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Abstract

An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecom-
posable finitely generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra,
it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely generated
Gorenstein-projective modules. This is an analogue of Auslander’s theorem on algebras of finite represen-
tation type [M. Auslander, A functorial approach to representation theory, in: Representations of Algebras,
Workshop Notes of the Third Internat. Conference, in: Lecture Notes in Math., vol. 944, Springer-Verlag,
Berlin, 1982, pp. 105–179; M. Auslander, Representation theory of artin algebras II, Comm. Algebra (1974)
269–310].
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be an artin R-algebra, where R is a commutative artinian ring. Denote by A-mod (resp.
A-mod) the category of (resp. finitely generated) left A-modules. Denote by A-Proj (resp. A-
proj) the category of (resp. finitely generated) projective A-modules. Following [21], a chain
complex P • of projective A-modules is defined to be totally-acyclic, if for every projective
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module Q ∈ A-Proj the Hom-complexes HomA(Q,P •) and HomA(P •,Q) are exact. A mod-
ule M is said to be Gorenstein-projective if there exists a totally-acyclic complex P • such that
the 0th cocycle Z0(P •) = M . Denote by A-GProj the full subcategory of Gorenstein-projective
modules. Similarly, we define finitely generated Gorenstein-projective modules by replacing all
modules above by finitely generated ones, and we also get the category A-Gproj of finitely gen-
erated Gorenstein-projective modules [17]. It is known that A-Gproj = A-GProj∩A-mod [14,
Lemma 3.4]. Finitely generated Gorenstein-projective modules are also referred as maximal
Cohen–Macaulay modules. These modules play a central role in the theory of singularity [10–12,
14] and of relative homological algebra [9,17].

An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms,
indecomposable finitely generated Gorenstein-projective modules. Recall that an artin algebra A

is said to be of finite representation type if there are only finitely many isomorphism classes of
indecomposable finitely generated modules. Clearly, finite representation type implies CM-finite.
The converse is not true, in general.

Let us recall the following famous result of Auslander [3,4] (see also Ringel–Tachikawa [27,
Corollary 4.4]):

Auslander’s theorem. An artin algebra A is of finite representation type if and only if every A-
module is a direct sum of finitely generated modules, that is, A is left pure semisimple, see [31].

Inspired by the theorem above, one may conjecture the following Auslander-type result for
Gorenstein-projective modules: an artin algebra A is CM-finite if and only if every Gorenstein-
projective A-module is a direct sum of finitely generated ones. However we can only prove this
conjecture in a nice case.

Recall that an artin algebra A is said to be Gorenstein [19] if the regular module A has finite
injective dimension both at the left and right sides. Our main result is

Main theorem. Let A be a Gorenstein artin algebra. Then A is CM-finite if and only if ev-
ery Gorenstein-projective A-module is a direct sum of finitely generated Gorenstein-projective
modules.

Note that our main result has a similar character to a result by Beligiannis [9, Proposi-
tion 11.23], and also note that similar concepts were introduced and then similar results and
ideas were developed by Rump in a series of papers [28–30].

2. Proof of Main theorem

Before giving the proof, we recall some notions and known results.

2.1. Let A be an artin R-algebra. By a subcategory X of A-mod, we mean a full additive
subcategory which is closed under taking direct summands. Let M ∈ A-mod. We recall from
[6,7] that a right X -approximation of M is a morphism f :X → M such that X ∈ X and ev-
ery morphism from an object in X to M factors through f . The subcategory X is said to be
contravariantly-finite in A-mod if each finitely generated modules has a right X -approximation.
Dually, one defines the notions of left X -approximations and covariantly-finite subcategories.
The subcategory X is said to be functorially-finite in A-mod if it is contravariantly-finite and
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covariantly-finite. Recall that a morphism f :X → M is said to be right minimal, if for each en-
domorphism h :X → X such that f = f ◦h, then h is an isomorphism. A right X -approximation
f :X → M is said to be a right minimal X -approximation if it is right minimal. Note that if a
right approximation exists, so does right minimal one; a right minimal approximation, if in exis-
tence, is unique up to isomorphisms. For details, see [6–8].

