
GPU-based NFA Implementation for Memory
Efficient High Speed Regular Expression Matching ∗

Yuan Zu Ming Yang Zhonghu Xu Lin Wang Xin Tian Kunyang Peng Qunfeng Dong †

Institute of Networked Systems (IONS) & School of Computer Science and Technology
University of Science and Technology of China

Hefei, Anhui, P. R. China
wyn@mail.ustc.edu.cn yangm@ustc.edu.cn {xzhh,xiaquhet,tianxin,pengkuny}@mail.ustc.edu.cn qunfeng@ustc.edu.cn

Abstract
Regular expression pattern matching is the foundation and core
engine of many network functions, such as network intrusion de-
tection, worm detection, traffic analysis, web applications and so
on. DFA-based solutions suffer exponentially exploding state space
and cannot be remedied without sacrificing matching speed. Given
this scalability problem of DFA-based methods, there has been
increasing interest in NFA-based methods for memory efficient
regular expression matching. To achieve high matching speed us-
ing NFA, it requires potentially massive parallel processing, and
hence represents an ideal programming task on Graphic Proces-
sor Unit (GPU). Based on in-depth understanding of NFA proper-
ties as well as GPU architecture, we propose effective methods for
fitting NFAs into GPU architecture through proper data structure
and parallel programming design, so that GPU’s parallel process-
ing power can be better utilized to achieve high speed regular ex-
pression matching. Experiment results demonstrate that, compared
with the existing GPU-based NFA implementation method [9], our
proposed methods can boost matching speed by 29∼46 times, con-
sistently yielding above 10Gbps matching speed on NVIDIA GTX-
460 GPU. Meanwhile, our design only needs a small amount of
memory space, growing exponentially more slowly than DFA size.
These results make our design an effective solution for memory ef-
ficient high speed regular expression matching, and clearly demon-
strate the power and potential of GPU as a platform for memory
efficient high speed regular expression matching.

∗ This work was supported in part by the Ministry of Education (MOE)
Program for New Century Excellent Talents (NCET) in University, by the
Science and Technological Fund of Anhui Province for Outstanding Youth
under Grant No. 10040606Y05, by the Fundamental Research Funds for
the Central Universities under Grant No. WK0110000007 and Grant No.
WK0110000019, by the National Natural Science Foundation of China
under Grant No. 61073184, and by Jiangsu Provincial Science Foundation
under Grant No. BK2011360.
† All correspondence should be directed to Prof. Qunfeng Dong (Email:
qunfeng@ustc.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright c© 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

Categories and Subject Descriptors C.2.0 [Computer-Communication
Networks]: General—Security and protection (e.g., firewalls);
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; F.1.1 [Computation by Abstract Devices]:
Models of Computation—Automata (e.g., finite, push-down, resource-
bounded)

General Terms Algorithm, Design, Experimentation, Perfor-
mance, Security

Keywords CUDA, Deep Packet Inspection, GPU, NFA, Pattern
Matching, Regular Expression Matching

1. Introduction
Regular expression pattern matching is the foundation and core en-
gine of many network functions, such as intrusion detection, worm
detection, traffic analysis, web applications and so on. For instance,
known worm signatures can be each formulated as a regular expres-
sion pattern; if such a regular expression pattern finds a match in
network traffic, an alert of detecting the corresponding worm can
be generated for taking actions accordingly. Besides, regular ex-
pression matching has also found a broad range of applications in
other technological fields such as web, database, text processing,
programming languages and so on.

Given the fundamental importance of regular expression match-
ing, intensive research has been conducted in the past years, in
order to obtain high speed and, no less importantly, memory ef-
ficient solutions. In spite of this long line of research, it is inher-
ently hard to accommodate the two Genies — matching speed and
storage space — into one jar. Specifically, regular expressions are
matched using either deterministic finite automaton (DFA) or non-
deterministic finite automaton (NFA), each having its own merits
and problems.

