
Journal of Pure and Applied Algebra 229 (2025) 108005

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra  

journal homepage: www.elsevier.com/locate/jpaa

The Grothendieck group of a triangulated category

Xiao-Wu Chen a, Zhi-Wei Li b,∗, Xiaojin Zhang b, Zhibing Zhao c

a School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, 
PR China
b School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
c School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, PR China

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 6 August 2024
Received in revised form 8 May 2025
Available online 26 May 2025
Communicated by L. Angeleri 
Huegel

MSC:
18G80; 18F30

Keywords:
Grothendieck group
Triangulated category
Silting subcategory
Weight structure

We give a direct proof of the following known result: the Grothendieck group 
of a triangulated category with a silting subcategory is isomorphic to the split 
Grothendieck group of the silting subcategory. Moreover, we obtain its cluster-tilting 
analogue.
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1. Introduction

Let T be a skeletally small triangulated category. Denote by Σ its suspension functor. Recall from [2] 
that a full additive subcategory M of T is presilting if HomT (M,ΣiM) = 0 for any i ≥ 1, or equivalently, 
HomT (M,Σi(M ′)) = 0 for any M,M ′ ∈ M and i ≥ 1. It is called silting, if in addition T = tri〈M〉, that 
is, the smallest triangulated subcategory of T containing M coincides with T itself; compare [16].

The definition given here is slightly different from [2, Definition 2.1], since we do not require that M is 
closed under direct summands. The main example in mind is the bounded homotopy category Kb(A) of 
a skeletally small additive category A. It is clear that A is a silting subcategory of Kb(A), which is not 
necessarily closed under direct summands in general; see Lemma 3.6.

The Grothendieck group of T is denoted by K0(T ). For a skeletally small additive category A, we denote 
by Ksp

0 (A) its split Grothendieck group.
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The goal of this work is to give a direct proof of the following result; see Theorem 3.3. 

Theorem A. Let M be a silting subcategory of T . Then the inclusion M ↪→ T induces an isomorphism 
Ksp

0 (M) � K0(T ) of abelian groups.

Theorem A is essentially due to [5, Theorem 5.3.1], which is formulated using a weight structure and 
whose indirect proof relies on the weight complex functor. Under the additional Krull-Schmidt assumption 
on T , Theorem A is proved in [2, Theorem 2.27]. We mention that [2, Theorem 2.27] plays a fundamental 
role in the study of K-theoretical aspects of silting theory [3].

The surjectivity of the induced homomorphism Ksp
0 (M) → K0(T ) above is immediate, but the injectivity 

is somehow nontrivial. For this, we establish the inverse homomorphism, whose argument modifies the one 
in [2] and relies on the octahedral axiom (TR4).

Theorem 3.3 contains slightly more information than Theorem A, since the Grothendieck group of an 
intermediate subcategory is also studied. Moreover, we obtain a cluster-tilting analogue of Theorem A in 
Corollary 4.10, which describes the Grothendieck group of T as an explicit quotient group of the split 
Grothendieck group of a cluster-tilting subcategory. We mention related work [22,8,15,21] on comparing the 
Grothendieck groups of triangulated categories and those of certain subcategories.

Theorem A has the following immediate consequence [24, Theorem 1.1], which seems to be well known to 
experts and is very related to [25, Introduction, the fourth paragraph] and [11, Subsection 3.2.1, Lemma 3].

Corollary B. The inclusion A ↪→ Kb(A) induces an isomorphism Ksp
0 (A) � K0(Kb(A)) of abelian groups.

The paper is structured as follows. In Section 2, we study filtrations of objects with respect to a presilting 
subcategory. We prove Theorem A in Section 3. In the final section, we study cluster-tilting analogues of 
the results in Section 3.

We refer to [12,4] for triangulated categories and to [27] for Grothendieck groups. All subcategories are 
assumed to be full and additive, though not necessarily closed under direct summands.

2. Filtrations

Throughout this section, we fix a triangulated category T . We assume that M ⊆ T is a skeletally small 
additive subcategory, which is presilting. We study filtrations on objects, which is the key ingredient of the 
proof in the next section.

For two subcategories X and Y, we have the following subcategory

X ∗ Y = {E ∈ T | ∃ an exact triangle X → E → Y → Σ(X) with X ∈ X , Y ∈ Y}.