The following fact is known.

Lemma 2.1. Let A be an artin algebra. Then

(1) The subcategory A-Gproj of A-mod is closed under taking direct summands, kernels of
epimorphisms and extensions, and contains A-proj.

(2) The category A-Gproj is a Frobenius exact category [22], whose relative projective-injective
objects are precisely contained in A-proj. Thus the stable category A- Gproj modulo projec-
tives is a triangulated category.

(3) Let A be Gorenstein. Then the subcategory A-Gproj of A-mod is functorially-finite.
(4) Let A be Gorenstein. Denote by {Si}ni=1 a complete list of pairwise nonisomorphic simple

A-modules. Denote by fi :Xi → Si the right minimal A-Gproj-approximations. Then every
finitely generated Gorenstein-projective module M is a direct summand of some module M ′,
such that there exists a finite chain of submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm−1 ⊆ Mm = M ′
with each subquotient Mj/Mj−1 lying in {Xi}ni=1.

Proof. Note that A-Gproj is nothing but Xω with ω = A-proj in [6, Section 5]. Thus (1) follows
from [6, Proposition 5.1], and (3) follows from [6, Corollary 5.10(1)] (just note that in this case,
the regular module AA is a cotilting module).

Since A-Gproj is closed under extensions, thus it becomes an exact category in the sense
of [22]. The property of being Frobenius and the characterization of projective-injective objects
follow directly from the definition, also see [14, Proposition 3.1(1)]. Thus by [18, Chapter 1,
Section 2], the stable category A- Gproj is triangulated.

By (1) and (3), we see that (4) is a special case of [6, Proposition 3.8]. �
Let R be a commutative artinian ring as above. An additive category C is said to be R-linear

if all its Hom-spaces are R-modules, and the composition maps are R-bilinear. An R-linear cat-
egory is said to be hom-finite, if all its Hom-spaces are finitely generated R-modules. Recall that
an R-variety C means a hom-finite R-linear category which is skeletally-small and idempotent-
split (that is, for each idempotent morphism e :X → X in C, there exist u :X → Y and v :Y → X

such that e = v ◦ u and IdY = u ◦ v). It is well known that a skeletally-small R-linear category is
an R-variety if and only if it is hom-finite and Krull–Schmidt (i.e., every object is a finite sum of
indecomposable objects with local endomorphism rings). See [26, p. 52] or [16, Appendix A].
Then it follows that any factor category [8, p. 101] of an R-variety is still an R-variety.

Let C be an R-variety. We will abbreviate the Hom-space HomC(X,Y ) as (X,Y ). Denote
by (Cop,R-Mod) (resp. (Cop,R-mod)) the category of contravariant R-linear functors from C
to R-Mod (resp. R-mod). Then (Cop,R-Mod) is an abelian category and (Cop,R-mod) is its
abelian subcategory. Denote by (–,C) the representable functor for each C ∈ C. A functor F is
said to be finitely generated if there exists an epimorphism (–,C) → F for some object C ∈ C;
F is said to be finitely presented (= coherent) [2,4], if there exists an exact sequence of functors
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(–,C1) → (–,C0) → F → 0. Denote by fp(C) the subcategory of (Cop,R-Mod) consisting of
finitely presented functors. Clearly, fp(C) ⊆ (Cop,R-mod). Recall the duality

D = HomR(–,E) :R-mod → R-mod,

where E is the injective hull of R/ rad(R) as an R-module. Therefore, it induces duality D :
(Cop,R-mod) → (C,R-mod) and D : (C,R-mod) → (Cop,R-mod). The R-variety C is called a
dualizing R-variety [5], if this duality preserves finitely presented functors.

The following observation is important.

Lemma 2.2. Let A be a Gorenstein artin R-algebra. Then the stable category A- Gproj is a
dualizing R-variety.

