=∑
h1 ⊗

h2, ρl(m)= ∑
m−1 ⊗ m0 and ρr (m)= ∑

m0 ⊗ m1 (e.g., see [16, pp. 10, 32]). For
example, H itself is an H -Hopf bimodule with the regular bimodule structure and
the bicomodule structure maps ρl =ρr =�H .

We will refer to the above pair (H,M) as a couple throughout this paper, where
H is a Hopf algebra and M an H -Hopf bimodule.

2.2. A Hopf algebra H is said to be graded, if there exists a decomposition of vec-
tor spaces H =⊕n�0 Hn such that

Hn Hm ⊆ Hn+m, 1H ∈ H0, SH (Hn)⊆ Hn,

�H (Hn)⊆
∑

i+ j=n

Hi ⊗ Hj , εH (Hn)=0 if n>0,

where n,m�0.
Consider a graded Hopf algebra H. It is clear that H0 is a subHopf algebra.

Moreover, H1 is an H0-bimodule induced by the multiplication inside H . Note
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that

�H (H1)⊆ H0 ⊗ H1 ⊕ H1 ⊗ H0,

thus there exist unique maps ρl : H1 −→ H0 ⊗ H1 and ρr : H1 −→ H1 ⊗ H0 such that

�H (m)=ρl(m)+ρr (m), ∀m ∈ H1.

The following result is well known and it can be easily checked.

LEMMA 2.1. Use the notation above. Then H1 is an H0-Hopf bimodule with the
structure maps ρl and ρr , and thus (H0, H1) is a couple.

We will say that the above couple (H0, H1) is associated to the graded Hopf
algebra H .

2.3. We will recall the constructions of graded Hopf algebras TH (M), CotH (M)
and SH (M) from a given couple (H,M).

2.3.1. TH (M). As in Section 2.1, H is a Hopf algebra and M an H -Hopf bimod-
ule. Denote TH (M) the tensor algebra associated to the H -bimodule M , i.e.,

TH (M)= H ⊕ M ⊕ (M ⊗H M)⊕· · ·⊕ M⊗H n ⊕· · · ,
where M⊗H n = M⊗H n−1 ⊗H M for n�1.

To avoid confusion, we will write TH (M)⊗TH (M) for TH (M)⊗ TH (M). Con-
sider the following two maps

�H : H −→ H⊗H ⊆ TH (M)⊗TH (M)

and

ρl ⊕ρr : M −→ H⊗M + M⊗H ⊆ TH (M)⊗TH (M).

It is direct to see that TH (M)⊗TH (M) is an H -bimodule via the algebra map �H

and the map ρl ⊕ρr is an H -bimodule morphism. Applying the universal property
of the tensor algebra TH (M) (e.g., see [13, Proposition 1.4.1]), we obtain that there
exists a unique algebra map

δ : TH (M)−→ TH (M)⊗TH (M)

such that δ|H =�H and δ|M =ρl ⊕ρr .
Using a similar argument, we obtain a unique algebra map

ε : TH (M)−→ K

such that ε|H = εH and ε|M =0.
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It is not hard to see that (TH (M), δ, ε) is a coalgebra, and thus TH (M) becomes
a (graded) bialgebra. By [13, Proposition 1.5.1] or [12, Lemma 5.2.10], the bialge-
bra TH (M) is a Hopf algebra. In fact, one can describe the antipode more explic-
itly. Let s1 : M −→ M be a map such that

s1(m)=−
∑

SH (m−1) ·m0 · SH (m1),

where (IdH ⊗ ρr )ρl(m)= ∑
m−1 ⊗ m0 ⊗ m1 and m ∈ M . Again by the universal

property of the tensor algebra TH (M), there is a unique algebra map s :TH (M)−→
TH (M)op such that s|H = SH and s|M = s1, where TH (M)op is the opposite algebra
of TH (M). One can deduce that the map s is the antipode of TH (M) (here, one
may use [16, p. 73, Example 2)].

We will call the resulting Hopf algebra TH (M) the tensor Hopf algebra associ-
ated to the couple (H,M).

We observe the following universal property of the tensor Hopf algebra TH (M).
The proof follows immediately from the universal property of the tensor algebras
and then the coalgebra structure of TH (M).

PROPOSITION 2.2. Let B = ⊕n�0 Bn be a graded Hopf algebra with the associ-
ated couple (B0, B1). Then there exists a unique graded Hopf algebra morphism
πB : TB0(B1)−→ B such that the restriction of πB to B0 ⊕ B1 is the identity map.