The operation ∗ on subcategories is associative; see [4, Lemme 1.3.10].

Lemma 2.1. The following statements hold.

(1) ΣiM∗ ΣjM ⊆ ΣjM∗ ΣiM for j < i, and ΣiM∗ ΣiM = ΣiM.
(2) HomT (Σ−nM∗ Σ−(n−1)M∗ · · · ∗ Σ−1M,ΣmM) = 0 if 0 ≤ m and 1 ≤ n.

Proof. For (1), we consider an exact triangle

Σi(M1) −→ E −→ Σj(M2)
a −→ Σi+1(M1)
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with Mi ∈ M. Since M is presilting and j ≤ i, we have a = 0. It follows that E � Σi(M1)⊕Σj(M2), which 
belongs to ΣjM∗ ΣiM. If i = j, the object E belongs to ΣiM.

For (2), we take 0 ≤ m, and consider the subcategory

Sm = {E ∈ T | HomT (E,ΣmM) = 0}.

This subcategory is closed under extensions. Since M is presilting, Sm contains Σ−nM for any 1 ≤ n. Then 
we deduce (2). �
Definition 2.2. Let X be an object in T . A Σ≤0(M)filtration of length n ≥ 1 for X means a sequence of 
morphisms

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X

such that each morphism fits into an exact triangle

Xi+1 −→ Xi −→ Σ−i(MX
i ) −→ Σ(Xi+1)

with the i-th factors MX
i ∈ M for each 0 ≤ i ≤ n− 1.

We denote by F the full subcategory of T formed by those objects, which admit a Σ≤0(M)filtration.

Remark 2.3. (1) In the filtration above, each Xi belongs to

Σ−(n−1)M∗ · · · ∗ Σ−(i+1)M∗ Σ−iM.

Consequently, by Lemma 2.1(2) we have

HomT (X,Σ(M)) = 0 = HomT (X1,M)

for any M ∈ M.
(2) We observe that

F =
⋃

n≥0
Σ−nM∗ · · · ∗ Σ−1M∗M.

By applying Lemma 2.1(1) repeatedly, we infer that F is closed under extensions.

Let A be a skeletally small additive category. For each object A, the corresponding element in the split 
Grothendieck group Ksp

0 (A) is denoted by 〈A〉. Therefore, we have 〈A⊕B〉 = 〈A〉 + 〈B〉.
Assume that there are two Σ≤0(M)filtrations of X:

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X (2.1)

and

0 = Ym −→ Ym−1 −→ · · · −→ Y1 −→ Y0 = X (2.2)

with factors MX
i and MY

j . The two filtrations are said to be equivalent if
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n−1∑

i=0 
(−1)i〈MX

i 〉 =
m−1∑

j=0 
(−1)j〈MY

j 〉

holds in Ksp
0 (M).

The argument in the following proof resembles the one in proving the Jordan-Hölder theorem for modules 
of finite length. It releases the restriction of the existence of minimal morphisms, which is needed in the 
proof of [2, Theorem 2.27]; compare [8, Remark 5.3].

Proposition 2.4. Any two Σ≤0(M)filtrations of an object X are equivalent.

Proof. We assume that (2.1) and (2.2) are two given filtrations of X with n,m ≥ 1. By extending one of 
the filtrations by zeros, we may assume that they have the same length, that is, n = m. We use induction 
on the common length n. If n = 1, the statement is trivial, since both MX

0 and MY
0 are isomorphic to X.

We assume that n ≥ 2. We apply (TR4) to the exact triangles Y1 → X → MY
0 → Σ(Y1) and X →

MX
0 → Σ(X1) → Σ(X), and obtain the following commutative diagram.

Y1 X MY
0 Σ(Y1)

Y1
a

MX
0 Z Σ(Y1)

Σ(X1) Σ(X1)

Σ(b)

Σ(X)

Σ(X) Σ(MY
0 )

By Remark 2.3(1), we have a = 0 = b. Therefore, we have isomorphisms

Σ(X1) ⊕MY
0 � Z � Σ(Y1) ⊕MX

0 .

The exact triangle X2 → X1 → Σ−1(MX
1 ) → Σ(X2) gives rise to the following one

Σ(X2) −→ Z −→ MX
1 ⊕MY

0 −→ Σ2(X2).

Consequently, we have a Σ≤0(M)filtration of length n− 1 for Z.

