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Abstract

Model inversion (MI) attacks have raised increasing concerns
about privacy, which can reconstruct training data from pub-
lic models. Indeed, MI attacks can be formalized as an opti-
mization problem that seeks private data in a certain space.
Recent MI attacks leverage a generative adversarial network
(GAN) as an image prior to narrow the search space, and
can successfully reconstruct even the high-dimensional data
(e.g., face images). However, these generative MI attacks do
not fully exploit the potential capabilities of the target model,
still leading to a vague and coupled search space, i.e., dif-
ferent classes of images are coupled in the search space. Be-
sides, the widely used cross-entropy loss in these attacks suf-
fers from gradient vanishing. To address these problems, we
propose Pseudo Label-Guided MI (PLG-MI) attack via con-
ditional GAN (cGAN). At first, a top-n selection strategy is
proposed to provide pseudo-labels for public data, and use
pseudo-labels to guide the training of the cGAN. In this way,
the search space is decoupled for different classes of images.
Then a max-margin loss is introduced to improve the search
process on the subspace of a target class. Extensive experi-
ments demonstrate that our PLG-MI attack significantly im-
proves the attack success rate and visual quality for various
datasets and models, notably, 2 ∼ 3× better than state-of-
the-art attacks under large distributional shifts. Our code is
available at: https://github.com/LetheSec/PLG-MI-Attack.

1 Introduction
Deep neural networks (DNNs) have revolutionized a wide
variety of tasks, including computer vision, natural language
processing, and healthcare. However, many practical appli-
cations of DNNs require training on private or sensitive
datasets, such as facial recognition (Taigman et al. 2014)
and medical diagnosis (Rajpurkar et al. 2017), which may
pose some privacy threats. Indeed, the prior study of privacy
attacks has demonstrated the possibility of exposing unau-
thorized information from access to a model (Shokri et al.
2017; Gopinath et al. 2019; Tramèr et al. 2016; Fredrikson,
Jha, and Ristenpart 2015). In this paper, we mainly focus on
model inversion (MI) attacks, a type of privacy attack that
aims to recover the training data given a trained model.
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Figure 1: Latent search space for different MI attacks.
The blue area represents the latent space that needs to be
searched to reconstruct a certain class of images. That is, the
adversary should find an optimal latent point in the blue area,
so that the generator outputs the private image of a specified
class.

Typically, MI attacks can be formalized as an optimiza-
tion problem with the goal of searching the input space for
the sensitive feature value that achieves the highest like-
lihood under the target model. However, when attacking
DNNs trained on more complex data (e.g., RGB images),
directly solving the optimization problem via gradient de-
scent tends to stuck in local minima, resulting in recon-
structed images lacking clear semantic information. Recent
work (Zhang et al. 2020) proposed generative MI attacks
(GMI), which used a generative adversarial network (GAN)
to learn a generic prior of natural images, avoiding recon-
structing private data directly from the unconstrained space.
Generally, generative MI attacks can be summarized as the
following two search stages:

• stage-1: Generator Parameter Space Search. The adver-
sary trains a generative model (i.e., searches for the op-
timal parameters) on a public dataset that only shares
structural similarity with the private dataset.

• stage-2: Latent Vector Search. The adversary keeps
searching the latent space of the generator trained in
stage-1, until the output is close to the images in the pri-
vate dataset.

Notably, GMI totally ignored the potential capability of
the target model for the training process. Inspired by semi-
supervised GAN (Salimans et al. 2016), KED-MI (Chen
et al. 2021) adopted a classifier as the GAN discriminator
and utilized the target model to provide soft labels for public



data during the training process in stage-1, which achieved
the state-of-the-art MI attack performance. Even so, the at-
tack performance is still underwhelming, especially when
public and private data have a large distributional shift. We
infer possible limitations of existing work as follows:

1) Class-Coupled Latent Space. The generator obtained
by existing work in stage-1 is class-coupled. When the
adversary reconstructs a specified class of target in stage-
2, it needs to search in the latent space of all classes,
which easily causes confusion of feature information be-
tween different classes (see Fig. 1).

2) Indirectly Constrains on the Generator. The KED-
MI attack adopts the semi-supervised GAN framework,
which indirectly constrains the generator with class infor-
mation through the discriminator. However, this implicit
constraint relies too much on the discriminator and lacks
task specificity for MI.

3) Gradient Vanishing Problem. Previous MI attacks have
commonly adopted cross-entropy (CE) loss as the opti-
mization goal in stage-2. However, the cross-entropy loss
will cause the gradient to decrease and tend to vanish as
the number of iterations increases, resulting in the search
process to slow down or even stop early.

To address the above limitations, we propose a novel
pseudo label-guided MI (PLG-MI) attack. Specifically, we
first propose a simple but effective top-n selection strategy,
which can provide pseudo-labels for public data. Then we
introduce the conditional GAN (cGAN) to MI attacks and
use the pseudo-labels to guide the training process, enabling
it to learn more specific and independent image distributions
for each class. In addition, we also impose a task-specific
explicit constraint directly on the generator so that class in-
formation can be embedded into the latent space. This con-
straint can force images to be generated towards specific
classes in the private data. As shown in Fig. 1, it can be
considered as an approximate division of the GAN latent
space into separate class subspaces. When reconstructing the
private data of an arbitrary class in stage-2, only the corre-
sponding subspace needs to be searched, which avoids con-
fusion between different classes.

Our contributions can be summarized as follows:

• We propose Pseudo Label-Guided MI (PLG-MI) attack,
which can make full use of the target model and leverage
pseudo-labels to guide the output of the generator during
the training process.

