
Chapter 6

Differential graded enhancements of singularity
categories

Xiao-Wu Chen and Zhengfang Wang

The singularity category of a ring detects the homological singularity of the given ring and
appears in many different contexts. We describe two different dg enhancements of the singu-
larity category, that is, the Vogel dg category and the singular Yoneda dg category. These two
dg enhancements turn out to be quasi-equivalent. We report some progress on the Singular
Presilting Conjecture.

1 Introduction

Let R be a left coherent ring. Denote by Db.R-mod/ the bounded derived category
of the abelian category consisting of finitely presented left R-modules. The singu-
larity category Dsg.R/ of R is defined to be the Verdier quotient category [65] of
Db.R-mod/ by the full triangulated subcategory of perfect complexes. The singular-
ity category detects the homological singularity of R in the following sense: if R has
finite global dimension, then Dsg.R/ vanishes.

The singularity category was first introduced in [18] and then rediscovered in [58]
in the geometric setting, which is motivated by the homological mirror symmetry
conjecture [51]. The singularity category appears naturally in a number of different
subjects, such as matrix factorizations [31], integral and modular representations of
finite groups [18, 61], Gorenstein homological algebra [4, 18, 32], noncommutative
algebraic geometry [59], weighted projective lines [53] and cluster categories [3].

We will abbreviate ‘differential graded’ as dg. By a dg enhancement [16] of a tri-
angulated category, we mean a pretriangulated dg category whose zeroth cohomology
yields the given triangulated category. It is well known that any triangulated category
appearing naturally in algebra has a dg enhancement; compare [48, Subsection 3.6].
Moreover, the dg enhancement contains more information and has more invariants,
such as the Hochschild cohomology ring.

The dg singularity category [13, 17, 49] of R is defined to be the dg quotient
category of the bounded dg derived category by the full dg subcategory of perfect
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complexes. It is a canonical dg enhancement of Dsg.R/. We mention that the dg sin-
gularity category plays a crucial role in the study [38,43,49] of the Donovan–Wemyss
Conjecture on isolated compound Du Val singularities.

Since the dg singularity category is defined as a dg quotient category [29, 47], it
is quite hard to handle. Therefore, it is of interest to have more explicit dg models.
In this paper, we describe two different dg enhancements of the singularity category,
that is, the Vogel dg category and the singular Yoneda dg category.

The idea of the Vogel dg category is implicit in an unpublished paper of Vogel,
which generalizes the Tate cohomology [18,64] of Gorenstein rings to arbitrary rings
(see also [11,34,54]). The construction of the singular Yoneda dg category [23] relies
on bar resolutions and noncommutative differential forms.

The paper is organized as follows. In Section 2, we obtain semi-orthogonal decom-
positions consisting of Verdier quotient categories of homotopy categories of com-
plexes (see Propositions 2.5 and 2.9). In Section 3, we define the Vogel dg category,
whose zeroth cohomology is closely related to the quotient categories studied in Sec-
tion 2 via an orthogonal decomposition (see Theorem 3.13).

In Section 4, we first point out in Proposition 4.1 that the Vogel dg category
is quasi-equivalent to the dg singularity category. We give a full proof of a slight
generalization of Buchweitz’s theorem on the singularity category of a Gorenstein
ring; see Theorem 4.11. In Subsection 4.3, we report some progress in [22] on the
Singular Presilting Conjecture [25, 40], which implies the well-known Auslander–
Reiten Conjecture [5].

In Section 5, we recall the construction of the singular Yoneda dg category [23].
Proposition 5.4 states that the singular Yoneda dg category is quasi-equivalent to the
dg singularity category. In summary, although the Vogel dg category and the singular
Yoneda dg category are quite different, they turn out to be quasi-equivalent.

We emphasize that almost all the results in Sections 4 and 5 exist already in the
literature. Some of the results in Sections 2 and 3 seem to be new.

2 Quotient categories and singularity categories

In this section, we obtain semi-orthogonal decompositions of certain Verdier quotient
categories of homotopy categories of complexes (see Propositions 2.5 and 2.9).

In what follows, we assume that a is an additive category. A (cochain) complex
in a is usually denoted byX D .Xn; dnX /n2Z, where the differentials dnX WX

n!XnC1

satisfy dnC1X ı dnX D 0. For each integer n, we denote by †n.X/ the degree n shift
of X . Denote by C.a/ and K.a/ the category of complexes in a and the homotopy
category, respectively.
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For a complex X and n 2 Z, we have the following brutal truncations:

��n.X/ D � � � ! 0! Xn
dn

X
! XnC1

d
nC1
X
! XnC1 ! � � �

and

�<n.X/ D � � � ! Xn�3
dn�3

X
! Xn�2

dn�2
X
! Xn�1 ! 0! � � � :

Moreover, we have a canonical exact triangle in K.a/:

��n.X/
incn
��! X

prn
��! �<n.X/ �! †��n.X/: (2.1)

Here, incn and prn denote the corresponding inclusion and projection, respectively.
The unnamed cochain map �<n.X/!†��n.X/ is induced by the differential dn�1X W

Xn�1 ! Xn.
A complex X is bounded-above (resp., bounded-below) if Xn D 0 for n (resp.,

�n) sufficiently large. A complex is bounded if it is both bounded-above and bounded-
below. We denote by C�.a/, CC.a/ and C b.a/ the full subcategories of C.a/ formed
by bounded-above, bounded-below and bounded complexes, respectively. The corre-
sponding homotopy categories are denoted by K�.a/, KC.a/ and Kb.a/, respec-
tively.

In what follows, we consider the Verdier quotient category K.a/=Kb.a/.

Lemma 2.1. Let X and Y be two complexes. The following statements hold.

(1) Assume that Y is bounded-above. Then we have a natural isomorphism

HomK.a/=Kb.a/.X; Y / ' colim
n!C1

HomK.a/.X; ���n.Y //;

where the structure maps of the above colimit are induced by the projections
���n.Y /! ���.nC1/.Y /.

(2) Assume that X is bounded-below. Then we have a natural isomorphism

HomK.a/=Kb.a/.X; Y / ' colim
n!C1

HomK.a/.��n.X/; Y /;

where the structure maps are induced by the inclusions ��nC1.X/! ��n.X/.

Proof. For (1), we recall from [65, Chapitre II, eq. (2.2.1.1)] an isomorphism

HomK.a/=Kb.a/.X; Y / ' colim	 HomK.a/.X; Y
0/;

where the colimit is taken over a filtered category 	. Here, 	 is the full subcategory
of the coslice category .Y # K.a// formed by morphisms sW Y ! Y 0 such that its
mapping cone Cone.s/ is isomorphic to a bounded complex in K.a/.
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Since Y is bounded-above, the projections pr�nWY ! �<�n.Y / are objects in 	.
Denote by J the non-full subcategory of 	 formed by the projections pr�n and the
natural morphisms pr�n ! pr�.nC1/. Since any morphism from a bounded complex
to Y factors through the inclusion ���n.Y /! Y for n sufficiently large, it follows
that any object sW Y ! Y 0 in 	 admits a morphism to pr�n for n sufficiently large.
Moreover, the morphism Y 0! �<�n.Y /, which yields the morphism s! pr�n in 	,
is unique in K.a/, since HomK.a/.Cone.s/; �<�n.Y // D 0 for n sufficiently large.
This uniqueness implies that J is cofinal in 	; see [45, Definition 2.5.1]. Then we
infer (1) by [45, Proposition 2.5.2 (v)]. Dually, we prove (2).

Corollary 2.2. LetX be a bounded-below complex and Y a bounded-above complex.
Then we have

HomK.a/=Kb.a/.X; Y / D 0:

Proof. We have HomK.a/.X; ���n.Y // D 0 if n is sufficiently large. Then the result
follows immediately from Lemma 2.1 (1).

Let T be a triangulated category. For a triangulated subcategory X, the orthogo-
nal subcategories are defined to be

X? D ¹Y 2 T j HomT .X; Y / D 0 for all X 2 Xº

and
?X D ¹Y 2 T j HomT .Y;X/ D 0 for all X 2 Xº:

Both X? and ?X are triangulated subcategories of T .
Recall from [14, 15] that a semi-orthogonal decomposition T D hX;Yi consists

of two full triangulated subcategories X and Y subject to the following conditions:

(1) HomT .Y;X/ D 0 for any Y 2 Y and X 2 X.

(2) Any object T in T fits into an exact triangle

Y �! T �! X �! †.Y /

with some Y 2 Y and X 2 X.

A semi-orthogonal decomposition is orthogonal if HomT .X; Y / D 0 for any X 2 X

and Y 2 Y, in which case we write T D X � Y. We mention that semi-orthogonal
decompositions are essentially equivalent to stable t -structures in the sense of [55,
Definition 9.14] and Bousfield localizations of triangulated categories in [56, Chap-
ter 9].