0 = Σ(Xn) −→ Σ(Xn−1) −→ · · · −→ Σ(X2) −→ Z

Its factors are given by {MX
1 ⊕MY

0 ,MX
2 , · · · ,MX

n−1}. Similarly, we have another filtration of length n− 1

0 = Σ(Yn) −→ Σ(Yn−1) −→ · · · −→ Σ(Y2) −→ Z

with factors {MY
1 ⊕ MX

0 ,MY
2 , · · · ,MY

n−1}. Now by induction, these two filtrations for Z are equivalent, 
that is, we have

〈MX
1 ⊕MY

0 〉 +
n−1∑

i=2 
(−1)i−1〈MX

i 〉 = 〈MY
1 ⊕MX

0 〉 +
n−1∑

j=2 
(−1)j−1〈MY

j 〉.
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This implies that 
∑n−1

i=0 (−1)i〈MX
i 〉 =

∑m−1
j=0 (−1)j〈MY

j 〉, as required. �
The following result is analogous to the horseshoe lemma.

Lemma 2.5. Let X a → Y
b → Z

c → Σ(X) be an exact triangle with X,Z ∈ F , and assume that n ≥ 1. If

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X

and

0 = Zn −→ Zn−1 −→ · · · −→ Z1 −→ Z0 = Z

are Σ≤0(M)filtrations of X and Z, respectively, then Y has a Σ≤0(M)filtration

0 = Yn −→ Yn−1 −→ · · · −→ Y1 −→ Y0 = Y

with its factors MY
i � MX

i ⊕MZ
i for 0 ≤ i ≤ n− 1.

Proof. By Remark 2.3(1), the following square trivially commutes.

Z
c Σ(X)

MZ
0

0 Σ(MX
0 )

Applying the 3 × 3 Lemma in [4, Proposition 1.1.11] and rotations, we have the following commutative 
diagram with exact columns and rows.

Σ−1(MX
0 ) Σ−1(MX

0 ⊕MZ
0 ) Σ−1(MZ

0 ) MX
0

X1
a1

Y1
b1

Z1
c1 Σ(X1)

X
a

Y
b

Z
c Σ(X)

MX
0 MX

0 ⊕MZ
0 MZ

0
0 Σ(MX

0 )

The middle vertical triangle

Σ−1(MX
0 ⊕M0

Z) −→ Y1 −→ Y −→ MX
0 ⊕MZ

0

implies that MY
0 � MX

0 ⊕MZ
0 . We now repeat the argument to the exact triangle X1

a1→ Y1
b1→ Z1

c1→ Σ(X1). 
Then we obtain the required filtration for Y . �
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3. The proof of Theorem A

In this section, we give the proof of Theorem A and describe the original version [5] of Theorem A in 
terms of bounded weight structures. We fix a skeletally small triangulated category T .

Let C be a full additive subcategory of T . We define its Grothendieck group K0(C) to be the abelian 
group generated by {[C] | C ∈ C} subject to the relations [C] − ([C1] + [C2]) whenever there is an exact 
triangle C1 → C → C2 → Σ(C1) in T with Ci, C ∈ C. We emphasize that K0(C) depends on the inclusion 
C ↪→ T .

The following result indicates that the Grothendieck group K0(C) of a certain subcategory C might be 
useful.

Lemma 3.1. Assume that the full subcategory C is closed under Σ−1 and that for any object X ∈ T there 
exists a natural number n such that Σ−n(X) ∈ C. Then the inclusion C ↪→ T induces an isomorphism 
K0(C) � K0(T ).

Proof. We make an easy observation: for each object C in C, the trivial triangle Σ−1(C) → 0 → C → C

implies that [Σ−1(C)] = −[C] in K0(C). For each object X in T , we choose a natural number n with 
Σ−n(X) ∈ C, and define an element φ(X) = [Σ−n(X)] in K0(C). The observation above implies that φ(X)
does not depend on the choice of n. Since any Σ−n is a triangle functor, these φ(X) give rise to a well-defined 
homomorphism Φ : K0(T ) → K0(C) such that Φ([X]) = φ(X). It is routine to verify that Φ is inverse to 
the induced homomorphism K0(C) → K0(T ). �
Proposition 3.2. Let M be a presilting subcategory of T . Then the inclusion M ↪→ F induces an isomorphism 
Ksp

0 (M) � K0(F) of abelian groups.

