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1. Introduction

Let (T , F) be a torsion pair in an abelian category A. Let B be the corresponding 
Happel-Reiten-Smalø tilt (HRS-tilt for short) [16], which is a certain full subcategory 
of the bounded derived category Db(A) of A. Moreover, it is the heart of a certain 
bounded t-structure on Db(A), in particular, the category B is abelian. We denote by 
G : Db(B) → Db(A) the corresponding realization functor [5,4], that is, a triangle functor 
whose restriction on B coincides with the inclusion.

In general, this realization functor G is not an equivalence. It is proved in [16] that if 
the torsion pair (T , F) is tilting or cotilting, then G is an equivalence; also see [6,29,11]. 
We mention that even if (T , F) is neither tilting nor cotilting, the realization functor 
G might still be an equivalence. Indeed, given a two-term tilting complex of modules, 
the corresponding torsion pair in the module category is in general neither tilting nor 
cotilting; compare [17,8]. The realization functor in this case is an equivalence, which 
might be taken as the derived equivalence induced by the tilting complex.

We mention that the HRS-tilting is very important in the representation theory of 
quasi-tilted algebras [16] and in the derived equivalences between K3 surfaces [19]. More-
over, it plays a central role in the study of stability conditions [7,40,33,34]. Therefore, 
it is of great interest to know when the realization functor G in the HRS-tilting is an 
equivalence, and thus yields a derived equivalence. The main result of this paper answers 
this question in full generality.

Theorem A. Let A be an abelian category with a torsion pair (T , F). Denote by B the 
corresponding HRS-tilt and let G : Db(B) → Db(A) be a realization functor. Then the 
following statements are equivalent:

(1) The functor G : Db(B) → Db(A) is an equivalence;
(2) The category A lies in the essential image of G;
(3) Each object A ∈ A fits into an exact sequence

0 −→ F 0 −→ F 1 −→ A −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T , such that the corresponding class in the third Yoneda 
extension group Yext3A(T 1, F 0) vanishes.

We point out two features of Theorem A. (i) We unify the tilting and cotilting cases 
due to [16] in a symmetric manner. Indeed, in the tilting case where T cogenerates 
A, we take F 0 = 0 = F 1 in the exact sequence in (3); in the cotilting case, we take 
T 0 = 0 = T 1. (ii) The characterization in (3) is intrinsic, since the HRS-tilt B and the 
functor G are not explicitly involved. We emphasize that the Yext-vanishing condition 
in (3) is necessary; see Example 4.8.

We observe that Theorem A applies to splitting torsion pairs. Recall that a torsion 
pair (T , F) is splitting if Ext1A(F, T ) = 0 for any T ∈ T and F ∈ F . In this situation, 
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any object A is isomorphic to T ⊕ F for some objects T ∈ T and F ∈ F . Then for the 
exact sequence in (3), we take F 0 = 0 = T 1 such that the middle short exact sequence 
splits.

We mention the related work [37,32], which studies when the realization functor for 
a general bounded t-structure is an equivalence. These work is related to Serre duality 
and tilting complexes, respectively.

By Theorem A, the denseness of G implies its fully-faithfulness. Indeed, there is a 
general result for the realization functor of any bounded t-structure.

Theorem B. Let D be a triangulated category with a bounded t-structure and its heart A, 
and G : Db(A) → D be its realization functor. Assume that G is dense. Then G is an 
equivalence.

We mention that the proof of Theorem B is somewhat routine. However, in view of 
[10], the assertion seems to be quite surprising.

The paper is structured as follows. In Section 2, we recall basic facts on t-structures, 
realization functors and torsion pairs. We study the canonical maps from the Yoneda 
extension groups in the heart to the Hom groups in the triangulated category. We prove 
that these canonical maps are compatible with t-exact functors; see Proposition 2.4. 
Then we prove Theorem B (= Theorem 2.9).

In Section 3, we divide the proof of Theorem A (= Theorem 3.4) into three proposi-
tions. The key observation is Proposition 3.1, where we show that the restriction of the 
realization functor G to the backward HRS-tilt is fully faithful. Then it turns out that G
is an equivalence if and only if so is the restricted functor of G from the backward HRS-
tilt to A; see Proposition 3.3. In Section 4, we give various examples for Theorem A to 
obtain new derived equivalences, which are related to TTF-triples and two-term silting 
subcategories.

2. Preliminaries

In this section, we recall basic facts on t-structures, realization functors and torsion 
pairs. We make preparation for the next section. For the realization functor of a bounded 
t-structure, we prove that its denseness implies its full-faithfulness; see Theorem 2.9.

2.1. Canonical maps

Let A be an abelian category. For two objects X, Y ∈ A and n ≥ 1, YextnA(X, Y )
denotes the n-th Yoneda extension group of X by Y , whose elements are equivalent 
classes [ξ] of exact sequences

ξ : 0 → Y → E−n+1 → · · · → E−1 → E0 → X → 0.
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For [ξ] ∈ YextnA(X, Y ) and [γ] ∈ YextmA (Y, Z), the Yoneda product [γ ∪ ξ] ∈
Yextn+m

A (X, Z) is obtained by splicing ξ and γ.
Let D be a triangulated category, whose translation functor is denoted by Σ. We 

denote by Σ−1 a quasi-inverse of Σ. Then the powers Σn are defined for all integers n. 
For two full subcategories X , Y of D, we denote by

X ∗ Y = {Z ∈ D | ∃ exact triangle X → Z → Y → Σ(X) with X ∈ X , Y ∈ Y}.

The operation ∗ is associative by [5, Lemme 1.3.10].
Recall that a t-structure (D≤0, D≥0) on D consists of two full subcategories D≤0 and 

D≥0 subject to the following conditions:

(1) ΣD≤0 ⊂ D≤0 and D≥0 ⊂ ΣD≥0;
(2) HomD(D≤0, Σ−1D≥0) = 0, that is, HomD(X, Y ) = 0 for any X ∈ D≤0 and Y ∈

Σ−1D≥0;
(3) For any object Z in D, there exists an exact triangle

X −→ Z −→ Y −→ Σ(X)

with X ∈ D≤0 and Y ∈ Σ−1D≥0.

The heart of a t-structure (D≤0, D≥0) is the full subcategory A = D≤0 ∩ D≥0, which is 
an abelian category. We shall assume that the t-structure (D≤0, D≥0) is bounded, which 
means that

D =
⋃

i,j∈Z
(ΣiD≤0 ∩ ΣjD≥0).

A bounded t-structure is determined by its heart. Indeed, we have

D≤0 =
⋃
n≥0

Σn(A) ∗ · · · ∗ Σ(A) ∗ A and D≥0 =
⋃
n≥0

A ∗ Σ−1(A) ∗ · · · ∗ Σ−n(A).

Denote by H0
A : D → A the corresponding cohomological functor. Set Hn

A = H0
AΣn for 

n ∈ Z. For details, we refer to [5, 1.3].
In what follows, we assume that D has a bounded t-structure (D≤0, D≥0) with its 

heart A. For any objects X, Y ∈ A and n ≥ 1, we shall recall the construction of the 
canonical maps

θn = θnX,Y : YextnA(X,Y ) −→ HomD(X,Σn(Y )), [ξ] �→ θn(ξ). (2.1)

For the case n = 1, we take an exact sequence ξ : 0 → Y
f→ E

g→ X → 0 in A. It fits 
uniquely into an exact triangle
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Y
f−→ E

g−→ X
θ1(ξ)−−−→ Σ(Y ).