DFA is guaranteed to process each input character with one state
lookup and transition, as it has precisely one single active state at
any time; this enables DFA to provide fast and stable matching
speed. However, this processing efficiency is achieved at the cost
of exponentially exploding storage space; just a few regular ex-
pression patterns have been sufficient to generate a gigantic DFA
containing hundreds of thousand states. With this exponential ex-
plosion, practical systems can hardly scale with even moderate size
pattern sets; while in practice, real life systems (such as the Snort
intrusion detection system [2]) have already deployed thousands
of patterns, to be matched against network traffic flowing at link
speeds (e.g. 10Gbps OC-192 link speed). To remedy this problem,
numerous methods have been proposed for compressing DFA stor-
age space. Although these research efforts have achieved impres-
sive results [4–7, 10, 11, 16, 17, 19, 23–28], none has been able to

129

deflate the exponential explosion of storage space while preserving
the matching speed of original uncompressed DFA.1

Given this scalability problem of DFA-based methods, there has
been increasing potential interest in NFA-based solutions for mem-
ory efficient regular expression matching. Unlike DFA, each NFA
state can have multiple possible transitions on an input character,
and NFA can have multiple states active simultaneously. This non-
deterministic nature enables NFA to represent a pattern set with a
much smaller state space, growing linearly instead of exponentially
with pattern set size. Hence, NFA-based solutions are inherently
memory efficient. However, as each NFA state can go on activating
multiple other states, the NFA can have unpredictably many active
states, on all of which state transitions have to be performed for
an input character. Given that, to achieve high matching speed, it
requires potentially massive parallel processing, and hence repre-
sents an ideal programming task on Graphic Processor Unit (GPU)
[3, 12–15, 18, 22, 29, 30].

Recently, there has been a GPU-based NFA implementation
method called iNFAnt [9] proposed by Cascarano et al. for memory
efficient regular expression matching. While it is memory efficient
like all NFA-based solutions, it has not been able to understand and
exploit some important properties of NFA for potentially drastic
performance boost, as we shall achieve in this work. Consequently,
their method has only been able to match at a few hundred mega-
bits per second, lagging far behind high speed link rates.

In this work, we shall analyze and demonstrate some important
properties of NFA, using real life pattern sets as examples. Based on
this understanding of NFA properties as well as GPU architecture,
we shall conduct in-depth study, both experimental and analytical,
of how NFAs can be best fitted into GPU architecture through
proper data structure and parallel programming design, so that
GPU’s parallel processing power can be fully mobilized to achieve
high speed regular expression matching. In particular, our study
will proceed in three stages, each stage building upon the insights
and design obtained in the preceding stage. In each stage, we shall
figure out through experiments and analysis some key limitations of
the preceding design, and then demonstrate how should we reform
our design so that matching speed can be boosted significantly.

We evaluated the performance of our GPU-based NFA imple-
mentation design using real life pattern sets collected from the
Snort intrusion detection system [2], on NVIDIA GTX-460 GPU.
Experiment results demonstrate that, compared with iNFAnt [9],
our GPU-based solution can boost matching speed by 29∼46 times,
consistently yielding matching speed above 10Gbps. Meanwhile,
compared with exponentially growing DFA state space, our NFA-
based design only needs a very small amount of memory space,
growing exponentially more slowly than DFA size. These results
make our proposed design an effective solution for memory effi-
cient high speed (e.g. 10Gbps OC-192 link speed) regular expres-
sion matching, and clearly demonstrate the power and potential of
GPU as a platform for memory efficient high speed regular expres-
sion matching.

The rest of this paper is organized as follows. We start in Sec-
tion 2 with an introduction of the existing GPU-based NFA imple-
mentation method [9] proposed by Cascarano et al., as well as rele-
vant GPU architecture knowledge. Then in Section 3, the first stage
of our study, we shall reveal through analysis the key drawback of
that design, which motivates our basic design. We present this basic
design and verify its effectiveness through experiment results. The
limitation of this basic design will subsequently be analyzed and

1 In the literature, there are TCAM-based DFA deflation methods [20, 21]
proposing to effectively deflate DFA state space while preserving one mem-
ory lookup per input character. However, TCAM is well known to take
much more hardware expense, power consumption and chip area than
RAM-based computing architectures, which is the focus of this work.

enhanced in the second stage of our study in Section 4, whose ef-
fectiveness will also be verified through experiment results. In the
third stage of our study, we shall figure out the key issues of this
design and culminate our study with the Virtual NFA design in Sec-
tion 5. After evaluating our Virtual NFA design in Section 6, we
conclude the paper in Section 7.

2. State of the art
The entire design of iNFAnt [9] is built upon three data structures
(as shown in Figure 1): NFA transition table, current active state
vector (CASV) and future active state vector (FASV). CASV is a bit
vector where each bit corresponds to a distinct NFA state; if an NFA
state is currently active, its corresponding bit in CASV is set, and is
cleared otherwise. Similarly, FASV is such a bit vector indicating
whether each NFA state will be active after performing relevant
transitions on the current input character. A bit more complex is the
NFA transition table, which is stored as 256 arrays for compressed
storage space, each array consisting of the NFA’s transitions on one
of the 256 possible input characters. For example in Figure 1, the
array corresponding to character a stores the NFA’s transitions on
character a.

