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Abstract For an adjoint pair (F,U ) of functors, we prove that U is a separable functor
if and only if the defined monad is separable and the associated comparison functor is an
equivalence up to retracts. In this case, under an idempotent completeness condition, the
adjoint pair (F,U ) is monadic. This applies to the comparison between the derived category
of the category of equivariant objects in an abelian category and the category of equivariant
objects in the derived category of the abelian category.

Keywords Separable functor · Separable monad · Monadic adjoint pair ·
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1 Introduction

Let A be a category and G be a finite group. By a strict action of G on A, we mean a group
homomorphism from G to the automorphism group of A. Then we form the category AG of
G-equivariant objects in A; compare [7,16].

We assume that A is an abelian category, and thus the category AG is also abelian. Con-
sider the bounded derived category Db(A). Then the G-action on A extends to Db(A). In
general, the categories Db(AG) and Db(A)G are not equivalent. However, a nice observation
in [14, Lemma 1.1] claims that they are equivalent under a characteristic zero condition and
a hereditary condition on the abelian category A; compare [13, 1.1] and [8]. One might ask
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44 X.-W. Chen

whether these conditions for this equivalence are essential or not. It turns out that this equiv-
alence holds in a great generality. Indeed, separable functors and monads appear naturally in
the construction of the category of equivariant objects. All these motivate this note.

The note is organized as follows. In Sect. 2, we collect some basic facts on separable
functors. In Sect. 3, we recall some facts on separable monads and the construction of the
associated comparison functor to an adjoint pair. Then we prove that in an adjoint pair
(F,U ) of functors, the functor U is separable if and only if the defined monad is separable
and the associated comparison functor is an equivalence up to retracts; see Proposition 3.5. In
this case, if we assume an idempotent completeness condition, then the adjoint pair (F,U )
is monadic; see Corollary 3.6. In Sect. 4, we apply these results to obtain two triangle
equivalences; in particular, we prove that if the order of the group G is invertible in an
abelian category A, then there is a triangle equivalence between Db(AG) and Db(A)G ; see
Proposition 4.5. Here, we mention that there exists a canonical (pre-)triangulated structure
on Db(A)G by applying the results in [1].

2 Separable functors

In this section, we recall from [12,15] some basic facts on separable functors.
Let C be a category. We will consider the Hom bifunctor HomC(−,−) : Cop × C → Set;

here, Cop denotes the opposite category of C, and Set denotes the category of sets.
Let F : C → D be a functor. Then we have the bifunctor HomD(F−, F−) : Cop × C →

Set; moreover, we have a natural transformation induced by the action of F on morphisms

F : HomC(−,−) −→ HomD(F−, F−).
The functor F : C → D is separable [12] provided that the above natural transformation

F admits a retraction H . In other words, for each pair of objects X, Y in C there exists a map

HX,Y : HomD(F(X), F(Y )) −→ HomC(X, Y )

satisfying that HX,Y (F( f )) = f for any morphism f : X → Y ; moreover, H is functorial
in both X and Y . It follows that a separable functor is faithful. On the other hand, a fully
faithful functor is separable.

Lemma 2.1 Let F : C → D and G : D → E be two functors. Then the following statements
hold.

(1) If both F and G are separable, then the composite G F is separable.
(2) If the composite G F is separable, then F is separable.
(3) If F ′ : C → D is a separable functor and there exist natural transformationsφ : F ′ → F

and ψ : F → F ′ satisfying ψ ◦ φ = IdF ′ , then the functor F is separable.
(4) Assume that C = D and that there exist natural transformations φ : IdC → F and

ψ : F → IdC satisfying ψ ◦ φ = Id. Then the functor F is separable.

Proof We refer to [12, Lemma 1.1] for (1) and (2). The statement (4) is a special case of (3),
since the identity functor is always separable.

