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Abstract We introduce the quiver of a bicomodule over a cosemisimple coalgebra. Applying

this to the coradical C0 of an arbitrary coalgebra C, we give an alternative definition of the

Gabriel quiver of C, and then show that it coincides with the known Ext quiver of C and the

link quiver of C. The dual Gabriel theorem for a coalgebra with a separable coradical is obtained,

which generalizes the corresponding result for a pointed coalgebra. We also give a new description

of C1 = C0 ∧C C0 of any coalgebra C, which can be regarded as a generalization of the first

part of the well-known Taft-Wilson Theorem for pointed coalgebras. As applications, we give a

characterization of locally finite coalgebras via their Gabriel quivers, and a property of the Gabriel

quiver of a quasi-coFrobenius coalgebra.

Keywords: quivers, cotensor coalgebra, quasi-coFrobenius coalgebra.

1 Introduction and preliminaries

1.1 Quivers and algebras

In the representation theory of finite-dimensional algebras, the quiver is a
fundamental tool.

A finite-dimensional algebra A over a field K is called elementary if the
quotient algebra of A modulo the Jacobson radical is isomorphic to a prod-
uct of K as K-algebras, and called basic if this quotient is isomorphic to
a product of division K-algebras. A theorem due to Gabriel says that an
elementary K-algebra A is isomorphic to the factor algebra of the path al-
gebra KQ(A)a by an admissible ideal, where Q(A) is the Gabriel quiver of
A (see Theorem 1.9, in ref. [1] and p. 43 of ref. [2]). Since any finite-
dimensional algebra is Morita equivalent to a uniquely determined basic al-
gebra, and a basic algebra over an algebraically closed field is elementary,
it follows that any finite-dimensional algebra A over an algebraically closed
field is Morita equivalent to KQ(A)a modulo an admissible ideal. On the
other hand, the Auslander-Reiten quiver of a finite-dimensional algebra A,

Copyright by Science in China Press 2005



10 Science in China: Series A Mathematics

which is defined by the indecomposable A-modules and irreducible maps, is an
essential approach and technique in studying the representations of A (see, e.g.
refs. [1, 2]).

1.2 Quivers and coalgebras

As pointed out by Chin and Montgomery in ref. [3], by the fundamental
theorem for coalgebras (i.e. every comodule is a sum of its finite-dimensional
subcomodules; in particular, every simple coalgebra is finite-dimensional), it is
reasonable to expect that the quiver technique for algebras could be extended
to coalgebras.

In fact, in the past few years, there were several works towards this direction.
The path algebra construction has been dualized by Chin and Montgomery to
get a path coalgebra; the Ext quiver of coalgebra C has been introduced and
then a dual version of the Gabriel theorem for coalgebras has been given in ref.
[3] (here C is not necessarily finite-dimensional). Montgomery also introduces
the link quiver of coalgebra C by using the wedge of simple subcoalgebras of
C. This link quiver is isomorphic to the Ext quiver, up to multiple arrows,
and it is connected if and only if C is an indecomposable coalgebra; using this
she proved that a pointed Hopf algebra is a crossed product of a group algebra
over the indecomposable component of the identity element, see ref. [4]. On
the other hand, the almost split sequences and the Auslander-Reiten quivers
for coalgebras turn out to be also very useful in studying the comodules of
coalgebras. See refs. [5, 6].

There are also several works to construct neither commutative nor cocommu-
tative Hopf algebras via quivers. In ref. [7], Cibils determined all the graded
Hopf structures with the length grading on a path algebra KZa

n of a basic cycle
Zn. In ref. [8], Cibils and Rosso studied the graded Hopf structures on path
algebras. In ref. [9] Green and Solberg studied the Hopf structures on some spe-
cial quadratic quotients of path algebras. More recently, Cibils and Rosso[10]

introduced the notion of the Hopf quivers and then classified all the graded
Hopf algebras with the length grading on path coalgebras. Using the quiver
technique all the monomial Hopf algebras have been classified in ref. [11], and
in ref. [12] a class of bi-Frobenius algebras which are not Hopf algebras has
been constructed via quivers.

1.3 Main results in this paper

These quoted works inspire us to pay more attention to the quiver method
towards coalgebras. Note that in the algebra case the Gabriel quiver has an
alternative definition rather than the extensions of simple modules. In this
paper, we first introduce the quiver of a bicomodule over a cosemisimple coal-
gebra. Applying this to the C0-C0-bicomodule C1/C0, we give an alternative
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definition of the Gabriel quiver Q(C) of C, where C is an arbitrary coalgebra
and C1 = C0 ∧C C0 (see, e.g. ref. [13]); and then show that Q(C) coincides
with the Ext quiver of C introduced by Chin and Montgomery[3]. This will be
done in sec. 2.

By definition a coalgebra C is called pointed if each simple subcoalgebra of C

is of dimension one (in the finite-dimensional case, this is exactly the dual of an
elementary algebra), and called basic if the dual of each simple subcoalgebra
of C is a finite-dimensional division K-algebra. As a dual of the result due
to Gabriel as quoted in 1.1, Chin and Montgomery proved that any pointed
coalgebra is isomorphic to a large subcoalgebra of the path coalgebra of the
Ext quiver of C (for the notion of “large subcoalgebra” see Remark 3.1 in
this paper). Since any coalgebra is Morita-Takeuchi equivalent to a uniquely
determined basic coalgebra, and a basic coalgebra over an algebraically closed
field is pointed, it follows that any coalgebra C over an algebraically closed field
is Morita-Takeuchi equivalent to a large subcoalgebra of the path coalgebra of
the Ext quiver of C. See Theorem 4.3 in ref. [3]. In Section 3 (Theorem
3.1), we prove that a coalgebra C (over an arbitrary field K) with a separable
coradical C0 is isomorphic to a large subcoalgebra of the cotensor coalgebra
CotC0(C1/C0). Note that C0 is always separable over an algebraically closed
field, and if C is pointed then CotC0(C1/C0) is isomorphic to the path coalgebra
kQc of the Gabriel quiver Q of C. In this way the dual of the Gabriel theorem
for pointed coalgebras is extended to the one for the coalgebras with separable
coradicals.

