
Focused Deep Web Entrance Crawling
by Form Feature Classification

Lin Wang(B), Ammar Hawbani, and Xingfu Wang

Computer Science and Technology, University of Science and Technology of China,
Hefei 230022, Anhui, China

wangxfu@ustc.edu.cn, ammar12@gmail.com, xiaquhet@mail.ustc.edu.cn

Abstract. Currently, Most back-end web databases cannot be indexed
by traditional hyperlink-based search engines due to their requirement
of users’ interactive queries via page form submission. In order to make
hidden-Web information more easily accessible, this paper proposes a
hierarchical classifier to locate domain-specific hidden Web entries at a
large scale. The classifier is trained by appropriately selected page form
features to get rid of non-relevant domains and non-searchable forms.
Experiments conducted on eight different topics demonstrate that the
technique can discover deep web interfaces accurately and efficiently.

Keywords: Deep web · Focused crawler · Searchable forms · HTML
analysis · SVM classifier · Decision tree algorithm

1 Introduction

In recent years, the hidden web has been growing at a very fast pace. For a
given domain of interest, there are many hidden-web sources needing to be inte-
grated or searched[16]. Examples of applications that attempt to leverage these
resources include: met searchers[3,18,23,24], hidden-web crawlers [9,20], online-
database directories[1,17] and information integration systems [13,19,22].

A key requirement for these applications is the ability to locate the search
entry, but accurately doing so at a large scale is a challenging problem due to
the following difficulties:

– First, searchable forms are very sparsely distributed over the web. For exam-
ple, a topic-focused best-first crawler [11] retrieves only 94 movie search
forms after crawling 100,000 pages related to movies;

– In addition, the set of retrieved forms also includes many non-searchable
forms that do not represent database queries such as forms for login, mailing
list subscriptions, quote requests, and web-based email forms[8];

– Last but not least, the set of forms retrieved is also very heterogeneous
it includes all searchable forms belong to distinct database domains with

L. Wang—Supported in part by the National Science Foundation under grant
61472382, 61272472 and 61232018

c© Springer International Publishing Switzerland 2015
Y. Wang et al. (Eds.): BigCom 2015, LNCS 9196, pp. 79–87, 2015.
DOI: 10.1007/978-3-319-22047-5 7



80 L. Wang et al.

different structure and textual features, making automatic method ineffi-
cient. For example, only 16% of the searchable forms retrieved by a form-
focused crawler[6] are actually relevant.
In this paper, we present a new framework that addresses these challenges:

firstly, we use a modified best-first crawler to just find domain-specific deep
database entries; secondly, we use a hierarchical framework, utilizing page textual
and html form features to guide our hidden page gathering process.

The remainder of the paper is organized as follows: in section 2 we give a
brief overview of related work; in section 3, we present page form classifiers and
describe the underlying framework in section 4; our experimental evaluation is
discussed in section 5; we conclude in section 6.

2 Related Work

The huge growth of the deep web has motivated interest in the study of better
crawlers, some important works include:

Ref.[15] introduces a page division method to distinguish traditional search
engine interfaces from deep web interfaces and constructs topic-specific queries
to obtain results for further conformation by analyzing the results.

Cope, et al.[14] use an automatic feature generator to depict candidate forms
and a C4.5 decision tree to classify them. In their two testbeds – ANU collection
and a random Web collection, they get an accuracy of more than 85% and 87%
respectively.

Bergholz, et al.[10] describe a crawler which starts from the Publicly Index-
able Web (PIW) to find entrance into the deep Web. This crawler is domain-
specific and is initialized with pre-classified documents and relevant keywords.

In Ref.[8], they present a new adaptive focused crawling strategy for effi-
ciently locating hidden Web entry points. Unfortunately, the ACHE framework
they proposed cannot handle very sparse domains efficiently. Besides, the ACHE
framework is complex and its overhead is large.

3 Two-Step Classifying Framework

In order to find domain-specific hidden Web entrance, we utilize two classifiers
working in a hierarchical fashion to show directions for our crawler. The two
classifiers are page text classifier and form feature classifier. Figure 1 shows the
high-level architecture:

– First, given a URL we find its corresponding home page and check whether
it is domain-specific using the page text classifier. Our crawler only digs into
those sites containing domain-specific home pages. Previous researches[7,8]
demonstrate that libsvm learning algorithm[12] can be used;

– Second, if a Web page is relevant, we extract searchable forms from it with
the aid of the form feature classifier. According to Luciano, et al.[6] and
Cope, et al.[14], a decision tree will be optimal in this case.