Remark 2.3. Let T DhX;Yi be a semi-orthogonal decomposition. Then it is orthog-
onal if and only if each object T in T admits a decomposition T ' Y ˚X with Y 2Y

and X 2 X.
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The following facts are well known (see [14, Lemma 3.1] and [15, Proposi-
tion 1.6]).

Lemma 2.4. Assume that T D hX;Yi is a semi-orthogonal decomposition. Then the
following statements hold.

(1) We have X D Y? and Y D ?X.

(2) The canonical functors X! T =Y and Y! T =X are triangle equivalences.

We view K�.a/=Kb.a/ and KC.a/=Kb.a/ as full triangulated subcategories of
K.a/=Kb.a/.

We mention that one might deduce the following semi-orthogonal decomposition
by using a general result [44, Theorem B].

Proposition 2.5. Keeping the notation as above, we have a semi-orthogonal decom-
position

K.a/=Kb.a/ D hK�.a/=Kb.a/;KC.a/=Kb.a/i:

Consequently, the following canonical functors

K�.a/=Kb.a/! K.a/=KC.a/ and KC.a/=Kb.a/! K.a/=K�.a/

are both triangle equivalences.

Proof. The semi-orthogonal decomposition follows from Corollary 2.2 and the exact
triangle (2.1). By [65, Chapitre II, Proposition 2.3.1 c)], we have the following well-
known equivalence:

K.a/=KC.a/
�
�! .K.a/=Kb.a//=.KC.a/=Kb.a//:

Then we deduce the first equivalence in the consequence by applying Lemma 2.4 (2)
to the semi-orthogonal decomposition above. Similarly, we have the second one.

In what follows, we assume that R is an arbitrary ring. Denote by R-Mod the
category of left R-modules and by R-mod its full subcategory formed by finitely
presented modules. Denote by R-Proj the category of projective R-modules and by
R-proj the full subcategory formed by finitely generated ones. By K�;b.R-proj/ we
denote the full subcategory of K�.R-proj/ consisting of bounded-above complexes
with bounded cohomology. Similarly, we have the category K�;b.R-Proj/.

The following well-known notion is due to [18] (see also [58]).

Definition 2.6. The singularity category of R is the following Verdier quotient cate-
gory:

Dsg.R/ D K�;b.R-proj/=Kb.R-proj/:
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Remark 2.7. (1) The big singularity category of R is defined to be

D0sg.R/ D K�;b.R-Proj/=Kb.R-Proj/:

By [21, Remark 3.6], the canonical functor Dsg.R/! D0sg.R/ is fully faithful (com-
pare [58, Proposition 1.13]).

(2) Assume that R is left coherent. Then R-mod is abelian. We might identify the
bounded derived category Db.R-mod/ with K�;b.R-proj/. Therefore, the singular-
ity category Dsg.R/ might be defined as Db.R-mod/=Kb.R-proj/. Similarly, for an
arbitrary ring R, we might define D0sg.R/ as Db.R-Mod/=Kb.R-Proj/.

Let P be a complex in K�;b.R-proj/. Then there exists a sufficiently large n0
such that for any n � n0, the cocycle Z�n.P / is finitely presented and �<�n.P / is a
shifted projective resolution of Z�n.P /. For any such n, the projection

P �! �<�n.P / (2.2)

is an isomorphism in Dsg.R/. In other words, any object in the singularity category
is given by a shifted projective resolution of a finitely presented module. Denote by
R-mod the stable category ofR-mod modulo projective modules [6, Chapter IV, Sec-
tion 1].

Lemma 2.8. Let P and Q be two complexes in K�;b.R-proj/. Then P and Q are
isomorphic in Dsg.R/ if and only if Z�n.P / and Z�n.Q/ are isomorphic in R-mod
for any sufficiently large n.

Proof. The following observation implies the “only if” part: if there is a cochain
map f WP ! P 0 whose mapping cone is homotopical to a bounded complex, then
Z�n.P / andZ�n.P 0/ are isomorphic in R-mod for any sufficiently large n. The “if”
part follows from the isomorphism (2.2) applied to P and Q, respectively.

For a complexP in K.R-proj/, we consider the dual complexP �DHomR.P;R/,
which is a complex of finitely generated projective right R-modules. We view P � as
an object in K.Rop-proj/. Here, Rop denotes the opposite ring of R, and we identify
right R-modules with left Rop-modules.

The following treatment might be compared with [44, Subsection 6.1]. We con-
sider the following full triangulated subcategory of K.R-proj/:

KB.R-proj/ D ¹P 2 K.R-proj/ j H�n.P / D 0 D H�n.P �/ for n� 0º:

We have Kb.R-proj/ � KB.R-proj/, and consider the Verdier quotient category

KB.R-proj/=Kb.R-proj/:
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We will adopt semi-orthogonal decompositions in a slightly more general set-
ting. Let T D hX; Yi be a semi-orthogonal decomposition. If X0 (resp., Y0) is a
triangulated category which is triangle equivalent to X (resp., Y), we still write
T D hX0;Y0i. For a triangulated category X, we denote by Xop its opposite cate-
gory, which is also naturally triangulated.

Proposition 2.9. We have a semi-orthogonal decomposition

KB.R-proj/=Kb.R-proj/ D hDsg.R/;Dsg.R
op/op
i:

Proof. The semi-orthogonal decomposition in Proposition 2.5 restricts to the follow-
ing one:

KB.R-proj/
Kb.R-proj/

D

�
KB.R-proj/ \K�.R-proj/

Kb.R-proj/
;

KB.R-proj/ \KC.R-proj/
Kb.R-proj/

�
:

For the first factor in the decomposition, we just observe that

KB.R-proj/ \K�.R-proj/ D K�;b.R-proj/:

Therefore, we identify the first factor with Dsg.R/. For the second factor, we use the
following duality of categories:

HomRop.�; R/WK�;b.Rop-proj/ �! KB.R-proj/ \KC.R-proj/;

which sends Kb.Rop-proj/ to Kb.R-proj/. The duality allows us to identify the second
factor with Dsg.R

op/op. Then we are done.

The following example shows that the semi-orthogonal decomposition in Propo-
sition 2.9 is not orthogonal in general. It follows that the same holds for the one in
Proposition 2.5.

Example 2.10. Let R be a quasi-Frobenius ring and M be a finitely generated non-
projective R-module. Take a complete resolution P of M ; that is, P D .P n; dnP /n2Z

is an acyclic complex of finitely generated projective R-modules with its .�1/-th
cocycle Z�1.P / ' M . The differential d0P W P

0 ! P 1 induces a cochain map �W
��0.P /! †��1.P /.

We claim that � yields a nonzero morphism in K.R-proj/=Kb.R-proj/. This
implies that the semi-orthogonal decomposition in Proposition 2.9 is not orthogonal.

For the claim, we assume the converse. Then, when viewed as a morphism in
K.R-proj/, � factors through an object Q 2 Kb.R-proj/. We observe that � is a
quasi-isomorphism and becomes an isomorphism in the derived category D.R-Mod/.
Indeed, both ��0.P / and †��1.P / are quasi-isomorphic to M . It follows that the
identity map onM factors throughQ in D.R-Mod/. This implies that in D.R-Mod/,
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M is isomorphic to a bounded complex of finitely generated projective modules. This
is impossible, as the projective dimension of M is infinite.

3 The Vogel dg category

For an additive category, we will introduce its Vogel dg category (see Definition 3.9).
We obtain an orthogonal decomposition of the homotopy category of the Vogel dg
category (see Theorem 3.13).

3.1 Preliminaries on dg categories

In this subsection, we recall from [29, 46] basic facts on dg categories.
Let C be a dg category. For two objects X and Y , the morphism complex is

usually denoted by C.X; Y /, whose differential is denoted by dC or simply by d . By
default, we only consider homogeneous morphisms in any dg category. For any f 2
C.X; Y /n, we write jf j D n. A morphism f WX ! Y is called closed if dC .f / D 0.
A closed isomorphism of degree zero is called a dg-isomorphism.

The ordinary categoryZ0.C/ of C is a pre-additive category, which has the same
objects as C , and whose morphisms are precisely closed morphisms of degree zero
in C . The homotopy category H 0.C/ is a factor category of Z0.C/, whose mor-
phisms are given by the zeroth cohomology groups of the morphism complexes in C .
In other words, we have

HomZ0.C/.X; Y / D Z
0.C.X; Y // and HomH0.C/.X; Y / D H

0.C.X; Y //:

A closed morphism of degree zero is called a homotopy equivalence if it becomes an
isomorphism in H 0.C/. Clearly, a dg-isomorphism is a homotopy equivalence.