For an arbitrary coalgebra C with the coradical C0 = ⊕i∈ID
i, where Di’s are

simple subcoalgebras of C, we show in Section 4 that there hold
C1 =

∑

i,j∈I

(Di ∧C Dj)

and

C1/C0
∼= ⊕i,j∈I(Di ∧C Dj)/(Di + Dj).

See Theorem 4.1. This can be regarded as a generalization of the first part of
the well-known Taft-Wilson Theorem for pointed coalgebras, see Remark 4.1.
As an application we unify the link quiver of a coalgebra with the Gabriel quiver
and the Ext quiver (Corollary 4.1).

In the last two sections, we include two applications of Theorem 3.1 and
Theorem 4.1, by claiming that a coalgebra with a separable coradical is locally
finite if and only if its Gabriel quiver is locally finite (Theorem 5.1); and the
Gabriel quiver of a non-simple quasi-coFrobenius coalgebra has no sources and
no sinks (Theorem 6.1). In the finite-dimensional case, Theorem 6.1 is dual to
the corresponding one for algebras.

In the following, all coalgebras and all tensor products are over a fixed field
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K. For a K-space V , denote the dual HomK(V,K) by V ∗.

1.4 Cotensor coalgebras

Let (C,∆C , εC) be a coalgebra over the ground field K, where ∆C and εC are
the structure maps. A right C-comodule (M,ρ) is a vector space M endowed
with a structure map ρ : M −→ M ⊗C such that (ρ⊗Id)◦ρ = (I⊗∆C)◦ρ and
(Id ⊗ εC) ◦ ρ = Id, where Id denotes the identity map. Similarly one has left
C-comodules. Let D be a coalgebra. By a D-C-bicomodule (M,ρl, ρr) we mean
that (M,ρl) is a left D-comodule and (M,ρr) is a right C-comodule, satisfying
(Id ⊗ ρr) ◦ ρl = (ρl ⊗ Id) ◦ ρr.

Let (M,ρ) and (N, δ) be a right and a left C-comodules, respectively. Then
the cotensor product of M and N over C is defined to be the subspace of M⊗N

given by
M�CN = Ker(ρ ⊗ Id − Id ⊗ δ : M ⊗ N −→ M ⊗ C ⊗ N)

If M is a D-C-bicomodule and N is a C-D′-bicomodule, then M�CN is a D-D′-
bicomodule. The cotensor product is associative, i.e., if in addition L is a D′-C ′-
bicomodule, then (M�CN)�D′L � M�C(N�D′L) as D-C ′-bicomodules.

Let (C,∆C , εC) be a coalgebra, and (M,ρl, ρr) a C-C-bicomodule. Write
ρl(m) =

∑
m−1 ⊗ m0 and ρr(m) =

∑
m0 ⊗ m1 for every m ∈ M . Define

M�0 = C, M�1 = M and M�n = (M�n−1)�CM for any n � 2. Note that
M�n is a subspace of M⊗n for all n � 1. If

∑
m1 ⊗ · · · ⊗ mn ∈ M�n, we write

it as
∑

m1� · · ·�mn. Define the cotensor coalgebra CotC(M). As a vector
space, CotC(M) = ⊕∞

i=0M
�i. The counit ε is given by ε|M�i = 0 for i � 1

and ε|M�0 = εC ; the comultiplication ∆ of CotC(M) is defined as ∆|M�0 = ∆C,
∆(m) = ρl(m)+ρr(m) =

∑
m−1⊗m0+m0⊗m1 for all m ∈ M , and in general,

if
∑

m1� · · ·�mn ∈ M�n (n � 1), then
∆(

∑
m1� · · ·�mn) =

∑
(m1)−1 ⊗ ((m1)0� · · ·�mn)

+
n−1∑

i=1

(m1� · · ·�mi) ⊗ (mi+1� · · ·�mn)

+
∑

(m1� · · ·�(mn)0) ⊗ (mn)1

∈ (C ⊗ M�n) ⊕ ⊕n−1

i=1 (M�i ⊗ M�(n−i)) ⊕ (M�n ⊗ C)

⊆ CotCM ⊗ CotC(M).

One can verify that ∆ is well-defined and (CotC(M),∆, ε) is a coalgebra.

Remark 1.1. In the case that C is cosemisimple, the coalgebra CotC(M)
is coradically graded, i.e., {⊕i�nM�i|n = 0, 1, · · ·} is its coradical filtration (see
sec. 2 of ref. [14]).

1.5 Path coalgebras

By a quiver, we mean an oriented graph Q = (Q0, Q1, s, t) with Q0 being the
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set of vertices and Q1 being the set of arrows, where s, t are two maps from Q1

to Q0. For α ∈ Q1, s(α) and t(α) denote the starting and terminating vertices
of α, respectively. Note that the quivers considered here could be infinite.

Recall that the path coalgebra KQc of a qiver Q is defined as follows (see
ref. [3]). As a vector space KQc has a basis consisting of paths in Q, the
comultiplication is given by

∆(p) = αl · · ·α1 ⊗ s(α1) +
l−1∑

i=1

αl · · ·αi+1 ⊗ αi · · ·α1 + t(αl) ⊗ αl · · ·α1

for each path p = αl · · ·α1 with each αi ∈ Q1 and ε(p) = 0 if l � 1 and
1 if l = 0. Then KQc is a pointed coalgebra with the coradical filtration
Cn = KQ0 ⊕ · · · ⊕KQn, where KQn is the K-space with the set of all paths of
length n.

Remark 1.2. Note that a path coalgebra is a special case of a cotensor
coalgebra: for every quiver Q, KQc � CotkQ0(KQ1) as coalgebras, where the
bicomodule structure of KQ1 is given by ρl(α) := t(α)⊗α and ρr(α) := α⊗s(α)
for each α ∈ Q1.