For (3), consider the natural transformation

� : HomD(F−, F−) −→ HomD(F ′−, F ′−)
given by �X,Y (g) = ψY ◦ g ◦ φX for any morphism g : F(X) → F(Y ). Then for any
morphism f : X → Y in C, we apply the identitiesψY ◦F( f ) = F ′( f )◦ψX andψ◦φ = IdF ′
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A note on separable functors and monads 45

to deduce�X,Y (F( f )) = F ′( f ); in other words, we have an identity� ◦ F = F ′ of natural
transformations. Since the natural transformation F ′ has a retraction, so does F . ��

Assume that F : C → D admits a right adjoint G : D → C. We denote by η : IdC → G F
the unit and ε : FG → IdD the counit; they satisfy εF ◦ Fη = IdF and Gε ◦ ηG = IdG . In
what follows, by referring to an adjoint pair (F,G)we really mean the quadruple (F,G; η, ε).

The following result is due to [15, Theorem 1.2]. We make slight modification and include
a short proof.

Lemma 2.2 Let (F,G) be an adjoint pair as above. Then the following statements are
equivalent:

(1) the functor G is separable;
(2) there exists a natural transformation ξ : IdD → FG satisfying ε ◦ ξ = Id;
(3) there exist natural transformations φ : IdD → FG and ψ : FG → IdD satisfying

ψ ◦ φ = Id.

Proof The implication “(2) ⇒ (3)” is trivial, and “(3) ⇒ (1)” follows from Lemma 2.1(4)
and (2).

It remains to prove “(1) ⇒ (2)”. For this, we identify the bifunctor HomC(G−,G−)
with HomD(FG−,−) via the adjoint pair (F,G). Then the natural transformation
G : HomD(−,−) → HomC(G−,G−) is identified with the following natural transfor-
mation

G ′ : HomD(−,−) −→ HomD(FG−,−),
where G ′

X,Y ( f ) = f ◦ εX for any morphism f : X → Y . Then G admits a retraction if and
only if so does G ′. By Yoneda Lemma for contravariant functors, a natural transformation
H ′

X,Y : HomD(FG(X), Y ) → HomD(X, Y ) is uniquely induced by morphisms ξX : X →
FG(X), that is, it sends g to g ◦ ξX ; moreover, ξ is natural in X . Then H ′ ◦ G ′ = Id implies
that ε ◦ ξ = Id. ��

We mention that Lemma 2.2(3) implies that the setting of [16, 3.2] really deals with an
adjoint pair consisting of two separable functors with extra properties.

3 Separable monads

In this section, we recall basic facts on monads and modules. We characterize separable
functors using separable monads and the associated comparison functor.

Let C be a category. Recall from [10, Chapter VI] that a monad on C is a triple (M, η, μ)
consisting of an endofunctor M : C → C and two natural transformations, the unit η : IdC →
M and the multiplication μ : M2 → M , subject to the relations μ ◦ Mμ = μ ◦ μM and
μ ◦ Mη = IdM = μ ◦ ηM . We sometimes denote the monad by M when η and μ are
understood.

A monad (M, η, μ) is separable provided that there exists a natural transformation
σ : M → M2 satisfying that μ ◦ σ = IdM and Mμ ◦ σM = σ ◦ μ = μM ◦ Mσ ; see
[4, Section 6].

One associates to each adjoint pair (F,G; η, ε) on two categories C and D a monad
(G F, η, μ) on C, where μ = GεF : M2 = G FG F → GIdD F = M . The monad
(G F, η, μ) is said to be defined by the adjoint pair (F,G)

We observe the following fact, which relates separable functors to separable monads.
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46 X.-W. Chen

Lemma 3.1 Consider the adjoint pair (F,G; η, ε). If the functor G is separable, then the
defined monad (G F, η, μ) is separable.

Proof Since G is separable, by Lemma 2.2(2) there exists a natural transformation ξ : IdD →
FG with the property ε ◦ ξ = Id. Set σ = GξF : M = GIdD F → G FG F = M2. Then we
have μ ◦ σ = IdM . The remaining identity follows from the identity FGε ◦ ξFG = ξ ◦ ε =
εFG ◦ FGξ , while these two equalities follow from the naturalness of ξ and ε, respectively.