Proof. For each X ∈ F , we choose a Σ≤0(M)filtration

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X

with n ≥ 1 and factors MX
i . We define an element

γ(X) =
n−1∑

i=0 
(−1)i〈MX

i 〉

in Ksp
0 (M). By Proposition 2.4, the element γ(X) does not depend on the choice of such a filtration. By 

Lemma 2.5, the map (X 
→ γ(X)) is compatible with exact triangles in F . Therefore, such a map induces 
a well-defined homomorphism Γ : K0(F) → Ksp

0 (M) such that Γ([X]) = γ(X). It is routine to verify that 
Γ is inverse to the induced homomorphism Ksp

0 (M) → K0(F). �
The following result contains Theorem A, which is analogous to [21, Proposition 4.11] in the setting 

of extriangulated categories [19]. Notably, our result does not require the silting subcategory to be closed 
under direct summands.

Theorem 3.3. Let M be a silting subcategory of T . Then the inclusions M ↪→ F ↪→ T induce isomorphisms 
Ksp

0 (M) � K0(F) � K0(T ) of abelian groups.

Proof. The isomorphism Ksp
0 (M) → K0(F) follows from Proposition 3.2. Recall from Remark 2.3(2) that

F =
⋃

n≥0
Σ−nM∗ · · · ∗ Σ−1M∗M.
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In particular, F is closed under Σ−1. Since T = tri〈M〉, each object X of T belongs to

Σi1M∗ · · · ∗ Σin−1M∗ ΣinM

for some i1, · · · , in−1, in ∈ Z. By Lemma 2.1(1), we may assume that i1 < i2 < · · · < in. Consequently, 
for any sufficiently large n, the object Σ−n(X) belongs to F . So, the conditions in Lemma 3.1 are fulfilled. 
Then the required isomorphism K0(F) � K0(T ) follows immediately. �

Recall from [5, Definition 1.1.1] that a weight structure on T is a pair (U≥0,U≤0) of subcategories subject 
to the following conditions:

(1) Both U≥0 and U≤0 are closed under direct summands;
(2) U≥0 is closed under Σ−1, and U≤0 is closed under Σ;
(3) HomT (U≥0,ΣU≤0) = 0;
(4) U≥0 ∗ ΣU≤0 = T .

The core of the weight structure is defined to be the subcategory C = U≥0∩U≤0. It is a presilting subcategory 
of T . We mention that a weight structure is called a co-t-structure, and the core is called the coheart in 
[23, Definitions 2.4 and 2.6].

The weight structure (U≥0,U≤0) is bounded if for each object X, there exist natural numbers n ≤ m

such that X ∈ Σ−nU≥0 ∩ Σ−mU≤0. In this case, the core C is a silting subcategory; see [5, Corollary 1.5.7]. 
Moreover, by [2, Proposition 2.23(b)] any silting subcategory which is closed under direct summands arises 
as the core of a bounded weight structure.

The following result is due to [5, Theorem 5.3.1], which might be viewed as a version of Theorem 3.3.

Corollary 3.4. Let (U≥0,U≤0) be a bounded weight structure on T with core C. Then the inclusions C ↪→
U≥0 ↪→ T induce isomorphisms Ksp

0 (C) � K0(U≥0) � K0(T ) of abelian groups.

Proof. As mentioned above, the core C is a silting subcategory of T . Moreover, by [2, Proposition 2.23(b)] 
an object has a Σ≤0(C)filtration if and only if it belongs to U≥0. Then we deduce these isomorphisms by 
Theorem 3.3. �
Remark 3.5. (1) By applying the corollary above to the opposite category of T , one might deduce isomor
phisms Ksp

0 (C) � K0(U≤0) � K0(T ) of abelian groups.
(2) The corollary above is analogous to the following well-known result; see [1, Proposition A.9.5]. Let T

have a bounded t-structure (D≤0,D≥0) with heart A = D≤0 ∩ D≥0. Then the inclusions A ↪→ D≤0 ↪→ T
induce isomorphisms K0(A) � K0(D≤0) � K0(T ) of abelian groups.

(3) We mention that the isomorphism Ksp
0 (C) � K0(T ) above is extended to isomorphisms between the 

corresponding higher K-groups in [26]. One expects that the higher K-groups of U≥0 are also isomorphic 
to them.