On the other hand, if C is a pointed coalgebra, then C1/C0 becomes a C0-C0-
bicomodule and KQ(C)c � CotC0(C1/C0), where Q(C) is the Gabriel quiver of
C, as defined in 2.2 below, see also Remark 3.1 below.

2 The Gabriel quiver of a coalgebra

2.1 Quiver of a bicomodule over a cosemisimple coalgebra

Let D be a cosemisimple K-coalgebra and let (M,ρl, ρr) be a D-D-bicomodule.
We associate a quiver with the bicomodule M .

Write D = ⊕i∈ID
i, where each Di is a simple subcoalgebra of D. Set

iM j = { m ∈ M | ρl(m) ∈ Di ⊗ M, ρr(m) ∈ M ⊗ Dj}
for each i, j ∈ I. Then M = ⊕i,j∈I

iM j, and each iM j is naturally a Di-Dj-
bicomodule, and hence a (Dj)∗-(Di)∗-bimodule. Since each (Di)∗ is a simple
algebra, it follows that (Di)∗ � Mni

(∆i), where ∆i is a finite-dimensional di-
vision algebra over K. For each i, ei is fixed to be an idempotent of (Di)∗.
Set

tij = dimK(ei.
jM i.ej)

for each pair of i, j ∈ I, where the dots denote the module action. Note that
tij is independent of the choice of ei’s because they are mutually conjugate in
Mni

(∆i).

Define the quiver Q(D,M) of the D-D-bicomodule M as follows: the set of
vertices is I, and for any i, j ∈ I, the number of arrows from i to j is tij.

Remark 2.1. (1) We admit the case that I is an infinite set and tij is
infinite, i.e. the quiver Q(D,M) could be infinite.
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(2) If D is group-like (i.e. the set of group-like elements G = G(D) forms
a basis for D, or equivalently, D is cosemisimple pointed), then the quiver
Q(D,M) is simply interpreted as follows. The set of vertices is G, and for any
g, h ∈ G, the number of arrows from g to h is tgh, where tgh = dimK

hM g, and
hM g = {m ∈ M | ρl(m) = h ⊗ m, ρr(m) = m ⊗ g}.
2.2 The Gabriel quiver of a coalgebra

Let (C,∆) be a coalgebra with a coradical filtration {Cn}. Set π0 : C −→
C/C0 to be the canonical projection. Define the map ρ̃l : C −→ C ⊗ C/C0 by
ρ̃l = (Id⊗π0)◦∆, and the map ρ̃r : C −→ C/C0⊗C by ρ̃r = (π0⊗Id)◦∆. Since
ρ̃l(C0) = 0, ρ̃r(C0) = 0, and ∆(C1) ⊆ C0 ⊗ C1 + C1 ⊗ C0, it follows that ρ̃l and
ρ̃r induce two maps ρl : C1/C0 −→ C0⊗C1/C0, and ρr : C1/C0 −→ C1/C0⊗C0,
respectively. It is clear that (C1/C0, ρl, ρr) is a C0-C0-bicomodule.

Definition 2.1. The Gabriel quiver Q(C) of a coalgebra C is defined to
be the quiver Q(C0, C1/C0) of C0-C0-bicomodule C1/C0.

More precisely, let C0 = ⊕i∈ID
i, where Di’s are simple subcoalgebras, and

ei be a fixed primitive idempotent of (Di)∗. Then the vertices of Q(C0, C1/C0)
are i ∈ I, and there are tij = dimKei.

j(C1/C0)i.ej arrows from i to j.

2.3 The Ext quiver of a coalgebra

Let C be a K-coalgebra. Recall the definition of the Ext quiver of C in-
troduced by Chin and Montgomery[3]. Let {Si | i ∈ I} be a complete set of
isoclasses of the right simple C-comodules. The Ext quiver of C is an oriented
graph with vertices indexed by I, and there are dimKExt1(Si, Sj) arrows from
i to j for any i, j ∈ I.

Note that on p. 468 of ref. [6], the Ext quiver is also called the Gabriel
quiver. In ref. [4] Montgomery also introduced the link quiver of coalgebra C

by using the wedge of simple subcoalgebras of C. This link quiver is isomorphic
to the Ext quiver, up to multiple arrows, see Theorem 1.7 in ref. [4]. Moreover,
it is shown by Corollary 2.2 in ref. [4] that the Ext quiver of C is connected if
and only if C is an indecomposable coalgebra.

The main result of this section is

Theorem 2.1. The Gabriel quiver of C coincides with the Ext quiver of
C.

2.4 Some lemmas

In order to prove the result, we need some preparations.

For a right C-comodule M , denote by E(M) its injective hull, which always
exists and soc(M) = soc(E(M)) (see ref. [15] or Chap. 2 of ref. [16]). Let
{Si | i ∈ I} be a complete set of isoclasses of the right simple C-comodules.
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Then as a right C-comodule we have Di � niSi and C � ⊕i∈IE(Di) �
⊕i∈IniE(Si). Note that (Di)∗ � Mni

(∆i), where ∆i is a finite-dimensional
division algebra over K.

Lemma 2.1. Suppose dimK∆i = di for each i ∈ I. We have

soc(E(Di)/Di) = ⊕j∈I

nitji

dj

Sj

and
soc(E(Si)/Si) � ⊕j∈I

tji

dj

Sj.

Proof. Recall that (C1/C0, ρl, ρr) is a C0-C0-bicomodule. Set
i(C1/C0) = {x ∈ C1/C0 | ρl(x) ∈ Di ⊗ (C1/C0)}.

Then i(C1/C0) is a left Di-comodule.

We may identify C with ⊕i∈IE(Di). It follows that as a right C-comodule
we have

C1 = ⊕i∈I(E(Di) ∩ C1).