As we have discussed in Section 1, NFA-based regular expres-
sion matching can be slow for each individual packet. To achieve
high matching throughput, a bunch of packets are to be matched si-
multaneously, exploiting the massive parallel processing power of
GPU. Each packet is handled by a separate matching process (con-
sisting of a certain number of threads); the NFA transition table is
to be shared by the matching processes of all packets, while the
matching process of each packet has its own CASV and FASV.

Upon these data structures, the matching process of a packet is
carried out by an exclusive set of threads; the number of threads is
equal to the maximum number of NFA transitions in any of the 256
arrays, which is 34 in Figure 1. The entire matching process of a
packet can be viewed as an iterative process; during each iteration,
one input character is matched using the NFA. The process of
matching an input character can be summarized as follows.

Step 1. Each thread uses the input character as an index to locate which
of the 256 arrays (of transitions) to look up. The base address
of the array is obtained.

Step 2. Within the set of threads for matching the same packet, each
thread is assigned a unique thread ID (starting from zero),
which is used by the thread as the offset plus the above obtained
base address to get the corresponding NFA transition stored in
that position in the array. For example in Figure 1, suppose there
are 34 threads working to match a packet; the thread with thread
ID 5 will obtain the sixth NFA transition stored in the transition
array corresponding to input character a.

Step 3. The obtained transition is composed of a source state ID and
a destination state ID, meaning if the source state is active,
the destination state will be active after matching the input
character. Hence, each thread will use the source state ID as an
index into the CASV to find out if the source state is currently
active. If yes, it uses the destination state ID as an index into the
FASV to set the bit belonging to that destination state.

Step 4. After all transitions have been processed, FASV is copied into
CASV, and then cleared for next input character.

In practice, the number of transitions stored in the 256 arrays
can exceed the number of threads we use for each packet; multiple
rounds of the above operations described in step 2 and step 3 can
be conducted to process all transitions in an array. For example in
Figure 1, there can be 34 transitions in an array. If we use one warp
of 32 threads to process a packet, it simply takes two rounds of step

130

�

������� �����	� �	��	��

�
�����

���������

�
���
��

����
� ������

�

�
���

�

��������

�������

�������

�����	�

���������

�	��	��

�

��

	�

��

��

�	

	�

��

��������������

������������

����� ���������

������������

��!���� ����� ���"#�

�����$#��

�

�

�

�

�

�

�

�

�

���

���

Figure 1. Data structures of iNFAnt.

2-3 operations to process these 34 transitions. In the sequel, we
shall use a Snort pattern set consisting of 36 regular expression pat-
terns (denoted by Snort36) as an example for illustration; its NFA
can take up to five rounds of these operations to finish matching an
input character.

We start our work with evaluating the performance of this GPU-
based NFA implementation on NVIDIA GTX-460 GPU, using the
Snort36 pattern set. (Details about experiment setup are presented
in Section 6.) The obtained matching speed is 0.26 Gbps, which
is far below needed to keep up with today’s high speed link rates
(e.g. 10Gbps OC-192 link speed). In Section 3, we shall analyze
the design drawbacks of iNFAnt, which motivate our basic design.

3. Basic design
The iNFAnt design has two major drawbacks. Firstly, the number
of NFA transitions on an input character can be large, consuming
a significant amount of computing resources. Especially, as GPU
threads are allocated and launched in warps, each warp consisting
of 32 threads, even more computing resources can be consumed.
For example in Figure 1, there are 34 transitions on input character
a; it will take 64 threads to process. (Actually, this is equivalent to
letting one warp of 32 threads work on it for two rounds.) Secondly,
notice that in step 3 of iNFAnt design, depending on whether the
obtained source state is currently active or not, different threads
may next execute different instructions. In current SIMD GPU
architecture, such execution divergence will make the threads in
one warp proceed in a sequentialized instead of parallel manner,
resulting in severe performance degradation. (In Section 4.3, we
shall present a systematic demonstration and analysis of how our
proposed design eliminates divergence as well as potential conflict
among concurrent threads.)