Let A be a skeletally small additive category. Denote its bounded homotopy category by Kb(A). We 
identify any object in A with the corresponding stalk complex concentrated in degree zero. Therefore, A is 
viewed as a full subcategory of Kb(A). Moreover, it is a silting subcategory.

Recall that an idempotent e : A → A in A splits if there are morphisms r : A → Y and s : Y → A

satisfying e = s ◦ r and IdY = r ◦ s. The category A is said to be weakly idempotent-split, if any idempotent 
e : X → X splits whenever IdX − e splits.

The following result is due to [6, Theorem 4.1 and Corollary 4.3(1)].
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Lemma 3.6. The subcategory A ⊆ Kb(A) is closed under direct summands if and only if A is weakly 
idempotent-split.

Proof. By [18, Lemma 2.2], any triangulated category is weakly idempotent-split. Consequently, any full 
subcategory of a triangulated category is weakly idempotent-split, provided that it is closed under direct 
summands. Then we have the ``only if'' part.

For the ``if'' part, we observe by [6, Theorem 4.1] that A is identified with the core of the standard weight 
structure on Kb(A). In particular, it is closed under direct summands in Kb(A). �
4. A cluster-tilting analogue of Theorem A

In this section, we obtain a cluster-tilting analogue of Theorem A; see Corollary 4.10. The main result is 
Theorem 4.8, which is a cluster-tilting analogue of Proposition 3.2.

Throughout this section, we fix d ∈ {2, 3, · · · }, and T a skeletally small triangulated category. Following 
[14, Section 3], we say that a full additive subcategory M of T is d-rigid if HomT (M,ΣiM) = 0 for each 
1 ≤ i < d. We mention that a presilting subcategory is always d-rigid.

We fix a d-rigid subcategory M. The following result is analogous to Lemma 2.1 with the same proof.

Lemma 4.1. The following statements hold.

(1) ΣiM∗ ΣjM ⊆ ΣjM∗ ΣiM for i + 1 − d < j < i, and ΣiM∗ ΣiM = ΣiM.
(2) HomT (Σ−nM∗ Σ−(n−1)M∗ · · · ∗ Σ−1M,ΣmM) = 0 if 0 ≤ m < d− 1 and 1 ≤ n < d−m. �

For each 1 ≤ m ≤ d, we consider the full subcategory Fm of T formed by those objects, which admit a 
Σ≤0(M)filtration of length n with n ≤ m. Therefore, we have

M = F1 ⊆ F2 ⊆ · · · ⊆ Fd.

By Lemma 4.1(1), for each 1 ≤ m < d, the subcategory Fm is closed under extensions; compare Re
mark 2.3(2). However, Fd is not closed under extensions in general; compare Lemma 4.3 below.

For any object X in T , we denote by addX the full subcategory formed by direct summands of finite 
direct sums of X.

Example 4.2. Let K be a field. Let A be the finite dimensional K-algebra given by the following quiver

1 α 2
β

3

subject to the relation βα = 0. Each vertex i corresponds to a simple module Si and an indecomposable 
projective module Pi. Denote by Db(A-mod) the bounded derived category of finite dimensional left A
modules. Set M = add (S1 ⊕ S3). Then it is a 2-rigid subcategory of Db(A-mod). We have

F2 = Σ−1M∗M = add(Σ−1(S1 ⊕ S3) ⊕ (S1 ⊕ S3)).

Consider the two-term complex

X = · · · −→ 0 −→ P2 −→ P1 −→ 0 −→ · · · ,

where P1 has degree 1 and the unnamed arrow P2 → P1 is induced by multiplying α from the right. We 
have an exact triangle
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S3 −→ X −→ Σ−1(S1) −→ Σ(S3).

Therefore, X belongs to M∗Σ−1M ⊆ F2 ∗F2, but X does not belong to F2. Consequently, F2 is not closed 
under extensions.

The following fact is well known.

Lemma 4.3. Let M be a d-rigid subcategory. Then Fd is closed under extensions if and only if M ∗
Σ−(d−1)M ⊆ Fd.

Proof. It suffices to prove the ``if'' part. Since Fd = Σ−(d−1)M∗· · ·∗Σ−1M∗M, by applying Lemma 4.1(1) 
repeatedly, we have

Σ−iM∗Fd ⊆ Fd and Fd ∗ Σ−jM ⊆ Fd (4.1)

for any 1 ≤ i ≤ d− 1 and 0 ≤ j ≤ d− 2. Then we have the following inclusions.