• We propose a simple but effective strategy to provide
public data with pseudo-labels, which can provide cor-
responding features according to specific classes in the
private dataset.

• We demonstrate the gradient vanishing problem of cross-
entropy loss commonly adopted in previous MI attacks
and use max-margin loss to mitigate it.

• Extensive experiments demonstrate that the PLG-MI at-
tack greatly boosts the MI attack and achieves state-of-
the-art attack performance, especially in the presence of a
large distributional shift between public and private data.
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Figure 2: Top-n selection strategy. Input the images of public
data into the target model and select the top n images with
the highest confidence for each class. The right half shows
images of the corresponding class in the private dataset.

2 Related Work
Basic Model Inversion Attacks. Fredrikson et al.
(Fredrikson et al. 2014) first studied MI attacks in the con-
text of genomic privacy and demonstrated that access to
linear regression models for personalized medicine can be
abused to recover private genomic properties of individuals
in the training dataset. Fredrikson et al. (Fredrikson, Jha,
and Ristenpart 2015) later proposed an optimization algo-
rithm based on gradient descent for MI attacks, which can
recover grayscale face images from shallow networks. How-
ever, these basic MI attacks that reconstruct private data di-
rectly from the pixel space failed when the target models are
DNNs.

Generative Model Inversion Attacks. To make it possi-
ble to launch MI attacks against DNNs, Zhang et al. (Zhang
et al. 2020) proposed generative model inversion (GMI) at-
tacks, which trained a GAN on public data as an image
prior and then restricted the optimization problem in the la-
tent space of the generator. Wang et al. (Wang et al. 2021)
proposed viewing MI attacks as a variational inference (VI)
problem and provided a framework using deep normalizing
flows in the extended latent space of a StyleGAN (Karras
et al. 2020). Chen et al. (Chen et al. 2021) adopted the semi-
supervised GAN framework to improve the training process
by including soft labels produced by the target model. Kahla
et al. (Kahla et al. 2022) extended generative MI attacks to
black-box scenarios where only hard labels are available.

3 Method
In this section, we will first discuss the threat model and then
present our attack method in detail.

3.1 Threat Model
Adversary’s Goal. Given a target model T : [0, 1]d →
R|C| and an arbitrary class c∗ ∈ C, the adversary aims to
reconstruct a representative sample x∗ of the training data
of the class c∗; d represents the dimension of the model in-
put; C denotes the set of all class labels of the training data
and |C| is the size of the label set. It should be emphasized
that the reconstructed data need to have good semantic in-
formation for human recognition. In this paper, we focus on
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Figure 3: The overall pipeline of the proposed two-stage model inversion attack algorithm. Stage 1: Train a conditional GAN
on the public data with guidance provided by pseudo-labels and knowledge of the target model. Stage 2: Leverage the trained
generator to reconstruct the specific class of private images using Linv .

the attack against face recognition models, that is, the ad-
versary’s goal is to reconstruct its corresponding face image
from the target model according to the specified identity.

Adversary’s Knowledge. In this paper, we focus on
white-box MI attacks, which means that the adversary can
have access to all parameters of the target model. In addi-
tion, following the settings in previous work (Zhang et al.
2020; Chen et al. 2021; Kahla et al. 2022), the adversary can
gain a public dataset of the target task that only shares struc-
tural similarity with the private dataset without any inter-
secting classes. For example, the adversary knows the target
model is for face recognition, he can easily leverage an ex-
isting open-sourced face dataset or crawl face images from
the Internet as the public data.

3.2 Pseudo-Labels Generation
Top-n Selection Strategy. In order to make the public data
have pseudo-labels to guide the training of the generator, we
propose a top-n selection strategy, as shown in Fig. 2. This
strategy aims to select the best matching n images for each
pseudo-label from public data. These pseudo-labels corre-
spond to classes in the private dataset. Specifically, we feed
all images in public data into the target model and get the
corresponding prediction vectors. Then for a certain class k,
we sort all images in descending order of kth value in their
prediction vectors and select the top n images to assign the
pseudo-label k.

Generally, if the target model has high confidence in the
kth class for a certain image, this image can be considered
to contain discriminative features of the kth class. We define
F k
pri and F k

pub as the distributions of discriminative features
contained in the kth class of private data and pseudo-labeled
public data. It can be inferred that F k

pub and F k
pri have in-

tersection, which means that the adversary can obtain the
required information by sufficiently searching F k

pub, making
the private information in F k

pri leaked more easily and accu-
rately.

Narrow the Search Space via Pseudo-Labels. This strat-
egy can narrow the search space of latent vectors in stage-2.

Specifically, after reclassifying the public data, we can di-
rectly learn the feature distribution of images for each class.
When reconstructing images of the kth class in the private
dataset, it is only necessary to search for required features in
F k
pub, while reducing the interference of irrelevant features

from F i ̸=k
pub . Taking face recognition as an example, suppose

that the kth class of the private dataset is a young white man
with blond hair, then the kth class of the pseudo-labeled pub-
lic data is also mostly white people with blond hair, as shown
in Fig. 2. Consequently, the key features can be preserved
and the useless features (e.g., other skin tones or hair colors,
etc.) are eliminated, thereby narrowing the search space.

3.3 Pseudo Label-Guided MI Attack
An overview of our attack is illustrated in Fig. 3, which con-
sists of two stages. In stage-1, we train a conditional GAN
on public data under the guidance of pseudo-labels. In stage-
2, we use the trained generator to reconstruct private images
of specified classes.