Moreover, the morphism θ1(ξ) depends on the equivalence class [ξ].
For the general case, we assume that ξ ∈ Yextn+1

A (X, Y ). Write [ξ] = [ξ1 ∪ ξ2] with 
[ξ1] ∈ Yext1A(Z, Y ) and [ξ2] ∈ YextnA(X, Z). We define θn+1(ξ) = Σnθ1(ξ1) ◦ θn(ξ2). The 
morphism θn+1(ξ) does not depend on the choice of ξ1 and ξ2.

The following results are well known; compare [5, Remarque 3.1.17].

Lemma 2.1. Keep the notation as above. Then the following statements hold.

(1) The map θ1 is an isomorphism, and θ2 is injective.
(2) Assume that θnA,B are isomorphisms for all objects A, B in A. Then θn+1 is injective.
(3) For n ≥ 2, a morphism f : X → Σn(Y ) lies in the image of θnX,Y if and only if 

f admits a factorization X → Σ(X1) → · · · → Σn−1(Xn−1) → Σn(Y ) with each 
Xi ∈ A.

Proof. In (1), the first statement is well known, and the second one is a special case of 
(2). The statement in (3) follows from the surjectivity of θ1.

For (2), we assume that θn+1(ξ) = 0 for [ξ] ∈ Yextn+1
A (X, Y ). Take an exact sequence 

ξ1 : 0 → Y → E
g→ Z → 0 such that [ξ] = [ξ1 ∪ ξ2] for some element [ξ2] ∈ YextnA(X, Z). 

Then we have the following commutative diagram with exact rows.

YextnA(X,E)
YextnA(X,g)

θn
X,E

YextnA(X,Z)
[ξ1∪−]

θn
X,Z

Yextn+1
A (X,Y )

θn+1
X,Y

HomD(X,Σn(E))
HomD(X,Σn(g))

HomD(X,Σn(Z))
HomD(X,Σnθ1(ξ1))

HomD(X,Σn+1(Y ))

By the right square, we infer that θnX,Z(ξ2) lies in the kernel of HomD(X, Σnθ1(ξ1)). 
It follows from the exactness of the lower row that θnX,Z(ξ2) lies in the image of 
HomD(X, Σn(g)). Recall that both θnX,E and θnX,Z are isomorphisms. Then the left square 
yields an element [ξ′] ∈ YextnA(X, E), which is sent to [ξ2] by YextnA(X, g). In view of the 
upper row and the identity [ξ1 ∪ ξ2] = [ξ], we deduce that [ξ] = 0, proving the injectivity 
of θn+1

X,Y . �
The following classical example is well known.

Example 2.2. Let A be an abelian category. Denote by Db(A) its bounded derived cat-
egory. An object X in A corresponds to a stalk complex concentrated on degree zero, 
which is still denoted by X. This allows us to view A as a full subcategory of Db(A). 
For X, Y ∈ A and n ∈ Z, we set ExtnA(X, Y ) = HomDb(A)(X, Σn(Y )). We have that 
ExtnA(X, Y ) = 0 for n < 0.
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For a complex X, denote by Hn(X) the n-th cohomology of X. Then Db(A) has a 
canonical t-structure given by Db(A)≤0 = {X ∈ Db(A) | Hn(X) = 0 for all n > 0} and 
Db(A)≥0 = {X ∈ Db(A) | Hn(X) = 0 for all n < 0}. Then A is identified with the heart 
of this t-structure, and the corresponding cohomological functor H0

A coincides with H0. 
In this case, the canonical maps are denoted by

χn = χn
X,Y : YextnA(X,Y ) −→ ExtnA(X,Y ), [ξ] �→ χn(ξ). (2.2)

They are isomorphisms for all n ≥ 1; see [20, Propositions XI.4.7 and 4.8]. The morphism 
χn(ξ) : X → Σn(Y ) is known as the characteristic class of ξ.

2.2. t-exact functors and realization functors

Let D and D′ be triangulated categories, whose translation functors are Σ and Σ′, 
respectively. Recall that a triangle functor (F, ω) : D → D′ consists of an additive functor 
F and a natural isomorphism ω : FΣ → Σ′F such that any exact triangle X

f→ Y
g→

Z
h→ Σ(X) in D is sent to an exact triangle F (X) F (f)−−−→ F (Y ) F (g)−−−→ F (Z) ωX◦F (h)−−−−−−→

Σ′F (X) in D′. For n ≥ 1, we define natural isomorphisms ωn : FΣn → Σ′ nF inductively: 
ω1 = ω and ωn+1 = Σ′ωn ◦ ωΣn. If both Σ and Σ′ are automorphisms of categories, 
we have a natural isomorphism ω−n : FΣ−n → Σ′−n

F for each n ≥ 1 as follows: ω−1 =
(Σ′−1

ωΣ−1)−1 and ω−(n+1) = Σ′−1
ω−n ◦ ω−1Σ−n. When the natural isomorphism ω is 

irrelevant, we will denote the triangle functor (F, ω) simply by F .
We assume that both D and D′ have bounded t-structures, whose hearts are denoted 

by A and A′, respectively. A triangle functor F : D → D′ is t-exact provided that F (A) ⊆
A′. A t-exact functor has the following easy properties.

Lemma 2.3. Let F : D → D′ be a t-exact functor as above. Then the following statements 
hold.

(1) The restriction F |A : A → A′ is exact.
(2) There are natural isomorphisms Hn

A′(F (X)) � F |A(Hn
A(X)) for X ∈ D and n ∈ Z.

(3) If F is an equivalence, then so is the restriction F |A.

Proof. Recall that a sequence 0 → A u→ B
v→ C → 0 in A is exact if and only if it fits 

into an exact triangle A u→ B
v→ C → Σ(A) in D; a similar remark holds for A′. Then 

we infer (1).
Since F is t-exact, it commutes with the truncation functors in the sense [5, 1.3.3]. 

Then (2) follows immediately, since Hn
A and Hn

A′ are composition of these truncation 
functors. For (3), it suffices to show the denseness of F |A. Applying (2), we infer that if 
F (X) lies in A′, then X necessarily lies in A. This proves the required denseness. �
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Any t-exact functor commutes with the canonical maps (2.1) in the following sense.

Proposition 2.4. Let (F, ω) : D → D′ be a t-exact functor as above. Then the following 
diagram commutes

YextnA(X,Y )

θn

F |A
YextnA′(F (X), F (Y ))

θ′n

HomD(X,Σn(Y ))
(F,ω)

HomD′(F (X),Σ′nF (Y ))

for any X, Y ∈ A and n ≥ 1.

In the diagram above, the columns are the canonical maps associated to the two 
t-structures respectively, the upper row sends an exact sequence ξ in A to the exact 
sequence F |A(ξ) in A′, and the lower row sends a morphism f : X → Σn(Y ) to ωn

Y ◦
F (f) : F (X) → Σ′ nF (Y ).

Proof. Set F ′ = F |A. For the case n = 1, we take an exact sequence ξ : 0 → Y
f→ E

g→
X → 0 in A. Then we have an exact triangle Y

f→ E
g→ X

θ1(ξ)−−−→ Σ(Y ) in D. Applying 
(F, ω) to it, we obtain the following exact triangle in D′

F (Y ) F (f)−→ F (E) F (g)−→ F (X) ωY ◦Fθ1(ξ)−−−−−−−→ Σ′F (Y ).

The morphisms F (f) and F (g) appear in the exact sequence F ′(ξ) in A′. Hence, by the 
very definition of θ′1, we infer ωY ◦ Fθ1(ξ) = θ′1F ′(ξ), as required.