��
In what follows, we take the notation from [1]. For a monad M , an M-module is a pair

(X, λ) consisting of an object X in C and a morphismλ : M(X) → X subject to the conditions
λ ◦ Mλ = λ ◦ μX and λ ◦ ηX = IdX ; the object X is said to be the underlying object of the
module. A morphism f : (X, λ) → (X ′, λ′) of two M-modules is a morphism f : X → X ′
in C satisfying f ◦ λ = λ′ ◦ M( f ). This gives rise to the category M-ModC of M-modules.
For each object X in C, we have the corresponding M-module (M(X), μX ), the free module.

For each monad (M, η, μ) on C, there is a classical construction of an adjoint pair
that defines the given monad; see [10, IV.2]. Consider the functor FM : C → M-ModC
sending X to the free module (M(X), μX ), and a morphism f : X → Y to the mor-
phism M( f ) : (M(X), μX ) → (M(Y ), μY ). Denote by G M : M-ModC → C the forgetful
functor. Then we have the adjoint pair (FM ,G M ; η, εM ), where for an M-module (X, λ),
(εM )(X,λ) = λ. Here, we use M = G M FM . This adjoint pair (FM ,G M ; η, εM ) defines the
given monad M .

The following result is due to [3, 2.9(1)]; compare [4, Proposition 6.3].

Lemma 3.2 Let M be a monad on C, and let (FM ,G M ) be the adjoint pair as above. Then
G M is a separable functor if and only if M is a separable monad.

Proof The “only if” part follows from Lemma 3.1, since (FM ,G M ) defines M . For the “if”
part, assume that there is a natural transformation σ : M → M2 subject to the required
conditions. We define a natural transformation ξ : IdM-ModC → FM G M as follows: for any
M-module (X, λ), ξ(X,λ) = M(λ)◦σX ◦ηX ; here, we use that FM G M (X, λ) = (M(X), μX ).
Then εM ◦ ξ = Id. By Lemma 2.2, the functor G M is separable. ��

The above adjoint pair (FM ,G M ; η, εM ) enjoys a universal property: for any adjoint
pair (F,G; η, ε) on C and D that defines M , there is a unique functor K : D → M-ModC
satisfying K F = FM and G M K = G; see [10, VI.3]. This unique functor K will be
referred as the comparison functor associated to the adjoint pair (F,G; η, ε); it is given by
K (D) = (G(D),GεD) for any object D and K ( f ) = G( f ) for any morphism f .

Following [10, VI.3] the adjoint pair (F,G) is monadic (resp. strictly monadic) if the
associated comparison functor K : D → M-ModC is an equivalence (resp. an isomorphism).
In these cases, we might identify D with M-ModC .

The following fact is well known, which is implicit in [10, VI.3 and VI.5].

Lemma 3.3 Consider the comparison functor K : D → M-ModC associated to the adjoint
pair (F,G). Then K is fully faithful on Im F.

Here, for any functor F : C → D we denote by Im F the image of F , that is, the full
subcategory of D consisting of objects of the form F(X) for objects X in C.

Proof Recall that K F = FM . Then for any objects X and Y in C, the functor K induces a map
HomD(F(X), F(Y )) → HomM-ModC (FM (X), FM (Y )). By the adjoint pairs (F,G) and
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A note on separable functors and monads 47

(FM ,G M ), both the Hom sets are identified to HomC(X,M(Y )). Using these identifications,
the induced map becomes the identity; here, we use that G M K = G. In other words, the
induced map is bijective. Then we are done. ��

The final ingredient we need is the idempotent completion of a category. Let C be a
category. An idempotent morphism e : X → X splits if there exist two morphisms u : X → Y
and v : Y → X satisfying e = v ◦ u and IdY = u ◦ v; in this case, Y is said to be a retract of
X . If all idempotents split, the category C is said to be idempotent complete.