Problem Formulation. At first, we formulate the MI
problem in the context of image classification (i.e., face
recognition) with DNNs. We use Ds to denote the private
dataset with sensitive information and Dp to denote the pub-
lic dataset available to the adversary. Then using the top-n
selection strategy to obtain a pseudo-labeled public dataset
Dr. We denote a sample image as x ∈ Ds, and its corre-
sponding label as y ∈ {1, . . . ,K}, where K denotes the
number of classes. Note that the original Dp does not have
any class intersection with Ds, while the Dr has the pseudo-
labels ỹ ∈ {1, . . . ,K}. In the typical case, the target model
T will be trained on Ds to learn the mapping from the input
space to the probability vectors.

In generative MI attacks, the adversary uses Dp to train
a GAN and then optimizes the input to the generator, in-
stead of directly optimizing from the pixel space. Denote
the trained generator by G(z), where z ∼ N (0, 1) is the la-
tent vector. The optimization problem can be formulated as
follows:

z∗ = argmin
ẑ

Linv(T (G(ẑ)), c), (1)



KED-MI

Private

Ours

Public

Figure 4: Visual comparison for attacking VGG16 trained on CelebA. The first row shows ground truth images of target identity
in the private data. The second row shows the images from the public data with the highest confidence in the target identity.
The third and last rows demonstrate the reconstructed images of the target identity using KED-MI and our attack, respectively.

where c is the target class in Ds, and Linv is a classification
loss (e.g., cross-entropy). Then the reconstructed images can
be obtained by x∗ = G(z∗).

Pseudo Label-Guided cGAN. Although existing genera-
tive MI attacks (Zhang et al. 2020; Chen et al. 2021) can
learn a prior of natural images, they do not take into account
the possible effects of class labels, thus causing all classes
to be coupled together in the latent space. This makes it dif-
ficult to directly search for private images of the specified
class. As mentioned before, in order to narrow the search
space and conduct a more independent latent search process.
We propose to train a conditional GAN (Miyato and Koyama
2018) to model the feature distribution of each class and use
pseudo-labels to guide the direction of the generated images.

Formally, for training the discriminator in the cGAN, we
use a hinge version of the standard adversarial loss:

LD =Eq(ỹ)

[
Eq(x|ỹ)[max(0, 1−D(x, ỹ)]]+

Eq(ỹ)

[
Ep(z)[max(0, 1 +D(G(z, ỹ), ỹ))],

(2)

where q(ỹ) and q(x|ỹ) are the pseudo-label distribution of
Dr and the image distribution in the corresponding class,
respectively. p(z) is standard Gaussian distribution and
G(z, ỹ) is the conditional generator.

To make the generated image more accurate, we use the
pseudo-labels ỹ of Dr to impose an explicit constraint on
the generator. The constraint, in principle, guides the gener-
ated images to belong to a certain class in the private dataset.
Besides, we add a stochastic data augmentation module that
performs random transformations on the generated images,
including resizing, cropping, horizontal flipping, rotation,
and color jittering. This module provides more stable con-
vergence to realistic images while constraining. Then the
loss function for the generator can be defined as:

LG =− Eq(ỹ)

[
Ep(z) [D(G(z, ỹ), ỹ))]

]
+

αLinv(T (A(G(z, ỹ))), ỹ),
(3)

where T is the target model being attacked, A is a set of
random augmentations, Linv is the max-margin loss which
we will introduce later, and α is a regularization coefficient.

Image Reconstruction. After getting the GAN trained on
the public data, we can use it to reconstruct images of a spec-
ified class in the private dataset, as shown in the right half
of Fig. 3. Specifically, given a target class c, we aim to search
for appropriate latent vectors, so that the generated images
constantly approach the images in c. Since we use a con-
ditional generator, only the subspace of the specified class
needs to be searched. In order to ensure that reconstructed
images are not deceptive (e.g., adversarial example) or just
stuck in a local minimum, we transform generated images
randomly resulting in multiple correlated views. Intuitively,
if the reconstructed image truly reveals key discriminative
features of the target class, its class should remain consistent
across these views. The objective can be defined as follows:

z∗ = argmin
ẑ

m∑
i=1

Linv(T (Ai(G(ẑ, c))), c), (4)

where ẑ is the latent vector to be optimized, Linv is the max-
margin loss, Ai is a set of random data augmentations, and
m is the number of augmented views. Then we can obtain
the reconstructed images by x∗ = G(z∗, c).

3.4 A Better Loss for MI Attacks
Gradient Vanishing Problem. Existing MI attacks have
commonly adopted the cross-entropy (CE) loss as Linv .
During attack optimization, the CE loss will cause the gradi-
ent to decrease and tend to vanish as the number of iterations
is increased. For the target class c, the derivative of cross-
entropy loss LCE with respect to the output logits o can be
derived as (see Appendix for derivation):

∂LCE

∂o
= p− yc. (5)

Here, p is the probability vector of the softmax output, that
is p = [p1, p2, . . . , pK ], pc ∈ [0, 1] denotes the predicted



VGG16 ResNet-152 Face.evoLVe
GMI KED-MI Ours GMI KED-MI Ours GMI KED-MI Ours

Attack Acc ↑ .21±.0028 .63±.0018 .97±.0001 .31±.0035 .74±.0028 1.±.0000 .29±.0030 .74±.0013 .99±.0001
Top-5 Attack Acc ↑ .42±.0021 .87±.0015 1.±.0000 .55±.0045 .93±.0006 1.±.0000 .54±.0040 .94±.0009 1.±.0000

KNN Dist ↓ 1712.57 1391.52 1120.61 1630.25 1323.16 1026.71 1638.94 1310.15 1103.03
FID ↓ 42.86 30.92 18.63 42.50 26.23 23.22 41.53 27.92 26.75

Table 1: Attack performance comparison on various models trained on CelebA. ↑ and ↓ respectively symbolize that higher and
lower scores give better attack performance.