In light of the above insights, we now propose a different design
that is immune to these problems. Our key motivating observation
is that, while the number of NFA transitions on an input character
can be large, the number of NFA states that can be active simulta-
neously is much smaller. For the NFA of pattern set Snort36, the
number of transitions to be processed for an input character can be
over five times larger than the maximum number of simultaneously
active states. Therefore, while a large number of threads may be
needed to process the transitions in iNFAnt design, it turns out that
most of these threads will find its obtained source state inactive;
their transition processing work is hence wasted. That said, if we
could (somehow) accurately identify and locate those active NFA
states, and make each thread responsible for performing transitions
for one of the active states, the number of threads needed for match-
ing an input character (and hence packet) can be greatly reduced,
leading to significant boost in matching speed.

For that purpose, we maintain an active state array to record
active states, as shown in Figure 2. Just for illustration purpose,
let us say the array consists of 32 elements, each containing the
state ID (Sid) of an active NFA state. A warp of 32 threads are
dedicated for each packet, with the kth thread responsible for the
kth element of the array. Upon receiving an input character, the
kth thread checks the kth element for an active state ID. The
state ID and the input character are combined together to form
a two-dimensional index into the NFA transition table, which is
essentially a two-dimensional array as shown in Figure 2, to obtain
the NFA transitions to be performed.

Then, here comes the problem — into which element of the
active state array should a thread write its obtained destination state
as the new active state? This write operation has to be collision-free
among the 32 threads. Otherwise, if two or more threads write their
destination states into the same element and the destination states

131

��������	
�
�������

�
��

���

�
��

���

�
��

��

�
��

�

�
��

�

� ����

�
���

�
���

�
����

�
��

���

�
��

�

�
��

�

�
��

��

����

�
���

����

�
����
������

Figure 2. Data structures of our basic design.

are not the same, some of these new active states will be mistakenly
overwritten by each other.

To solve this problem, we propose to partition NFA states into a
number of compatible groups, such that states in the same compat-
ible group can never be active simultaneously. Then, we can assign
each element in the active state array to a distinct compatible group;
different states in the same compatible group can safely share the
same active state array element, since they cannot be active simul-
taneously and hence cannot be written to that element simultane-
ously. Every NFA state (as the destination state) can be safely writ-
ten into the active state array element assigned to its compatible
group, without worrying about collision. Because even if multiple
threads are writing into the same active state array element, the
destination state they are writing must be the same state; otherwise,
such different destination states can be active simultaneously and
should not have been in the same compatible group.

We mark every NFA state with its compatible group ID, which
is equal to the index of the active state array element assigned to all
the states in that compatible group. Each thread can simply write
its obtained destination state into the active state array element
indexed by the destination state’s compatible group ID.

3.1 Compatibility between NFA states
For partitioning NFA states into compatible groups, we first need
to figure out if two NFA states can be active simultaneously. One
simple solution is to use a 2-dimensional incompatibility table. If
state i and state j can be active simultaneously (which we call in-
compatible, meaning they cannot share the same active state array
element), table entry (i, j) is set true; otherwise, we call them
compatible and table entry (i, j) is set false. Using this incom-
patibility table, compatibility relationship between NFA states can
be discovered with the following iterative breadth-first search algo-
rithm.

Suppose the NFA states are numbered 0, 1, 2, . . ., n-1. At the
beginning, we have n incompatible state pairs in the form of (i,
i), meaning state i is incompatible with itself; these n state pairs
are stored in a queue. Then, during each iteration of the algorithm,
we take out the state pair (i, j) at the head of the queue. For every

possible input character c, we find out the destination state set Di

for state i and the destination state set Dj for state j, respectively.
All the states in Di ∪ Dj can be active simultaneously, meaning
they are incompatible. For every such state pair (i′, j′) in Di ∪Dj ,
if table entry (i′, j′) is not true, we set it true and append (i′, j′)
to the queue. The algorithm terminates when the queue becomes
empty. During each iteration, one state pair is removed from the
queue, while there are n2 distinct state pairs in total and each
state pair enters the queue no more than one time. Therefore, the
algorithm runs for no more than n2 iterations.

If two NFA states i and j are marked incompatible, they are
incompatible, the algorithm has actually followed a string of input
character(s) which can cause the NFA to transition from one certain
state to both i and j. That means i and j can be active simultane-
ously and hence are truly incompatible.