There is a well-known construction of the idempotent completion C
 of a category C. The
category C
 is defined as follows: the objects are pairs (X, e), where X is an object in C and
e : X → X is an idempotent; a morphism f : (X, e) → (X ′, e′) is a morphism f : X → X ′
in C satisfying f = e′ ◦ f ◦ e. The canonical functor ιC : C → C
, sending X to (X, IdX ), is
fully faithful; it is an equivalence if and only if C is idempotent complete.

Any functor F : C → D extends to a functor F
 : C
 → D
 by means of F
(X, e) =
(F(X), F(e)) and F
( f ) = F( f ). We have ιD F = F
ιC . The functor F : C → D is called
an equivalence up to retracts provided that F
 is an equivalence.

The following facts are direct to verify.

Lemma 3.4 Let F : C → D be a functor, and let C′ ⊆ C be a full subcategory such that each
object of C is a retract of some object in C′. Then the following two statements hold:

(1) the functor F is fully faithful if and only if so is its restriction to C′;
(2) the functor F is an equivalence up to retracts if and only if F is fully faithful and each

object Y in D is a retract of an object in Im F;
(3) if C is idempotent complete, then F is an equivalence if and only if it is an equivalence

up to retracts. ��
The main result of this section is as follows, where separable functors are characterized

using separable monads and the associated comparison functor. It slightly extends Lemma
3.2. We mention that the result, at least in the triangulated case, is implicit in [1, Theorem
5.17(d)].

Proposition 3.5 Let (F,G) be an adjoint pair on categories C and D. Consider the defined
monad M = G F on C and the associated comparison functor K : D → M-ModC . Then the
functor G is separable if and only if M is a separable monad and K : D → M-ModC is an
equivalence up to retracts.

Proof For the “only if” part, we know already by Lemma 3.1 that M is a separable monad;
moreover, then by Lemma 3.2 the functor G M is separable.

Since G is separable, there exists ξ : IdD → FG such that ε ◦ξ = Id. We observe that not
every object X lies in Im F , but it is a retract of FG(X), in particular, of an object in Im F .
By Lemma 3.3 the restriction of K to Im F is fully faithful. Then Lemma 3.4(1) implies that
K is fully faithful. Similarly, the separability of G M implies that each M-module is a retract
of a module in Im FM ⊆ Im K . Then Lemma 3.4(2) implies that K is an equivalence up to
retracts.

For the “if” part, we observe that G M is separable by Lemma 3.2, and K is separable,
since it is fully faithful. Hence, by Lemma 2.1(1) the composite G = G M K is separable. ��

We observe the following immediate consequence of Proposition 3.5 and Lemma 3.4(3).
In particular, under an idempotent completeness condition, an adjoint pair (F,G) with G
separable is always monadic. We mention that the result appears in [11, Corollary 3.17 and
Proposition 3.18] and [8, Corollaries 3.10 and 3.11] in slightly different forms.
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48 X.-W. Chen

Corollary 3.6 Keep the notation as above. Assume further that D is idempotent complete.
Then the functor G is separable if and only if M is a separable monad and K : D → M-ModC
is an equivalence. ��

The following examples show that the two conditions “the monad M is separable” and
“the comparison functor K is an equivalence up to retracts” in Proposition 3.5 are somehow
independent. We mention that Example 3.7(2) is well known.

Example 3.7 (1) Let C and C′ be two nontrivial additive categories. Set D = C × C′ be
the product category. Consider the canonical functor F : C → D sending an object C
to (C, 0), a morphism f to ( f, 0). Denote by G : D → C the projection functor. Then
(F,G) is an adjoint pair, and the defined monad M equals the identity monad on C, which
is separable. However, the comparison functor K is not an equivalence up to retracts.
Indeed, identifying M-ModC with C, the functor K might be identified with the projection
functor G. Hence, by Proposition 3.5 the functor G is not separable. Indeed, there is a
direct argument to prove this: since the functor G is not faithful, it is not separable.