FFHQ → CelebA FaceScrub → CelebA
Attack Acc ↑ Attack Acc 5 ↑ KNN Dist ↓ FID↓ Attack Acc ↑ Attack Acc 5 ↑ KNN Dist↓ FID↓

VGG16
GMI .11±.0009 .27±.0048 1771.34 57.05 .02±.0004 .07±.0008 1997.16 150.19

KED-MI .34±.0026 .62±.0015 1555.57 49.51 .05±.0008 .14±.0006 1772.85 97.56
Ours .89±.0006 .97±.0002 1284.16 27.32 .55±.0020 .77±.0012 1474.22 27.99

Face.evoLVe
GMI .13±.0009 .31±.0028 1739.88 56.66 .03±.0004 .10±.0012 1918.40 112.96

KED-MI .47±.0021 .74±.0013 1489.67 44.48 .09±.0006 .24±.0019 1712.31 99.78
Ours .95±.0004 .99±.0001 1241.41 25.57 .57±.0013 .78±.0012 1502.82 34.10

ResNet-152
GMI .17±.0026 .37±.0030 1687.82 47.11 .04±.0011 .14±.0020 1865.44 109.16

KED-MI .74±.0028 .93±.0006 1323.16 26.23 .15±.0011 .36±.0020 1636.81 72.72
Ours 1.±.0000 1.±.0000 1026.71 23.22 .68±.0020 .87±.0011 1360.67 27.49

Table 2: Attack performance comparison in the presence of a large distributional shift between public and private data. A → B
represents the GAN and target model trained on datasets A and B, respectively.

probability of class c. yc is the one-hot encoded vector of
class c, that is, yc = [01, . . . , 1c, . . . , 0K ]. Then, Eq. (5) can
be rewritten as:

∂LCE

∂o
= [p1, . . . , pc − 1, . . . pK ] . (6)

According to Eq. (6), as the generated image gradually ap-
proaches the target class during optimization, pc will quickly
reach 1 while pi ̸=c will continue to decrease to 0. Eventually,
this changing trend will cause the gradient of LCE to vanish,
making it difficult to search the latent vector of the generator.

Max-Margin Loss. To address this problem, we propose
to replace the CE loss with the max-margin loss, which
has been used in adversarial attacks to produce stronger at-
tacks (Carlini and Wagner 2017; Sriramanan et al. 2020). In
addition, we eliminate the softmax function and optimize the
loss directly on the logits. The max-margin loss LMM we use
as Linv is as follows:

LMM = −lc(x) + max
j ̸=c

lj(x), (7)

where lc denotes the logit with respect to the target class c.
For the target class c, the derivative of LMM with respect to
the logits can be derived as (see Appendix for derivation):

∂LMM

∂o
= yj − yt, (8)

where yj and yt represent one-hot encoded vectors, so the
elements of the gradient consist of constants, thus avoiding
gradient vanishing problem. Moreover, max-margin loss en-
courages the algorithm to find the most representative sam-
ple in the target class while also distinguishing it from other
classes. Compared with the cross-entropy loss, max-margin
loss is more in line with the goal of MI attacks (further com-
parisons are given in the Appendix).

4 Experiments
In this section, we first provide a detailed introduction of
the experimental settings. To demonstrate the effectiveness
of our methods, we evaluate the proposed PLG-MI attack
from several perspectives. The baselines that we will com-
pare against are GMI proposed in (Zhang et al. 2020) and
KED-MI proposed in (Chen et al. 2021), the latter achieved
the state-of-the-art result for attacking DNNs.

4.1 Experimental Setting
Datasets. For face recognition, we select three widely
used datasets for experiments: CelebA (Liu et al. 2015),
FFHQ (Karras, Laine, and Aila 2019) and FaceScrub (Ng
and Winkler 2014). CelebA contains 202,599 face images
of 10,177 identities with coarse alignment. FFHQ consists
of 70,000 high-quality PNG images and contains consid-
erable variation in terms of age, ethnicity and image back-
ground. FaceScrub is a dataset of URLs for 100,000 images
of 530 individuals. Similar to previous work (Zhang et al.
2020; Chen et al. 2021; Kahla et al. 2022), we crop the im-
ages of all datasets at the center and resize them to 64× 64.
More experiments on MNIST (LeCun et al. 1998), CIFAR-
10 (Krizhevsky, Hinton et al. 2009) and ChestX-Ray (Wang
et al. 2017) can be found in the Appendix.

Models. Following the setting of the state-of-the-art MI at-
tack (Chen et al. 2021), we evaluate our attack on three deep
models with various architectures: (1) VGG16 (Simonyan
and Zisserman 2014); (2) Face.evoLVe (Cheng et al. 2017);
and (3) ResNet-152 (He et al. 2016).