(In fact, for each c ∈ C1, we have c =
∑

ci with ci ∈ E(Di). Since ∆(ci) ∈
E(Di) ⊗ C, it follows that ∆(ci) =

∑
j dij ⊗ cij with dij ∈ E(Di) and {dij}

is linearly independent for each i ∈ I. Then ∆(c) =
∑

i,j dij ⊗ cij ∈ C1 ⊗ C1.
Since {dij} is linearly independent, it follows that each cij is contained in C1,
and hence by the counitary property, each ci ∈ C1.)

Thus
C1/C0 = ⊕i∈I(E(Di) ∩ C1)/Di

as right C0-comodules, and hence (E(Di)∩C1)/Di is a cosemisimple C0-comodule,
which implies (E(Di) ∩ C1)/Di ⊆ soc(E(Di)/Di). While soc(C/C0) = C1/C0

(see p. 64 of ref. [17]), it follows that
soc(C/C0) = soc((⊕i∈IE(Di))/(⊕i∈ID

i)) = ⊕i∈Isoc(E(Di)/Di)

= C1/C0 = ⊕i∈I(E(Di) ∩ C1)/Di.

This forces
soc(E(Di)/Di) = (E(Di) ∩ C1)/Di.

We claim soc(E(Di)/Di) ⊆ i(C1/C0), and then by C1/C0 = ⊕i∈I
i(C1/C0) we

have
soc(E(Di)/Di) = i(C1/C0).

To see this, note that
ρ̃l((E(Di)) ⊆ E(Di) ⊗ C, ρ̃l(C1) ⊆ C0 ⊗ C1,

it follows that
ρ̃l((E(Di) ∩ C1) ⊆ (E(Di) ∩ C0) ⊗ C1.

Note that E(Di) ∩ C0 ⊆ soc(E(Di)) = Di, it follows that
ρ̃l(E(Di) ∩ C1) ⊆ Di ⊗ C1
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and hence
ρl(soc(E(Di)/Di)) = ρl((E(Di) ∩ C1)/Di) ⊆ Di ⊗ (C1/C0).

That is soc(E(Di)/Di) ⊆ i(C1/C0). This proves the assertion.

Note that i(C1/C0)j is a Di-Dj-bicomodule, and hence a (Dj)∗-(Di)∗-bimodule.
Thus i(C1/C0)j .ei is a left (Dj)∗-module, and hence a right Dj-comodule, where
ei is a primitive element of (Di)∗. Thus we have

i(C1/C0)j.ei = mjSj

as a right Dj-comodule, for some non-negative integer mj. Since tji = dimK(ej .
i(C1/

C0)j.ei) and dimKSj = njdj, it follows that
mjnjdj = dimK

i(C1/C0)j.ei = dimKnj(ej.
i(C1/C0)j.ei) = njtji

and hence mj = tji

dj
. It follows that

soc(E(Di)/Di) = i(C1/C0)

= ⊕j∈I
i(C1/C0)j

= ⊕j∈Ini
i(C1/C0)jei

= ⊕j∈I

nitji

dj

Sj. �

2.5 Proof of Theorem 2.1

Since Dj � njSj, it suffices to compute Ext1(Si,D
j). For this, we take a

minimal injective resolution of Dj (see ref. [18])
0 −→ Dj d0−→ E0

d1−→ E1
d2−→ E2 −→ · · · ,

where E0 = E(Dj) and E1 = E(E0/D
j). Since

Im(d0) = soc(E0), Im(d1) ⊇ soc(E1),
it follows that for every comodule map g : Si −→ E0 we have d1 ◦ g = 0, and
that for every comodule map f : Si −→ E1 we have d2 ◦ f = 0. It follows that

Ext1(Si,D
j) = HomC(Si, E1) = HomC(Si, soc(E0/D

j)),
here we have used the fact soc(E1) = soc(E0/D

j). By Lemma 2.1 we have
soc(E0/D

j) = ⊕i∈I
njtij

di
Si. Combining this with the fact HomC(Si, Si) = ∆i,

we have
tij =

1
nj

dimKExt1(Si,D
j) = dimKExt1(Si, Sj).

This completes the proof. �

Remark 2.2. Recall that two coalgebras C and D are said to be Morita-
Takeuchi equivalent, if the categories of C-comodules and D-comodules are
equivalent (see ref. [19]). Then by Theorem 2.1 two coalgebras have the same
Gabriel quiver provided that they are Morita-Takeuchi equivalent.
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3 The dual Gabriel theorem

3.1 The main result of this section

Let L be a field extension of K, and C a K-coalgebra. Then C ⊗ L is
naturally an L-coalgebra. A coalgebra is called separable provided that C ⊗ L

is cosemisimple for any field extension L. Note that C is separable if and only if
C⊗Ccop is cosemisimple. (In fact, the cosemisimple coalgebras are a direct sum
of simple coalgebras, thus this follows by dualizing, Theorem 6.1.2 of ref. [20]).
For example, a group-like coalgebra C is separable. If K is of characteristic
zero, then any cosemisimple coalgebra is separable. Note that the coradical C0

of C is separable if C is pointed or if K is algebraically closed.

The main result of this section is

Theorem 3.1. Let C be a coalgebra with a separable coradical C0. Then
there exists a coalgebra embedding i : C ↪→ CotC0(C1/C0) with i(C1) =
C0 ⊕ C1/C0.

3.2 Some lemmas

To prove Theorem 3.1, one needs the following fundamental lemma, which
gives the universal mapping property of cotensor coalgebras.

Let C and D be coalgebras and f : D −→ C be a coalgebra map. Then D

becomes a C-C-bicomodule via f : the left and right comodule structure maps
are given by (f ⊗ Id) ◦ ∆D and (Id ⊗ f) ◦ ∆D, respectively.