An object X in C is called contractible if there exists an endomorphism � of X
of degree �1 with dC .�/ D IdX . This is equivalent to the condition that X is the zero
object in H 0.C/.

The prototypical example of dg categories is as follows.

Example 3.1. Let a be an additive category. For two complexes X and Y , the Hom-
complex Homa.X;Y / is a complex of abelian groups whose n-th component is given
by the following infinite product:

Homa.X; Y /
n
D

Y
p2Z

Homa.X
p; Y nCp/:

An element of Homa.X; Y /
n is denoted by f D .f p/p2Z, which might be viewed

as a graded morphism of degree n from X to Y . The differential

dnWHoma.X; Y /
n
�! Homa.X; Y /

nC1
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sends f to dnf such that .dnf /p D dpCnY ı f p � .�1/nf pC1 ı d
p
X for each p 2Z.

The importance of the Hom-complex lies in the following standard identities:

Z0Homa.X; Y /DHomC.a/.X; Y / and H 0Homa.X; Y /DHomK.a/.X; Y /: (3.1)

We denote by Cdg.a/ the dg category of complexes whose objects are just com-
plexes in a and with morphism complexes between X and Y given by Homa.X; Y /.
The composition of morphisms in Cdg.a/ is given by the composition of graded mor-
phisms. In view of (3.1), we infer that

Z0.Cdg.a// D C.a/ and H 0.Cdg.a// D K.a/:

Therefore, the categories C.a/ and K.a/ are shadows of the dg category Cdg.a/.
We denote by C�dg.a/, C

C
dg .a/ and C bdg.a/ the full dg subcategories of Cdg.a/

formed by bounded-above complexes, bounded-below complexes and bounded com-
plexes, respectively. This concludes the example.

A dg functor F WC !D is said to be quasi-fully faithful if, for any objects X and
Y in C , the cochain map

C.X; Y / �! D.FX;F Y /; f 7! F.f /;

is a quasi-isomorphism. In this case, the induced functor H 0.F /WH 0.C/! H 0.D/

is fully faithful. If in addition H 0.F / is dense, we call F a quasi-equivalence.
Following [16, p. 105, Remark] and [29, p. 650], a dg category C is called strongly

pretriangulated if it has internal shifts of objects and internal cones of closed mor-
phisms of degree zero.

Let us explain the internal cones. For a closed morphism f WX ! Y of degree
zero, its internal cone means an object C which fits into a diagram in C

Y
j

// C

t

ff

p
// X

s

ff

with jj j D 0 D jt j, jpj D 1 and jsj D �1 subject to the following identities:

p ı j D 0 D t ı s; IdC D s ı p C j ı t; IdY D t ı j; IdX D p ı s

and
dC .j / D 0 D dC .p/; dC .s/ D j ı f:

Such an internal cone is unique up to dg-isomorphism if it exists. We mention that
assuming the remaining assumptions, the condition dC .s/ D j ı f is equivalent to
dC .t/ D �f ı p.
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We mention that strongly pretriangulated dg categories are called exact in [47]. In
this case, the category Z0.C/ has a canonical Frobenius exact structure whose stable
category coincides with H 0.C/. Consequently, H 0.C/ has a canonical triangulated
structure (see [47, Subsection 2.1]).

It is well known that Cdg.a/ is strongly pretriangulated. The internal shifts of
complexes are just usual shifts of complexes. Since a closed morphism of degree zero
in Cdg.a/ is precisely a cochain map, its internal cone is given by the mapping cone.
For the same reason, C�dg.a/, C

C
dg .a/ and C bdg.a/ are all strongly pretriangulated.

One of the disadvantages of strongly pretriangulated categories is that they are not
invariant under quasi-equivalences. A dg category C is pretriangulated if it has shifts
and cones up to homotopy (see [29, p. 650]). In this case, the homotopy category
H 0.C/ still has a canonical triangulated structure. If there is a quasi-equivalence
F WC ! D , then C is pretriangulated if and only if so is D , in which case H 0.F /W

H 0.C/! H 0.D/ is a triangle equivalence.
Let us explain cones up to homotopy, which are somewhat subtle. For a closed

morphism f WX ! Y of degree zero, its cone up to homotopy means an object C 0

which fits into a diagram in C

Y
j

// C 0

t

ff

p
// X

s

gg

with jj j D 0 D jt j, jpj D 1 and jsj D �1 subject to the following conditions:

(1) dC .j / D 0 D dC .p/; dC .s/ D j ı f; dC .t/ D �f ı p;

(2) there exists "0 2 C.C 0; C 0/�1 such that IdC 0 � dC ."
0/ D s ı p C j ı t ;

(3) there exist morphisms h 2 C.Y;X/0, "X 2 C.X;X/�1, "Y 2 C.Y; Y /�1, and
r 2 C.X; Y /�2 satisfying the following identities:

p ı j D dC .h/; t ı s D dC .r/C f ı "X � "Y ı f;

IdY � t ı j D dC ."Y /C f ı h; and IdX � p ı s D dC ."X /C h ı f:

Such a cone is unique up to homotopy equivalence if it exists.

Remark 3.2. Denote by DGMod-C the dg category formed by right dg C -modules.
Consider the Yoneda dg functor

YWC �! DGMod-C ; X 7! C.�; X/:

Assume that f WX ! Y is a closed morphism of degree zero in C . Then an object E
in C is dg-isomorphic to the internal cone of f if and only if Y.E/ is dg-isomorphic
to the mapping cone of Y.f / in DGMod-C . Similarly, an object E 0 in C is homo-
topy equivalent to the cone up to homotopy of f if and only if Y.E 0/ is homotopy
equivalent to the mapping cone of Y.f / in DGMod-C .
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The “only if” part of the following well-known result is trivial, and the “if” part
is useful (see [20, Lemma 3.1]).

Lemma 3.3. Let F WC ! D be a dg functor between two pretriangulated dg cate-
gories. Then F is a quasi-equivalence if and only if H 0.F /WH 0.C/! H 0.D/ is a
triangle equivalence.

Let C be a dg category. A dg ideal 	 D ¹	.X; Y /ºX;Y2Obj.C/ consists of sub-
complexes 	.X; Y / of C.X; Y / which satisfy the following condition: for any f 2
	.X;Y /, a 2C.X 0;X/ and b 2C.Y;Y 0/, the composition b ı f ı a lies in 	.X 0;Y 0/.
We have the factor dg category C=	, which has the same objects with C and whose
morphism complexes are given by the quotient complex C.X; Y /=	.X; Y /. For a
morphism f in C , the corresponding morphism in C=	 is denoted by f .

Lemma 3.4. Let C be a strongly pretriangulated dg category and 	 a dg ideal of C .
Assume that, for any morphism f WX!Y of degree zero satisfying dC .f /2	.X;Y /,
there exist two morphisms �WX 0! X and �WY ! Y 0 of degree zero such that dC .� ı

f ı �/ D 0 and that both � and � represent dg-isomorphisms in C=	. Then C=	 is
also strongly pretriangulated.

Proof. Recall that a dg category C has internal shifts if and only if for each object X ,
there are a closed isomorphism X ! X1 of degree 1 and a closed isomorphism
X ! X2 of degree �1. Since the given dg category C has internal shifts, so does
the factor dg category C=	.

For the existence of internal cones, we observe that any closed morphism of
degree zero in C=	 is of the form f for some morphism f WX ! Y of degree zero
in C satisfying dC .f / 2 	.X;Y /. By the assumption, we have morphisms �WX 0!X

and �W Y ! Y 0 of degree zero such that � ı f ı � is closed and that � and � are dg-
isomorphisms. Therefore, the internal cone Cone.� ı f ı �/ of � ı f ı � exists in C ,
which is also the internal cone of � ı f ı � in C=	. As internal cones are invariant
under dg-isomorphisms and both � and � are dg-isomorphisms in C=	, it follows that
Cone.� ı f ı �/ is dg-isomorphic to the desired cone of f in C=	. This completes
the proof.

Denote by dgcat the category of small dg categories. The homotopy category
Hodgcat is obtained from dgcat by formally inverting quasi-equivalences. By the
Dwyer–Kan model structure [62] on dgcat, the homotopy category Hodgcat has
small Hom sets. Morphisms in Hodgcat are called dg quasi-functors. Here, the first
two letters “Ho” stand for the homotopy category in the sense of Quillen [60].