Implementation Details. In the standard setting, previous
MI attacks usually split the dataset into two disjoint parts:



FaceScrub → CelebA VGG16 Face.evoLVe ResNet-152
Attack Acc ↑ KNN Dist ↓ FID ↓ Attack Acc ↑ KNN Dist ↓ FID ↓ Attack Acc ↑ KNN Dist ↓ FID ↓

VGG16 KED-MI .05±.0008 1772.85 97.56 .10±.0006 1694.13 87.79 .12±.0009 1638.34 87.24
Ours .55±.0020 1474.22 27.99 .76±.0017 1356.23 25.57 .81±.0016 1282.36 23.74

Face.evoLVe KED-MI .05±.0006 1773.14 103.00 .09±.0006 1712.31 99.78 .13±.0018 1646.85 96.04
Ours .54±.0019 1472.86 31.16 .57±.0013 1502.82 34.10 .71±.0015 1390.84 27.84

ResNet-152 KED-MI .06±.0004 1776.78 107.75 .12±.0012 1697.37 88.28 .15±.0011 1636.81 72.72
Ours .57±.0019 1427.91 28.35 .68±.0026 1385.99 27.30 .68±.0020 1360.67 27.49

Table 3: Attack performance comparison when using models with different architectures in the GAN training stage and the
image reconstruction stage. The public dataset is FaceScrub which has a larger distributional shift with CelebA.

one part used as the private dataset to train the target model
and the other as the public dataset. For training the tar-
get model, we use 30,027 images of 1,000 identities from
CelebA as the private dataset. The disjoint part of CelebA
is used to train the generator. However, this setting is too
easy under our stronger PLG-MI attack. Therefore we focus
on the scenario where the public dataset has a larger distri-
butional shift with the private dataset, i.e., using two com-
pletely different datasets. Specifically, we use FFHQ and
FaceScrub as public datasets respectively to train the gen-
erator. We set n = 30 for the top-n selection strategy, that
is, each public dataset consists of 30,000 selected images
that are reclassified into 1,000 classes by pseudo-labels. In
stage-1, the GAN architecture we use is based on (Miyato
and Koyama 2018). We apply spectral normalization (Miy-
ato et al. 2018) to the all of the weights of the discriminator
to regularize the Lipschitz constant. To train the GAN, we
used Adam optimizer with a learning rate of 0.0002, a batch
size of 64 and β = (0, 0.9). The hyperparameter α in Eq. (3)
is set to 0.2. In stage-2, we use the Adam optimizer with a
learning rate of 0.1 and β = (0.9, 0.999). The input vector
z of the generator is drawn from a zero-mean unit-variance
Gaussian distribution. We randomly initialize z for 5 times
and optimize each round for 600 iterations.

4.2 Evaluation Metrics
The evaluation of the MI attack is based on the similarity
of the reconstructed image and the target class image in the
human-recognizable features. In line with previous work, we
conducted both qualitative evaluation through visual inspec-
tion as well as quantitative evaluation. Specifically, the eval-
uation metrics we used are as follows.

Attack Accuracy (Attack Acc). We first build an evalua-
tion model, which has a different architecture from the tar-
get model. We then use the evaluation model to compute the
top-1 and top-5 accuracy of the reconstructed image on the
target class. Actually, the evaluation model can be viewed
as a proxy for a human observer to judge whether a recon-
struction captures sensitive information. We use the model
in (Cheng et al. 2017) for evaluation, which is pretrained on
MS-Celeb1M (Guo et al. 2016) and then fine-tuned on train-
ing data of the target model.

K-Nearest Neighbor Distance (KNN Dist). Given a tar-
get class, we computed the shortest feature distance from a
reconstructed image to the private images. The distance is

measured by the ℓ2 distance between two images in the fea-
ture space, i.e., the output of the penultimate layer of the
evaluation model. A lower value indicates that the recon-
structed image is closer to the private data.

Fréchet Inception Distance (FID). FID (Heusel et al.
2017) is commonly used in the work of GAN to evaluate the
generated images. Lower FID values indicate that the recon-
structed images have better quality and diversity, making it
easier for humans to identify sensitive features in them. Fol-
lowing the baseline setting, we only compute FID values on
images where the attack is successful.

4.3 Experimental Results
Standard Setting. We first study the standard setting, i.e.,,
dividing the CelebA dataset into a private dataset and a pub-
lic dataset. As shown in Table 1, our method outperforms the
baselines on all three models. The reconstructed images pro-
duced by our PLG-MI attack can achieve almost 100% accu-
racy on the evaluation model (i.e., Attack Acc), which out-
performs the state-of-the-art method on average by approxi-
mately 30%. Our method is also vastly superior in FID and
KNN Dist, significantly improving the visual quality and the
similarity of reconstructed images to private datasets.

Fig. 4 shows the visual comparison of different methods.
Compared with KED-MI, for different identities in the pri-
vate dataset, our reconstructed images not only have more
similar semantic features to the ground truth images, but are
also more realistic. The second row shows the images of the
public data with the highest confidence in the corresponding
identity of the target model. We use the confidence as the
basis for providing pseudo-labels in the top-n selection strat-
egy. In most cases, the images selected by the strategy can
provide some of the characteristic features needed to recon-
struct the identity, such as gender, hair color and skin tone.
But in terms of details, it can still be easily distinguished that
they are not the same identity. Therefore, the optimization
process of stage-2 is also very critical, and these candidate
features will be further filtered and reorganized to increas-
ingly resemble the target identity.

Larger Distributional Shifts. To further explore scenar-
ios where the baselines performed poorly, we conducted ex-
periments in the setting with larger distributional shifts. As
shown in Table 2, GMI and KED-MI achieve the Attack Acc
of 17% and 74% when exploiting FFHQ to attack ResNet-
152, respectively. Since they do not fully explore the capa-
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Figure 5: (a)-(b) Attack performance with different Linv and top-n selection strategy, respectively. (c) Attack Acc and FID with
constraints of various strengths in Eq. (3). (d) Attack Acc and FID with various numbers of augmentations in Eq. (4). (c) and
(d) use FaceScrub as the public dataset.

bility in the target model, the performance is poor in this
more difficult setting. Compared with them, our PLG-MI at-
tack achieves 89% Attack Acc when attacking VGG16 us-
ing FFHQ as public data, which is about 2.5 times higher
than KED-MI. And the Attack Acc reaches more than 95%
when attacking both Face.evoLVe and ResNet-152. In addi-
tion, there is a significant improvement in the FID for eval-
uating visual quality (e.g., a reduction from 49.51 to 27.32).