Moreover, the map πB is surjective if and only if B is generated by B0 and B1.

2.3.2. CotH (M). This is the dual construction of 2.3.1. As before, (H,M) is a cou-
ple where H is a Hopf algebra and M an H -Hopf bimodule.

Denote CotH (M) the cotensor coalgebra with respect to the H -bicomodule M
(for details, see [13, p. 1526] and [2]), i.e.,

CotH (M)= H ⊕ M ⊕ (M�H M)⊕· · ·⊕ M�H n ⊕· · · ,

where M�H M is the cotensor product of M , and we denote M�H n = M�H M
�H · · ·�H M (with n-copies of M). Note that M�H n is a subspace of M⊗n ,
and elements

∑
m1 ⊗ · · · ⊗ mn ∈ M⊗n which belong to M�H n will be written as∑

m1�H · · ·�H mn .
The coalgebra structure of CotH (M) is described as follows: the comultiplica-

tion � : CotH (M)−→ CotH (M)⊗ CotH (M) is given by �|H =�, �(m)= ρl(m)+
ρr (m) for all m ∈ M , and, in general,

�
(∑

m1�H · · ·�H mn
)

=
∑

(m1)−1 ⊗ ((m1)0�H · · ·�H mn)+

+
n−1∑

i=1

(m1�H · · ·�H mi )⊗ (mi+1�H · · ·�mn)+

+
∑

(m1� · · ·�H (m
n)0)⊗ (mn)1



DUALITY BETWEEN QUANTUM SYMMETRIC ALGEBRAS 43

∈ (H ⊗ M�H n)
n−1⊕

i=1

(M�H i ⊗ M�H (n−i))⊕ (M�H n ⊗ H)

⊆CotH M ⊗CotH (M),

for any
∑

m1�H · · ·�H mn ∈ M�n . The counit ε :CotH (M)−→ K is given by ε|H =
εH and ε|M� H n =0 if n�1.

Endow a bialgebra structure on CotH (M) as follows: by the universal property
of the cotensor coalgebra CotH (M) (e.g., see [13, Proposition 1.4.2] or [2, Lemma
3.2]), there exist unique graded coalgebra morphisms

m :CotH (M)⊗CotH (M)−→CotH (M) and e : K −→CotH (M),

such that m|H⊗H is just the multiplication m H of the Hopf algebra H and
m|(H⊗M)⊕(M⊗H)is given by

m(h ⊗n +n′ ⊗h′)=h ·n +n′ ·h′

for all n,n′ ∈ M and h,h′ ∈ H , and the unit map e : K −→CotH (M) maps 1K to 1H .
One can verify that (CotH (M),m, e) is an algebra, and thus CotH (M) becomes

a (graded) bialgebra. By [13, Proposition 1.5.1] or [12, Lemma 5.2.10], the bialge-
bra CotH (M) is a graded Hopf algebra. Denote its antipode by S. It is not hard
to see that

S|H = SH and S(m)=−
∑

SH (m−1) ·m0 · SH (m1)

for all m ∈ M . In fact, by the universal property of the cotensor coalgebra
CotH (M), the graded anti-coalgebra morphism S is uniquely determined by the
above two identities.

The resulting Hopf algebra (CotH (M),m, e,�, ε, S) will be called the cotensor
Hopf algebra associated to the couple (H,M).

Recall that in a coalgebra (C,�C , εC ), the wedge is defined as V ∧C W =
�−1

C (V ⊗C +C ⊗ W ) for any subspaces V and W of C . An important fact is that
H ∧CotH (M) H = H ⊕ M . (To see this, first note that H ⊕ M ⊆ H ∧CotH (M) H . Since
CotH (M) is a graded coalgebra, then H ∧CotH (M) H is a graded subspace. There-
fore, it suffices to show that

(H ∧CotH (M) H)∩ M�H n =0, n � 2.

In fact, let x ∈ (H ∧CotH (M) H)∩ M�H n be a nonzero element. Thus �(x) ∈ H ⊗
M�H n + M�H n ⊗ H . Note that x ∈ M�H n and by the definition of the comultipli-
cation �, we know that the term belonging to M ⊗ M�H n−1 which occurs in �(x)
is not zero. This is a contradiction.)