Assume that C is a small dg category. Let N be a full dg subcategory of C . We
denote by C=N the dg quotient category which is constructed as follows: first we
take a semi-free resolution � WeC ! C such that eC and C have the same objects and
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that � acts on objects by the identity (see [29, Lemma B.5]); secondly, we enlarge eC
by freely adding an endomorphism �X of degree �1 for each object X 2 N , and
set d.�X / D IdX . Here, by freely adding �X ’s, we form the dg tensor category of eC
with respect to the free dg eC -eC -bimodule generated by these morphisms �X ’s, and
then deform the differential of the dg tensor category by setting d.�X / D IdX . There-
fore, the added endomorphism �X is a contracting homotopy for X . The resulting dg
category is denoted by C=N . The morphism in Hodgcat represented by the roof

C
�
 � eC inc

�! C=N

is denoted by qWC ! C=N , which is called the quotient dg quasi-functor. For details
on dg quotient categories, we refer to [47, Section 4] and [29, Subsection 3.1].

The following fundamental result is due to [29, Theorem 3.4].

Lemma 3.5. Assume that both C and N are pretriangulated. Then so is the dg
quotient category C=N , and the quotient dg quasi-functor q induces a triangle equiv-
alence

H 0.C/=H 0.N /
�
�! H 0.C=N /:

Remark 3.6. Since the induced triangle equivalence above acts on objects by the
identity, it is really an isomorphism of triangulated categories.

In view of the lemma above, the following definition is natural (see [13, 17, 49]).

Definition 3.7. Let R be a ring. The dg singularity category of R is the dg quotient
category

Sdg.R/ D C
�;b
dg .R-proj/=C bdg.R-proj/:

By Lemma 3.5, Sdg.R/ is pretriangulated such that H 0.Sdg.R// is isomorphic to
the singularity category Dsg.R/ as a triangulated category.

3.2 The Vogel dg category

The following notion is taken from [8, Subsection 1.3]. Let a be an additive category.

Definition 3.8. A morphism f D .f p/p2ZWX ! Y in Cdg.a/ is called bounded if
f p D 0whenever the absolute value of p is sufficiently large, or equivalently, if there
are only finitely many p’s with nonzero f p .

We make the observation that all bounded morphisms from X to Y form a sub-
complex Homa.X; Y / of Homa.X; Y /. Denote by bHoma.X; Y / the corresponding
quotient complex.

To describe H 0 bHoma.X; Y /, we recall the following terminologies in [11, Sec-
tion 2]. A morphism f D .f p/p2ZWX!Y of degree zero is called an almost-cochain
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map if the morphism d0f is bounded. In other words, dpY ı f
p D f p ı d

p
X holds for

almost all p. A morphism f is called almost null-homotopic if there is a morphism
h D .hp/p2ZWX ! Y of degree �1 such that f � d�1h is bounded. This is equiva-
lent to the condition that f p D dp�1Y ı hp C hpC1 ı d

p
X holds for almost all p. It is

clear that an almost null-homotopic morphism is an almost-cochain map. We observe
that

H 0 bHoma.X; Y / D
¹almost-cochain mapsº

¹almost null-homotopic morphismsº
:

The idea of the Vogel dg category goes back to Vogel’s work, which appears
in [34]. For a historical account, we refer to [8, Section 1.4.2].

Definition 3.9. The Vogel dg category V.a/ is defined as follows. Its objects are
complexes in a, and the morphism complex from X to Y is given by bHoma.X; Y /.
The composition is induced by the one in Cdg.a/.

We mention that the composition in V.a/ is well defined, because Homa.�;�/

is a dg ideal of Cdg.a/. In other words, the Vogel dg category is the corresponding dg
factor category of Cdg.a/. We denote by V�.a/ and VC.a/ the full dg subcategory of
V.a/ formed by bounded-above and bounded-below complexes, respectively.

Proposition 3.10. The dg categories V.a/, V�.a/ and VC.a/ are all strongly pre-
triangulated.

Proof. We only prove that V.a/ is strongly pretriangulated, since the other cases are
actually consequences of the proof presented below.

Since Cdg.a/ is strongly pretriangulated, it suffices to prove that the dg ideal
Homa.�;�/ satisfies the condition in Lemma 3.4. Let f WX ! Y be a morphism
of degree zero such that d0f is bounded. Then there exists a sufficiently large natu-
ral number n0 such that dpY ı f

p D f pC1 ı d
p
X whenever p � n0 or p � �n0.

Consider the direct sums

X 0 D ��n0
.X/˚ ���n0

.X/ and Y 0 D ��n0
.Y /˚ ���n0

.Y /

of truncated complexes. We observe that both the obvious inclusion �WX 0 ! X and
projection �W Y ! Y 0 represent dg-isomorphisms in V , whose inverses are given by
the corresponding projection and inclusion, respectively. The composition � ı f ı �
is a cochain map, that is, a closed morphism of degree zero in Cdg.a/. This verifies
the condition in Lemma 3.4.

We have the following immediate consequence of the proof above.

Corollary 3.11. For any complex X , the inclusion ��1.X/ ˚ ���1.X/ ! X is a
dg-isomorphism in V.a/.
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Lemma 3.12. Let X and Y be two complexes. Then the following two statements
hold.

(1) Assume that Y is bounded-above. Then we have an isomorphism of complexes

bHoma.X; Y / ' colim
n!C1

Homa.X; ���n.Y //;

where the structure maps of the above colimit are induced by the projections
���n.Y /! ���.nC1/.Y /.

(2) Assume thatX is bounded-below. Then we have an isomorphism of complexes

bHoma.X; Y / ' colim
n!C1

Homa.��n.X/; Y /;

where the structure maps are induced by the inclusions ��nC1.X/! ��n.X/.

Proof. We only prove (1) since the proof of (2) is analogous. For each n, the inclusion
�>�n.Y /! Y and the projection Y ! ���n.Y / induce a short exact sequence of
complexes:

0 �! Homa.X; �>�n.Y // �! Homa.X;Y / �! Homa.X; ���n.Y // �! 0: (3.2)

By the assumption, �>�n.Y / is bounded. Then we have

Homa.X; �>�n.Y // � Homa.X; Y /:

Moreover, Homa.X; Y / is identified with colimn!C1Homa.X; �>�n.Y //, which is
given by a direct union.

Letting n vary in (3.2) and taking colimits, we obtain the exact sequence

0 �! Homa.X; Y / �! Homa.X; Y / �! colim
n!C1

Homa.X; ���n.Y // �! 0:

By the very definition of bHoma.X; Y /, we infer the required isomorphism in (1).

Theorem 3.13. Keep the notation as above. Then the following statements hold:

(1) We have an orthogonal decomposition

H 0.V.a// D H 0.V�.a// �H 0.VC.a//:

(2) There are isomorphisms of triangulated categories:

K�.a/=Kb.a/
�
�! H 0.V�.a// and KC.a/=Kb.a/

�
�! H 0.VC.a//:
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Proof. We write V for V.a/ in this proof.
(1) We take any bounded-below complex X and any bounded-above complex Y .

Applying H 0 to the isomorphism in Lemma 3.12 (1), we obtain

HomH0.V/.X; Y / ' H
0. colim
n!C1

Homa.X; ���n.Y ///

' colim
n!C1

H 0.Homa.X; ���n.Y ///

D colim
n!C1

HomK.a/.X; ���n.Y //:

However, when n is sufficiently large, the complexes X and ���n.Y / have disjoint
supports and thus any cochain map between them is zero. Therefore, we have

HomH0.V/.X; Y / D 0:

Since the internal cones of V are inherited from the ones in Cdg.a/, (2.1) is still an
exact triangle inH 0.V/. Then we obtain a semi-orthogonal decompositionH 0.V/D

hH 0.V�/;H 0.VC/i.
By Corollary 3.11, we have an isomorphism

X ' ��1.X/˚ ���1.X/

in H 0.V/. In view of Remark 2.3, we infer that the semi-orthogonal decomposition
H 0.V/ D hH 0.V�/;H 0.VC/i is actually orthogonal.

(2) We only prove the first of the two equivalences. The projection dg func-
tor C�dg.a/! V� sends bounded complexes to contractible objects. Therefore, the
induced triangle functor K�.a/ ! H 0.V�/ vanishes on Kb.a/. The latter further
induces a triangle functor ˆWK�.a/=Kb.a/ ! H 0.V�/. It is clear that ˆ acts on
objects by the identity. It suffices to prove that ˆ is fully faithful.

Take two bounded-above complexes U and V . By Lemma 2.1 (1), we have the
first isomorphism in the following isomorphisms:

HomK.a/=Kb.a/.U; V / ' colim
n!C1

HomK.a/.U; ���n.V //

D colim
n!C1

H 0.Homa.U; ���n.V ///

' H 0. colim
n!C1

Homa.U; ���n.V ///

' H 0 bHoma.U; V / D HomH0.V�/.U; V /:

Here, the second isomorphism uses (3.1) and the fourth one uses Lemma 3.12 (1). It
is routine to verify that this composite isomorphism is induced by the functorˆ. This
completes the proof.
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When the additive category a is small, we easily enhance the results above to
isomorphisms in Hodgcat.