If two NFA states i and j are not marked incompatible, they
are not incompatible. To prove by contradiction, suppose states i
and j can actually be active simultaneously, which means there
exists at least one shortest string w of l input character(s) that
can cause the NFA to transition from the start state q0 to both
i and j. Now consider a sequence Si = {q0, i1, i2, . . . , il=i}
of states traversed by the NFA in processing this shortest string,
starting from the start state q0 and ending in state i. In parallel,
there is also such a sequence Si = {q0, j1, j2, . . . , jl=j} for state
j. Pairing the counterpart states in these two sequences gives us a
sequence of state pairs, Si = {(q0, q0), (i1, j1), (i2, j2), . . . , (il=i,
jl=j)}, traversed by the NFA. Obviously, no state pair can appear
twice in this sequence. Because that means the input string can be
further reduced into a shorter string and can still cause the NFA
to transition from the start state to both i and j. Since there are
n2 distinct state pairs in total, the sequence contains at most n2

state pairs, meaning the shortest input string contains at most n2-1
characters. As the breadth-first search algorithm can run as many
as n2 iterations, processing one character during each iteration,
the algorithm must be able to find out such a shortest string and
hence mark state i and state j as incompatible. It is thus proven by
contradiction that state i and state j are truly compatible.

132

Figure 3. NFA for matching ab.*cd and ef.*gh.

For example, consider two regular expressions, ab.*cd and
ef.*gh. The first expression defines a pattern where ab is followed
by cd, with zero or more arbitrary characters between them. The
second expression defines a similar pattern. The NFA for matching
these two regular expressions is shown in Figure 3. Its incompati-
bility table is given in Table 1.

0 1 2 3 4 5 6 7 8
0

√ √ √ √ √ √ √ √ √

1
√ √ √ √

2
√ √ √ √

3
√ √ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √ √

5
√ √ √ √

6
√ √ √ √

7
√ √ √ √

8
√ √ √ √

Table 1. Incompatibility table of the NFA in Figure 3.

3.2 Compatible group
With this compatibility relationship between NFA states available,
we use a graph theoretic algorithm to partition NFA states into com-
patible groups. Every NFA state is represented by a distinct vertex;
if two NFA states are incompatible, they are connected by an edge.
Therefore, a compatible group of states form an independent set
in this graph. Our algorithm proceeds in an iterative manner; in
each iteration, one independent set of vertices (i.e., states) are ob-
tained and removed from the graph, leaving a residual graph for
subsequent iterations. Once all vertices have been removed from
the graph, all NFA states have been partitioned into the obtained
independent sets (i.e., compatible groups).

Next, we describe the algorithm for obtaining an independent
set during each iteration. This algorithm is also an iterative algo-
rithm. During each iteration of this algorithm, we pick an edge con-
necting two vertices u and v such that the sum of u’s degree and v’s
degree (in the residual graph) is the largest (among all edges in the
residual graph); u and v are temporarily removed from the residual
graph. If the remaining graph is an independent set, it is taken as
the new independent set. One possible case in this algorithm is, af-
ter temporarily removing an edge (u, v), all vertices in the residual
graph have been removed and hence the obtained independent set
is actually an empty set. In this case, we shall take {u} and {v}
as two new independent sets. Finally, we check if some previously
picked vertices can also be added into the new independent set(s),
and do so if possible. The remaining vertices of those picked edges
will form the new residual graph, from which the next independent
set will be obtained.

For example, consider the NFA in Figure 3. In the constructed
graph for partitioning into compatible groups, states 0, 3 and 4 are
connected with each other and hence form a 3-clique; they are also

connected with the other six states, while the other six states are
not connected with each other. The NFA states are partitioned into
compatible groups (i.e., independent sets) as follows.

• Independent Set 1: In this initial graph, any one of the following
three edges can be picked first: (0, 3), (0, 4) and (3, 4). Without
loss of generality, suppose we pick edge (0, 3) and temporarily
remove it from the graph. In the remaining graph, every edge
is incident to state 4. Again, we assume without loss of gener-
ality that edge (4, 1) is picked and temporarily removed. The
remaining vertices — {2, 5, 6, 7, 8} — now form an indepen-
dent set. Finally, we find that among the four vertices temporar-
ily removed, state 1 can actually be added into this obtained
independent set, which we do. Thus, the residual graph will be
composed of states 0, 3 and 4, forming a 3-clique.

• Independent Set 2: In the residual 3-clique, assume again with-
out loss of generality that edge (0, 3) is picked; state 4 as the
only remaining vertex forms an independent set. The residual
graph is now edge (0, 3) alone.

• Independent Set 3 & 4: After we pick the only edge (0, 3), there
is no other vertex left. Hence, we shall take {0} and {3} as two
new independent sets.