Dual to Proposition 2.2, we observe the following universal property of the co-
tensor Hopf algebra CotH (M). Note that it is a slight generalization of [14, Theo-
rem 4.5] (the proof of the second statement needs to use the above recalled fact).
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PROPOSITION 2.3. Let B =⊕n�0 Bn be a graded Hopf algebra with the associated
couple (B0, B1). Then there exists a unique graded Hopf algebra morphism iB : B −→
CotB0(B1) such that its restriction to B0 ⊕ B1 is the identity map.

Moreover, the map iB is injective if and only if B0 ∧B B0 = B0 ⊕ B1.

2.3.3. SH (M). As above, (H,M) is a couple. Denote SH (M) be the graded sub-
algebra of the cotensor Hopf algebra CotH (M) generated by H and M . Clearly,
SH (M) is a graded subHopf algebra of CotH (M). We will call SH (M) the quantum
symmetric algebra (see [15, p. 407]) associated to the couple (H,M).

The following result is a direct consequence of Proposition 2.3.

Corollary 2.4. Let B =⊕n�0 Bn be a graded Hopf algebra generated by B0 and B1.
Denote (B0, B1) the couple associated to B. Then there exists a unique graded Hopf
algebra epimorphism jB : B −→ SB0(B1) such that its restriction to B0 ⊕ B1 is the
identity map.

Remark 2.5 (1) We may deduce Nichols’s result [13, 2.2] from Proposition 2.3: the
map iB in Proposition 2.3 is an isomorphism if and only if B is generated by B0

and B1 and B0 ∧B B0 = B0 ⊕ B1. In particular, if B0 is cosemisimple, we see that
iB : B � SB0(B1) if and only if B is coradically-graded and generated by B0 and B1.

(2) As a special case of Corollary 2.4, for every couple (H,M), there is a unique
graded Hopf algebra epimorphism

π(H,M) : TH (M)−→ SH (M)

such that its restriction to H ⊕ M is the identity map, where we denote jTH (M) by
π(H,M). Denote the kernel of π(H,M) by I (H,M), hence it is a graded Hopf ideal
of TH (M) and TH (M)/I (H,M)� SH (M).

3. Duality Between Quantum Symmetric Algebras

3.1. Let us recall the definition of Hopf pairings (see [11, p. 110] ). Let H and B
be Hopf algebras. A Hopf pairing φ : H × B −→ K is a bilinear map such that

φ(1H ,b)= εB(b); φ(h,1B)= εH (h);
φ(h,bc)=

∑
φ(h1,b)φ(h2, c);

φ(hg,b)=
∑

φ(h,b1)φ(g,b2);
φ(SH (h),b)=φ(h, SB(b)),

where h, g ∈ H , b, c ∈ B, and SH and SB are the antipodes of H and B, respec-
tively. Note that one can define the transpose φt : B × H −→ K by φt (b,h)=φ(h,b),
which is also a Hopf pairing.
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Assume further that H =⊕n�0 Hn and B =⊕n�0 Bn are graded Hopf algebras. A
Hopf pairing φ : H × B −→ K is said to be graded if φ(Hi , B j )=0 if i �= j .

3.2. We introduce an analogous concept of Hopf pairings. Let (H,M) and (B, N )
be couples. Denote the H -comodule (respectively, B-comodule) structure on M
(respectively, N ) by ρl and ρr (respectively δl and δr ). Denote the actions by “·” .

A pairing between the couples (H,M) and (B, N ), denoted by

(φ0, φ1) : (H,M)× (B, N )−→ K ,

is given by a Hopf pairing φ0 : H × B −→ K and a bilinear map φ1 : M × N −→ K
such that

φ1(h ·m · g,n) =φ0(h,n−1)φ1(m,n0)φ0(g,n1),

φ1(m,b ·n · c)=φ0(m−1,b)φ1(m0,n)φ0(m1, c),

where h, g ∈ H , b, c ∈ B, m ∈ M and n ∈ N , and (IdH ⊗ρr )ρl(m)=∑
m−1 ⊗m0 ⊗m1

and (IdB ⊗ δr )δl(n)=∑
n−1 ⊗n0 ⊗n1.

We have our main results.

THEOREM 3.1. Let (φ0, φ1) : (H,M)× (B, N )−→ K be a pairing between couples.
Then there exists a unique graded Hopf pairing

φ : SH (M)× SB(N )−→ K

extending φ0 and φ1.