Proposition 3.14. Assume that a is small. Then there are isomorphisms in Hodgcat:

C�dg.a/=C
b
dg.a/ � C

C
dg .a/=C

b
dg.a/ ' V�.a/ � VC.a/ ' V.a/:

Proof. We observe that the orthogonal decomposition in Theorem 3.13 (1) implies
that the natural dg functor

V�.a/ � VC.a/ �! V.a/; .X; Y / 7! X ˚ Y

induces a triangle equivalence H 0.V�.a/ � VC.a// ' H 0.V.a//. By Lemma 3.5,
we identify H 0.C�dg.a/=C

b
dg.a// with K�.a/=Kb.a/, and H 0.CCdg .a/=C

b
dg.a// with

KC.a/=Kb.a/. Now for the required isomorphisms, we just combine Lemma 3.3
with the results in Theorem 3.13.

4 The singularity category

In this section, we will study the Hom groups in the singularity category of a ring.
We will recall Buchweitz’s theorem [18] on the singularity category of a Gorenstein
ring, and report some progress on the Singular Presilting Conjecture [25].

4.1 Two long exact sequences

Let R be a ring. Recall that V.R-proj/ is the Vogel dg category of R-proj as in Defi-
nition 3.9. We consider its full dg subcategory V�;b.R-proj/ consisting of bounded-
above complexes with bounded cohomologies.

We relate the Vogel dg category to the dg singularity category.

Proposition 4.1. There is an isomorphism

Sdg.R/ ' V�;b.R-proj/

in Hodgcat, which induces an isomorphism Dsg.R/ ' H
0.V�;b.R-proj// of trian-

gulated categories.

Proof. We apply the proof of Proposition 3.14 to a D R-proj, and obtain an isomor-
phism

C�dg.R-proj/=C bdg.R-proj/ ' V�.R-proj/
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in Hodgcat. Since this isomorphism acts on objects on the identity, it restricts to the
required isomorphism.

Sdg.R/ D C
�;b
dg .R-proj/=C bdg.R-proj/ ' V�;b.R-proj/

The induced isomorphism of triangulated categories follows from Lemma 3.5.

The following consideration is similar to the one in Proposition 2.9.

Remark 4.2. We denote by CC;Bdg .R-proj/ the full dg subcategory of CCdg .R-proj/
formed by complexesP satisfyingH�n.P �/D 0 for n� 0. Here,P �DHomR.P;R/

is the dual complex of P . Similarly, we have the full dg subcategory VC;B.R-proj/
of VC.R-proj/.

The duality HomRop.�;R/ identifies Sdg.R
op/op withCC;Bdg .R-proj/=C bdg.R-proj/.

The proof of Proposition 3.14 yields an isomorphism

C
C;B
dg .R-proj/=C bdg.R-proj/ ' VC;B.R-proj/:

In summary, we have an isomorphism

Sdg.R
op/op

' VC;B.R-proj/

in Hodgcat. We mention that the homotopy category

H 0
�
C
C;B
dg .R-proj/

�
D KC.R-proj/ \KB.R-proj/

appears in [57, Proposition 7.12].

For any two complexes P and Q in K�;b.R-proj/, we consider the dual complex
P � D HomR.P; R/, which is a bounded-below complex of finitely generated pro-
jective right R-modules. For each integer n, H�n.P � ˝R Q/ is the n-th hyper-Tor
group and is denoted by TorRn .P

�;Q/.
The following long exact sequence extends the one in [18, Theorem 6.2.5 (3)].

Theorem 4.3. For any two complexes P and Q in K�;b.R-proj/, there is a long
exact sequence of abelian groups,

� � � // TorR�n.P
�;Q/ // HomK�;b.R-proj/.P;†

n.Q//

rr

HomDsg.R/.P;†
n.Q// // TorR�n�1.P

�;Q/ // � � � ;

where the slanted arrow is induced by the quotient functor K�;b.R-proj/! Dsg.R/.



X.-W. Chen and Z. Wang 208

Proof. We observe that the canonical map

P � ˝R Q �! HomR.P;Q/; f ˝ x 7! .y 7! .�1/jxj�jyjf .y/x/;

is an isomorphism of complexes. Therefore, we have a short exact sequence of com-
plexes:

0 �! P � ˝R Q �! HomR.P;Q/ �! bHomR.P;Q/ �! 0:

By (3.1), we identify HomK�;b.R-proj/.P;†
n.Q//withHn.HomR.P;Q//; by Propo-

sition 4.1, we identify HomDsg.R/.P; †
n.Q// with Hn.bHomR.P; Q//. Therefore,

the associated long exact sequence of the exact sequence above yields the required
one.

We assume the ringR is left coherent and identify Db.R-mod/with K�;b.R-proj/.
Therefore, we have the following identification:

Dsg.R/ D Db.R-mod/=Kb.R-proj/:

In particular, we will identify an R-moduleM with its projective resolution, and then
viewM as an object in Dsg.R/. For eachR-moduleM , writeM_ DRHomR.M;R/,
which is an object in D.Rop-Mod/.

Corollary 4.4. Let R be a left coherent ring and M;N 2 R-mod. Then there is a
long exact sequence

� � � // TorR�n.M
_; N / // ExtnR.M;N /

rr

HomDsg.R/.M;†
n.N // // TorR�n�1.M

_; N / // � � � ;

where the slanted arrow is induced by the quotient functor Db.R-mod/! Dsg.R/.
Consequently, for each n � �2, we have an isomorphism

HomDsg.R/.M;†
n.N //

�
�! TorR

�.nC1/.M
_; N /:

Here, we recall that ExtnR.M;N /D 0 for n<0 and Ext0R.M;N /DHomR.M;N /.

Proof. We replace M and N by their projective resolutions P and Q, respectively.
Then M_ is identified by P �, and for each integer n, ExtnR.M;N / is isomorphic to
HomK�;b.R-proj/.P;†

n.Q//. Then the result follows immediately from Theorem 4.3.
For the consequence, we just use the fact that ExtnR.M;N / D 0 for n � �1.
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4.2 Buchweitz’s theorem

In this subsection, we assume that R is a left coherent ring. For M;N 2 R-mod, we
have the following canonical exact sequence:

M � ˝R N
�M;N

����! HomR.M;N /
can
�! HomR.M;N / �! 0;

where �M;N sends f ˝ y to the morphism .x 7! f .x/y/ and the map “can” is
the canonical projection. Here, M � D HomR.M; R/ is the dual module of M , and
HomR.M;N / denotes the Hom group in the stable category R-mod.

We consider the following full subcategory of R-mod:

?R D ¹M 2 R-mod j ExtnR.M;R/ D 0 for any n � 1º:

The next result is partly due to [58, Proposition 1.21] (see also [40, Lemma 3.4]).

Proposition 4.5. Let M;N 2 R-mod with M 2 ?R. Then we have isomorphisms

HomDsg.R/.M;†
n.N // '

8̂̂̂̂
<̂
ˆ̂̂:

TorR
�.nC1/

.M �; N /; n � �2I

Ker.�M;N /; n D �1I

HomR.M;N /; n D 0I

ExtnR.M;N /; n � 1:

Proof. By the assumption on M , we identify M_ with the dual module M �. Then
the isomorphisms for n��2 are contained already in Corollary 4.4. The cases where
n� 1 follow from the long exact sequence in Corollary 4.4, since TorR

�i .M
�;N /D 0

for i � 1. We observe from the same long exact sequence the following one:

0! HomDsg.R/.M;†
�1.N //!M � ˝R N

�
! HomR.M;N /! HomDsg.R/.M;N /! 0:

We observe that � coincides with �M;N . This yields the isomorphisms in the
remaining cases.

An unbounded complex P of finitely generated projective R-modules is totally
acyclic if it is acyclic and its dual P � D HomR.P; R/ is also acyclic. A finitely
presented R-module G is called Gorenstein projective [32] if there exists a totally
acyclic complex P such that its first cocycleZ1.P / is isomorphic toG. We denote by
R-Gproj the full subcategory formed by Gorenstein projective modules. We mention
that the study of Gorenstein projective modules goes back to [4].

Observe thatR-proj�R-Gproj� ?R. The full subcategoryR-Gproj ofR-mod is
closed under extensions. Therefore, it naturally becomes an exact category. Moreover,
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it is a Frobenius exact category such that its projective-injective objects are precisely
projectiveR-modules. Therefore, by [35, Theorem I.2.8], its stable categoryR-Gproj
is a triangulated category.

We denote by GpdR.M/ the Gorenstein projective dimension [32, 37] of a mod-
ule M . Recall that GpdR.M/ � n if and only if there is an exact sequence

0! Gn ! � � � ! G1 ! G0 !M ! 0

inR-mod with eachGi Gorenstein projective. We mention that a moduleM is Goren-
stein projective if and only if GpdR.M/ D 0.