It should be emphasized that in the case of using Face-
Scrub as the public dataset, both GMI and KED-MI only
obtain an almost failed attack performance. However, our
method still maintains a high attack success rate, on average
50% higher than KED-MI on Attack Acc. As for the FID,
our method maintains a low value in all cases, with an av-
erage reduction of about 3 times relative to KED-MI. The
lower KNN Dist also shows that our method can reconstruct
more accurate private images.

The results of FFHQ as public data are generally better
than those of FaceScrub. The possible reason is that Face-
Scrub consists of face images crawled from the Internet,
which is more different from the distribution of CelebA. Fur-
thermore, we find that the degree of privacy leakage under
MI attacks varies between model architectures. In our ex-
periments, ResNet-152 is more likely to leak information in
private datasets compared to VGG16 and Face.evoLVe. This
phenomenon deserves further study in future work.

Generality of the GAN. The adversary may simultane-
ously perform MI attacks against multiple available target
models to verify the correctness of the reconstructed im-
age for the target identity. However, it will be very time-
consuming to train a GAN separately for a specific tar-
get model each time. Therefore, we explore a new scenario
where the architecture of the classifier used to help train the
GAN is different from that of the target model.

Table 3 compares the results of our method with those
of the baselines. Our method yields clearly superior results
for all three models under various evaluation metrics. When
using VGG16 to provide prior information to train a gener-
ator in stage-1, and using it to attack ResNet-152 in stage-2,
our method achieves 81% Attack Acc, while KED-MI only
achieves 12%. In addition, the FID of KED-MI is approxi-
mately 3 times higher on average than ours.

The experimental results of this scenario illustrate that re-

gardless of the architecture of the models, our method is able
to extract general knowledge to help recover sensitive infor-
mation. Specifically, the generality of our cGAN can greatly
improve the efficiency of attacks when there are multiple
target models to be attacked.

Ablation study. We further investigate the effects of the
various components and hyperparameters in PLG-MI and
conduct attacks against VGG16 trained on CelebA using
FaceScrub or FFHQ as the public dataset. As shown in Fig. 5
(a), we compare the impact of different Linv used in MI at-
tacks. Using the max-margin loss brings a significant im-
provement on Attack Acc, especially when the distributional
shift is larger (i.e., the public dataset is FaceScrub). Fig. 5 (b)
presents the results of using different n in the top-n selection
strategy, its value has no significant impact on the attack per-
formance, indicating that the strategy is not sensitive to n.
Fig. 5 (c) shows the attack performance and visual quality
when imposing explicit constraints of various strengths on
the generator and α = 0.2 is optimal among them. Fig. 5 (d)
shows that the data augmentation module in stage-2 has a
great influence on improving the Attack Acc and the visual
quality of reconstructed images. However, when the number
of augmentations is greater than 2, the improvement in at-
tack performance is small, but the attack efficiency will be
reduced. Thus we finally force the reconstructed images to
maintain identity consistency after 2 random augmentations.

5 Conclusion
In this paper, we propose a novel MI attack method, namely
PLG-MI attack. We introduce the conditional GAN and
use pseudo-labels provided by the proposed top-n selection
strategy to guide the training process. In this way, the search
space in the stage of image reconstruction can be limited to
the subspace of the target class, avoiding the interference of
other irrelevant features. Moreover, we propose to use max-
margin loss to overcome the problem of gradient vanishing.
Experiments show that our method achieves the state-of-the-
art attack performance on different scenarios with various
model architectures. For future work, the black-box MI at-
tack is still in its infancy, and the idea of our method can be
transferred to the black-box scenario to further improve its
performance.
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A Appendix
A.1 The Derivatives of Cross-Entropy Loss and

Max-Margin Loss
Cross-Entropy Loss We define the CE loss for the K-
classification task as follows:

L = −
K∑
i=1

yi log (pi) , (9)

where yi denotes the one-hot encoded vector of class i, in
which only the ith element yi is 1, and the rest are 0. (i.e.,
yi = [01, . . . , 1i, . . . , 0K ]). Thus, for the specified target
class t, Eq. (9) can be rewritten as:

L = − log(pt). (10)

Here, we denote the logits of the model output as o =
[o1, . . . , ot, . . . , oK ], and denote the softmax output (i.e.,
probability vector) as p = [p1, . . . , pt, . . . , pK ]. Then, the
derivative of the CE Loss (L) with respect to the logits (o) is
as follow:

∂L
∂o

=
∂L
∂p

∂p

∂o
. (11)

It can be seen from Eq. (10) that L is only related to pt, so
we can get:

∂L
∂p

=

[
01, . . . ,−

1

pt
, . . . , 0K

]
. (12)

And ∂p
∂o of Eq. (11) is a Jacobian matrix, as follows:

∂p

∂o
=



∂p1

∂o1

∂p1

∂o2
· · · ∂p1

∂oK
...

...
. . .

∂pj

∂o1

∂pj

∂o2
· · · ∂pj

∂oK
...

...
. . .