The general case will be proved by induction. Take an arbitrary element [ξ] ∈
Yextn+1

A (X, Y ). There is an object Z ∈ A such that [ξ] = [ξ1 ∪ ξ2] for some [ξ1] ∈
Yext1A(Z, Y ) and [ξ2] ∈ YextnA(X, Z). Then we have [F ′(ξ)] = [F ′(ξ1) ∪ F ′(ξ2)].

We have the following identity, proving the required commutativity

θ′
n+1

F ′(ξ) = Σ′nθ′
1
F ′(ξ1) ◦ θ′nF ′(ξ2)

= Σ′n(ωY ◦ Fθ1(ξ1)) ◦ (ωn
Z ◦ Fθn(ξ2))

= Σ′n(ωY ) ◦ Σ′nFθ1(ξ1) ◦ ωn
Z ◦ Fθn(ξ2)

= Σ′n(ωY ) ◦ ωn
Σ(Y ) ◦ FΣnθ1(ξ1) ◦ Fθn(ξ2)

= ωn+1
Y ◦ Fθn+1(ξ).

Here, the first equality uses the definition of θ′n+1, the second one uses the induction 
hypothesis, the fourth one uses the naturality of ωn, and the last one uses the identity 
ωn+1 = Σ′nω ◦ ωnΣ and the definition of θn+1. �
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We draw two consequences of Proposition 2.4: Corollaries 2.5 and 2.8.

Corollary 2.5. Let F : Db(A) → Db(A′) be a triangle functor satisfying F (A) ⊆ A′. Then 
F is an equivalence if and only if so is the restriction F |A : A → A′.

Proof. The “only if” part follows from Lemma 2.3(3). For the “if” part, we apply Propo-
sition 2.4. In the commutative diagram there, the upper row is an isomorphism induced 
by the equivalence F |A, and the columns are isomorphisms; see Example 2.2. It follows 
that F induces isomorphisms

ExtnA(X,Y ) −→ ExtnA′(F (X), F (Y ))

for all X, Y ∈ A and n ≥ 1. We observe that the isomorphisms hold also for n ≤ 0. 
Recall that stalk complexes generate the bounded derived categories. Then we are done 
by [15, Lemma II.3.4]. �

In what follows, we assume that D is a triangulated category with a bounded 
t-structure (D≤0, D≥0) and its heart A. By a realization functor, we mean a triangle 
functor (F, ω) : Db(A) → D which is t-exact satisfying F |A = IdA; compare [5, 3.1] and 
[4, Appendix]. Such a realization functor exists provided that D is algebraic, that is, 
triangle equivalent to the stable category of a Frobenius category; see [24, 3.2] and [12, 
Section 3].

Remark 2.6. In [4, Appendix], there is an explicit construction of a realization func-
tor, which depends on the particular choice of a filtered triangulated category over D. 
The uniqueness of realization functors in general is not known. Indeed, as mentioned 
in [37, Remark 4.9], this uniqueness problem is intimately related to the open question 
whether any derived equivalences between algebras are standard; see the remarks after 
[36, Definition 3.4].

We mention that the realization functor becomes unique if it is basic in the sense of 
[23], that is, it occurs as the base of a tower of triangle functors with respect to certain 
towers of triangulated categories; see [23, Corollary 2.7 b)]. However, we do not know 
whether a realization functor is in general basic.

We have the following easy observation on realization functors.

Lemma 2.7. Let F : Db(A) → D be a realization functor as above and X ∈ Db(A). Then 
the following statements hold.

(1) There are natural isomorphisms Hn
A(F (X)) � Hn(X) for n ∈ Z.

(2) Assume that F (X) � A ∈ A. Then X is isomorphic to A in Db(A).
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Proof. The first statement follows from Lemma 2.3(2). For the second one, we have 
0 = Hn

A(F (X)) � Hn(X) for n �= 0. Then X lies in A; moreover, X � A. �
The second part of the following result is standard; compare [5, Proposition 3.1.16], 

[14, Excercises IV.4.1 b)] and [37, Theorem 4.7]. We refer to Example 2.2 for the canonical 
maps χn.

Corollary 2.8. Let (F, ω) : Db(A) → D be a realization functor as above. Assume that 
X, Y ∈ A and n ≥ 1. Then the following triangle

ExtnA(X,Y )
(F,ω)

HomD(X,Σn(Y ))

YextnA(X,Y )
θnχn

(2.3)

is commutative. Therefore, F induces an isomorphism Ext1A(X, Y ) → HomD(X, Σ(Y ))
and an injective map Ext2A(X, Y ) → HomD(X, Σ2(Y )).

Consequently, the following statements are equivalent:

(1) The realization functor F is full;
(2) The realization functor F is an equivalence;
(3) The canonical maps θn are isomorphisms for all n ≥ 1;
(4) The canonical maps θn are surjective for all n ≥ 1.

We observe that condition (3) is independent of the choice of such a realization functor 
F . Hence, if one of the realization functors of the given t-structure is an equivalence, 
then all the realization functors are equivalences.

Proof. The triangle is commutative by Proposition 2.4, while the map χn is an isomor-
phism; see (2.2). Then we apply Lemma 2.1(1) to get the first part of the corollary.

For “(1) ⇒ (2)”, by Lemma 2.7(1), we infer that F is faithful on objects. Then F is 
fully faithful by [35, p. 446]. Since the heart A generates D, it follows that F is dense.

We have the implication “(4) ⇒ (3)” by applying Lemma 2.1(2) repeatedly. To com-
plete the proof, it suffices to show that (3) is equivalent to the fully-faithfulness of F . 
Indeed, by [15, Lemma II.3.4], the latter is equivalent to the condition that the upper 
row of (2.3) is an isomorphism. Since χn is an isomorphism, we are done. �

We are ready to prove Theorem B. As we see in Corollary 2.8, the fully-faithfulness 
of a realization functor of a bounded t-structure implies its denseness. The following 
result shows that the converse statement holds. Consequently, a realization functor is 
fully-faithful if and only if it is dense.
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Theorem 2.9. Let D be a triangulated category with a bounded t-structure and its heart 
A, and (F, ω) : Db(A) → D be its realization functor. Assume that F is dense. Then F
is an equivalence.

Proof. By Corollary 2.8(4) and Lemma 2.1(1), it suffices to prove that the canonical 
map θnX,Y is surjective for any X, Y ∈ A and n ≥ 2. Take a morphism f : X → Σn(Y )
in D. By Lemma 2.1(3) and induction, it suffices to prove that f admits a factorization 
X → Σn−1(C) → Σn(Y ) for some C ∈ A.

By the denseness of F , we have an exact triangle in D

X
f−→ Σn(Y ) a−→ F (Z) −→ Σ(X)

for some complex Z ∈ Db(A). Applying the cohomological functor H0
A to the exact tri-

angle, we infer that Hi
A(F (Z)) = 0 for i �= −1, −n; moreover, H−n

A (a) is an isomorphism. 
By Lemma 2.7(1), we have Hi(Z) = 0 for i �= −1, −n. Hence, by truncation, we may 
assume that the complex Z is of the following form

· · · → 0 → Z−n → · · · → Z−2 → Z−1 → 0 → · · ·

Denote by p : Z → Σn(Z−n) the canonical projection.
Set y = Σ−n

(
ωn
Z−n ◦ F (p) ◦ a

)
, which is a morphism from Y to Z−n in A, where 

ωn : FΣn → ΣnF is the natural isomorphism induced by ω. We observe that H−n(p)
is a monomorphism. By the isomorphism in Lemma 2.7(1), we infer that H−n

A (F (p)) is 
also a monomorphism. Since H−n

A (a) is an isomorphism, it follows that H−n
A (Σn(y)) = y

is a monomorphism. Then the monomorphism y fits into an exact triangle in D

Σ−1(C) b−→ Y
y−→ Z−n −→ C

for some C ∈ A. Since Σn(y) ◦ f = 0, it follows that f factors through Σn(b), as 
required. �
2.3. Torsion pairs

Let A be an abelian category. A torsion pair (T , F) consists of two full subcategories 
subject to the following conditions:

(1) HomA(T , F) = 0, that is, HomA(T, F ) = 0 for any T ∈ T and F ∈ F ;
(2) For any object X in A, there exists a short exact sequence

0 −→ T −→ X −→ F −→ 0 (2.4)

with T ∈ T and F ∈ F .