(2) Let k be a field, and let A be a finite-dimensional k-algebra which is not separable. Let
C = k-Mod and D = A-Mod denote the categories of left k-modules and left A-modules,
respectively. Write F = A ⊗k −: C → D. Denote by G : D → C the forgetful functor.
Then (F,G) is an adjoint pair. The functor G is not separable by [12, Proposition 1.3(1)].
The comparison functor K is an isomorphism of categories. Hence, by Proposition 3.5
the defined monad M on C is not separable.

4 Applications to triangle equivalences

In this section, we apply the equivalence in Corollary 3.6 to obtain two triangle equivalences.
In particular, we obtain a comparison result between the derived category of the category
of equivariant objects and the category of equivariant objects in the derived category; see
Proposition 4.5.

4.1 .

Let A be an abelian category. A monad (M, η, μ) on A is exact if the endofunctor M : A → A
is exact, in particular, it is additive. In this case, the category M-ModA of M-modules is
abelian; indeed, a sequence of M-modules is exact if and only if the sequence of the underlying
objects is exact. It follows that both functors FM : A → M-ModA and G M : M-ModA → A
are exact.

We consider the bounded derived category Db(A). The exact monad (M, η, μ) extends
to a monad on the derived category, that is, the monad acts on complexes componentwise.
The resulting monad on Db(A) is still denoted by M . Since both the functors FM and
G M are exact, they extends to triangle functors Db(FM ) : Db(A) → Db(M-ModA) and
Db(G M ) : Db(M-ModA) → Db(A). They still form an adjoint pair, which defines the monad
M on Db(A). Therefore, we have the following comparison functor associated to the adjoint
pair (Db(FM ),Db(G M ))

K : Db(M-ModA) −→ M-ModDb(A).

The functor K sends a complex · · · → (Xn, λn) → (Xn+1, λn+1) → · · · to (X•, λ•), a
module of the monad M on Db(A).
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A note on separable functors and monads 49

Assume that the given exact monad M on A is separable. Then the corresponding monad
M on Db(A) is also separable. Indeed, the section σ for μ extends to the corresponding
section on Db(A) componentwise; moreover, it follows that the monad M on Db(A) is stably
separable in the sense of [1, Definition 3.5]. Recall that the bounded derived category Db(A) is
idempotent complete; see [2, Corollary 2.10]. Then we apply [1, Corollary 4.3] to obtain that
the category M-ModDb(A) carries a canonical pre-triangulated structure, that is, a triangulated
structure possibly without the octahedral axiom; indeed, a triangle in M-ModDb(A) is exact if
and only if the corresponding triangle of the underlying objects in Db(A) is exact. It follows
that the comparison functor K is a triangle functor.

We obtain the following triangle equivalence for separable exact monads, which is anal-
ogous to [1, Theorem 6.5].

Proposition 4.1 Let M be a monad on an abelian category A, which is exact and separable.
Then the comparison functor K : Db(M-ModA) → M-ModDb(A) is a triangle equivalence.

Proof We already proved that K is a triangle functor. By Lemmas 3.2 and 2.2(2), the functor
G M : M-ModA → A is separable and thus the counit εM : FM G M → IdM-ModA has a
section. The counit of the adjoint pair (Db(FM ),Db(G M )) is induced by εM , and thus also
has a section. Then Lemma 2.2 yields that the functor Db(G M ) : Db(M-ModA) → Db(A) is
separable. By [2, Corollary 2.10] the bounded derived category Db(M-ModA) is idempotent
complete. Then it follows from Corollary 3.6 that the comparison functor K is an equivalence.

��
Remark 4.2 We mention that if the unbounded derived categories involved are both idem-
potent complete, then the same result holds for unbounded derived categories.

4.2 .