Moreover, φ is two-sided non-degenerated if and only if φ0 and φ1 are.

THEOREM 3.2. Let H =⊕n�0 Hn( respectively B =⊕n�0 Bn) be graded Hopf alge-
bras generated by H0 and H1 ( respectively B0 and B1). Assume that there exists
a two-sided non-degenerated graded Hopf pairing ψ : H × B −→ K . Then jH : H �
SH0(H1) and jB : B � SB0(B1), where the maps jH and jB are explained in Corol-
lary 2.4.

3.3. To prove the above two results, we need to introduce the following technical
concept, which is essentially the same as the (graded) duality between algebras and
coalgebras.

Let A be an algebra and (C,�C , εC ) a coalgebra. Let φ : A × C −→ K be a
bilinear map, and define φ∗ : A −→ C∗ by φ∗(a)(c)=φ(a, c). We say that φ is an
algebra–coagebra pairing if

φ(1A, c)= εC (c) and φ(aa′, c)=
∑

φ(a, c1)φ(a, c2),

for all a,a′ ∈ A and c ∈ C , where 1A ∈ A is the identity element and
�(c)=∑

c1 ⊗ c2.
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In fact, it is easily checked that φ is an algebra-coalgebra pairing if and only if
φ∗ is an algebra morphism, where C∗ is the dual algebra of the coalgebra C .

The graded version of the above concept is as follows: let A = ⊕n�0 An be a
graded algebra and C =⊕n�0Cn a graded coalgebra, an algebra-coalgebra pairing
φ : A × C −→ K is said to be graded, if φ(Ai ,C j )= 0 for i �= j . As above, we can
define a graded map φ∗ : A −→Cgr, where Cgr =⊕n�0C∗

n is the graded dual of C .
One sees that φ is a graded algebra-coalgebra pairing if and only if φ∗ is a graded
algebra map.

In what follows, we assume that A is an algebra and M an A-bimodule (with
actions denoted by “·”), and (C =⊕n�0Cn,�C , εC ) is a graded coalgebra. Clearly
there exist unique maps

δl :C1 −→C0 ⊗C1 and δr :C1 −→C1 ⊗C0

such that �C (c) = δl(c) + δr (c) for all c ∈ C1. By abuse of notation, write
δl(c)=∑

c−1 ⊗ c0 and δr (c)=∑
c0 ⊗ c1. Thus �C (c)=∑

c−1 ⊗ c0 +∑
c0 ⊗ c1.

Assume further that φ0 : A × C0 −→ K is an algebra–coalgebra pairing, and φ1 :
M ×C1 −→ K is a bilinear map such that

φ1(a ·m ·a′, c)=
∑

φ0(a, c−1)φ1(m, c0)φ0(a
′, c1) (3.1)

for all a,a′ ∈ A and c ∈C1, where (IdC0 ⊗ δr )δl(c)=∑
c−1 ⊗ c0 ⊗ c1.

We have the following.

LEMMA 3.3. Assume that φ0 and φ1 are as above. There exists a unique graded
algebra-coalgebra pairing φ : TA(M)×C −→ K extending φ0 and φ1.

Proof. This is just a variant of the universal property of the tensor algebra
TA(M). Using φ0 and φ1, we can define φ∗

0 : A−→C∗
0 ⊆Cgr and φ∗

1 : M −→C∗
1 ⊆Cgr.

Note that φ∗
0 is an algebra map and φ∗

1 is an A-bimodule morphism [exactly by the
condition (3.1)].

Now by the universal property of the tensor algebra TA(M), there exists a
unique graded algebra map

φ∗ : TA(M)−→Cgr

extending φ∗
0 and φ∗

1 . Define φ by φ(x, c)=φ∗(x)(c), for all x ∈ TA(M) and c ∈C .
Immediately, φ is the unique graded algebra-coalgebra pairing extending φ0 and
φ1. This completes the proof.

3.4. Recall that any pairing φ : A ×C −→ K is said to be left non-degenerated pro-
vided that for each nonzero y ∈ C there is some x ∈ A such that φ(x, y) �= 0. Let
us go to the situation of Theorems 3.1 and 3.2: we are given a pairing of couples
(φ0, φ1) : (H,M)× (B, N )−→ K . The following result is of independent interest.
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PROPOSITION 3.4. There exists a unique graded Hopf pairing

φ : TH (M)×CotB(N )−→ K

extending φ0 and φ1.