Focused Deep Web Entrance Crawling by Form Feature Classification 81

Fig. 1. The high-level architecture

The reason why we utilize classifiers in this hierarchical style is that the
hierarchical structure leads to the merits of modularity. As a complex problem
is broken down into simpler sub-parts, we can apply to each part a learning
method that is best suited for the feature set of the partition, thus enabling the
overall classification process to be not only accurate but also robust.

3.1 Form Feature Classification

A form is made up of structural and textual parts. Consider the famous Lucene
Apache home page as an example, where we can find in-site search entry shown
in Fig.2, which not only contains textual contents such as “sort”, “Search”, but
also structural contents such as select elements, submission buttons.

Fig. 2. An illustration of form entry

<form method="get" action="/search" name="f" class="searchbox">
<input type="text" name="query" value="" size="35">
sort: <select name="mode">

<option value="none"> time-biased relevance </option>
<option value="pure"> relevancy </option>
<option value="newestOnTop"> newest </option>
<option value="oldestOnTop"> oldest </option>

</select> & nbsp; <input type="submit" value="Search">
</form>

In order to identify whether a form is domain-specific searchable or not, we count
12 most distinguishable features N1 ∼ N12 (both structural and textual features
included) to train the form classifier, depicted in Table 2.



82 L. Wang et al.

3.2 Page Textual Feature Classification

To extract textual features from pages, some pre-processing steps are needed:
– First, all characters other than alphanumeric ones are replaced by a space

character;
– Second, uppercase characters, if any, are converted to their lower case equiv-

alents;
– Third, stop words, if any, are removed, using org.apache.lucene.analysis.

StopAnalyzer;
– Fourth, each word in the remaining texts is stemmed, using org.apache.lucen-

e.analysis.PorterStemmer;
– Finally, TFIDF[21] is used to transform each training example into its

corresponding vector.

4 Modified Best-First Crawler

To improve the efficiency of our page gathering operation, we make modifications
of the standard best-first version[10]. The detailed control flow of our crawler is
displayed in Fig.3. It crawls within each domain-specific site until depth ≥ 3 or
the total number of pages threshold ≥ 100 is visited. The reason why we set

Fig. 3. The modified best-first crawler



Focused Deep Web Entrance Crawling by Form Feature Classification 83

depth < 3 is that Web databases tend to locate shallowly in their sites and the
vast majority of them (approximately 94%) can be found at the top 3 levels[20].
Besides, in order to protect our crawler from getting trapped in some sites, we
set a threshold for maximum pages to visit per site. Such variation enables the
crawler to be searching in a more promising space.

5 Experiments

TEL-8 Query Interfaces[5] dataset is used to train our form classifier. The dataset
contains 223 original interfaces extracted from eight representative domains,
which are displayed in the first two column of Table 1.

Table 1. TEL-8 distributions of the eight domains

Domain Sources Positive Negative SVM Overall

Airfare 20 116 316 0.961 9 0.90
Auto 28 251 356 0.946 3 0.88
Book 43 156 332 0.913 5 0.91
Rental 13 91 228 0.973 7 0.95
Hotel 34 170 272 0.994 1 0.94
Job 20 170 317 0.979 1 0.81

Movie 32 160 312 0.900 4 0.86

5.1 Train Form Feature Classifier

The form classifier is trained by decision tree algorithm. The training data are
collected as follows: we extract 223 searchable forms from TEL-8 Query Inter-
faces as positive examples and manually gather 318 non-searchable forms as
negative ones. From Table 2, we can deduce the following implications:

Searchable forms have plenty of checkboxes and ‘option’ items in selection
lists.

No-Searchable forms have plenty of password tags and ‘email’ in input ele-
ments’ name or value.

Two tools are used to construct the classification tree: R rpart algorithm[4]
and Matlab fitctree function[2]. The decision tree generated by R is displayed
in Fig.4, with the precision 0.949. And the fitctree in Matlab statistics toolbox
reaches a precision of 0.917. They have similar results according to our experi-
ments.