Fd ∗ Fd = Σ−(d−1)M∗ · · · ∗ Σ−1M∗M∗ Σ−(d−1)M∗ · · · ∗ Σ−1M∗M

⊆ Σ−(d−1)M∗ · · · ∗ Σ−1M∗Fd ∗ Σ−(d−2)M∗ · · · ∗ Σ−1M∗M

⊆ Fd.

Here, the first inclusion uses the hypothesis, and the last one follows by applying (4.1) repeatedly. �
We emphasize that the condition Z ∈ Fd−1 in Proposition 4.4(2) below is crucial.

Proposition 4.4. 

(1) Any two Σ≤0(M)filtrations of an object X with length at most d are equivalent.
(2) Let X → Y → Z → Σ(X) be an exact triangle. Assume that 1 ≤ n ≤ d, and that

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X

and

0 = Zn −→ Zn−1 −→ · · · −→ Z1 −→ Z0 = Z

are Σ≤0(M)filtrations of X and Z, respectively. If Z belongs to Fd−1, then Y has a Σ≤0(M)filtration

0 = Yn −→ Yn−1 −→ · · · −→ Y1 −→ Y0 = Y

with its factors MY
i � MX

i ⊕MZ
i for 0 ≤ i ≤ n− 1.

Proof. The same proof of Proposition 2.4 yields (1). For (2), since Z belongs to Fd−1, by Lemma 4.1(2) 
we do have HomT (Z,ΣM)=0. Then the first square in the proof of Lemma 2.5 trivially commutes. The 
remaining argument there carries through, and yields the required filtration for Y . �

In what follows, we obtain two cluster-tilting analogues of Proposition 3.2. The following proposition is 
similar to [20, Proposition 4.8].
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Proposition 4.5. Let M be a d-rigid subcategory of T . Then for each 1 ≤ m < d, the inclusion M ↪→ Fm

induces an isomorphism Ksp
0 (M) � K0(Fm) of abelian groups.

Proof. For each X ∈ Fm, we choose a Σ≤0(M)filtration

0 = Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = X

with n ≤ m and factors MX
i . We define an element

γ(X) =
n−1∑

i=0 
(−1)i〈MX

i 〉 (4.2)

in Ksp
0 (M). By Proposition 4.4(1), the element γ(X) does not depend on the choice of such a filtration; 

compare [8, Remark 5.2]. This statement holds also for the case m = d.
By Proposition 4.4(2), the map (X 
→ γ(X)) is compatible with exact triangles in Fm for m < d. 

Therefore, such a map induces a well-defined homomorphism Γ : K0(Fm) → Ksp
0 (M) such that Γ([X]) =

γ(X). It is routine to verify that Γ is inverse to the induced homomorphism Ksp
0 (M) → K0(Fm). �

The following remark shows that the condition m < d above is necessary.

Remark 4.6. The induced map Ksp
0 (M) → K0(Fd) is surjective, but not injective in general. We define the 

relative Grothendieck group Krel
0 (Fd) to be the abelian group generated by the set {{C} | C ∈ Fd} subject 

to the relations {C}− ({C1}+ {C2}) whenever there is an exact triangle C1 → C → C2 → Σ(C1) in T with 
C1, C ∈ Fd and C2 ∈ Fd−1. Then the same argument above yields an isomorphism

Ksp
0 (M) ∼ −→ Krel

0 (Fd),

whose inverse sends {C} to γ(C).

The following immediate consequence of Proposition 4.5 somehow complements Proposition 3.2.

Corollary 4.7. Let M be a presilting subcategory of T . Then for any m ≥ 1, the inclusion M ↪→ Fm induces 
an isomorphism Ksp

0 (M) � K0(Fm) of abelian groups.

Proof. As mentioned before, any presilting subcategory is d-rigid for any d ≥ 2. Then the required result 
follows from Proposition 4.5 immediately. �

Assume that M is d-rigid such that Fd is closed under extensions. Denote by N the subgroup of Ksp
0 (M)

generated by the elements

γ(E) − 〈M1〉 − (−1)d−1〈M2〉

for all exact triangles

M1 → E → Σ−(d−1)(M2) → Σ(M1) (4.3)

with M1,M2 ∈ M. Here, we observe by the assumption above that E belongs to Fd, and refer to (4.2) for 
the definition of γ(E). We consider the quotient group Ksp

0 (M)/N , whose typical element is denoted by 
〈M〉.