Lemma 3.1. Let C and D be coalgebras and M a C-C-bicomodule. Given
a coalgebra map f0 : D −→ C, and a C-C- bicomodule map f1 : D −→ M

with the property that f1 vanishes on the coradical D0 of D, where the C-C-
bicomodule structure D is given via f0. Then there exists a unique coalgebra
map

F : D −→ CotC(M)

with πi ◦ F = fi (i = 0, 1), where each πi : CotC(M) −→ M�i is the canonical
projection.

Proof. Set ∆0 to be the identity map of D, ∆1 = ∆D and define ∆n+1 =
(∆D ⊗ Id) ◦ ∆n for all n � 1, where Id denotes the identity map of D⊗n. It
is easy to check that ∆n(D) ⊆ D�n+1 and f⊗n+1

1 ◦ ∆n(D) ⊆ M�n+1 for each
n � 1. We claim that F : D −→ CotC(M), given by

F (d) = f0(d) +
∞∑

n=0

f⊗n+1
1 ◦ ∆n(d)

for each d ∈ D, is well-defined.

In fact, we have
⋃

n≥0 Dn = D, where {Dn} is the coradical filtration of D

(see, e.g. Theorem 5.2.2 of ref. [17]). Thus for each d ∈ Dn, f⊗m+1
1 ∆m(d) = 0
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for all m � n. This is because
∆m(Dn) ⊆

∑

i0+i1+···+im=n

Di0 ⊗ · · · ⊗ Dim

and f1 vanishes on D0. Thus F is well-defined. Moreover, F is a coalgebra map
with πi ◦ F = fi (i = 0, 1).

It remains to prove the uniqueness of coalgebra map F : D −→ CotC(M)
with πi ◦ F = fi (i = 0, 1). Set fn = πn ◦ F for each n. It suffices to prove that
fn = f⊗n

1 ◦ ∆n−1 for every n � 1. Use the induction on n. Assume that fm =
f⊗m

1 ◦∆m−1, m � 1. Consider fm+1. For every d ∈ D, write ∆D(d) =
∑

d1⊗d2.
Since F is a coalgebra map, it follows that ∆(F (d)) = (F ⊗ F )∆D(d). Writing
out the both sides explicitly we have

∆(F (d)) =
∑

n

∆(fn(d))

with
∆(fn(d)) ∈ C ⊗ M�n ⊕ M ⊗ M�(n−1) ⊕ · · · ⊕ M�(n−1) ⊗ M ⊕ M�n ⊗ C;

and
(F ⊗ F )∆D(d) =

∑

(d)

F (d1) ⊗ F (d2)

=
∑

n

∑

(d),i+j=n

fi(d1) ⊗ fj(d2)

with ∑

(d),i+j=n

fi(d1) ⊗ fj(d2)

∈ C ⊗ M�n ⊕ M ⊗ M�(n−1) ⊕ · · · ⊕ M�(n−1) ⊗ M ⊕ M�n ⊗ C.

It follows that
∆(fn(d)) =

∑

(d),i+j=n

fi(d1) ⊗ fj(d2), ∀n � 2.

Note that fn(d) ∈ M�n, and fi(d1)⊗ fj(d2) ∈ M�i ⊗M�j. By the definition
of the comultiplication ∆ of CotC(M) and by comparing the terms belonging
to M�i ⊗ M�j with i 
= 0 
= j and i + j = n, we obtain

fn(d) =
∑

(d)

fi(d1) ⊗ fj(d2).

In particular we have by induction
fm+1(d) =

∑

(d)

fm(d1) ⊗ f1(d2)

=
∑

f⊗m
1 ◦ ∆m−1(d1) ⊗ f1(d2)

= f⊗m+1
1 ◦ ∆m(d).

This completes the proof. �

To complete the proof of Theorem 3.1, we also need the dual Wedderburn-
Malcev theorem (see Theorem 2.3.11 of ref. [21] or Theorem 5.4.2 of ref. [17])
and another lemma due to Heyneman-Radford (see ref. [22] or Theorem 5.3.1
of ref. [17]).
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Lemma 3.2 (Dual Wedderburn-Malcev theorem). Let C be a coalgebra
with a separable coradical. Then there is a coideal I such that C = C0 ⊕ I, i.e.
there is a coalgebra projection π : C −→ C0 such that π|C0 = Id.

Lemma 3.3 (Heyneman-Radford). Let C and D be coalgebras and f :
C −→ D a coalgebra map. Then f is injective if and only if f |C1 is injective.

3.3 Proof of the main result

Now we are ready to prove Theorem 3.1.

By the dual Wedderburn-Malcev theorem, there is a coideal I of C such that
C = C0 ⊕ I. Thus we have a coalgebra projection f0 : C −→ C0 such that
f0|C0 = Id. Note that C becomes a C0-C0-bicomodule via f0, I is a C0-C0-
subbicomodule of C. Set C(1) = C1 ∩ I. Then C1 = C0 ⊕ C(1). Note that
C(1) is a C0-C0-subbicomodule of I and the canonical vector space isomorphism
θ : C(1) � C1/C0 is a C0-C0-bicomodule map.

View I as a right C0 ⊗ C0
cop-comodule and C(1) its subcomodule. Since C0

is separable, it follows that there exists a C0 ⊗ C0
cop-comodule decomposition

I = C(1) ⊕ J . Thus we have a C0-C0-bicomodule projection p : I −→ C(1)

such that p|C(1) = Id. Define a map f1 = θ ◦ p ◦ f
′
0 from C to C1/C0 where

f
′
0 : C −→ I is the canonical projection. Clearly f1 : C −→ C1/C0 is a C0-

C0-bicomodule map vanishing on C0. Thus, by Lemma 3.1 we obtain a unique
coalgebra map i : C −→ CotC0(C1/C0) such that π0 ◦ i = f0 and π1 ◦ i = f1.
Clearly i(C1) = C0 ⊕ C1/C0. By Lemma 3.3, i is injective. This completes the
proof. �

Remark 3.1. (1) Note that if C is pointed, then CotC0(C1/C0) is isomor-
phic to the path coalgebra kQc of the Gabriel quiver Q of C.