Definition 4.6. Let R be a left coherent ring. We say that R is left G-regular if each
module in R-mod has finite Gorenstein projective dimension. The ring R is right
G-regular if Rop is left G-regular.

The following well-known result might be deduced from [37, Corollary 2.21].

Lemma 4.7. Assume that R is left G-regular. Then we have R-Gproj D ?R.

Let d � 0. A two-sided noetherian ring S is said to be d -Gorenstein if the injec-
tive dimension of S on each side is at most d . By [68, Lemma A], the two injective
dimensions coincide. As indicated in the following result due to [39, Theorem 1.4],
d -Gorenstein rings are both left and right G-regular.

Proposition 4.8. Let S be a two-sided noetherian ring and d � 0. Then the following
conditions are equivalent.

(1) The ring R is d -Gorenstein.

(2) GpdR.M/ � d for any M 2 R-mod.

(3) GpdRop.N / � d for any N 2 Rop-mod.

The coherent analogue of d -Gorenstein rings is as follows. A ring R is d -FC
[27, 28] if it is two-sided coherent and ExtdC1R .X; R/ D 0 D ExtdC1Rop .Y; R/ for any
X 2 R-mod and Y 2 Rop-mod. Therefore, a d -FC ring is d -Gorenstein if and only if
it is two-sided noetherian.

The following result is a coherent analogue of [7, Theorem 3.2], and implies that
a d -FC ring is both left G-regular and right G-regular.

Lemma 4.9. Let R be a two-sided coherent ring and d � 0. Then R is d -FC if
and only if GpdR.M/ � d and GpdRop.N / � d for any M 2 R-mod and any N 2
Rop-mod.

Proof. The same proof of [7, Theorem 3.2] works here. We mention that the “if”
part also follows from a finite analogue of [37, Theorem 2.20], and the “only if” part
might be viewed as a coherent analogue of [18, Lemma 4.2.2 (iv)].
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Remark 4.10. Let R be a two-sided coherent ring and d � 0. In view of Proposi-
tion 4.8, we expect that the following result might be true: if GpdR.M/ � d for any
M 2 R-mod, then R is d -FC.

We consider the following composite functor:

R-Gproj ,! R-mod
can
�! Db.R-mod/

q
�! Dsg.R/: (4.1)

Here, “can” identifies a module with the corresponding stalk complex concentrated in
degree zero, and q denotes the quotient functor. Since the composite functor vanishes
on R-proj, it induces a well-defined functor

ˆRWR-Gproj �! Dsg.R/:

The following result is due to [18, Theorem 4.4] in a slightly generalized form;
compare [61, Theorem 2.1] and [36, Theorem 4.6].

Theorem 4.11 (Buchweitz). Let R be a left coherent ring. ThenˆR is a fully faithful
triangle functor. Moreover,ˆR is dense if and only if it is dense up to direct summands
if and only if R is left G-regular.

Proof. We observe that the composite functor (4.1) is a @-functor, which vanishes on
projective modules. By [21, Lemma 2.5], the induced functorˆR is a triangle functor.
Its full faithfulness follows from the case n D 0 of Proposition 4.5. In particular, the
essential image of ˆR is a triangulated subcategory of Dsg.R/.

For the second statement, it suffices to prove the following two claims: (1) if R is
left G-regular, then ˆR is dense; (2) if ˆR is dense up to direct summands, then R is
left G-regular.

To prove (1), we assume thatR is left G-regular. For an object P 2K�;b.R-proj/,
we take n sufficiently large and apply the isomorphism (2.2). Since G D Z�n.P / is
Gorenstein projective, it follows that P is isomorphic to †nˆR.G/. Since the essen-
tial image of ˆR is a triangulated subcategory of Dsg.R/, we infer that P lies in the
essential image and that ˆR is dense.

To prove (2), we take an arbitrary finitely presented R-module M and take its
projective resolution Q. Since M lies in the essential image of ˆR up to direct
summands, it follows that Q is isomorphic to a direct summand of the projective
resolution Q0 of a Gorenstein projective module in K�;b.R-proj/=Kb.R-proj/. We
assume an isomorphism Q ˚Q00 ' Q0. By Lemma 2.8, we infer that higher syzy-
gies of M are isomorphic to direct summands of Z�n.Q0/. The latter modules are
Gorenstein projective. Recall that Gorenstein projective modules are closed under
direct summands and isomorphisms in R-mod. It follows that higher syzygies of M
are Gorenstein projective. Therefore, M has finite Gorenstein projective dimension.
Consequently, the ring R is left G-regular.
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Remark 4.12. The original result [18, Theorem 4.4] only deals with Gorenstein
rings, whose proof relies on complete resolutions and is completely different from
the above one. The treatment here is similar to the one in [21,58] and relies on Propo-
sition 4.5. For another proof, we refer to [41, Section 2]. The “only if” part of the
second statement above is implicit in [10, Theorem 6.9 (8)].

Remark 4.13. (1) Assume that R is a commutative local Gorenstein ring. Then a
module is Gorenstein projective if and only if it is maximal Cohen–Macaulay (see
[4, Proposition 4.12]). In view of this fact, Gorenstein projective modules over a non-
commutative Gorenstein ring are also called maximal Cohen–Macaulay in [18].

(2) Assume that R is a hypersurface singularity, that is, there is a regular local
ring S and a nonzero element f in the maximal ideal of S such thatR' S=.f /. Then
the stable category of maximal Cohen–Macaulay R-modules is triangle equivalent
to the homotopy category HMF.S I f / of matrix factorizations of f (see [31, Theo-
rem 6.1]). We mention that matrix factorizations appear in the study of D-branes [58].

(3) Following [12], the Gorenstein defect category of R is defined to be the
Verdier quotient category

Ddef.R/ D Dsg.R/=ImˆR:

The second statement above is reformulated as follows: Ddef.R/ D 0 if and only if R
is left G-regular (compare [12, Theorem 4.2]).

4.3 The Singular Presilting Conjecture

Throughout this subsection, we assume that ƒ is an Artin algebra [6], that is, ƒ is a
finitely generated module over its center Z.ƒ/ which is a commutative artinian ring.

Recall that the finitistic dimension of ƒ is defined as

fin:dim.ƒ/ D sup¹pdƒ.M/ jM 2 ƒ-mod with pdƒ.M/ <1º:

The following conjecture is very well known [9].

Finitistic Dimension Conjecture. Let ƒ be an Artin algebra. Then fin:dim.ƒ/ <1.

The following two conjectures are proposed in [5].

Generalized Nakayama Conjecture. Let S be a simple module over an Artin alge-
bra ƒ. Then Extnƒ.S;ƒ/ ¤ 0 for some n � 0.

Auslander–Reiten Conjecture. For a non-projective module M over an Artin alge-
bra ƒ, we have Extnƒ.M;M ˚ƒ/ ¤ 0 for some n � 1.

We refer to [6, pp. 409–410, Conjectures] for more conjectures in the representa-
tion theory of Artin algebras.
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By [63, (8.6) Theorem], the Generalized Nakayama Conjecture holds for group
algebras of finite p-groups. By [67, Theorem 3.4.3], if the Finitistic Dimension Con-
jecture holds forƒop, then the Generalized Nakayama Conjecture holds forƒ. More-
over, we have the following result due to [5, Theorem 1.1].

Proposition 4.14. The Auslander–Reiten Conjecture holds for all Artin algebras if
and only if the Generalized Nakayama Conjecture holds for all Artin algebras.

Let T be a triangulated category. Recall from [2, Definition 2.1] that an objectM
is called presilting if HomT .M;†

n.M//D 0 for any n > 0. If in addition the smallest
thick triangulated subcategory containing M is T itself, then M is called a silting
object. We mention that the study of silting objects goes back to [50].

The following conjecture is proposed in [25, Section 1], which is inspired by
[40, Section 6].

Singular Presilting Conjecture. For any Artin algebra ƒ, there is no nonzero presilt-
ing object in Dsg.ƒ/.

The following result justifies the conjecture to some extent, and is mentioned in
[25, Section 1] without a detailed proof.

Proposition 4.15. Let ƒ be an Artin algebra. If the Singular Presilting Conjecture
holds for ƒ, then so does the Auslander–Reiten Conjecture. The converse holds if ƒ
is Gorenstein.

Proof. We assume that the Singular Presilting Conjecture holds for ƒ. Assume that
M is aƒ-module satisfying Extnƒ.M;M ˚ƒ/D 0 for n� 1. ThenM belongs to ?ƒ.
By Proposition 4.5, we infer that HomDsg.ƒ/.M;†

n.M//D 0 for n� 1. Therefore,M
is a presilting object in Dsg.ƒ/. By the assumption, we infer thatM is zero in Dsg.ƒ/.
In other words, M has finite projective dimension. The following fact is standard: if
pdƒ.M/ D d � 1, we have Extdƒ.M;ƒ/ ¤ 0. It follows that M is projective. This
implies that the Auslander–Reiten Conjecture holds for ƒ.

