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A note on standard equivalences

Xiao-Wu Chen

ABSTRACT

We prove that any derived equivalence between triangular algebras is standard, that is, it is
isomorphic to the derived tensor functor given by a two-sided tilting complex.

1. Introduction

Let k be a field. We require that all categories and functors we are discussing are k-linear. Let
A be a finite-dimensional k-algebra. We denote by A-mod the category of finite-dimensional
left A-modules and by D?(A-mod) its bounded derived category.

Let B be another finite-dimensional k-algebra. We will require that k acts centrally on any B-
A-bimodule. Recall that a two-sided tilting complex is a bounded complex X of B-A-bimodules
such that the derived tensor functor gives an equivalence X @& —: D?(A-mod) — D®(B-mod).

A triangle equivalence F': D?(A-mod) — D®(B-mod) is said to be standard if it is isomor-
phic, as a triangle functor, to X ®% — for some two-sided tilting complex X. It is an open ques-
tion whether all triangle equivalences are standard; see the remarks before [7, Corollary 3.5].
We mention that the answer to this question is yes for hereditary algebras in [6, Theorem 1.8],
and for algebras with ample or anti-ample canonical bundles in [5, Theorem 4.5].

The aim of this note is to answer the above question affirmatively in another special case,
which contains hereditary algebras.

Recall that an algebra A is triangular provided that the Ext-quiver of A has no oriented
cycles. There are explicit examples of algebras A and B, which are derived equivalent such
that A is triangular, but B is not; the reader is referred to the top of [2, p. 21]. It makes sense
to have the following notion: an algebra A is derived-triangular if it is derived equivalent to a
triangular algebra.

THEOREM 1.1. Let A be a derived-triangular algebra. Then any triangle equivalence
F: Db(A-mod) — D®(B-mod) is standard.

We observe that a derived-triangular algebra has finite global dimension. The converse
is not true in general. Indeed, let A be a non-triangular algebra with two simple modules
that has finite global dimension; for an example, one may take the Schur algebra S(2,2) in
characteristic two. Then A is not derived-triangular. Indeed, any triangular algebra B that is
derived equivalent to A has two simple modules and thus is hereditary. This forces that the
algebra A is triangular, yielding a contradiction.

We recall that a piecewise hereditary algebra is triangular. In particular, Theorem 1.1 implies
that the assumption on the standardness of the autoequivalence in [4, Section 4] is superfluous.

The proof of Theorem 1.1 is a rather immediate application of [1, Theorem 4.7], which
characterizes certain triangle functors between the bounded homotopy categories of Orlov
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categories. Here, we observe that the category of projective modules over a triangular algebra
is naturally an Orlov category.
We refer the reader to [8, 9] for unexplained notions in the representation theory of algebras.

2. The bounded homotopy category of an Orlov category

Let A be a k-linear additive category, which is Hom-finite and has split idempotents. Here,
the Hom-finiteness means that all the Hom spaces are finite-dimensional. It follows that A is
a Krull-Schmidt category; see [3, Corollary A.2].

We denote by Ind A a complete set of representatives of indecomposable objects in A. The
category A is called bricky if the endomorphism algebra of each indecomposable object is a
division algebra.

We slightly generalize [1, Definition 4.1]. A bricky category A is called an Orlov category
provided that there is a degree function deg: Ind A — Z with the following property: for any
indecomposable objects P, P’ having Homy (P, P’) # 0, we have that P ~ P’ or deg(P) >
deg(P’). An object X in A is homogeneous of degree n if it is isomorphic to a finite direct
sum of indecomposables of degree n. An additive functor F': A — A is homogeneous if it sends
homogeneous objects to homogeneous objects and preserves their degrees.

Let A be a finite-dimensional k-algebra. We denote by {S1,Sa,...,S,} a complete set of
representatives of simple A-modules. Denote by P; the projective cover of S;. We recall that
the Ext-quiver Q4 of A is defined as follows. The vertex set of @4 equals {1,2,...,n}, and
there is a unique arrow from i to j provided that Extb(Si, S;) # 0. The algebra A is triangular
provided that Q4 has no oriented cycles.