(In order to see this, just note that KQc and CotC0(C1/C0) both have the
universal mapping property, and then the assertion follows from Lemma 3.1.)

It follows from the above result that a pointed coalgebra can be embedded in
the path coalgebra of the Gabriel quiver of C. This has been obtained by Chin
and Montgomery in Theorem 4.3 of ref. [3]. See also Corollary 1 of ref. [23].

(2) Recall that a subcoalgebra D of a coalgebra C is said to be large provided
that D contains C1. By the definition of the Gabriel quiver, a large subcoalgebra
D of C has the same Gabriel quiver as C. Then Theorem 3.1 says that a
coalgebra C (not necessarily finite-dimensional) with a separable coradical is
isomorphic to a large subcoalgebra of the cotensor coalgebra CotC0(C1/C0).

Recall that any finite-dimensional elementary algebra A is isomorphic to the
path algebra of the Gabriel quiver of A modulo an admissible ideal (see, e.g.
Theorem 1.9 of ref. [1] or p. 43 of ref. [2]). Thus, Theorem 3.1 can be regarded
as a generalization of the dual of this basic result for algebras (note the condition
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“large” in Theorem 3.1 just corresponds to the condition “admissible” in the
case for algebras).

4 A description of C1

4.1 The wedge

Let C be a coalgebra. Following ref. [13], the wedge of two subspaces V and
W of C is defined to be the subspace

V ∧C W := {c ∈ C | ∆C(c) ∈ V ⊗ C + C ⊗ W}.
Let C0 be the coradical of C0, i.e., C0 is the sum of of all simple subcoalgebras

of C. Recall that by the definition Cn = C0 ∧C Cn−1 for n � 1, {Cn} is called
the coradical filtration of C. Then Cn is a subcoalgebra of C with Cn ⊆ Cn+1,
C = ∪n�0Cn, and ∆Cn ⊆ ∑

0�i�n Ci ⊗ Cn−i (see, e.g. 5.2.2 of ref. [17]). For
the properties of wedges, see Chap. 9 in ref. [13] and sec. 2 in ref. [22]).

4.2 The main result in this section

Let (C,∆, ε) be a coalgebra with a dual algebra C∗. For c ∈ C and f ∈ C∗,
define

f ⇀ c =
∑

c1f(c2)

and

c ↼ f =
∑

f(c1)c2,

where ∆(c) =
∑

c1 ⊗ c2. Then it is well-known that C becomes a C∗-C∗-
bimodule with c = ε ⇀ c = c ↼ ε (see, e.g. 1.6.5 of ref. [17]).

The following result gives a new description of C1. We will use it in the next
section, but also it seems to be of independent interest.

Theorem 4.1. Let C be a coalgebra with a coradical C0 = ⊕i∈ID
i, where

Di are simple subcoalgebras of C. Then

(i) C1 =
∑

i,j∈I(D
i ∧C Dj);

(ii) (Di ∧C Dj) ∩ C0 = Di + Dj, ∀i, j ∈ I;

(iii) C1/C0
∼= ⊕i,j∈I(Di ∧C Dj)/(Di + Dj);

(iv) (Di ∧C Dj)/(Di + Dj) ∼= i(C1/C0)j, ∀i, j ∈ I.

Remark 4.1. Recall that the set of group-like elements of a coalgebra
C is G(C) := { 0 
= c ∈ C | ∆(c) = c ⊗ c }, and that a coalgebra C is
said to be pointed if each simple subcoalgebra of C is of dimension one. Note
that C is pointed if and only if C0 = KG(C). For g, h ∈ G(C), denote by
Pg,h(C) := {c ∈ C | ∆(c) = c ⊗ g + h ⊗ c}, the set of g, h-primitive elements in
C. A g, h-primitive element c is said to be non-trivial if c /∈ K(g − h).
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Let P ′
g,h(C) be a subspace of Pg,h(C) such that

Pg,h(C) = P ′
g,h(C) ⊕ K(g − h).

Then the first part of the Taft-Wilson Theorem for the pointed coalgebras says
that if C is pointed, then

C1 = KG(C) ⊕ (
⊕

g,h

P ′
g,h(C)),

and hence
C1/C0 =

⊕

g,h

P ′
g,h(C) =

⊕

g,h

(Kh ∧C Kg)/(Kg + Kh).

(For the last equality, see, e.g. Lemma 4.2 of ref. [24]) From this point of view,
Theorem 4.1 (iii) can be regarded as a form of the first part of the Taft-Wilson
Theorem in general case.

4.3 Proof of Theorem 4.1

(i) On the one hand, we have

C1 = C0 ∧C C0 =

(
∑

i∈I

Di

)
∧C

(
∑

j∈I

Dj

)
⊇

∑

i,j∈I

(Di ∧C Dj).

On the other hand, by an elementary argument in the linear algebra, we can
write C = C0 ⊕ V with a subspace V such that ε(V ) = 0. Take εi ∈ C∗ such
that

εi|Di = ε, εi|Dj⊕V = 0 (j 
= i).

Then
ε(c) =

∑

i∈I

εi(c), ∀ c ∈ C,

and hence by the counitary property we have
c =

∑

i,j∈I

(εj ⇀ c ↼ εi), ∀ c ∈ C.

While for c ∈ C1 we claim
εj ⇀ c ↼ εi ∈ Di ∧C Dj,

and then the assertion follows.