X.-W. Chen et al. / Advances in Mathematics 354 (2019) 106749 11
The exact sequence in (2.4) is unique up to isomorphism.
For an exact sequence ξ : 0 → X → E → Y → 0 and a morphism t : Y ′ → Y , we 

denote by [ξ].t the equivalence class in Yext1A(Y ′, X) obtained by the pullback of ξ along 
t. Similarly, for a morphism s : X → X ′ we denote by s.[ξ] the equivalence class in 
Yext1A(Y, X ′) obtained by the pushout of ξ along s.

The following two lemmas will be used in the next section.

Lemma 2.10. Let A and A′ be abelian categories with torsion pairs (T , F) and (T ′, F ′), 
respectively. Assume that G : A′ → A is an additive functor satisfying the following 
conditions:

(1) The functor G is exact satisfying G(T ′) ⊆ T and G(F ′) ⊆ F ;
(2) The restrictions G|T ′ and G|F ′ are fully faithful;
(3) For any objects F ′ ∈ F ′ and T ′ ∈ T ′, the functor G induces a surjective map 

HomA′(F ′, T ′) → HomA(G(F ′), G(T ′)) and an injective map Yext1A′(F ′, T ′) →
Yext1A(G(F ′), G(T ′)).

Then G is fully faithful.

Proof. Let X be an object in A′ such that G(X) � 0. We apply the exact functor G
to the exact sequence 0 → T ′ → X → F ′ → 0 with T ′ ∈ T ′ and F ′ ∈ F ′. So we have 
G(T ′) � 0 and G(F ′) � 0. By condition (2), we infer that T ′ � 0 and F ′ � 0. Hence, 
X � 0. This proves that G is faithful on objects. It suffices to prove that G is full, since 
an exact functor which is faithful on objects is necessarily faithful.

For the fullness of G, we take a morphism g : G(X1) → G(X2) in A. Consider the 

exact sequence ξi : 0 → T ′
i

ai−→ Xi
bi−→ F ′

i → 0 with T ′
i ∈ T ′ and F ′

i ∈ F ′ for i = 1, 2. We 
have the following commutative diagram by HomA(G(T ′

1), G(F ′
2)) = 0.

0 G(T ′
1)

s′

G(a1)
G(X1)

g

G(b1)
G(F ′

1)

t′

0

0 G(T ′
2)

G(a2)
G(X2)

G(b2)
G(F ′

2) 0

By condition (2), there exist s : T ′
1 → T ′

2 and t : F ′
1 → F ′

2 satisfying G(s) = s′

and G(t) = t′. By [27, Proposition III.1.8], the above commutative diagram implies 
that G(s).[G(ξ1)] = [G(ξ2)].G(t). Here, we observe that both elements belong to 
YextA(G(F ′

1), G(T ′
2)). So we have G(s.[ξ1]) = G([ξ2].t). By the injective map in condition 

(3), we infer that s.[ξ1] = [ξ2].t. This implies the existence of the following commutative 
diagram
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0 T ′
1

s

a1
X1

f

b1
F ′

1

t

0

0 T ′
2

a2
X2

b2
F ′

2 0,

for some morphism f : X1 → X2 in A′. Comparing the two diagrams above, we infer that 
g −G(f) = G(a2) ◦ h′ ◦G(b1) for some morphism h′ : G(F ′

1) → G(T ′
2). By the surjective 

map in condition (3), we may assume that h′ = G(h) for some h : F ′
1 → T ′

2 in A′. Then 
we have g = G(f + a2 ◦ h ◦ b1). This completes the proof. �
Lemma 2.11. Let A and A′ be abelian categories with torsion pairs (T , F) and (T ′, F ′), 
respectively. Assume that the functor G : A′ → A satisfies conditions (1)-(3) in 
Lemma 2.10. Then G : A′ → A is an equivalence if and only if both G|T ′ : T ′ → T
and G|F ′ : F ′ → F are equivalences, and G induces an isomorphism Yext1A′(F ′, T ′) →
Yext1A(G(F ′), G(T ′)) for any T ′ ∈ T ′ and F ′ ∈ F ′.

Proof. For the “only if” part, we only prove the denseness of G|T ′ . For any T ∈ T , 
since G is an equivalence, there exists X ∈ A′ such that T � G(X). By the torsion 
pair (T ′, F ′), there exists an exact sequence 0 → T ′ → X → F ′ → 0 with T ′ ∈ T ′ and 
F ′ ∈ F ′. Applying G to it, we obtain an epimorphism T → G(F ′). But, G(F ′) lies in 
F and thus HomA(T, G(F ′)) = 0. This implies that G(F ′) � 0 and so F ′ � 0. Hence, 
X � T ′, belonging to T ′.

For the “if” part, by Lemma 2.10, it suffices to show that G is dense. Take an object 
X ∈ A and consider the exact sequence (2.4). By the denseness of G|T ′ and G|F ′ , we 
may assume that T = G(T ′) and F = G(F ′) for some T ′ ∈ T ′ and F ′ ∈ F ′. By the 
above isomorphism between the Yoneda extension groups, we obtain an extension of F ′

by T ′, which is mapped by G to (2.4). In particular, the object X lies in the essential 
image of G. �
3. Forward and backward HRS-tiltings

We will divide the proof of Theorem A (= Theorem 3.4) into three propositions. 
Throughout this section, A is an abelian category with a torsion pair (T , F). We denote 
by Σ the translation functor on Db(A).

By [16, I.2], there is a unique bounded t-structure on Db(A) with heart

B = {X ∈ Db(A) | H−1(X) ∈ F , H0(X) ∈ T , Hi(X) = 0 for i �= −1, 0}.

The abelian category B is called the (forward) HRS-tilt of A with respect to the torsion 
pair (T , F). By truncation, any object in B is isomorphic to a two-term complex Y with 
Y i = 0 for i �= 0, −1. Moreover, we have B = Σ(F) ∗T in Db(A). It follows that (Σ(F), T )
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is a torsion pair in B. With respect to this torsion pair, we consider the backward HRS-tilt
of B:

A′ = {Z ∈ Db(B) | H0(Z) ∈ T , H1(Z) ∈ Σ(F), Hi(Z) = 0 for i �= 1, 0}.

We denote by ΣB the translation functor on Db(B). Hence, we have A′ = T ∗Σ−1
B (Σ(F))

in Db(B). Set T ′ = T and F ′ = Σ−1
B (Σ(F)). Then (T ′, F ′) is a torsion pair in A′.