Moreover, if φ0 and φ1 are left non-degenerated, then so is φ.

Proof. By Lemma 3.3, there exists a unique graded algebra-coalgebra pairing
φ : TH (M)× CotB(N )−→ K extending φ0 and φ1. We will show that φ is a Hopf
pairing.

Use the notation in Sections 2.3.1 and 2.3.2. First we have φ(x,1B)= ε(x) and
φ(1H , y)=ε(y) for all x ∈ TH (M), y ∈CotB(N ). (To see this, since φ is graded, we
have φ(x,1B)=0= ε(x) for x ∈ M⊗H n , n�1; and for x ∈ H , φ(x,1B)=φ0(x,1B)=
ε(x). Similarly one obtains that φ(1H , y)= ε(y).) Define two bilinear maps

	,
 : TH (M)× (CotB(N )⊗CotB(N ))−→ K

such that 	(x, y ⊗ z)= φ(x, yz) and 
(x, y ⊗ z)= ∑
φ(x1, y)φ(x2, z), x ∈ TH (M),

y, z ∈ CotB(N ). Note that both 	 and 
 are graded algebra-coalgebra pairings,
and by the defining properties of the pairing (φ0, φ1), we have

	|H×(B⊗B)=
|H×(B⊗B) and 	|M×(B⊗N+N⊗B)=
|M×(B⊗N+N⊗B).

Now by the uniqueness part of Lemma 3.3, we obtain that 	=
, i.e., φ(x, yz)=
φ(x1, y)φ(x2, z).

Similarly, we construct two graded algebra–coalgebra pairings

	 ′,
′ : TH (M)×CotB(N )
cop −→ K

such that 	 ′(x, y)=φ(s(x), y) and 
′(x, y)=φ(x, S(y)), where x ∈ TH (M) and y ∈
CotB(N ), and CotB(N )cop denotes the opposite coalgebra. By a similar argument
as above, we show that φ(s(x), y)=φ(x, S(y)).

Summing up the above, we have shown that φ is the unique required graded
Hopf pairing.

For the second statement, assume that φ0 and φ1 are left non-degenerated, we
need to show that for every nonzero element y ∈ N�Bi , there exists some x ∈ M⊗H i

such that φ(x, y) �= 0, i�2. Since φ1 : M × N −→ K is left non-degenerated, hence
the following bilinear map will be left non-degenerated:

φ⊗i
1 : M⊗i × N⊗i −→ K ,

where φ⊗i
1 (m1 ⊗ · · · ⊗ mi ,n1 ⊗ · · · ⊗ ni )= ∏i

r=1 φ1(mr ,nr ). Note that N�Bi ⊆ N⊗i ,
hence for the nonzero y ∈ N�Bi , there exists some x ′ ∈ M⊗i such that φ⊗i

1 (x ′, y) �=0.
Denote by p : M⊗i −→ M⊗H i the natural projection map. By the fact that φ is

an algebra–coalgebra pairing, we have

φ(p(x ′), y)=φ⊗n
1 (x ′, y).
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Take x = p(x ′). We see that φ(x, y) �=0, finishing the proof.

3.5. Proof of Theorem 3.1. Consider the following composite of morphisms
between graded Hopf algebras

π : TB(N )
π(B,N )−→ SB(N ) ↪→CotB(N ),

where the map π(B,N ) is described in Remark 2.5(2) and the second map is just the
inclusion. Applying Proposition 3.4, we have a graded Hopf pairing φ′ : TH (M)×
CotB(N )−→ K extending φ0 and φ1. Define

φ′′ : TH (M)× TB(N )−→ K .

by putting φ′′(x, y)=φ′(x, π(y)). Thus φ′′ is a graded Hopf pairing.
Note that I (B, N ) is the kernel of π(B,N ) and thus the kernel of π , we see that

φ′′(TH (M), I (B, N ))=0.

We now claim that

φ′′(I (H,M),TB(N ))=0.

For this end, apply Proposition 3.4 again, we have a graded Hopf pairing

ψ :CotH (M)× TB(N )−→ K

extending φ0 and φ1. Consider the following composite

π ′ : TH (M)
π(H,M)−→ SH (M) ↪→CotH (M).