5.2 Train Page Textual Feature Classifier

To collect positive training samples for page textual feature classification, we
apply a Python script to automatically fill out the query interface on the home-
page of the online open directory project (http://dmoz.org/) and extract URLs

http://dmoz.org/


84 L. Wang et al.

Table 2. Feature distributions of searchable and non-searchable forms

Fea-
ture

Number of
Sear-
chable

Non-Sear-
chable

Ratio

N1 checkbox 2.39 0.18 13.04:1
N2 email-yes 0.01 0.12 1:13.13
N3 file inputs 0.00 0.00 -
N4 hidden tags 4.45 1.63 2.72:1
N5 image inputs 0.36 0.21 1.73:1
N6 submission method-get 0.47 0.40 1.16:1
N7 select option 12.64 0.17 74.23:1
N8 password tags 0.02 0.10 1:5.86
N9 radio tags 0.48 0.10 4.76:1
N10 search-yes1 0.36 0.09 3.94:1
N11 text elements 3.00 1.01 2.97:1
N12 textarea elements 0.02 0.07 1:2.98

1 Word ‘search’ within form tag or submission button

Fig. 4. The decision tree generated by R rpart algorithm

from the returned result pages. As for negative URL samples, we get them from
the RDF dumps of DMOZ (http://rdf.dmoz.org/rdf/). DMOZ covers sixteen
topics, among which we select 12 in our experiments, which are shown in Table 3,

In DMOZ, each example looks like this:

<ExternalPage about=
"http://www.airwise.com/airports/us/SLC/index.html">

<d:Title> Salt Lake City Airport - airwise.com </d:Title>
<d:Description> Information about the airport including

airlines, ground transportation, parking, weather and
airport news.

</d:Description>

http://rdf.dmoz.org/rdf/


Focused Deep Web Entrance Crawling by Form Feature Classification 85

<topic>Top/Regional/North_America/United_States/Utah/
Localities/S/Salt_Lake_City/Transportation/Airports

</topic>
</ExternalPage>

Table 3. Number of URLs in each DMOZ category

Arts Business Computers Games Health Home
585 923 511 621 285 335 123 757 131 051 33 554

News Recreation Science Shopping Society Sports
235 703 120 307 213 013 235 161 269 863 154 920

We use the content of ‘d:Description’ element and the Web page correspond-
ing to the ‘about’ ExternalPage attribute to obtain a negative training page.

In order to be more representative, we derive URLs from each category
according to its size. Since the ‘Arts’ category has the largest number of URLs,
we get the most number of URLs from it. Excluded these URLs which cannot
be downloaded, the number of positive and negative examples which we use to
train a page classifier for each category is listed in the 3rd and 4th column of
Table 1, where the precisions of the 8 trained SVM classifiers are also shown in
the 5th column.

Given a Web page, we first obtain its corresponding plain texts by stripping
away HTML tags. We will also strip embedded JavaScript code, style information
(style sheets), as well as code inside php/asp tags (<?php ?> <%php ?> <%
%>). After that, the pre-processing steps (see section 3.2) are needed in order
to use these texts to train a SVM classifier. Five most frequent features obtained
at this stage are presented in Table 4.

Table 4. Five most frequent textual features extracted

Category Textual features (Feature: Frequency)

Airfare pm: 419 airline: 279 air: 124 am: 102 airway: 100
Auto docum: 108 car: 105 leas: 84 search: 63 make: 56
Book search: 130 title: 110 book: 95 author: 75 new: 72
Rental pm: 402 option: 202 am: 168 airport: 144 car: 143
Hotel hotel: 234 pm: 228 island: 151 new: 135 room: 84
Job job: 207 new: 125 locat: 84 service: 82 island: 81

Movie press: 211 book: 123 s: 109 video: 107
enter-
tain:

107

Music record: 456 music: 226 sub: 156 search: 97 new: 80



86 L. Wang et al.

5.3 Overall Performance

We conduct eight scalable experiments with our deep Web interfaces gathering
framework. For each topic, we extracts 50 seeds from the DMOZ as the starting
set. We save those pages and their corresponding URLs if the following two
conditions are satisfied at the same time. First, they are judged to be relevant
by page text classifiers. Second, each page contains at least one searchable hidden
Web entrance. Because Music Records databases are sparsely distributed, our
best-first crawler only locates 50 hidden entrances for this topic category. For
other categories, our crawler finds 100 entrances for each of them, among which
five entries about Books category are listed below:

http://www.rwmilitarybooks.com/
http://www.artistsbooksonline.com/index.shtm
http://www.sfbc.com/
http://www.lns.cornell.edu/~seb/scouting-books.html
http://booksox.com/

At last, we manually verify whether the hidden Web entrances located by our
crawler are what we want. The precisions of all these categories are shown in the
last column of Table 1.

6 Conclusion

In this paper, a two-step framework is proposed to automatically identify
domain-specific deep Web entrances. Eight scalable experimental results demon-
strate that our method can find domain-specific hidden Web entrances accurately
and efficiently. The average precision of the eight representative topic categories
is 0.88.