We fix a realization functor (G, ω) : Db(B) → Db(A) with respect to the heart B. In 
particular, the restrictions G|T and G|Σ(F) coincide with the inclusions of T and Σ(F)
in Db(B), respectively. The natural isomorphism ω : GΣB → ΣG induces the isomor-
phism

tF = (Σ−1ωΣ−1
B Σ(F ))

−1 : GΣ−1
B Σ(F ) −→ Σ−1GΣ(F ) = F (3.1)

for each F ∈ F . Therefore, we have G(F ′) = F and G(T ′) = T . By A′ = T ′ ∗ F ′

in Db(B), we infer that G(A′) ⊆ A. In other words, the functor G is t-exact, where 
Db(B) is endowed with the t-structure given by the heart A′ and Db(A) has the 
canonical t-structure. Consequently, by Lemma 2.3(1), the restriction G|A′ : A′ → A
is exact.

We have the following key observation in this section, whose first assertion is inspired 
by [8, Theorem 1.1(d)]. We refer to (2.1) for the canonical map θ2 of the heart B in 
Db(A).

Proposition 3.1. Keep the notation as above. Then the exact functor G|A′ : A′ → A is 
fully faithful.

Moreover, the following statements are equivalent:

(1) The functor G|A′ is an equivalence;
(2) The canonical map θ2 : Yext2B(Σ(F ), T ) → HomDb(A)(Σ(F ), Σ2(T )) is an isomor-

phism for any F ∈ F and T ∈ T ;
(3) Any morphism F → Σ(T ) in Db(A) factors through some object in B for any F ∈ F

and T ∈ T .

Proof. Since the restriction of G to B coincides with the inclusion B ↪→ Db(A), we 
infer that G|T ′ : T ′ → T is the identity functor. By the isomorphism tF in (3.1), the 
functor G|F ′ : F ′ → F sends Σ−1

B Σ(F ) to an object isomorphic to F for each F ∈ F . 
The naturality of tF implies that G|F ′ is an equivalence.

In what follows, we verify condition (3) in Lemma 2.10. For this, we take arbitrary 
objects Σ−1

B Σ(F ) ∈ F ′ and T ∈ T ′ = T , where F lies in F . The following square is 
commutative.
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HomA′(Σ−1
B Σ(F ), T )

ΣB

G HomA(GΣ−1
B Σ(F ), T )

Ext1B(Σ(F ), T )
(G,ω)

HomDb(A)(Σ(F ),Σ(T )) Σ−1

HomA(F, T )

HomA(tF ,T )

Applying Corollary 2.8, the leftmost map in the lower row is an isomorphism. It follows 
that the upper row is an isomorphism. That is, G induces the required surjective map 
in condition (3) of Lemma 2.10.

Next consider the following commutative diagram, where θ1
A′ is the canonical map 

associated to the heart A′ and the map χ1 for A is an isomorphism (cf. Example 2.2).

Yext1A′(Σ−1
B Σ(F ), T )

θ1
A′

G Yext1A(GΣ−1
B Σ(F ), T ) Yext1A(F, T )

Yext1A(tF ,T )

χ1

HomDb(B)(Σ−1
B Σ(F ),ΣB(T ))

ΣB

Ext1A(F, T )

Σ

Ext2B(Σ(F ), T )
(G,ω)

HomDb(A)(Σ(F ),Σ2(T ))

By Corollary 2.8, the lower row is injective. It follows that G induces the required injective 
map in condition (3) of Lemma 2.10. Applying the lemma, we have that G |A′ is fully 
faithful.

For the equivalence “(1) ⇔ (2)”, we apply Lemma 2.11. We observe by the above 
diagram that the condition therein is equivalent to the one that the lower row is an iso-
morphism. By the commutative triangle in Corollary 2.8 applied to G, this is equivalent 
to the condition that θ2 is an isomorphism. Thus, we have the required equivalence.

By Lemma 2.1(1), θ2 is always injective. Then the equivalence between (2) and (3) 
follows from Lemma 2.1(3). �

In what follows, we characterize the essential image of the functor G|A′ : A′ → A. 
Here, we recall that the essential image Im F of a functor F : C → D means the full 
subcategory of D consisting of those objects D, which are isomorphic to F (C) for some 
object C in C.

Proposition 3.2. Keep the notation as above. Let A be an object in A. Then the following 
statements are equivalent:

(1) The object A belongs to Im G|A′ ;
(2) There is an exact triangle in Db(A)

A −→ B0 −→ B1 −→ Σ(A)
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with Bi ∈ B;
(3) There is an exact sequence in A

0 −→ F 0 −→ F 1 −→ A −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T such that the corresponding class in Yext3A(T 1, F 0) van-
ishes;

(4) The object A belongs to Im G.

Proof. We only need to show the following implications.
“(1) ⇒ (2)” There exists Z ∈ A′ such that A � G(Z). Since any object in A′ is 

isomorphic to a two-term complex in Db(B) supported in degrees zero and one, we have 
an exact triangle in Db(B)

Z −→ B0 −→ B1 −→ ΣB(Z)

with Bi ∈ B. Recall that G|B coincides with the inclusion of B in Db(A) by the definition 
of a realization functor. Applying G to the above exact triangle, we obtain the required 
one.

“(2) ⇒ (3)” Denote the morphism B0 → B1 in the given exact triangle by f . Recall 
that B = Σ(F) ∗ T in Db(A). The two rows of the following diagram are exact triangles 
in Db(A) with F i ∈ F and T i ∈ T .

Σ(F 0)

Σ(a)

B0

f

T 0

b

∂0

Σ2(F 0)

Σ2(a)

Σ(F 1) B1 T 1 ∂1

Σ2(F 1)

(3.2)

Since HomDb(A)(Σ(F 0), T 1) = 0, there exist morphisms a : F 0 → F 1 and b : T 0 → T 1

in A making the diagram commute. We might identify T i with H0(Bi) and thus b
with H0(f). Similarly, we identify a with H−1(f). On the other hand, by applying the 
usual cohomological functor to the given exact triangle in (2), we infer that H−1(f) is 
a monomorphism and H0(f) is an epimorphism in A. Hence, we conclude that a is a 
monomorphism and b is an epimorphism in A.

We emphasize that the morphism b is uniquely determined by f . More precisely, by 
HomDb(A)(Σ2(F 0), T 1) = 0, there is a unique morphism b making the middle square of 
(3.2) commutative. Similar remarks hold for the morphism Σ(a).

We apply the 3 ×3 Lemma to the leftmost square in (3.2) and then a rotation to obtain 
the following 3 ×3 diagram, where the square in the southeast corner is anti-commutative 
and the remaining squares are commutative; see [5, Proposition 1.1.11]. Recall from [28, 
Section 2] that not every morphism between triangles fits into a 3 × 3 diagram. In other 
words, when forming the 3 ×3 diagram, one might have to adjust the morphism T 0 → T 1; 
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compare [28, Theorem 2.3]. However, in our situation, the morphism b : T 0 → T 1 filling 
in the commutative diagram (3.2) is already unique.

X
c

χ1(ρ3)

A
c′

Y

b′

χ1(ρ2)
Σ(X)

Σ(F 0)

Σ(a)

B0

f

T 0

b

∂0

Σ2(F 0)

Σ(F 1)

Σ(a′)

B1 T 1 ∂1

χ1(ρ1)

Σ2(F 1)

Σ2(a′)

Σ(X) Σ(A) Σ(Y )
Σχ1(ρ2)

Σ2(X)

(3.3)

For the canonical maps χi, we refer to Example 2.2. Since a is a monomorphism in A, 
we infer that X ∈ A with an exact sequence in A

ρ3 : 0 −→ F 0 a−→ F 1 a′
−→ X −→ 0.

Similarly, since b is an epimorphism in A, we have that Y ∈ A with an exact sequence 
in A

ρ1 : 0 −→ Y
b′−→ T 0 b−→ T 1 −→ 0.