X.-W. Chen et al. / Journal of Pure and Applied Algebra 229 (2025) 108005 11

Theorem 4.8. Let M be a d-rigid subcategory of T . Assume that Fd is closed under extensions. Then the 
inclusion M ↪→ Fd induces an isomorphism Ksp

0 (M)/N � K0(Fd) of abelian groups.

Proof. The inclusion M ↪→ Fd certainly induces a homomorphism

Ksp
0 (M)/N −→ K0(Fd),

which is surjective. To construct its inverse, it suffices to prove the following claim: for each exact triangle 

X
a → Y

b → Z
c → Σ(X) with X,Y, Z ∈ Fd, we always have

γ(Y ) = γ(X) + γ(Z).

Step 1. Assume that Z belongs to Fd−1. Proposition 4.4(2) yields γ(Y ) = γ(X) + γ(Z) in Ksp
0 (M).

Step 2. Assume that Z belongs to Σ−(d−1)M. Fix an exact triangle

X1
i −→ X

p −→ MX
0 −→ Σ(X1),

which appears in a Σ≤0(M)filtration of X with length d. In particular, we have MX
0 ∈ M and Σ(X1) ∈

Fd−1. By the construction (4.2) of γ(X), we have

γ(X) = γ(X1) + 〈MX
0 〉. (4.4)

By (TR4) and rotations, we have the following commutative diagram.

X1

i

X1

a◦i

X

p

a
Y

b
Z

c Σ(X)

Σ(p)

MX
0 E Z

c

Σ(MX
0 )

Σ(X1) Σ(X1)
Σ(i)

Σ(X)

Here, the third row and the second column from the left are both exact triangles. Since Fd is closed under 
extensions, the third row implies that E belongs to Fd. Recall that Z belongs to Σ−(d−1)M. The very 
definition of the subgroup N yields

γ(E) = 〈MX
0 〉 + γ(Z). (4.5)

By rotating the second column, we have an exact triangle Y → E → Σ(X1) → Σ(Y ). Since Σ(X1) ∈ Fd−1, 
Step 1 yields

γ(E) = γ(Y ) + γ(Σ(X1)) = γ(Y ) − γ(X1). (4.6)

By combining (4.4), (4.5) and (4.6), we obtain the required equality.
Step 3. We now treat the general case. Using the Σ≤0(M)filtration of Z with length d, we obtain an 

exact triangle
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Σ−(d−1)(MZ
d−1)

j−→ Z
q−→ Z ′ −→ Σ2−d(MZ

d−1)

with MZ
d−1 ∈ M and Z ′ ∈ Fd−1. Moreover, by the construction (4.2) of γ(Z), we have

γ(Z) = γ(Z ′) + (−1)(d−1)〈MZ
d−1〉. (4.7)

By (TR4) and rotations, we have the following commutative diagram.

X F Σ−(d−1)(MZ
d−1)

j

Σ(X)

X
a

Y
b

Z

q

c Σ(X)

Z ′ Z ′ Σ(F )

Σ(F ) Σ2−d(MZ
d−1)

The second column from the left is an exact triangle. Since Z ′ belongs to Fd−1, Step 1 yields

γ(Y ) = γ(F ) + γ(Z ′). (4.8)

Applying Step 2 to the first row, we have

γ(F ) = γ(X) + (−1)d−1〈MZ
d−1〉. (4.9)

Combining (4.7), (4.8) and (4.9), we obtain the required equality. This proves the claim, and completes the 
proof. �
Remark 4.9. (1) We mention that Theorem 4.8 actually implies Proposition 4.5. To be more precise, we 
assume that M is d′-rigid with d′ > d. Since we have HomT (Σ−(d−1)M,ΣM) = 0, by Lemma 4.3 Fd is 
closed under extensions; moreover, the corresponding subgroup N of Ksp

0 (M) is zero. Then the isomorphism 
in Theorem 4.8 yields the required isomorphism Ksp

0 (M) � K0(Fd) in Proposition 4.5.
(2) Assume that Fd is closed under extensions. Combining the isomorphisms in Remark 4.6 and Theo

rem 4.8, we obtain the following one

Krel
0 (Fd)/N ′ ∼ −→ K0(Fd), {C} + N ′ 
→ [C].

