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Derived equivalences via HRS-tilting
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Let A be an abelian category. A torsion pair (T ,F) in A consists of two full
subcategories subject to the following conditions.

(1) HomA(T ,F) = 0, that is, HomA(T, F ) = 0 for any T ∈ T and F ∈ F ;
(2) For any object X in A, there exists a short exact sequence

0 −→ T −→ X −→ F −→ 0

with T ∈ T and F ∈ F , called the decomposition sequence of X .

The decomposition sequence is unique up to isomorphism.
Following [7], a torsion pair (T ,F) is said to be tilting provided that any object

in A is isomorphic to a sub object of some object in T ; dually, the torsion pair is
cotilting provided that any object is isomorphic to a factor object of some object
in F . As these terminologies suggest, torsion pairs arise naturally in the classical
tilting theory [6, 5].

Denote by Db(A) the bounded derived category of A. We identify objects in A
with stalk complexes concentrated in degree zero. The key observation is made in
[7]: associated to any torsion pair (T ,F) in A, the following full subcategory of
Db(A)

B = {X ∈ Db(A) | H−1(X) ∈ F , H0(X) ∈ T , Hi(X) = 0 for i 6= −1, 0}

is abelian, called the (forward) HRS-tilt of A with respect to (T ,F). Indeed, we
have a bounded t-structure (U≤0,U≥0) on Db(A), where

U≤0 = {U ∈ Db(A) | H0(U) ∈ T , Hi(U) = 0 for i > 0}, and

U≥0 = {V ∈ Db(A) | H−1(V ) ∈ F , Hi(V ) = 0 for i < −1}).

As B is the heart of this t-structure, it is naturally an abelian category.
Let us recall some general facts on bounded t-structures. Let D be a triangu-

lated category, and let (D≤0,D≥0) be a bounded t-structure. Then we have the
heart H = D≤0 ∩ D≥0 and its bounded derived category Db(H). By a realization
functor of the bounded t-structure, we mean a triangle functor

G : Db(H) −→ D

whose restriction on H is isomorphic to the inclusion H →֒ D. If the triangulated
category D is algebraic, that is, triangle equivalent to the stable category of a
Frobenius category, such a realization functor always exists [9]. We mention that
the original construction of a realization functor via filtered triangulated categories
is given by [1]; compare [2].

We observe that a realization functor is unique on the level of objects. However,
it is a very subtle issue whether a realization functor is unique. Despite the lack
of uniqueness, we still often say the realization functor.
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In general, a realization functor is not an equivalence. It is a standard fact that a
fully-faithful realization functor is dense, and thus an equivalence [2]. The converse
is somehow surprising to us, although the proof is standard; see [4].

Theorem A. Let G : Db(H) → D be the realization functor as above. Assume
that G is dense. Then G is fully-faithful, and thus a triangle equivalence.

The following classical result unifies the corresponding derived equivalences in-
duced by classical tilting modules over artin algebras [6] and tilting sheaves on
weighted projective lines [5].

Theorem. (Happel-Reiten-Smalø) Let (T ,F) be a torsion pair in A, and let
B be the forward HRS-tilt. Assume that (T ,F) is tilting or cotilting. Then the
corresponding realization functor

G : Db(B) −→ Db(A)

is a triangle equivalence.

We mention that there are torsion pairs, neither tilting nor cotilting, whose
corresponding realization functor is a derived equivalence. Indeed, the examples
arise from two-term tilting complexes [8, 3]. We point out that the well-known
HW-reflection is induced from a term-term tilting complex.

As the HRS-tilt plays an essential role in both quasi-tilted algebras and stability
conditions for certain geometric objects, it might be of great interest to know
when precisely the realization functor in an HRS-tilt is a derived equivalence. The
following main result answers this question in full generality; see [4].

Theorem B. Let (T ,F) be a torsion pair in A, and let B be the forward HRS-tilt.
Denote by G : Db(B) → Db(A) the corresponding realization functor. Then the
following statements are equivalent.

(1) The realization functor G is an equivalence.
(2) The subcategory A lies in the essential image of G.
(3) For each object X ∈ A, there is an exact sequence in A

ηX : 0 −→ F 0 −→ F 1 −→ X −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T , such that the corresponding class [ηX ] in the
Yoneda extension group Yext3A(T

1, F 0) vanishes.

The proof of Theorem B uses the backward HRS-tilt of B with respect to the
induced torsion pair. One of the key ingredients is a categorical version of [3,
Proposition 4.1 and Theorem 4.4].

We mention that the condition (3) is intrinsic. In view of it, the classical result
of Happel-Reiten-Smalø follows immediately. Unlike the decomposition sequence,
the exact sequence ηX is not unique in general. There is an example in [4] to show
that the vanishing condition on [ηX ] is necessary.

In view of the condition (2), the following question is natural.

Question. Let A be an abelian category, and let (D≤0,D≥0) be a bounded t-
structure. Denote by H = D≤0 ∩ D≥0 the heart, and by G : Db(H) → Db(A)
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the corresponding realization functor. Assume that A is contained in the essential
image of G. Is G a derived equivalence?

The answer to this question is affirmative, provided that the abelian category
A is hereditary. Indeed, in this situation, the realization functor G is dense. Then
the assertion follows from Theorem A.
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Silting theory of orders modulo a regular sequence

Wassilij Gnedin

Let R be a commutative complete local Noetherian ring, and let x be some R-
regular sequence of elements in the maximal ideal m of R. In [2], Eisenbud studied
the question how the homological algebra of the ring R differs from that of its lower-
dimensional quotient R = R/xR. We shall be concerned with a non-commutative
analogue of this question in the framework of derived categories.

To simplify the exposition, we assume that the base ring R is regular. Let Λ be
an R-order, by which we mean an R-algebra Λ such that Λ is finitely generated
and free as an R-module. In particular, the R-algebra Λ is x-regular.

We would like to compare the derived representation theory of the ring Λ to
that of its quotient Λ = Λ/xΛ. Both rings have the same finite number n of
isomorphism classes of of simple modules. However, the natural push down functor

P : D = D−(modΛ) D = D−(modΛ), L• L• = L•
L

⊗Λ Λ

is usually not dense and does not reflect isomorphism classes of objects.
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