In what follows, we apply Proposition 4.1 to obtain a more concrete triangle equivalence.
We assume temporarily that A is an arbitrary category. Let G be a finite group, which is

written multiplicatively and whose unit is denoted by e. We assume that there is a strict action
of G on A, that is, there is a group homomorphism from G to the automorphism group of A.
For g ∈ G and a morphism θ : X → Y in A, the action by g is denoted by gθ : g X → gY .
A G-equivariant object in A is a pair (X, α), where X is an object in A and α assigns for
each g ∈ G an isomorphism αg : X → g X subject to the relations g(αg′) ◦ αg = αgg′ . A
morphism θ : (X, α) → (Y, β) of two G-equivariant objects is a morphism θ : X → Y such
that βg ◦ θ = gθ ◦ αg for all g ∈ G. This gives rise to the category AG of G-equivariant
objects, and the forgetful functor U : AG → A defined by U (X, α) = X . For details, we
refer to [6,7,16].

Let A be an additive category. Then the forgetful functor U admits a left adjoint
F : A → AG which is defined as follows: for an object X , set F(X) = (⊕h∈G

h X , Id),
where Idg : ⊕h∈G

h X → g(⊕h∈G
h X) is the identity map for any g ∈ G; the functor F sends

a morphism θ : X → Y to ⊕h∈G
hθ : F(X) → F(Y ).

For an object X in A and an object (Y, β) in AG , a morphism F(X) → (Y, β) is of the
form

∑
h∈G θh : ⊕h∈G

h X → Y satisfying g(θh) = βg ◦θgh for any g, h ∈ G. The adjunction
of (F,U ) is given by the following natural isomorphism

HomAG (F(X), (Y, β)) −→ HomA(X,U (Y, β))

sending
∑

h∈G θh to θe. The corresponding unit η : IdA → U F is given such that ηX =
(IdX , 0, . . . , 0)t , where ‘t’ denotes the transpose; the counit ε : FU → IdAG is given such
that ε(Y,β) = ∑

h∈G β
−1
h .
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50 X.-W. Chen

The following fact seems well known, which might be deduced from the general theorem
of Beck in [10, VI.7]. For completeness, we provide a direct proof. We denote by M the
monad on A defined by the adjoint pair (F,U ).

Lemma 4.3 Let A be an additive category and G be a finite group acting on A strictly.
Then the adjoint pair (F,U ; η, ε) is strictly monadic. In particular, we may identify AG with
M-ModA.

Proof We compute the defined monad (M = U F, η, μ) of the adjoint pair (F,U ). Then
M(X) = ⊕h∈G

h X and M(θ) = ⊕h∈G
hθ for a morphism θ in A. The multiplication μ is

given by

μX = UεF(X) : M2(X) = ⊕h,g∈G
hg X −→ M(X) = ⊕h∈G

h X

with the property that the corresponding component hg X → h′
X is δhg,h′ Id

(h
′ X); here, δ is

the Kronecker symbol.
An M-module is a pair (X, λ) with λ = ∑

h∈G λh : M(X) = ⊕h∈G
h X → X . The

condition λ ◦ ηX = IdX is equivalent to λe = IdX , and λ ◦ M(λ) = λ ◦ μX is equivalent to
λhg = λh ◦ h(λg) for any h, g ∈ G. Hence, if we set αh : X → h X to be (λh)

−1, we obtain
an object (X, α) ∈ AG . Roughly speaking, the map λ carries the same information as α.

Indeed, the associated comparison functor K : AG → M-ModA sends (X, α) to (X, λ)
by λh = (αh)

−1. It follows immediately that K induces a bijection on objects, and is fully
faithful, thus an isomorphism of categories. ��

Let A be an additive category. A natural number n is said to be invertible in A provided
that for any morphism f : X → Y there exists a unique morphism g : X → Y such that
f = ng. This unique morphism is denoted by 1

n f . For example, if A is k-linear for a field k
whose characteristic does not divide n, then n is invertible in A; see [16, p. 255].

The third statement of the following result is an application of the results in [1].

Lemma 4.4 Let A be an additive category and G be a finite group acting on A strictly.
Assume that the order |G| of G is invertible in A. Then the following statements hold.