Here, N ′ is the subgroup of Krel
0 (Fd) generated by the elements

{E} − {M1} − (−1)d−1{M2}

for all exact triangles M1 → E → Σ−(d−1)(M2) → Σ(M1) with M1,M2 ∈ M.

Following [14, Section 3] and [17, Definition 5.1], a d-rigid subcategory M of T is called d-cluster-tilting 
provided that Fd = T . The condition is equivalent to T = Σ−(d−1)M ∗ · · ·Σ−1M ∗ M, which is further 
equivalent to T = M∗ ΣM∗ · · · ∗ Σd−1M by rotations.
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By the proof of [17, Proposition 5.3], we observe the following fact: a subcategory M is d-cluster
tilting and closed under direct summands if and only if M is contravariantly finite in T and M =
{X ∈ T | HomT (M,Σi(X)) = 0, 1 ≤ i < d}, if and only if M is covariantly finite in T and 
M = {Y ∈ T | HomT (Y,ΣiM) = 0, 1 ≤ i < d}; compare [13, Proposition 2.2.2].

We mention that 2-cluster-tilting objects play an important role in various additive categorifications 
[7,10] of cluster algebras. For d-cluster-tilting objects in higher cluster categories, we refer to [28,29].

We have the following immediate consequence of Theorem 4.8, which is a cluster-tilting analogue of 
Theorem A, and is similar to [8, Theorem C] and [20, Theorem 5.22].

Corollary 4.10. Let M be a d-cluster-tilting subcategory of T . Then the inclusion M ↪→ T induces an 
isomorphism Ksp

0 (M)/N � K0(T ) of abelian groups. �

In the following remark, we mention that Corollary 4.10 recovers [8, Theorem C].

Remark 4.11. Assume that M is a d-cluster-tilting subcategory of T satisfying Σd(M) = M. Then it is 
naturally a (d + 2)-angulated category in the sense of [9]. We claim that any triangle of the form (4.3) and 
a Σ≤0(M)filtration of E with length d induce a (d + 2)-angle; moreover, any (d + 2)-angle arises in this 
way.

We take d = 3 for example. Assume that M1
a → E

b → Σ−2(M2)
c → Σ(M1) is an exact triangle with 

M1,M2 ∈ M. The following two exact triangles

X1
i1→ E

p0→ ME
0

q0→ Σ(X1) and Σ−2(ME
2 ) i2→ X1

p1→ Σ−1(ME
1 ) q1→ Σ−1(ME

2 )

define a Σ≤0(M)filtration of E with length 3. Then by [9, Theorem 1], we have the following induced 
5-angle in M.

Σ−3(M2)
Σ−1(c) −−−−→ M1

p0◦a −−−→ ME
0

Σ(p1)◦q0 −−−−−−→ ME
1

Σ(q1) −−−→ ME
2

Σ2(b◦i1◦i2) −−−−−−−→ M2

Here, by the assumption above we have that Σ−3(M2) belongs to M. By reversing the argument, we infer 
that any 5-angle in M arises in this way.

By combining the claim above and [8, Proposition 5.4], we infer that the above subgroup N coincides with 
the group Im θM defined in [8]. Then the isomorphism in Corollary 4.10 yields the one in [8, Theorem C].

The following trivial example indicates that the extension-closed condition in Theorem 4.8 is somehow 
weaker than the one in Corollary 4.10.

Example 4.12. Let d ≥ 2. Let T ′ be a triangulated category with a d-cluster tilting subcategory M′. Let 
T ′′ be another triangulated category and M′′ ⊆ T ′′ be a presilting subcategory or a d′-rigid subcategory 
with d < d′. Denote by F ′′

d the subcategory formed by objects admitting a Σ≤0(M′′)filtrations of length 
at most d; it is closed under extensions in T ′′.

Set T = T ′ × T ′′ to be the product category. Then M = M′ × M′′ is a d-rigid subcategory of T , 
which is not necessarily d-cluster-tilting. Recall that Fd denotes the full subcategory of T formed by those 
objects, which admit a Σ≤0(M)filtration of length at most d. We have Fd = T ′×F ′′

d , which is closed under 
extensions in T .
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