Proof. Since A-Gproj ⊆ A-mod is closed under taking direct summands, thus idempotent-split.
Therefore, we infer that A-Gproj is an R-variety, and its stable category A- Gproj is also an R-
variety. By Lemma 2.1(3), the subcategory A-Gproj is functorially-finite in A-mod, then by a
result of Auslander and Smalø [7, Theorem 2.4(b)] A-Gproj has almost-split sequences, and thus
theses sequences induce Auslander–Reiten triangles in A- Gproj (let us remark that it is Happel
[19, 4.7] who realized this fact for the first time). Hence the triangulated category A- Gproj has
Auslander–Reiten triangles, and by a theorem of Reiten and Van den Bergh [25, Theorem I.2.4]
we infer that A- Gproj has Serre duality. Now by [20, Proposition 2.11] (or [13, Corollary 2.6]),
we deduce that A- Gproj is a dualizing R-variety. Let us remark that the last two cited results are
given in the case where R is a field, however one just notes that the results can be extended to
the case where R is a commutative artinian ring without any difficulty. �

For the next result, we recall more notions on functors over varieties. Let C be an R-variety
and let F ∈ (Cop,R-Mod) be a functor. Denote by ind(C) the complete set of pairwise noniso-
morphic indecomposable objects in C. The support of F is defined by supp(F ) = {C ∈ ind(C) |
F(C) �= 0}. The functor F is simple if it has no nonzero proper subfunctors, and F has finite
length if it is a finite iterated extension of simple functors. Observe that F has finite length if and
only if F lies in (Cop,R-mod) and supp(F ) is a finite set. The functor F is said to be noethe-
rian, if its every subfunctor is finitely generated. It is a good exercise to show that a functor F

is noetherian if and only if every ascending chain of subfunctors in F becomes stable after finite
steps (one may use the fact: for a finitely generated functor F with an epimorphism (–,C) → F ,
then for any subfunctor F ′ of F , F ′ = F provided that F ′(C) = F(C)). Observe that a func-
tor having finite length is necessarily noetherian by an argument on its total length (i.e., l(F ) =∑

C∈ind(C) lR(F (C)), where lR denotes the length function on finitely generated R-modules).
The following result is essentially due to Auslander (compare [4, Proposition 3.10]).

Lemma 2.3. Let C be a dualizing R-variety, F ∈ (Cop,R-mod). Then F has finite length if and
only if F is finitely presented and noetherian.

Proof. Recall from [5, Corollary 3.3] that for a dualizing R-variety, functors having finite length
are finitely presented. So the “only if” follows.

For the “if” part, assume that F is finitely presented and noetherian. Since F is finitely pre-
sented, by [5, p. 324], we have the filtration of subfunctors

0 = soc0(F ) ⊆ soc1(F ) ⊆ · · · ⊆ soci+1(F ) ⊆ · · ·
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where soc1(F ) is the socle of F , and in general soci+1 is the preimage of the socle of F/soci (F )

under the canonical epimorphism F → F/soci (F ). Since F is noetherian, we get soci0 F =
soci0+1(F ) for some i0, and that is, the socle of F/soci0(F ) is zero. However, by the dual of [5,
Proposition 3.5], we know that for each nonzero finitely presented functor F , the socle soc(F )

is necessarily nonzero and finitely generated semisimple. In particular, soc(F ) has finite length,
and thus it is finitely presented. Note that fp(C) ⊆ (Cop,R-mod) is an abelian subcategory, and
thus F/soc1(F ) is finitely presented. Applying the above argument to F/soc1(F ), we obtain that
soc2(F ), as an extension between the socles of two finitely presented functors, has finite length.
In general, one proves that F/ soci (F ) is finitely presented and soci+1(F ) has finite length for
all i. Hence soc(F/ soci0(F )) = 0 will imply that F/ soci0(F ) = 0, i.e., F = soci0(F ), which has
finite length. �

Let us consider the category A-GProj. Similar to Lemma 2.1(1), (2), we recall that A-
GProj ⊆ A-Mod is closed under taking direct summands, kernels of epimorphisms and exten-
sions, and it is a Frobenius exact category with (relative) projective-injective objects precisely
contained in A-Proj. Consider the stable category A- GProj, which is also triangulated and has
arbitrary coproducts. Recall that in an additive category T with arbitrary coproducts, an object
T is said to be compact, if the functor HomT (T ,−) commutes with coproducts. Denote the full
subcategory of compact objects by T c. If we assume further that T is triangulated, then T c is a
thick triangulated subcategory. We say that the triangulated category T is compactly generated
[23,24], if the subcategory T c is skeletally-small and for each object X, X 	 0 provided that
HomT (T ,X) = 0 for every compact object T .

Note that in our situation, we always have an inclusion A- Gproj ↪→ A- GProj, and in fact, we
view it as A- Gproj ⊆ (A- GProj)c. Next lemma, probably known to experts, states the converse
in Gorenstein case. It is a special case of [14, Theorem 4.1] (compare [10, Theorem 6.6]). One
may note that in the artin case, the category A- Gproj is idempotent-split.

Lemma 2.4. Let A be a Gorenstein artin algebra. Then the triangulated category A- GProj is
compactly generated and A- Gproj ⊆ (A- GProj)c is dense (i.e., surjective up to isomorphisms).

2.2. Proof of Main theorem

Assume that A is a Gorenstein artin R-algebra. Set C = A- Gproj. By Lemma 2.2, C is a
dualizing R-variety. For a finitely generated Gorenstein-projective module M , we will denote by
(–,M) the functor HomC(–,M); for an arbitrary module X, we denote by (–,X)|C the restriction
of the functor HomA(–,X) to C.

For the “if” part, we assume that each Gorenstein-projective module is a direct sum of finitely
generated ones. It suffices to show that the set ind(C) is finite. For this end, assume that M is a
finitely generated Gorenstein-projective module. We claim that the functor (–,M) is noetherian.
In fact, given a subfunctor F ⊆ (–,M), first of all, we may find an epimorphism

⊕
i∈I

(–,Mi) → F,

where each Mi ∈ C and I is an index set. Compose this epimorphism with the inclusion of F into
(–,M), we get a morphism from

⊕
(–,Mi) to (–,M). By the universal property of coproducts
i∈I
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and then by Yoneda’s lemma, we have, for each i, a morphism θi :Mi → M , such that F is the
image of the morphism ∑

i∈I

(–, θi) :
⊕
i∈I

(–,Mi) → (–,M).

Note that
⊕

i∈I (–,Mi) 	 (–,
⊕

i∈I Mi)|C , and the morphism above is also induced by the mor-
phism

∑
i∈I θi :

⊕
i∈I Mi → M . Form a triangle in A- GProj

K[−1] →
⊕
i∈I

Mi

∑
i∈I θi−−−−→ M

φ−→ K.

By assumption, we have a decomposition K = ⊕
j∈J Kj where each Kj is finitely generated

Gorenstein-projective. Since the module M is finitely generated, we infer that φ factors through
a finite sum

⊕
j∈J ′ Kj , where J ′ ⊆ J is a finite subset. In other words, φ is a direct sum of

M
φ′−→

⊕
j∈J ′

Kj and 0 →
⊕

j∈J\J ′
Kj .

By the additivity of triangles, we deduce that there exists a commutative diagram

⊕
i∈I Mi

∑
i∈I θi

M

M ′ ⊕ (
⊕

j∈J\J ′ Kj)[−1] (θ ′,0)

M

where the left side vertical map is an isomorphism, and M ′ and θ ′ are given by the triangle

(
⊕

j∈J ′ Kj)[−1] → M ′ θ ′−→ M
φ′−→ ⊕

j∈J ′ Kj . Note that M ′ ∈ C, and by the above diagram we
infer that F is the image of the morphism (–, θ ′) : (–,M ′) → (–,M), and thus F is finitely gen-
erated. This proves the claim.