∂pK

∂o1

∂pK

∂o2
· · · ∂pK

∂oK


. (13)

As only the element in row t is not 0 in Eq. (13), we arrive
at:

∂LCE

∂o
=

∂LCE

∂p

∂p

∂o
= − 1

pt

∂pt
∂o

where pt =
eoj∑K
i=1 e

oi
.

(14)

With Eq. (14), for the case where i ̸= t, the derivative of CE
loss is as follows:

∂L

∂oi
=

∂L

∂pt

∂pt
∂oi

=
∂L

∂pt

0− eoteoi(∑K
i=1 e

oi

)2

= (− 1

pt
)(−ptpi)

= pi.

(15)

And for the case where i = t, the derivative of CE loss is as
follows:

∂L

∂oi
=

∂L

∂pt

∂pt
∂oi

=
∂L

∂pt

eot
∑K

i=1 e
oi − eoteot(∑K

i=1 e
oi

)2

= (− 1

pt
)
(
pt − p2t

)
= pt − 1.

(16)

From Eq. (15) and Eq. (16), we derive the final derivative of
CE loss as:

∂L

∂o
= [p1, . . . , pt − 1, . . . pK ]

= [p1, . . . , pt, . . . pK ]− [01, . . . , 1t, . . . , 0K ]

= p− yt.

(17)

Max-Margin Loss. Without loss of generality, we can de-
fine the max-margin loss for a target class t as follows:

L = oj − ot, (18)
where j = argmaxi ̸=t oi indicates the highest class except
for the target class t. We denote the derivative of L to the
logits o as ∂L

∂o . It can be deduced that ∂L
∂oi

= 0 when i ̸= j

and i ̸= t, and ∂L
∂oi

is 1 and −1 when i = j and i = t,
respectively. Thus, we finally derive at:

∂L

∂o
= yj − yt. (19)

A.2 Experiments on Other Datasets
We also perform MI attacks on the digit recognition task, the
object classification task, and the disease prediction task, us-
ing the MNIST (LeCun et al. 1998), CIFAR-10 (Krizhevsky,
Hinton et al. 2009), and ChestX-Ray (Wang et al. 2017)
datasets for experiments, respectively.

Experimental Details. For MNIST and CIFAR-10, we
use the images in the training data with labels 0, 1, 2, 3,
and 4 as the private data, containing 30,596 and 25,000 im-
ages, respectively. The rest images with labels 5, 6, 7, 8, and
9 are used as the public data, containing 29,404 and 25,000
images, respectively. We adopt ResNet-18 trained on the pri-
vate data as the target model. As for the evaluation model,
we train VGG16 on the original training data instead of the
private data to better distinguish deceptive reconstructed im-
ages. For ChestX-Ray, we use 14 classes of images with dis-
eases as the private data to train the target model ResNet-
18. Then, we randomly select 20,000 images from the class
with the label “NoFinding” (i.e., no disease) as the public
data to train the evaluation model ResNet-34. Furthermore,
we also use a different COVID19 dataset (Cohen, Morrison,
and Dao 2020) with 21,165 images as the public data. All
images from above datasets are resized to 64 × 64. n for
the top-n selection strategy is set to 4,000 for MNIST and
CIFAR-10, and 1,000 for ChestX-Ray. The learning rates in
stage-2 are set to 0.1 and 0.001, respectively, for 300 itera-
tions. We reconstruct 100 images per class for MNIST and
CIFAR-10, and 10 images per class for Chest-X-ray.
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Figure 6: The digit “3” samples of MNIST reconstructed by
the baseline and our method.

Experimental Results. As shown in Table 4, our method
comprehensively outperforms the baselines by a large mar-
gin on MINST and CIFAR-10 datasets. When attacking the
digit recognition model trained on MNIST, GMI performs
very poorly. Although KED-MI can slightly improve the at-
tack accuracy, it cannot reconstruct the private images of the
digit “3” well, as shown in Fig. 6. In contrast, our method re-
duces interference between different classes, thus allowing
private images to be reconstructed with good visual quality
on each class. Similar visual comparisons on CIFAR-10 are
also shown in Fig. 7. Our method not only significantly out-
performs GMI and KED-MI in terms of image realism, but
also recovers more accurate semantic information of private
classes. It is difficult for GMI to reconstruct accurate private
images, while KED-MI tends to reconstruct deceptive im-
ages that can be classified by the target model but have few
human-recognizable features.

The results of ChestX-Ray are shown in Table 5. Com-
pared to KED-MI, our method improves the attack accu-
racy by an average of 12% under the two different public
datasets. Meanwhile, the FID is even reduced from 109.41
to 47.51 when the public data is COVID19. We also provide
the visual comparison of the private data reconstructed by
KED-MI and our method, as shown in Fig. 8.

Attack Acc ↑ KNN Dist ↓ FID ↓

MNIST
GMI .03±.0054 171.18 137.53

KED-MI .29±.0228 78.67 116.47
Ours .60±.0465 38.33 77.68

CIFAR10
GMI .11±.0173 38.50 198.18

KED-MI .50±.0392 15.49 141.18
Ours .76±.0318 5.11 83.43

Table 4: Attack performance comparison on MNIST and CI-
FAR10.