In order to see the claim, for c ∈ C1, consider ∆3(c) = (∆ ⊗ Id ⊗ Id)(Id ⊗
∆)∆(c). For simplicity we omit the summation in the following

∆(c) = c1 ⊗ c2 ∈
∑

s

C1 ⊗ Ds +
∑

t

Dt ⊗ C1;

∆2(c) = (Id ⊗ ∆)∆(c) = c1 ⊗ c21 ⊗ c22

∈
∑

s

C1 ⊗ Ds ⊗ Ds +
∑

t,k

Dt ⊗ C1 ⊗ Dk +
∑

t,k

Dt ⊗ Dk ⊗ C1;

∆3(c) = (∆ ⊗ Id ⊗ Id)(Id ⊗ ∆)∆(c) = c11 ⊗ c12 ⊗ c21 ⊗ c22

∈
∑

s

C1 ⊗ C0 ⊗ Ds ⊗ Ds +
∑

s

C0 ⊗ C1 ⊗ Ds ⊗ Ds

+
∑

t,k

Dt ⊗ Dt ⊗ C1 ⊗ Dk +
∑

t,k

Dt ⊗ Dt ⊗ Dk ⊗ C1.
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By definition we have
∆(εj ⇀ c ↼ εi) = εi(c11)εj(c22)c12 ⊗ c21.

If

c11 ⊗ c12 ⊗ c21 ⊗ c22 ∈
∑

s

C1 ⊗ C0 ⊗ Ds ⊗ Ds,

then

εi(c11)εj(c22)c12 ⊗ c21 ∈ C0 ⊗ Dj;

if

c11 ⊗ c12 ⊗ c21 ⊗ c22 ∈
∑

s

C0 ⊗ C1 ⊗ Ds ⊗ Ds,

then

εi(c11)εj(c22)c12 ⊗ c21 ∈ C1 ⊗ Dj;

if c11 ⊗ c12 ⊗ c21 ⊗ c22 ∈ ∑
t,k Dt ⊗ Dt ⊗ C1 ⊗ Dk, then

εi(c11)εj(c22)c12 ⊗ c21 ∈ Di ⊗ C1;
if c11 ⊗ c12 ⊗ c21 ⊗ c22 ∈ ∑

t,k Dt ⊗ Dt ⊗ Dk ⊗ C1, then
εi(c11)εj(c22)c12 ⊗ c21 ∈ Di ⊗ C0.

Thus, in all the cases we have
εi(c11)εj(c22)c12 ⊗ c21 ∈ Di ⊗ C + C ⊗ Dj.

This proves εj ⇀ c ↼ εi ∈ Di ∧C Dj.

(ii) This is straightforward (or, follows from Lemma 2.3.1 of ref. [22]).

(iii) and (iv) Since (Di ∧C Dj) ∩ C0 = Di + Dj by (ii), it follows that there
is a coalgebra embedding

(Di ∧C Dj)/(Di + Dj) ∼= ((Di ∧C Dj) + C0)/C0 ↪→ C1/C0.

By the construction of C0-C0-bicomodule structure maps ρl and ρr of C1/C0,
one observes that

(Di ∧C Dj)/(Di + Dj) ↪→ i(C1/C0)j.

It follows from (i) that

C1/C0 =

(
∑

i,j∈I

(Di ∧C Dj)

)/
C0

=
∑

i,j∈I

((Di ∧C Dj) + C0)/C0

↪→
∑

i,j∈I

i(C1/C0)j

=
⊕

i,j∈I

i(C1/C0)j.

This forces the embedding ((Di ∧C Dj)+C0)/C0 ↪→ i(C1/C0)j to be an isomor-
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phism, and hence
C1/C0 =

∑

i,j∈I

((Di ∧C Dj) + C0)/C0

=
⊕

i,j∈I

((Di ∧C Dj) + C0)/C0

∼=
⊕

i,j∈I

(Di ∧C Dj)/(Di + Dj).

�

Theorem 4.1 also permits us to slightly modify the definition of the link quiver
of a coalgebra, by allowing multiple arrows. Of course, in the case for the basic
coalgebras, it is exactly the original definition.

Definition 4.1[4]. Let C be a coalgebra. The link quiver of C is defined
as follows. The vertices are the isoclasses of simple subcoalgebras of C; and for
two simple subcoalgebras Di and Dj of C, there are

lij :=
1

ninj

dimK(Dj ∧C Di)/(Di + Dj)

arrows from i to j, where ni is the positive integer such that (Di)∗ � Mni
(∆i),

where ∆i is a finite-dimensional division algebra over K.

Corollary 4.1. The link quiver of coalgebra C coincides with the Gabriel
quiver of C.

Proof. It follows from Theorem 4.1(iv) that

lij =
1

ninj

dimK(Dj ∧C Di)/(Di + Dj)

=
1

ninj

dimK
j(C1/C0)i

= dimK ei.
j(C1/C0)i.ej

= tij.

�
5 Locally finite coalgebras

We give a new characterization of locally finite coalgebras, as an application
of Theorems 3.1 and 4.1.

By definition, a coalgebra C is said to be locally finite, provided that the
wedge V ∧CW is finite-dimensional whenever V and W are both finite-dimensional.
By the fundamental theorem on coalgebras (i.e. each finite-dimensional sub-
space of a coalgebra is contained in a finite-dimensional subcoalgebra), it is clear
that a coalgebra C is locally finite if and only if D ∧C D is finite-dimensional
for each finite-dimensional subcoalgebra D of C.

Heyneman-Radford showed that a reflexive coalgebra is locally finite (see
3.2.4 of ref. [22]); Conversely, if C is locally finite with C0 being finite-dimensional,
then C is reflexive (see 4.2.6 of ref. [22]).
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Recall that a subcoalgebra D of C is said to be saturated provided that
D ∧C D = D.

Let C = C ′ ⊕C ′′ as coalgebras and let (M,ρl, ρr) be a C-C-bicomodule. Set
N = {m ∈ M | ρl(m) ∈ C ′ ⊗ M, ρr(m) ∈ M ⊗ C ′}.

Then N is a C ′-C ′-bicomodule.

Lemma 5.1. With the above notation, CotC′(N) is a saturated subcoal-
gebra of CotC(M).