In the top row, all the objects X, A and Y belong to A. Therefore, the exact triangle is 
indeed induced by an exact sequence in A

ρ2 : 0 −→ X
c−→ A

c′−→ Y −→ 0.

We splice these three exact sequences to obtain the required one, whose class in 
Yext3A(T 1, F 0) is χ3(ρ3 ∪ ρ2 ∪ ρ1). Then we are done by the following identity

χ3(ρ3 ∪ ρ2 ∪ ρ1) = Σ2χ1(ρ3) ◦ Σχ1(ρ2) ◦ χ1(ρ1)

= −Σ2χ1(ρ3) ◦ Σ2(a′) ◦ ∂1 = 0,

where the second equality uses the anti-commutative square in the southeast corner of 
(3.3), and the last one uses the fact χ1(ρ3) ◦ a′ = 0 by the exact triangle in the leftmost 
column.

“(3) ⇒ (2)” We break the long exact sequence in (3) into three short exact sequences 
ρi as above. By the vanishing condition, we have
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Σ2χ1(ρ3) ◦ Σχ1(ρ2) ◦ χ1(ρ1) = 0. (3.4)

Hence, by (3.4) and the following exact triangle in Db(A)

Σ2(F 0) Σ2(a)−−−−→ Σ2(F 1) Σ2(a′)−−−−→ Σ2(X) Σ2χ1(ρ3)−−−−−−→ Σ3(F 0),

we infer a morphism ∂1 : T 1 → Σ2(F 1) satisfying

Σ2(a′) ◦ ∂1 = −Σχ1(ρ2) ◦ χ1(ρ1).

Hence, we obtain the anti-commutative square in the southeast corner of (3.3). Now, 
by the 3 × 3 Lemma and rotations, we complete the anti-commutative square into the 
diagram (3.3). Then the middle vertical exact triangle is the required one.

“(2) ⇒ (4)” Denote the morphism B0 → B1 in (2) by f . The corresponding two-term 

complex · · · → 0 → B0 f→ B1 → 0 → · · · in B is denoted by Z. Then we have a canonical 
exact triangle in Db(B)

Z −→ B0 f−→ B1 −→ ΣB(Z).

Applying G to it, we infer that G(Z) � A.
“(4) ⇒ (1)” There exists Z ∈ Db(B) such that G(Z) � A. Recall that Db(B) has 

a bounded t-structure with its heart A′ and that Db(A) has the canonical t-structure. 
Since G(A′) ⊆ A, the realization functor G : Db(B) → Db(A) is t-exact with respect to 
these t-structures; see the third paragraph in this section. It follows by Lemma 2.3(2) 
that G|A′(Hn

A′(Z)) � Hn(G(Z)) = 0 for n �= 0. Here, Hn
A′ denotes the cohomological 

functor corresponding to the heart A′ in Db(B). By Proposition 3.1, G|A′ is fully faithful. 
We infer that Hn

A′(Z) = 0 for n �= 0, that is, Z ∈ A′. Then we are done. �
In the following result, we show that the realization functor G is an equivalence if and 

only if so is its restriction G|A′ : A′ → A.

Proposition 3.3. Keep the notation as above. Then the following statements are equiva-
lent:

(1) The functor G : Db(B) → Db(A) is an equivalence;
(2) The category A is contained in Im G;
(3) The restricted functor G|A′ : A′ → A is an equivalence.

Proof. The implication “(1) ⇒ (2)” is trivial. The equivalence between (2) and (3) follows 
from Proposition 3.1 and Proposition 3.2.

It remains to show the implication “(3) ⇒ (1)”. For this, we take a realization functor

F : Db(A′) −→ Db(B)
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of the heart A′. Then the restriction of the composition GF : Db(A′) → Db(A) to 
A′ → A coincides with G|A′ , thus is an equivalence. By Corollary 2.5, we have that 
the composition GF is an equivalence.

We claim that B ⊆ Im F . Indeed, for any object B ∈ B, there is an object Z ∈ Db(A′)
such that GF (Z) � B. By Lemma 2.7(2), we infer that B � F (Z) ∈ Im F .

We consider the backward HRS-tilt of A′ with respect to the torsion pair (T ′, F ′)

B′ = {X ∈ Db(A′) | H0(X) ∈ T ′, H1(X) ∈ F ′, Hi(X) = 0 for i �= 0, 1}.

The corresponding realization functor is denoted by E : Db(B′) → Db(A′). The restric-
tion F |B′ : B′ → B is fully faithful by Proposition 3.1. Using the above claim B ⊆ Im F

and applying Proposition 3.2 to F , we infer that F |B′ : B′ → B is an equivalence. By the 
same reasoning as above, we infer that the composition FE : Db(B′) → Db(B) is also an 
equivalence.

Since both FE and GF are equivalences, we infer that F is an equivalence. Since both 
GF and F are equivalences, we deduce that G is also an equivalence. �

Combining these propositions, we obtain the main result of this paper.

Theorem 3.4. Let A be an abelian category with a torsion pair (T , F). Denote by B the 
corresponding HRS-tilt and let G : Db(B) → Db(A) be a realization functor. Then the 
following statements are equivalent:

(1) The functor G : Db(B) → Db(A) is an equivalence;
(2) The category A lies in Im G;
(3) The canonical maps θ2

X,Y : Yext2B(X, Y ) → HomDb(A)(X, Σ2(Y )) are isomorphisms 
for any X, Y ∈ B;

(4) Each object A ∈ A fits into an exact sequence

0 −→ F 0 −→ F 1 −→ A −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T such that the corresponding class in Yext3A(T 1, F 0) van-
ishes.

Proof. The equivalence between (1) and (2) is contained in Proposition 3.3; moreover, 
both statements are equivalent to the denseness of G|A′ : A′ → A. We have “(1) ⇒ (3)” 
by Corollary 2.8. The implication “(3) ⇒ (2)” follows from Proposition 3.1. For “(4) ⇔
(2)”, we just apply Proposition 3.2. �
Remark 3.5. (1) In view of Corollary 2.8, the following fact seems to be somehow sur-
prising: to verify the equivalence for the realization functor G, we only need to check the 
surjectivity of the second canonical map θ2.



X.-W. Chen et al. / Advances in Mathematics 354 (2019) 106749 19
(2) We observe that in the above proof, if G is an equivalence, then the realization 
functor F : Db(A′) → Db(B) for the backward HRS-tilt is also an equivalence. In other 
words, if the torsion pair (T , F) in A satisfies condition (4) in Theorem 3.4, then so does 
the torsion pair (Σ(F), T ) in B.

4. Applications and examples

In this section, we will give applications and examples for Theorem 3.4, which are 
related to splitting torsion pairs, TTF-triples and two-term silting subcategories, respec-
tively.

In what follows, the derived equivalences in Example 4.4 generalize and unify the clas-
sical APR-reflection [3] and HW-reflection [18]. In Example 4.5, we construct a torsion 
pair in a module category, which is non-splitting, non-tilting and non-cotilting; moreover, 
it is not given by any two-term tilting complex. However, it does satisfy the conditions 
in Theorem 3.4 and hence induces a derived equivalence. In Proposition 4.7, we apply 
Theorem 3.4 to two-term silting subcategories.

4.1. TTF-triples and derived equivalences

Let A be an abelian category. For a subcategory U of A, denote by Sub U (resp. 
Fac U) the full subcategory consisting of subobjects (resp. factor objects) of objects in 
U . For two subcategories U , V of A, denote by U ∗ V the full subcategory consisting of 
those objects Z such that there exists a short exact sequence 0 → U → Z → V → 0
with U ∈ U and V ∈ V.