Analysis on the Failure of KED-MI. As mentioned in the
main manuscript, the KED-MI adopts the semi-supervised
GAN framework and uses the feature-matching loss to train
the generator. However, as demonstrated in (Salimans et al.
2016), the feature-matching loss works better if the goal is
to obtain a strong classifier (i.e., the discriminator) using
the semi-supervised GAN, otherwise it reduces the visual

NoFinding → ChestX-Ray COVID19 → ChestX-Ray
KED-MI Ours KED-MI Ours

Attack Acc ↑ .71±.0034 .82±.0048 .68±.0026 .80±.0020
KNN Dist ↓ 97.26 82.71 113.18 84.56

FID ↓ 97.35 64.33 109.41 47.51

Table 5: Attack performance comparison with KED-MI on
ChestX-Ray.

Ours

airplane automobile bird cat deer

KED-MI

GMI

Figure 7: CIFAR-10 samples reconstructed by the baselines
and our method.

quality of the generated images. Moreover, Dai et al. (Dai
et al. 2017) theoretically analyzes that there is a trade-off
between the quality of the discriminator and the generator.
Obviously, this framework is not suitable for generative MI
attacks, since what we need in stage-2 is a good and accurate
generator, contrary to the goal of semi-supervised GAN.

Rather than searching the latent vector of each recon-
structed image as GMI and our method, KED-MI proposed
to search for a distribution N (µ, σ2) with two learnable pa-
rameters µ and σ2 for each target class, and the latent vectors
can be obtained by randomly sampling from the learned dis-
tribution. However, it is very difficult to learn an accurate
class distribution by N (µ, σ2) when the inner-class distri-
bution of the private dataset varies greatly (e.g., CIFAR-10).
As a result, latent vectors sampled from such a distribution
are far from the manifold of natural images, although the
produced images may be close to private classes in feature
space. Whereas we use a more powerful conditional GAN to
model the distribution of each private class, making it pos-
sible to handle more diverse datasets. In addition, we also
perform random transformations on the generated images
during the search process to further filter deceptive or ad-
versarial samples.

A.3 Empirical Comparisons of Different Linv

We note that a concurrent work (Struppek et al. 2022) also
has a similar observation of the gradient vanishing problem
when using cross-entropy loss in MI attacks. Inspired by (Li
et al. 2020), they adopt a more complex poincaré loss as
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Figure 8: ChestX-Ray samples reconstructed by the baseline (KED-MI) and our method when using COVID19 as the public
dataset. Each column represents one category of the 14 diseases.

follows:
LPoincaré = d(u,v)

= arcosh

(
1 +

2∥u− v∥22
(1− ∥u∥22) (1− ∥v∥22)

)
,

u =
u

∥u∥1
,v = max{v − ξ, 0},

(20)

where u is the logits normalized by the ℓ1 distance, and v
is the one-hot encoded target vector with respect to the tar-
get class. ξ = 10−5 is a small constant to ensure numerical
stability.

In the main manuscript, we theoretically compare the
cross-entropy loss and the proposed max-margin loss. Here,
we further empirically compare them with the additional
poincaré loss mentioned in Eq. (20). Specifically, we take
these three losses as Linv respectively in the iterative pro-
cess of stage-2, and plot the trend curves of gradient values,
loss values, and target logit values. Since the gradient values
of different losses have a gap, we rescale the gradient val-
ues by dividing ∥g0∥1, where g0 is the gradient of the first
iteration. The ℓ1 norm of the gradient ∥gi∥1 represents its
gradient value. Similarly, the loss values are also rescaled
by dividing its value of the first iteration. We use FFHQ and
CelebA as the public and private dataset, respectively. Then,
we use VGG16 as the target model to attack the first 100
classes of CelebA and take their average results for plotting.

From Fig. 9 (a), we can see that the gradient of the cross-
entropy loss quickly decreases to 0 as the number of it-

erations increases, indicating the existence of the gradient
vanishing problem. Meanwhile, the max-margin loss main-
tains a more stable gradient magnitude than the poincaré
loss over the iterations, i.e., the degradation is more slight.
In Fig. 9 (b), the value of the cross-entropy loss also quickly
decreases to 0 due to the gradient vanishing, while the value
of poincaré loss keeps almost unchanged, which may make
it difficult to judge the optimization situation. In contrast,
the max-margin loss can be minimized continuously over
the iterations with relatively stable gradients. As shown in
Fig. 9 (c), the max-margin loss can make the logit value of
the target class steadily increase over the iterations to reach
a higher value, while the cross-entropy loss and poincaré
loss gradually tend to a relatively constant value in the later
iterations. In addition, Fig. 10 shows the attack perfor-
mance when using these three losses separately in stage-2 of
our method, demonstrating that the max-margin loss outper-
forms the other two losses, especially when there is a larger
distributional shift between public and private data.

A.4 More Discussions on the Concurrent Work
Apart from the loss function, the other differences between
our method and the concurrent work (Struppek et al. 2022)
are three-fold. First, the motivations are different: we pro-
pose to design a more powerful general MI attack frame-
work, while they aim to omit the training process of stage-
1 to achieve plug-and-play. Second, based on the different
goals, the technical contributions are different: we propose a
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Figure 9: (a)-(c) are the trend curves of the rescaled gradient values, the rescaled loss values, and the target logit values for
different losses over the iterations, respectively.
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Figure 10: Comparison of attack performance when using
different losses in the image reconstruction stage.

top-n selection strategy and aim to train a class-independent
generator to search private images more accurately, while
they focus on extending the reconstruction process in stage-
2 to reduce the dependence on the trained generator. Third,
the application scenarios are different: what we propose is
a general attack method that can be applied to tasks trained
on various sensitive data (e.g, disease diagnosis), while their
method relies on the task of the publicly available pre-
trained GAN and can not applicable for some unique tasks.
Overall, our method differs from (Struppek et al. 2022) in
terms of motivation, technical contributions, and application
scenarios.