Proof. Set C̃ := CotC(M). By the construction of CotC′(N) we have
CotC′(N) =

⋃

n�1

∧n
C̃
C ′,

where ∧n
C̃
C ′ = C ′ ∧C̃ C ′ ∧C̃ · · · ∧C̃ C ′ (n times). Hence CotC′(N) is saturated

in C̃ (see 2.1.1 of ref. [22]). �

The main result of this section is

Theorem 5.1. The Gabriel quiver of a locally finite coalgebra C is locally
finite (i.e., there are only finitely many arrows between arbitrary two vertices).

Conversely, if the Gabriel quiver of C is locally finite and C0 is separable,
then C is locally finite.

Proof. The necessity follows form Corollary 4.1 since the simple coalgebras
are finite-dimensional by the fundamental theorem of coalgebras.

Conversely, assume that the Gabriel quiver of C is locally finite and C0 is
separable. In order to prove that C is locally finite, by Theorem 3.1 it suffices to
show that the cotensor coalgebra CotC0(C1/C0) is locally finite. This is because
a subcoalgebra of a locally finite coalgebra is again locally finite (see 2.3.2 of
ref. [22]). In the following, we denote CotC0(C1/C0) by C̃.

Let D be an arbitrary finite-dimensional subcoalgebra of C̃. Then the corad-
ical D0 of D is a direct summand of C0. Set

M := {x ∈ C1/C0 | ρl(x) ∈ D0 ⊗ C1/C0, ρr(x) ∈ C1/C0 ⊗ D0}.
Note that D0 is finite-dimensional and M is contained in a direct sum of finitely
many i(C1/C0)j ’s. Since the Gabriel quiver of C is locally finite, it follows that
each i(C1/C0)j is finite-dimensional, and hence M is finite-dimensional. By
Theorem 3.1 we have

D ⊆ CotD0(D1/D0) ⊆ CotD0(M).
By Lemma 5.1 CotD0(M) is a saturated subcoalgbra of C̃. It follows that

D ∧C̃ D ⊆ CotD0(M) ∧C̃ CotD0(M) = CotD0(M).
Since D is of finite dimension, we may assume that D ⊆ ⊕i�nM�i for some n.
It follows that D ∧C̃ D is contained in ⊕i�2nM�i (see Remark 1.1), which is
also of finite dimension. This proves that the cotensor coalgebra CotC0(C1/C0)
is locally finite. �
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6 Quasi-coFrobenius coalgebras

Recall that a coalgebra C is said to be left quasi-coFrobenius if there exists
an injective C∗-module map from C to a free left C∗-module, where the left
C∗-module structure on C is given as in 4.2. Similarly, one has the concept
of the right quasi-coFrobenius coalgebras. A coalgebra is quasi-coFrobenius
if it is both left quasi-coFrobenius and right quasi-coFrobenius. Note that a
coalgebra C is left quasi-coFrobenius if and only if every injective right C-
comodule is projective (see Theorem 3.3.4 in ref. [16]); and that if C is left
quasi-coFrobenius, then C∗ is right quasi-Frobenius (see Corollary 3.3.9 in ref.
[16]). Also note that if C is finite-dimensional, then C is left quasi-coFrobenius
if and only if C is right quasi-coFrobenius, if and only if C∗ is quasi-Frobenius.

We need the following fact, which seems to be well-known.

Lemma 6.1. Let C be a coalgebra. Then C is indecomposable if and only
if the dual algebra C∗ is indecomposable.

Proof. Note that here C is not necessarily finite-dimensional. The “if”
part is trivial. It suffices to prove the “only if ” part. If C∗ � A1 × A2 as
algebras, then C∗◦ � A◦

1 ⊕ A◦
2 as coalgebras, where A◦ denotes the finite dual

of an algebra A. Let φ : C −→ C∗∗ be the natural embedding. Then the image
of φ is contained in C∗◦ (see, e.g. Proposition 1.5.12 in ref. [16]). Identify C

with φ(C). Then
C � (A1

◦ ∩ C) ⊕ (A2
◦ ∩ C)

as coalgebras. Note that A◦
i ∩C 
= {0} (i = 1, 2) (Otherwise, say A◦

1 ∩C = {0},
then C = A◦

2 ∩ C, i.e. C is contained in A◦
2, it follows that A1 vanishes on C,

and hence A1 = 0). This completes the proof. �

The main result of this section is

Theorem 6.1. Let C be an indecomposable non-simple coalgebra. If C is
a left quasi-coFrobenius, then the Gabriel quiver of C has no sources.

Thus, the Gabriel quiver of a non-simple quasi-coFrobenius coalgebra has no
sources and no sinks.

Proof. Otherwise, assume that the Gabriel quiver Q of C has a source i ∈
I. Let Si be the corresponding right simple comodule. Then by Lemma 2.1 we
have soc(E(Si)/
Si) � ⊕j∈I

tji

dj
Sj. Since i is a source, it follows that tji = 0 for every j ∈ I,

and hence E(Si) = Si.

For any j 
= i, we have
HomC(E(Si), E(Sj)) = HomC(Si, E(Sj)) = HomC(Si, Sj) = 0,

here we have used soc(E(Sj)) = Sj and the Schur lemma.

On the other hand, since C is left quasi-coFrobenius, it follows that E(Si) =
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Si is projective as a right C-comodule. Thus
HomC(E(Sj), E(Si)) = 0

for each j 
= i ∈ I (otherwise, let f : E(Sj) −→ E(Si) = Si be a nonzero
C-comodule map. Then f is surjective . Thus E(Sj) � Si ⊕ Ker(f) by the
projectivity of Si, a contradiction).

Note that C itself is a right C-comudule via ∆C, and that there is an algebra
isomorphism EndC(C) � C∗, sending f to εC ◦ f (see, e.g. Proposition 3.1.8 in
ref. [16]). Since C � ⊕j∈InjE(Sj) as a right C-comodule, it follows that

C∗ � EndC(C) � EndC(niE(Si)) ⊕ EndC(⊕j 	=i(njE(Sj))).
While C∗ is indecomposable by Lemma 6.1, we then obtain a desired contra-
diction. �
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