Corollary 4.1. Let (T , F) be a torsion pair in A, and B be the corresponding HRS-tilt. 
Assume that either A = F ∗ (Sub T ) or A = (Fac F) ∗ T holds. Then any realization 
functor G : Db(B) → Db(A) is an equivalence.

Proof. The exact sequence in Theorem 3.4(4) exists, once we recall that T is closed 
under factor objects and that F is closed under subobjects. �
Example 4.2. The above corollary includes the following cases.

(1) The torsion pair (T , F) is tilting (resp. cotilting), which means A = Sub T (resp. 
A = Fac F). The existence of derived equivalences in these cases is due to [16, 
Theorem I.3.3]. For different approaches, we refer to [6,29,11].

(2) The torsion pair (T , F) is splitting, which means that Ext1A(F, T ) = 0 for any F ∈ F
and T ∈ T . In this case, any object A in A is isomorphic to F ⊕ T for some F ∈ F
and T ∈ T . Then we have A = F ∗ T . The derived equivalence in this case seems to 
be new. We observe that it implies [8, Proposition 5.7].
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Following [38, VI.8], a triple (X , Y, Z) of full subcategories in A is called a TTF-triple, 
provided that both (X , Y) and (Y, Z) are torsion pairs. We mention that TTF-triples 
are closely related to recollements of abelian categories; see [31, Theorem 4.3].

Proposition 4.3. Let (X , Y, Z) be a TTF-triple in A. Then the following statements hold.

(1) The realization functor associated to the HRS-tilt of A with respect to (X , Y) is an 
equivalence if and only if Z ⊆ Sub X .

(2) The realization functor associated to the HRS-tilt of A with respect to (Y, Z) is an 
equivalence if and only if X ⊆ Fac Z.

Proof. We only prove (1), since the proof of (2) is similar. Assume that Z ⊆ Sub X . We 
have A = Y ∗ Z = Y ∗ (Sub X ). Then the “if” part follows from Corollary 4.1.

Conversely, assume that Z � Sub X . Take an object A ∈ Z such that it does not 
belong to Sub X . Then A does not admit an exact sequence in Theorem 3.4(4) for the 
torsion pair (X , Y), since HomA(Y 1, A) = 0 for any Y 1 ∈ Y. So the realization functor 
is not an equivalence. �

In what follows, by an algebra A we mean a finite dimensional algebra over a fixed 
field k. Denote by A-mod the category of finite dimensional left A-modules.

Example 4.4. Let F : C → D be a right exact functor between abelian categories. Denote 
by A the comma category of F . Recall that an object in A is a triple (C, D; φ) with 
C ∈ C, D ∈ D and φ : F (C) → D a morphism in D. The morphism (f, g) : (C, D; φ) →
(C ′, D′; φ′) consists of morphisms f : C → C ′ and g : D → D′ subject to the condition 
φ′ ◦ F (f) = g ◦ φ. We refer to [13] for more details on comma categories.

Assume that F is nonzero and admits a right adjoint G. Then any morphism 
φ : F (C) → D in D corresponds to a morphism φ� : C → G(D) in C, called its adjoint.

(1) We view C and D as full subcategories of A, by identifying C ∈ C with (C, 0; 0), and 
D ∈ D with (0, D; 0), respectively. Denote by E the full subcategory of A consisting 
of those objects (C, D; φ) with φ an epimorphism. Denote by M the full subcategory 
consisting of those objects (C, D; φ) with its adjoint φ� a monomorphism. By combin-
ing [30, Example 2.12] and [31, Theorem 4.3], we obtain two well-known TTF-triples 
(E , D, C) and (D, C, M) in A. Denote by B1 (resp. B2) the HRS-tilt of A with respect 
to (E , D) (resp. (C, M)).
By the construction, we have C ⊆ E and D ⊆ M. Then by Proposition 4.3, we have 
the following derived equivalences

Db(B1)
∼−→ Db(A) ∼←− Db(B2).

On the other hand, since F is nonzero, we have E � C = Fac C. Hence by Propo-
sition 4.3, any realization functor associated to the HRS-tilt of A with respect to 
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(D, C) is not an equivalence. Indeed, the HRS-tilt is equivalent to C ×D, their direct 
product; compare [16, Proposition I.2.3].

(2) In the following concrete example, the above derived equivalences are known, which 
are important in the representation theory of algebras.
Let A be an algebra and MA be a nonzero right A-module. Denote by Γ the one-point 
extension of A by M , which is by definition the upper triangular matrix algebra (
k M
0 A

)
. Denote by e =

(
1 0
0 0

)
the idempotent corresponding to k. Observe 

that the projective left Γ-module Γe is simple. We denote by Γ1 the corresponding 
APR-reflection [3] of Γ, and by Γ2 the corresponding HW-reflection [18] of Γ.
Take C = A-mod, D = k-mod and F = M ⊗A −. Then the comma category A of F
is equivalent to Γ-mod. Applying [17, Theorem 5.8], we observe that Bi is equivalent 
to Γi-mod for i = 1, 2. In particular, we have the following derived equivalences

Db(Γ1-mod) ∼−→ Db(Γ-mod) ∼←− Db(Γ2-mod).

We mention that the left equivalence is induced by the APR-tilting module, and the 
right one can be deduced from [39, Theorem 10]; see also [25].

In what follows, we construct an example for Theorem 3.4, which seems to be not 
applied to any previously known results. We say that a torsion class U in an abelian 
category A is finitely generated, provided that there exists some object Z ∈ U which 
generates U , that is, U = Fac Z.

Example 4.5. We keep the notation in Example 4.4. In particular, the functor F : C → D
is right exact and A denotes the comma category.

Assume that (X , Y) is a torsion pair in C and that (U , V) is a torsion pair in D such 
that F (X ) ⊆ U . We denote by T (resp. F) the full subcategory of A consisting of those 
objects (C, D; φ) with C ∈ X and D ∈ U (resp. C ∈ Y and D ∈ V). Then (T , F) is a 
torsion pair in A. We mention that this torsion pair might be viewed as glued from the 
given ones. It can be deduced from a general result [26, Proposition 6.5].

We assume that the following conditions are satisfied:

(i) The functor F : C → D is exact with F (C) ⊆ U ;
(ii) The torsion pair (X , Y) is tilting, non-splitting and non-cotilting;
(iii) The torsion pair (U , V) is splitting and non-tilting such that U is not finitely gen-

erated.

We claim that the resulted torsion pair (T , F) in A is non-splitting, non-tilting and 
non-cotilting such that T is not finitely generated; moreover, it satisfies condition (4) in 
Theorem 3.4.

For the claim, it suffices to prove the last statement. We observe by (i) and (iii) 
that any object in A is isomorphic to (C, U ; φ) ⊕ (0, V ; 0) with C ∈ C, U ∈ U and 
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V ∈ V. It suffices to verify the condition for (C, U ; φ). By (ii), we take an exact sequence 
0 → C → X0 → X1 → 0 with Xi ∈ X . By a pushout, we have the following commutative 
exact diagram.

0 F (C)

φ

F (X0) F (X1) 0

0 U U0 F (X1) 0

We observe that U0 lies in U . Then this yields the required exact sequence in A.
Using this claim, one can construct easily an indecomposable algebra Γ such that there 

is a torsion pair (T , F) in Γ-mod which is non-splitting, non-tilting and non-cotilting; 
moreover, it is not given by any two-term tilting complex; see [17, Proposition 5.7(1)]. 
However, it satisfies condition (4) in Theorem 3.4. Consequently, the torsion pair (T , F)
induces a derived equivalence between Γ-mod and its HRS-tilt.