Let A be a triangular algebra. We denote by Q% the set of sources in Q4. Here, a vertex
is a source if there is no arrow ending at it. For each d > 1, we define the set Q¢ inductively,
such that a vertex i belongs to Q¢ if and only if any arrow ending at i necessarily starts at
Uo<megd—1 @4 It follows that Q% CQLCQ%C - and that Uaso Q4 ={1,2,...,n}. We
mention that this construction can be found in [8, p. 42].

We denote by A-proj the category of finite-dimensional projective A-modules. Then
{P1, Ps,...,P,} is a complete set of representatives of indecomposables in A-proj. For each
1 < i < n, we define deg(P;) = d such that i € Q4 and i ¢ Q%"

The following example of an Orlov category seems to be well known.

LEMMA 2.1. Let A be a triangular algebra. Then A-proj is an Orlov category with the
above degree function. Moreover, any equivalence F': A-proj — A-proj is homogeneous.

Proof. Since A is triangular, it is well known that End4(F;) is isomorphic to End4(S;),
which is a division algebra. Then A-proj is bricky. We recall that for i # j with Hom4 (P, P;) #
0, there is a path from j to 7 in Q4. From the very construction, we infer that, for an arrow
a:a—bwith b € Qﬂ, we have a € Q‘Z_l. Then we are done by the following consequence: if
there is a path from j to 7 in Q 4, then deg(P;) < deg(P;).

For the final statement, we observe that the equivalence F' extends to an autoequivalence on
A-mod, and thus induces an automorphism of @ 4. The automorphism preserves the subsets
QdA. Consequently, the equivalence F' preserves degrees, and is homogeneous. ]

Let A be a k-linear additive category as above. We denote by K°(.A) the homotopy category

dnfl am
of bounded complexes in A. Here, a complex X is visualized as --- — X"~ ! % X7 X
X"*1 — ... where the differentials satisfy d’ o ds ' = 0. The translation functor on K"(A)

is denoted by [1], whose nth power is denoted by [n].
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We view an object A in A as a stalk complex concentrated at degree zero, which is still
denoted by A. In this way, we identify A as a full subcategory of K°(A).

We are interested in triangle functors on K°(A). We recall that a triangle functor (F,0)
consists of an additive functor F': K°(A) — K°(A) and a natural isomorphism 0: [1]F — F[1],

which preserves triangles. More precisely, for any triangle X — Y — Z rx [1] in Kb(A), the
Oxo
sequence FX — FY — FZ xoF (k) (FX)[1] is a triangle. We refer to 6 as the connecting

isomorphism for F'. A natural transformation between triangle functors is required to respect
the two connecting isomorphisms.

For a triangle functor (F),#), the connecting isomorphism 6 is trivial if [1|F = F[1] and 0 is
the identity transformation. In this case, we suppress 6 and write F' for the triangle functor.

Any additive functor F': A — A gives rise to a triangle functor K°(F): K°(A) — K"(A),
which acts on complexes componentwise. The connecting isomorphism for K°(F) is triv-
ial. Similarly, any natural transformation n: F — F’ extends to a natural transformation
Kb(n): K*(F) — KP(F’) between triangle functors.

The following fundamental result is due to [1, Theorem 4.7].

PROPOSITION 2.2. Let A be an Orlov category and let (F,0): K'(A) — Kb(A) be a
triangle functor such that F(A) C A. We assume further that F|4: A — A is homogeneous.
Let Fy, F5: A — A be two homogeneous functors.

(i) Then there is a unique natural isomorphism (F,f) — K°(F| ) of triangle functors,
which is the identity on the full subcategory A.

(ii) Any natural transformation K?(F;) — K®(F,) of triangle functors is of the form K®(n)
for a unique natural transformation n: F; — F5.

Proof. The existence of the natural isomorphism in (1) is due to [1, Theorem 4.7]; cf. [1,
Remark 4.8]. The uniqueness follows from the commutative diagram (4.10) and Lemma 4.5(2)
in [1], by induction on the support of a complex in the sense of [1, Subsection 4.1]. Here,
we emphasize that the connecting isomorphism 6 is used in the construction of the natural
isomorphism on stalk complexes; compare the second paragraph in [1, p. 1541].