Define ψ ′ : TH (M)× TB(N )−→ K by ψ ′(x, y)=ψ(π ′(x), y). Since π ′ is a (graded)
Hopf algebra morphism, thus ψ ′ is a graded Hopf pairing. Similarly as above,
we have ψ ′(I (H,M),TB(N ))= 0. Note that both φ′′ and ψ ′ are graded algebra–
coalgebra pairings extending φ0 and φ1. Applying Lemma 3.3, we have φ′′ =ψ ′.
This proves the claim.

So we have shown that φ′′(TH (M), I (B, N ))= 0 and φ′′(I (H,M),TB(N ))= 0.
Recall from Remark 2.5(2) that we have

TH (M)/I (H,M)� SH (M) and TB(N )/I (B, N )� SB(N ).

Thus we deduce that φ′′ induces a unique graded Hopf pairing

φ : SH (M)× SB(N )−→ K

such that the following diagram commutes:

TH (M)× TB(N )
φ′′

−−−−→ K

π(H,M)×π(B,N )
� IdK

�

SH (M)× SB(N )
φ−−−−→ K .
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Explicitly, φ(π(H,M)(x), π(B,N )(y))=φ′′(x, y), for all x ∈ TH (M) and y ∈ TB(N ).

Obviously, the pairing φ extends the maps φ0 and φ1, as required. Note that the
uniqueness of φ is trivial, since SH (M), as an algebra, is generated by H and M .
[Here, one needs to consult the fourth identity in the definition of Hopf pairing,
see (3.1)].

For the second statement, assume that φ0 and φ1 are two-sided non-degen-
erated. By Proposition 3.4, we have that φ′ is left non-degenerated. Note that
φ(π(H,M)(x), π(B,N )(y)) = φ′′(x, y) = φ′(x, π(y)). This implies that φ is left non-
degenerated. For right non-degeneratedness, first apply Proposition 3.4 to ψ t [the
transpose of ψ , see (3.1)], we deduce that ψ t is left non-degenerated, that is,
ψ is right non-degenerated. Now note that φ(π(H,M)(x), π(B,N )(y)) = φ′′(x, y) =
ψ ′(x, y)=ψ(π ′(x), y), which implies that φ is right non-degenerated. This com-
pletes the proof. �

3.6. Proof of Theorem 3.2. Since the Hopf pairing ψ : H × B −→ K is two-sided
non-degenerated, so are the restrictions φ0 := ψ |H0×B0 and φ1 := ψ |H1×B1 . Now
applying Theorem 3.1, there exists a unique graded Hopf pairing φ : SH0(H1)×
SB0(B1)−→ K extending φ0 and φ1.

We claim that the following diagram commutes:

H × B
ψ−−−−→ K

jH × jB

� IdK

�

SH0(H1)× SB0 B1
φ−−−−→ K

where the maps jH and jB are explained in Corollary 2.4.
To see this, set ψ ′ =φ ◦ ( jH × jB). Thus both ψ and ψ ′ are graded Hopf pair-

ings. Note that

ψ |H0×B0 =ψ ′|H0×B0 and ψ |H1×B1 =ψ ′|H1×B1 .

Since H is generated by H0 and H1, it follows from the fourth identity in the defi-
nition of Hopf pairing [see (3.1)] that ψ=ψ ′. This shows the claim.

By Corollary 2.4, the maps jH and jB are epimorphisms. The fact that both φ

and ψ are two-sided non-degenerated immediately implies that jH : H � SH0(H1)

and jB : B � SB0(B1). This completes the proof. �

3.7 Self-dual couples We end our paper with a special case of Theorem 3.1, which
is of independent interest.

Recall that a Hopf algebra H is said to be self-dual, if there exists a two-sided
non-degenerated Hopf pairing φ : H × H −→ K . Similarly, a graded Hopf algebra
H =⊕n�0 Hn is said to be graded self-dual, if the Hopf pairing φ is graded.
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A couple (H, M), where H is a Hopf algebra and M an H -Hopf bimodule, is
said to be self-dual, if there exists a pairing

(φ0, φ1) : (H,M)× (H,M)−→ K

such that both φ0 and φ1 are two-sided non-degenerated. Note that in this case,
the H -Hopf bimodule M is exactly the self-dual Hopf bimodule in [8,10].

The following result is a direct consequence of Theorem 3.1.

Corollary 3.5. Let (H,M) be a couple as above. Then the quantum symmetric alge-
bra SH (M) is graded self-dual if and only if the couple (H,M) is self-dual.
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