(1) The forgetful functor U : AG → A is separable.
(2) The monad M = U F on A is separable.
(3) Assume that A is a pre-triangulated category which is idempotent complete, and that

the action of G on A is given by triangle automorphisms. Then AG has a unique pre-
triangulated structure such that the forgetful functor U is a triangle functor.

Proof For (1), we apply Lemma 2.2(2), and thus it suffices to prove that the counit ε : FU →
IdAG admits a section ξ . We define a natural transformation ξ : IdAG → FU such that
ξ(X,α) = 1

|G|
∏

h∈G αh : (X, α) → (⊕h∈G
h X , Id). It follows that ε ◦ ξ = Id. The statement

(2) follows from Lemma 3.1.
For (3), we identify by Lemma 4.3 the category AG with M-ModA. By assumption the

monad M : A → A is a triangle functor and by (2) it is separable; it is indeed a stably
separable monad in the sense of [1, Definition 3.5] by the explicit construction of the section
ξ above; here, we use implicitly the fact that ξ commutes with the translation functor on A.
Then the statement follows from [1, Corollary 4.3]. ��

Let A be an abelian category. Assume that there is a strict G-action on A. Then the
category AG is abelian and the functors F : A → AG and U : AG → A are both exact. We
will consider the bounded derived category Db(AG). The strict action of G on A extends
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to Db(A). Then we have the forgetful functor U ′ : Db(A)G → Db(A) and its left adjoint
F ′ : Db(A) → Db(A)G .

We consider the following functor

K : Db(AG) −→ Db(A)G ,
sending a complex · · · → (Xn, αn) → (Xn+1, αn+1) → · · · in AG to a G-equivariant
object (X•, α•) in Db(A). Assume that |G| is invertible in A, and thus |G| is invertible in
Db(A). Then by Lemma 4.4(3) the category Db(A)G has a unique pre-triangulated structure
such that the forgetful functor U ′ : Db(A)G → Db(A) is a triangle functor. It follows that
the above functor K is a triangle functor.

The following comparison result extends the nice observation in [14, Lemma 1.1], where
extra conditions are put for the triangle equivalence; compare [13, 1.1].

Proposition 4.5 Let A be an abelian category and G be a finite group acting on A strictly.
Assume that the order |G| of G is invertible in A. Then the above functor K : Db(AG) →
Db(A)G is a triangle equivalence.

Proof We consider the monad M = U F on A, and identify AG with M-ModA by Lemma
4.3. Indeed, we identify the functors F with FM , and U with G M .

The monad M on A is exact and separable; see Lemma 4.4(2). Then it extends to a
separable monad M on Db(A). We observe that this extended monad M coincides with
the monad defined by the adjoint pair (F ′,U ′). Therefore, we may identify Db(A)G with
M-ModDb(A) by Lemma 4.3.

By these identifications, the above functor K coincides with the associated comparison
functor to the adjoint pair (Db(FM ),Db(G M )). Now the result follows from Proposition 4.1.

��
Remark 4.6 (1) Proposition 4.5 might still hold if the action is not strict. Here, we recall that

a (non-strict) action of a finite group G on A is a monoidal functor from G to the category
of endomorphism functors of A; here, G denotes the corresponding monoidal category
of G. For details, we refer to [7, Section 4]. We need to adapt Lemmas 4.3 and 4.4 for
non-strict actions; compare [16, Theorem 1.4], [9, Proposition 3.10] and [5, Proposition
3.1].

(2) The assumption on the invertibility of |G| in Proposition 4.5 is necessary. To see this,
we assume that A = k-Mod is the category of k-modules, where k is a field such
that its characteristic divides |G|. Take the trivial action of G on A, and thus AG is
isomorphic to the category kG-Mod of modules over the group algebra kG. The functor
K : Db(AG) → Db(A)G is not an equivalence; indeed, Db(AG) is a triangulated category
with non-split triangles, but Db(A)G is an abelian category with non-split extensions.
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