For the converse, we assume that ƒ is Gorenstein and that the Auslander–Reiten
Conjecture holds for ƒ. Take a presilting object X in Dsg.ƒ/. By Theorem 4.11, we
may assume thatX is given by a Gorenstein projectiveƒ-module, still denoted byX .
By the case n > 0 of Proposition 4.5, we infer that Extnƒ.X;X/ D 0 for n � 1. Since
X is Gorenstein projective, we have X 2 ?ƒ, that is, Extnƒ.X;ƒ/ D 0 for n � 1. By
the Auslander–Reiten Conjecture for ƒ, we infer that X is projective. Therefore, it is
zero in Dsg.ƒ/, as required.

The following non-existence result generalizes [1, Theorem 1] and partially sup-
ports the Singular Presilting Conjecture.
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Proposition 4.16 ([22, Corollary 3.3]). For any Artin algebra ƒ, there is no nonzero
silting object in Dsg.ƒ/.

Recall that aƒ-moduleM is ultimately closed [42, Section 3] if there exist d � 1
such that�d .M/ belongs to add.ƒ˚M ˚�.M/˚ � � � ˚�d�1.M//. Here,�.M/

denotes the first syzygy of M , and add.X/ means the full subcategory formed by
direct summands of finite direct sums of a module X . An Artin algebra ƒ is called
ultimately-closed if each ƒ-module is ultimately-closed. For example, any syzygy-
finite algebra is ultimately-closed.

By [5, Proposition1.3], the Auslander–Reiten Conjecture holds for any ultimately-
closed algebra. In view of Proposition 4.15, the following result is expected.

Proposition 4.17 ([22, Proposition 3.5]). The Singular Presilting Conjecture holds
for any ultimately-closed algebra.

5 The singular Yoneda dg category

In this section, we recall the singular Yoneda dg category from [23], which provides
another explicit dg enhancement for the singularity category (see Proposition 5.4).

We fix a semisimple artinian ring E and a ring homomorphism E ! ƒ. We will
abbreviate˝E as˝.

5.1 The bar and Yoneda dg categories

Set ƒ D ƒ=.E1ƒ/, which is an E-E-bimodule. Its 1-shift stalk complex sƒ is con-
centrated in degree �1, whose typical element sa has degree �1.

The normalized E-relative bar resolution B ofƒ is a complex ofƒ-ƒ-bimodules
given as follows. As a graded ƒ-ƒ-bimodule, we have

B D ƒ˝ TE .sƒ/˝ƒ;

where deg.a0 ˝ sa1;n ˝ anC1/ D �n. Here, for simplicity, we write

sa1;n WD sa1 ˝ sa2 ˝ � � � ˝ san:

The differential d is given such that d.a0 ˝ a1/ D 0 and that

d.a0 ˝ sa1;n ˝ anC1/ D a0a1 ˝ sa2;n ˝ anC1 C .�1/
na0 ˝ sa1;n�1 ˝ ananC1

C

n�1X
iD1

.�1/ia0 ˝ sa1;i�1 ˝ saiaiC1 ˝ saiC2;n ˝ anC1:
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Here and later, as usual, sa1;0 and sanC1;n are understood to be the empty word and
should be ignored. We mention that bar resolutions are due to [30, Chapter II] and
[19, Chapter IX, Section 6].

It is well known that B is a coalgebra in the monoidal category of complexes of
ƒ-ƒ-bimodules. To be more precise, we have a cochain map between complexes of
ƒ-ƒ-bimodules

�WB �! B˝ƒ B

given by

�.a0 ˝ sa1;n ˝ anC1/ D

nX
iD0

.a0 ˝ sa1;i ˝ 1ƒ/˝ƒ .1ƒ ˝ saiC1;n ˝ anC1/:

The natural cochain map
"WB �! ƒ

is given by the projection B! ƒ˝ƒ followed by the multiplication map of ƒ. We
have the coassociative property

.�˝ƒ IdB/ ı� D .IdB ˝ƒ �/ ı�

and the counital property

."˝ƒ IdB/ ı� D IdB D .IdB ˝ƒ "/ ı�:

Here, in the identity above, we identify both ƒ˝ƒ B and B˝ƒ ƒ with B.
Following the treatment in [46, Subsection 6.6], we define the E-relative bar

dg category B D Bƒ=E as follows. The objects are precisely all the complexes of
ƒ-modules, and the morphism complex between two objectsX and Y is given by the
Hom-complex

B.X; Y / D Homƒ.B˝ƒ X; Y /:

Here, we refer to Example 3.1 for Hom-complexes. The composition � of two mor-
phisms f 2 B.X; Y / and g 2 B.Y;Z/ is defined to be

g � f WD

�
B˝ƒ X

�˝ƒIdX
������! B˝ƒ B˝ƒ X

IdB˝ƒf
������! B˝ƒ Y

g
�! Z

�
:

Moreover, the identity endomorphism in B.X;X/ is given by

B˝ƒ X
"˝ƒIdX
�����! ƒ˝ƒ X D X:

In what follows, we will unpack the above definition of B and obtain its alterna-
tive form.
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TheE-relative Yoneda dg category Y DYƒ=E has the same objects as B. For two
complexesX and Y ofƒ-modules, the underlying graded K-module of the morphism
complex Y.X; Y / is given by an infinite product

Y.X; Y / D
Y
n�0

HomE ..sƒ/
˝n
˝X; Y /:

We denote
Yn.X; Y / WD HomE ..sƒ/

˝n
˝X; Y /;

and say that elements in Yn.X;Y / are of filtration-degree n. Observe that Y0.X;Y /D

HomE .X; Y /. The differential ı of Y.X; Y / is determined by�
ıin

ıex

�
WYn.X; Y / �! Yn.X; Y /˚ YnC1.X; Y /;

where

ıin.f /.sa1;n ˝ x/ D dY .f .sa1;n ˝ x// � .�1/
jf jCnf .sa1;n ˝ dX .x//

and

ıex.f /.sa1;nC1 ˝ x/ D .�1/
jf jC1a1f .sa2;nC1 ˝ x/

C .�1/jf jCnf .sa1;n ˝ anC1x/

C

nX
iD1

.�1/jf jCiC1f .sa1;i�1 ˝ saiaiC1 ˝ saiC2;nC1 ˝ x/:

We translate the composition � in B into a cup-type product ˇ as follows (compare
[33, Section 7]). The composition ˇ of morphisms in Y is defined such that, for
f 2 Yn.X; Y / and g 2 Ym.Y; Z/, their composition g ˇ f 2 YnCm.X;Z/ is given
by

.g ˇ f /.sa1;mCn ˝ x/ D .�1/
mjf jg.sa1;m ˝ f .samC1;mCn ˝ x//:

The identity endomorphism in Y.X; X/ is given by the genuine identity map IdX 2
Y0.X;X/ � Y.X;X/.

The canonical isomorphism

B.X; Y / ' Y.X; Y /

of complexes sends Qf 2 Homƒ..ƒ ˝ .sƒ/
˝n ˝ ƒ/ ˝ƒ X; Y / to f 2 Yn.X; Y /,

which is given by

f .sa1;n ˝ x/ D Qf ..1˝ sa1;n ˝ 1/˝ƒ x/:

The isomorphisms above for all X and Y yield the next result (see [23, Lemma 7.1]).
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Lemma 5.1. There is an isomorphism Bƒ=E ' Yƒ=E of dg categories.

Consider the natural dg functor

‚WCdg.ƒ-Mod/ �! Y D Yƒ=E

which acts on objects by the identity, and identifies f 2 Homƒ.X; Y / with f 2
HomE .X; Y / D Y0.X; Y / � Y.X; Y /. Indeed, Cdg.ƒ-Mod/ might be viewed as a
non-full dg subcategory of Y.

Denote by Y
f

ƒ=E
the full dg subcategory of Yƒ=E formed by the complexes in

C�;b.ƒ-proj/.
The following result is a finite version of [23, Proposition 7.3] (compare [23,

Corollary 7.5]).

Proposition 5.2. The above dg functor ‚ induces an isomorphism in Hodgcat

‚WC
�;b
dg .ƒ-proj/ ' Y

f

ƒ=E
:

Consequently, Y
f

ƒ=E
is pretriangulated and we have an isomorphism K�;b.ƒ-proj/'

H 0.Y
f

ƒ=E
/ of triangulated categories.