The construction of Γ is similar to Example 4.4(2). We take A to be the path alge-
bra given by a linear quiver with at least three vertices, where a torsion pair (X , Y) in 
C = A-mod satisfying condition (ii) is well known. Let B1 be an indecomposable tame 
hereditary algebra, and B2 be an indecomposable non-semisimple algebra with a simple 
injective module S. Set B = B1 × B2. We take D = B-mod, which is identified with 
B1-mod × B2-mod. Set U = U1 × U2, where U1 is the additive subcategory of B1-mod
generated by preinjective B1-modules and U2 the additive subcategory of B2-mod gener-
ated by S. Set V = V1×V2, where V1 is the additive subcategory of B1-mod generated by 
indecomposable non-preinjective B1-modules and V2 is formed by those B2-modules Z
satisfying HomB2(S, Z) = 0. The nonzero B-A-bimodule M is taken such that BM lies in 
U and that MA is projective, and then Γ is defined to be the corresponding upper trian-
gular matrix algebra. We may further require that BM does not lie in (U1×0) ∪ (0 ×U2). 
It follows that the algebra Γ is indecomposable.

As in Example 4.4(2), we identify Γ-mod with the comma category A of the functor 
F = M ⊗A − : A-mod → B-mod. Then condition (i) is trivial. Since both torsion pairs 
(Ui, Vi) are splitting, we infer that (U , V) is a splitting torsion pair in D. For (iii), it 
suffices to observe that U1 is not finitely generated and that (U2, V2) is non-tilting.

4.2. Two-term silting subcategories

Torsion pairs arising from two-term silting complexes or subcategories were studied 
in different contexts such as abelian categories with arbitrary coproducts [17,2] and Ext-
finite abelian categories [1,22,9]. In what follows, we unify them into a general framework. 
This unification seems to be new, although it might be known to experts.

Let A be an abelian category. We say that a full additive subcategory P of Db(A) is 
a two-term silting subcategory, provided that the following conditions are satisfied:
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(1) The subcategory P is contravariantly finite in Db(A);
(2) (two-term) HomDb(A)(P, Σi(A)) = 0 for i /∈ {0, 1};
(3) (presilting) HomDb(A)(P, Σi(P)) = 0 for i > 0;
(4) (generating) If HomDb(A)(P, Σi(M)) = 0 for all i, then M = 0.

The first condition is necessary, because we do not assume that A has arbitrary co-
products or A is Ext-finite. In [17,1,22], the last condition is given in a slightly different 
manner, and one might consult [9, Lemma 4.10 and Corollary 4.11] and [2, Theorem 4.9].

The following results might be obtained in a very similar way as in [9, Section 4].

Lemma 4.6. Let P ⊆ Db(A) be a two-term silting subcategory. Then the following state-
ments hold.

(1) We have a torsion pair (T (P), F(P)) in A, where T (P) = {X ∈ A |
HomDb(A)(P, Σ(X)) = 0} and F(P) = {X ∈ A | HomDb(A)(P, X) = 0}. The 
corresponding HRS-tilt B of A is given by

B = {X ∈ Db(A) | HomDb(A)(P,Σi(X)) = 0 for i �= 0}. (4.1)

(2) For each P ∈ P, there is an exact triangle

Σ(T ) b−→ P −→ P̃
a−→ Σ2(T )

with T ∈ T (P) and P̃ ∈ B; moreover, the objects {P̃ | P ∈ P} form a class of 
projective generators in B. �

We mention that one can show in a very similar way as in [21, Section 4] that there is 
an equivalence B ∼−→ modP, sending B to HomDb(A)(−, B)|P . Here, modP denotes the 
category of finitely presented additive contravariant functors from P to the category of 
abelian groups.

The following result generalizes [8, Theorem 1.1(e)] and the two-term version of [32, 
Corollary 5.2].

Proposition 4.7. Let P be a two-term silting subcategory of Db(A), and B be the HRS-tilt 
of A with respect to (T (P), F(P)). Then the realization functor G : Db(B) → Db(A) is 
an equivalence if and only if HomDb(A)(P, Σi(P)) = 0 for each i < 0.

Proof. By Theorem 3.4(3), it suffices to show that HomDb(A)(P, Σi(P)) = 0 for each 
i < 0 if and only if the canonical maps θ2

X,Y : Yext2B(X, Y ) → HomDb(A)(X, Σ2(Y )) are 
surjective for any X, Y ∈ B.

Suppose that HomDb(A)(P, Σi(P)) = 0 for each i < 0. Then P is a subcategory of B
by (4.1). Then b = 0 in the exact triangle in Lemma 4.6(2), which implies P � P̃ . It 
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follows that P consists of projective generators of B. So for any object X ∈ B, there is an 
exact sequence 0 → Z → P → X → 0 in B with P ∈ P, which induces an exact triangle 
η : Z → P → X → Σ(Z) in Db(A). Consider an arbitrary morphism f : X → Σ2(Y )
for Y ∈ B. By (4.1), the composition P → X

f→ Σ2(Y ) is zero. It follows from the 
exact triangle η that f factors through Σ(Z). Hence by Lemma 2.1(3), the map θ2

X,Y is 
surjective.

Conversely, we suppose that the canonical map θ2
X,Y is surjective for any X, Y ∈ B. 

It follows that for any P ∈ P and any B ∈ B, we have

HomDb(A)(P̃ ,Σ2(B)) � Ext2B(P̃ , B) = 0.

Hence in the exact triangle in Lemma 4.6(2), we have a = 0. It follows that Σ(T ) is 
a direct summand of P . We have Σ(T ) � 0 since HomDb(A)(P, Σ(T )) = 0. Then P is 
isomorphic to P̃ , proving P ⊆ B. In view of (4.1), we infer HomDb(A)(P, Σi(P)) = 0 for 
each i < 0. �

The following example shows the necessity of the Yext-vanishing condition in Theo-
rem 3.4(4). For a set S of objects in an additive category, we denote by addS the smallest 
additive subcategory which is closed under direct summands and contains S.

Example 4.8. Let A be a Nakayama algebra given by the following quiver

1 a−→ 2 b−→ 3 c−→ 4 d−→ 5 e−→ 6

subject to the relations cba = 0 = edc. Denote by Pi the indecomposable projective 
A-module corresponding to the vertex i. We have the following two-term silting complex 
P supported on degrees −1 and 0

P = (0 → P1) ⊕ (P2 → P1) ⊕ (P3 → P1) ⊕ (P6 → P4) ⊕ (P6 → P5) ⊕ (P6 → 0),

where the differentials of its indecomposable direct summands are the obvious mor-
phisms. Then P = addP is a two-term silting subcategory in Db(A-mod). The 
corresponding torsion pair (T , F) = (T (P), F(P)) in A-mod is given by T =
add {1, 12 , 

1
2
3
, 4, 45 , 5} and F = add {2, 23 , 3, 

4
5
6
, 56 , 6}. It is easy to check that

HomDb(A-mod)(P, Σ−1(P )) �= 0. By Proposition 4.7, the corresponding realization functor 
is not a derived equivalence. However, we have A-mod = (Fac F) ∗(Sub T ). Consequently, 
for each A-module X, there is an exact sequence

0 −→ F 0 −→ F 1 −→ X −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T , but the corresponding class in Yext3A-mod(T 1, F 0) �
Ext3A(T 1, F 0) might not vanish.
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