References

1. Brightplanets searchable databases directory. http://www.completeplanet.com
2. Classification Trees and Regression Trees. http://cn.mathworks.com/help/stats/

classification-trees-and-regression-trees.html
3. Google Base. http://base.google.com/
4. The R Project for Statistical Computing. http://www.r-project.org
5. The uiuc Web integration repository. http://metaquerier.cs.uiuc.edu/repository/
6. Barbosa, L., Freire, J.: Searching for hidden-web databases. In: WebDB, pp. 1–6

(2005)
7. Barbosa, L., Freire, J.: Combining classifiers to identify online databases. In: Pro-

ceedings of the 16th International Conference on World Wide Web, pp. 431–440.
ACM (2012)

8. Barbosa, L., Freire, J.: An adaptive crawler for locating hidden-web entry points.
In: Proceedings of the 16th International Conference on World Wide Web,
pp. 441–450. ACM (2013)

http://www.completeplanet.com
http://cn.mathworks.com/help/stats/classification-trees-and-regression-trees.html
http://cn.mathworks.com/help/stats/classification-trees-and-regression-trees.html
http://base.google.com/
http://www.r-project.org
http://metaquerier.cs.uiuc.edu/repository/


Focused Deep Web Entrance Crawling by Form Feature Classification 87

9. Barbosa, L., Freire, J.: Siphoning hidden-web data through keyword-based inter-
faces. In: SBBD, pp. 309–321 (2014)

10. Bergholz, A., Childlovskii, B.: Crawling for domain-specific hidden web resources.
In: Proceedings of the Fourth International Conference on Web Information Sys-
tems Engineering, WISE 2003, pp. 125–133. IEEE (2003)

11. Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: a new approach
to topic-specific web resource discovery. Computer Networks 31(11), 1623–1640
(1999)

12. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

13. Chang, K.C.C., He, B., Zhang, Z.: Toward large scale integration: building a meta-
querier over databases on the web. In: CIDR, vol. 5, pp. 44–55 (2005)

14. Cope, J., Craswell, N., Hawking, D.: Automated discovery of search interfaces on
the web. In: Proceedings of the 14th Australasian Database Conference, vol. 17,
pp. 181–189. Australian Computer Society, Inc. (2003)

15. Du, X., Zheng, Y., Yan, Z.: Automate discovery of deep web interfaces. In: 2010
2nd International Conference on Information Science and Engineering (ICISE),
pp. 3572–3575. IEEE (2010)

16. Fetterly, D., Manasse, M., Najork, M., Wiener, J.: A large-scale study of the evolu-
tion of web pages. In: Proceedings of the 12th International Conference on World
Wide Web, pp. 669–678. ACM (2003)

17. Galperin, M.Y.: The molecular biology database collection: 2008 update. Nucleic
Acids Research 36(suppl 1), D2–D4 (2008)

18. Gravano, L., Garćıa-Molina, H., Tomasic, A.: Gloss: text-source discovery over the
internet. ACM Transactions on Database Systems (TODS) 24(2), 229–264 (1999)

19. He, H., Meng, W., Yu, C., Wu, Z.: Wise-integrator: An automatic integrator of
web search interfaces for e-commerce. In: Proceedings of the 29th International
Conference on Very Large Data Bases, vol. 29, pp. 357–368. VLDB Endowment
(2013)

20. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web (2014)
21. Torgo, L., Gama, J.: Regression by classification. In: Borges, D.L., Kaestner,

C.A.A. (eds.) SBIA 1996. LNCS, vol. 1159, pp. 51–60. Springer, Heidelberg (1996)
22. Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to

integrating source query interfaces on the deep web. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, pp. 95–106.
ACM (2014)

23. Xu, J., Callan, J.: Effective retrieval with distributed collections. In: Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 112–120. ACM (2008)

24. Yu, C., Liu, K.L., Meng, W., Wu, Z., Rishe, N.: A methodology to retrieve text
documents from multiple databases. IEEE Transactions on Knowledge and Data
Engineering 14(6), 1347–1361 (2012)


	Focused Deep Web Entrance Crawling by Form Feature Classification
	1 Introduction
	2 Related Work
	3 Two-Step Classifying Framework
	3.1 Form Feature Classification
	3.2 Page Textual Feature Classification

	4 Modified Best-First Crawler
	5 Experiments
	5.1 Train Form Feature Classifier
	5.2 Train Page Textual Feature Classifier
	5.3 Overall Performance

	6 Conclusion
	References