The statement (2) follows by the same uniqueness reasoning as above. More precisely, in the
notation of [1, Theorem 4.7], the extension of #° therein to 6 is unique. ]

Recall that D®(A-mod) denotes the bounded derived category of A-mod. We identify A-mod
as the full subcategory of D?(A-mod) formed by stalk complexes concentrated at degree zero.
We denote by H™(X) the nth cohomology of a complex X.

The following observation is immediate.

LEMMA 2.3. Let A be a finite-dimensional algebra and let F': D*(A-mod) — D®(A-mod)
be a triangle equivalence with F(A) ~ A. Then we have F(A-mod) = A-mod, and thus the
restricted equivalence F| , ., q: A-mod — A-mod.

Proof.  'We use the canonical isomorphisms H™(X) ~ Home(A_mOd)(A[—n], X). It follows
that both F' and its quasi-inverse send stalk complexes to stalk complexes. Then we are done.
O

We assume that we are given an equivalence F': A-mod — A-mod with F(A) ~ A. Then
there is an algebra automorphism o: A — A such that F' is isomorphic to ,4; ® 4 —. Here, the
A-bimodule ,A; is given by the regular right A-module, where the left A-module is twisted
by o. This bimodule is invertible and thus viewed as a two-sided tilting complex. We refer
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the reader to [7,9, Subsection 6.5] for details on two-sided tilting complexes and standard
equivalences.
We now combine the above results.

PROPOSITION 2.4. Let A be a triangular algebra and let (F,6): D*(A-mod) — D®(A-mod)
be a triangle equivalence with F(A)~ A. We recall the algebra automorphism o given
by the restricted equivalence F|,_ 4, and the A-bimodule ,;A;. Then there is a natural

isomorphism (F,0) — ,A; ®% — of triangle functors. In particular, the triangle equivalence
(F,0) is standard.

Proof. Since the algebra A is triangular, it has finite global dimension. The natural
functor K°(A-proj) — D’(A-mod) is a triangle equivalence. We identify these two categories.
Therefore, the triangle functor (F,6): K®(A-proj) — K®(A-proj) restricts to an equivalence
F|A—p1‘0j7 which is isomorphic to ,A4; ® 4 —. By Lemma 2.1, the statements in Proposition 2.2
apply in our situation. Consequently, we have an isomorphism between (F,6) and K°(,4;
®4 —). Here, we identify the functors K®(,4; ®4 —) and ,A4; ®% —. Then we are done.  [J

3. The proof of Theorem 1.1

We now prove Theorem 1.1. In what follows, for simplicity, when writing a triangle functor,
we suppress its connecting isomorphism.

We first assume that the algebra A is triangular. The complex F(A) is a one-sided
tilting complex. By [9, Theorem 6.4.1], there is a two-sided tilting complex X of B-A-
bimodules with an isomorphism X — F(A) in D?(B-mod). Denote by G a quasi-inverse
of the standard equivalence X ®% —: D(A-mod) — D®(B-mod). Then the triangle functor
GF: D’(A-mod) — D?(A-mod) satisfies GF(A) ~ A. Proposition 2.4 implies that GF is
standard, and thus F is isomorphic to the composition of X ®% — and a standard equivalence.
Then we are done in this case by the well-known fact that the composition of two standard
equivalences is standard.

In general, let A be derived-triangular. Assume that A’ is a triangular algebra that is derived
equivalent to A. By [9, Proposition 6.5.5], there is a standard equivalence F’: D®(A’-mod) —
D?(A-mod). The above argument implies that the composition FF” is standard. Recall from |9,
Proposition 6.5.6] that a quasi-inverse F'~1 of I’ is standard. We are done by observing that
F is isomorphic to the composition (F'F')F'~!, a composition of two standard equivalences.

Acknowledgements. We thank Martin Kalck for pointing out the example in [2] and Dong
Yang for the reference [5].
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