We mention that [23, Proposition 7.3] justifies our terminology for Yƒ=E : for
each ƒ-module M , the cohomology ring of the dg ring Yƒ=E .M;M/ is isomorphic
to the Yoneda ring of M :

Ext�ƒ.M;M/ D
M
i�0

HomD.ƒ-Mod/.M;†
i .M//:

5.2 Noncommutative differential forms

We will study noncommutative differential forms with values in a complex (see [23,
Section 8]). This gives rise to a dg endofunctor �nc on the Yoneda dg category Y D

Yƒ=E . We will obtain a closed natural transformation � W IdY ! �nc of degree zero
satisfying ��nc D �nc� .

Let X be a complex of ƒ-modules. The complex of X -valued noncommutative
differential 1-forms is defined by

�nc;ƒ=E .X/ D sƒ˝X;

which is graded by means of deg.sa1 ˝ x/ D jxj � 1 and whose differential is given
by d.sa1 ˝ x/ D �sa1 ˝ dX .x/. The ƒ-action on �nc;ƒ=E .X/ is given by the fol-
lowing nontrivial rule:

a I .sa1 ˝ x/ D saa1 ˝ x � sa˝ a1x (5.1)

for all a 2 ƒ.
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To justify the terminology above, we observe that

�nc;ƒ=E .ƒ/ D sƒ˝ƒ

is a stalk complex of ƒ-ƒ-bimodules concentrated in degree �1, where the right
ƒ-action is given by the multiplication of ƒ. This stalk complex is called the graded
bimodule of right noncommutative differential 1-forms [66]. Moreover, we have a
canonical isomorphism

�nc;ƒ=E .ƒ/˝ƒ X ' �nc;ƒ=E .X/;

which sends .sa0 ˝ a1/˝ƒ x to sa0 ˝ a1x. We mention that the study of noncom-
mutative differential forms goes back to [26, Sections 1 and 2].

To avoid notational overload, we write �nc.X/ D �nc;ƒ=E .X/. We have a dg
functor

�ncWY �! Y; X 7! �nc.X/;

which sends a morphism f 2 Yn.X; Y / to the morphism in Yn.�nc.X/;�nc.Y //

.sƒ/˝n ˝�nc.X/
D // .sƒ/˝.nC1/ ˝X

Id
sƒ
˝f
// sƒ˝ Y D �nc.Y /:

We have a closed natural transformation of degree zero

� W IdY �! �nc

defined as follows. For any X 2 Y, �X lies in Y1.X;�nc.X// � Y.X;�nc.X// and
is given by

�X .sa˝ x/ D sa˝ x 2 �nc.X/:

Observe that �X is of degree zero and that ı.�X / D 0 using the nontrivial rule (5.1).
Therefore, �X is a closed morphism of degree zero in Y. In order to prove that � is
natural, we observe that, for each f 2 Yn.X; Y /, we have

�Y ˇ f D �nc.f /ˇ �X :

Indeed, both sides send sa1;nC1 ˝ x to .�1/jf jsa1 ˝ f .sa2;n ˝ x/.
We observe that

�nc.�X / D ��nc.X/;

since both sides lie in Y1.�nc.X/; �
2
nc.X// D Hom.�2nc.X/; �

2
nc.X// and corre-

spond to the identity map of �2nc.X/.
We will see that both �nc and � are closely related to the truncations of B. For

each p � 0, we consider the following sub-complex of B:

B<p D
M
0�n<p

ƒ˝ .s Nƒ/˝n ˝ƒ:
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Here, we understand B<0 as the zero complex, and B<1 as ƒ˝ ƒ D ƒ˝ E ˝ ƒ.
The corresponding quotient complex B=B<p will be denoted by B�p .

Let X be a complex of ƒ-modules and p � 0. We have a canonical isomorphism

B�p ˝ƒ �nc.X/ ' B�pC1 ˝ƒ X (5.2)

of complexes of ƒ-modules, sending .a0 ˝ s Na1;n ˝ 1/ ˝ƒ .s NanC1 ˝ x/ to .a0 ˝
s Na1;nC1 ˝ 1/˝ƒ x for n � p.

The quasi-isomorphism

"˝ IdX WB˝ƒ X �! X

is viewed as an element in Y0.B ˝ƒ X;X/, which is a closed morphism of degree
zero in Y. There is another closed morphism of degree zero in Y:

�X WX �! B˝ƒ X:

For each p � 0, we define the entry .�X /p 2 Yp.X;B˝ƒ X/ by the following map:

.s Nƒ/˝p ˝X �! B�p ˝ƒ X � B˝ƒ X; s Na1;p ˝ x 7�! .1˝ s Na1;p ˝ 1/˝ƒ x:

Then we set �X D ..�X /p/p�0 2 Y.X;B ˝ƒ X/. It is direct to verify the following
identity in Y:

."˝ƒ IdX /ˇ �X D IdX :

By [24, Section 5], �X is an inverse of "˝ƒ IdX in H 0.Y/.
Denote by �0WB! B�1 D B=B<1 the natural projection. The following lemma,

due to [24, Lemma 5.3], relates �X to �0 ˝ƒ IdX .

Lemma 5.3. The diagram

X
�X //

�X

��

�nc.X/

��nc.X/

��

B˝ƒ X // B˝ƒ �nc.X/

commutes in Y, where the lower arrow is the composition of �0˝ƒ IdX with B�1˝ƒ
X ! B˝ƒ �nc.X/, the inverse of the canonical isomorphism (5.2) with p D 0.

5.3 The singular Yoneda dg category and dg singularity category

Associated to the triple .Y; �nc; �/ and using [23, Section 6], we form a strict dg
localization along � :

�WY �! �Yƒ=E :
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The obtained dg category �Y D �Yƒ=E is called the E-relative singular Yoneda dg
category of ƒ.

Let us describe �Y explicitly. Its objects are just complexes of ƒ-modules. For
two objects X and Y , the morphism complex is defined to be the colimit of the fol-
lowing sequence of cochain complexes:

Y.X;Y / �! Y.X;�nc.Y // �! � � � �! Y.X;�pnc.Y // �! Y.X;�pC1nc .Y // �! � � �

The structure map sends f to ��p
nc.Y /
ˇ f . Precisely, for any f 2 Yn.X; �

p
nc.Y //,

the map ��p
nc.Y /
ˇ f 2 YnC1.X;�

pC1
nc .Y // is given by

sa1;nC1 ˝ x 7�! .�1/jf jsa1 ˝ f .sa2;nC1 ˝ x/:

The image of f 2 Y.X;�
p
nc.Y // in �Y.X; Y / is denoted by Œf Ip�. The compo-

sitionˇsg of Œf Ip� with ŒgI q� 2 �Y.Y;Z/ is defined by

ŒgI q�ˇsg Œf Ip� D Œ�
p
nc.g/ˇ f Ip C q�:

Recall from Proposition 5.2 the Yoneda dg category Y is pretriangulated. By a general
result [23, Lemma 6.3], the dg category �Y is also pretriangulated.

We denote by �Y
f

ƒ=E
the full dg subcategory of �Yƒ=E formed by the complexes

in C�;b.ƒ-proj/.
The following result is a finite version of [23, Proposition 9.1] (compare [23,

Corollary 9.3]).

Proposition 5.4. Keep the notation as above. Then the composite dg functor

C
�;b
dg .ƒ-proj/

‚
! Yƒ=E

�
! �Yƒ=E

induces an isomorphism in Hodgcat:

Sdg.ƒ/ ' �Y
f

ƒ=E
:

Consequently, we have an isomorphism Dsg.ƒ/ ' H
0.�Y

f

ƒ=E
/ of triangulated cat-

egories.

Remark 5.5. (1) We mention that [23, Proposition 9.1] justifies our terminology for
�Yƒ=E : for each ƒ-module M , the cohomology ring of the dg endomorphism ring
�Yƒ=E .M;M/ is isomorphic to the singular Yoneda ring of M :

cExt�ƒ.M;M/ D
M
i2Z

HomD0sg.ƒ/
.M;†i .M//:

Here, D0sg.ƒ/ is the big singularity category of ƒ defined in Remark 2.7.
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(2) Assume thatƒ is an Artin algebra with a decompositionƒDE ˚ J , where J
is the Jacobson radical ofƒ. Using Proposition 5.4 and [23, Theorem 9.5], one relates
Sdg.ƒ/ to the dg perfect derived category of the corresponding dg Leavitt algebra. We
mention that Leavitt algebras appear already in [52].

Combining Propositions 4.1 and 5.4, we obtain the following result.

Corollary 5.6. There is an isomorphism V�;b.ƒ-proj/ ' �Y
f

ƒ=E
in Hodgcat.

Remark 5.7. One could construct a genuine dg functor �Y
f

ƒ=E
! V�;b.ƒ-proj/

inducing the isomorphism above. Roughly speaking, it sends a complex X to its
dg-projective resolution B˝ƒ X . The details rely on a technical result [24, Proposi-
tion 5.5], and will appear elsewhere.
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