By the claim, and by Lemma 2.3, we deduce that for each M ∈ C, the functor (–,M) has
finite length, in particular, supp((–,M)) is finite. Assume that {Si}ni=1 is a complete list of
pairwise nonisomorphic simple A-modules. Denote by fi : Xi → Si the right minimal A-Gproj-
approximations. By Lemma 2.1(4), the module M is a direct summand of M ′ and we have a
finite chain of submodules of M ′ with factors being among Xi ’s. Then it is not hard to see that
supp((–,M)) ⊆ supp((–,M ′)) ⊆ ⋃n

i=1 supp((–,Xi)) for every M ∈ C. Therefore we deduce that
ind(C) = ⋃n

i=1 supp((–,Xi)), which is finite.
For the “only if” part, assume that the Gorenstein artin algebra A is CM-finite. Then the set

ind(C) is finite, say ind(C) = {G1,G2, . . . ,Gm}. Set B = EndC(
⊕m

i=1 Gi)
op. Then B is also an

artin R-algebra. Note that for each C ∈ C, the Hom-space HomC(
⊕m

i=1 Gi,C) has a natural left
B-module structure, moreover, it is a finitely generated projective B-module. In fact, we get an
equivalence of categories

Φ = HomC

(
m⊕

Gi, -

)
:C → B- proj .
i=1
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Then the equivalence above naturally induces the following equivalences, still denoted by Φ ,

Φ : fp(C) → B-mod, Φ :
(
Cop,R-Mod

) → B-Mod.

In what follows, we will use these equivalences. By [24, p. 169] (or [13, Proposition 2.4]), we
know that the category fp(C) is a Frobenius category. Therefore, via Φ , we get that B is a
self-injective algebra. Therefore by [1, Theorem 31.9], we get that B-Mod is also a Frobenius
category, and by [1, p. 319], every projective-injective B-module is of form

⊕m
i=1 Q

(Ii)
i , where

{Q1,Q2, . . . ,Qm} is a complete set of pairwise nonisomorphic indecomposable projective B-
modules such that Qi = Φ(Gi), and each Ii is some index set, and Q

(Ii)
i is the corresponding

coproduct.
Take {P1,P2, . . . ,Pn} to be a complete set of pairwise nonisomorphic indecomposable pro-

jective A-modules. Let G ∈ A-GProj. We will show that G is a direct sum of some copies of the
modules Gi and Pj . Then we are done. Consider the functor (–,G)|C , which is cohomological,
and thus by [13, Lemma 2.3] (or [24, p. 258]), we get Ext1(F, (–,G)|C) = 0 for each F ∈ fp(C),
where the Ext group is taken in (Cop,R-Mod). Via Φ and applying the Baer’s criterion, we get
that (–,G)|C is an injective object, and thus by the above, we get an isomorphism of functors

m⊕
i=1

(–,Gi)
(Ii ) → (–,G)|C,

where Ii are some index sets. As in the first part of the proof, we get a morphism θ :
⊕m

i=1 G
(Ii)
i →

G such that it induces the isomorphism above. Form a triangle in A- GProj

m⊕
i=1

G
(Ii)
i

θ−→ G → X →
(

m⊕
i=1

G
(Ii)
i

)
[1].

For each C ∈ C, applying the cohomological functor HomA-GProj(C,−) and by the property of θ ,
we obtain that

HomA-GProj(C,X) = 0, ∀C ∈ C.

By Lemma 2.4, the category A- GProj is generated by C, and thus X 	 0, and hence θ is an
isomorphism in the stable category A- GProj. Thus it is well known (say, by [15, Lemma 1.1])
that this will force an isomorphism in the module category

m⊕
i=1

G
(Ii)
i ⊕ P 	 G ⊕ Q,

where P and Q are projective A-modules. Now by [1, p. 319], again, P is a direct sum of
copies of the modules Pj . Hence the combination of Azumaya’s theorem and Crawlay–Jønsson–
Warfield’s theorem [1, Corollary 26.6] applies in our situation, and thus we infer that G is
isomorphic to a direct sum of copies of the modules Gi and Pj . This completes the proof.
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