The entire NFA is thus partitioned into four compatible groups:
{1, 2, 5, 6, 7, 8}, {0}, {3} and {4}.

3.3 Matching operations
Compared with iNFAnt, the entire process of matching an input
character is quite simple for each thread in our design, and can be
summarized as follows. (Detailed issues including data structures,
memory layout, conflict and divergence will be discussed in Sec-
tion 4.)

Step 1. Each thread reads in the next input character from the packet it
is processing.

Step 2. Each thread obtains the current active state ID stored in its
assigned active state array element, and clear that element for
properly recording the new active state.

Step 3. Each thread combines the obtained active state ID with the
input character to form a two-dimensional index into the NFA
transition table (stored in GPU’s texture memory), in order to
obtain the destination state(s) it should write into the active state
array as new active state(s).

Step 4. For each destination state obtained, the thread writes the desti-
nation state into the active state array element corresponding to
the destination state’s compatible group ID.

Step 5. Finally, each thread checks if the obtained destination state is
an accepting state. If it is, a local flag is set to indicate that
the packet being processed has matched the regular expression
pattern represented by that accepting state. For example in
Figure 3, accepting states 7 and 8 represent matching of patterns
ab.*cd and ef.*gh, respectively.

If the number of compatible groups and hence the number of
active state array elements exceed the number of threads in a warp
dedicated to processing each packet, which is 32, the 32 threads
can simply repeat step 2-5 for more rounds. The only adjustment
needed is that, during the kth round, the index of the active state
array element read/written by the ith thread is (k − 1) × 32 + i.
For ease of discussion, we shall refer to the operations in step 2-5
as state transition operations.

This design is not only simpler than iNFAnt, in terms of both
data structures and matching operations, but also much more effi-
cient. On Snort36, the matching speed obtained by our design is

133

1.38 Gbps, about five times the matching speed of iNFAnt. In our
experiments, we observed that for an input character, the number
of NFA transitions to be processed in iNFAnt can be five times the
number of compatible groups in our design.2 This well explains the
5× speedup achieved by our design. It also verifies the validity of
our analysis of iNFAnt’s design drawbacks, as well as the motivat-
ing ideas underlying our design.

3.4 Discussion
In fact, the idea of splitting NFA states into compatible groups
can be generalized to help boost the performance of other GPU-
based parallel applications as well. In particular, every parallel
application is composed of a set of concurrent tasks. In NFA-
based regular expression matching, each task consists of the state
transition operations to be performed for individual NFA states. At
a certain moment, each task may and may not need to be performed,
depending on some condition. In NFA-based regular expression
matching, this task-specific condition is whether each individual
NFA state is active or not. According to this condition, we can
group these tasks into compatible groups, each consisting of tasks
that need not be performed simultaneously. It suffices to allocate
an exclusive thread for each compatible group of tasks (like in
our design), instead of allocating an exclusive thread for each task
(like in iNFAnt’s design). As a result, the parallel application’s
performance can be effectively boosted.

4. Memory layout and optimizations
In this section, we shall describe the detailed data structures of our
basic design, as well as their memory layout and the operations on
them. Through in-depth analysis and experiments, we shall present
effective optimizations that will significantly boost the performance
of our design. Moreover, we shall also analyze potential conflict
and divergence among threads, and demonstrate how they are elim-
inated from our design through optimized implementation.

4.1 NFA transition table
In our basic design, the NFA transition table is simply implemented
as a two-dimensional array, stored in GPU’s texture memory. Each
table entry is defined as an int4 type, composed of four internal
elements named w, x, y and z, respectively. Each internal element
is 32-bit int type, encoding a distinct destination state. In CUDA,
such a 128-bit int4 type NFA transition table entry can be fetched
with one single memory access.

Within each 32-bit internal element encoding a destination state,
the least significant two bytes are used to record the destination
state’s state ID, supporting 65,536 NFA states, which have been
more than enough for practical pattern sets. Within the most signif-
icant two bytes of the internal element, the least significant five
bits are used to encode the destination state’s compatible group
ID, giving us 32 compatible groups (corresponding to a warp of
32 threads); the most significant bit is used to indicate whether the
destination state is an accepting state; the middle 10 bits are unused
for now.

With this simple data structure design, we can allow every NFA
state to have up to four destination states on a given input character.
In our experiments, we have never found any NFA state that has
more than four destination states on any given input character.
Nevertheless, in our final design presented in Section 5, we shall
address the theoretically possible case where an NFA state can have
more than four destination states on a given input character.

To handle the realistic case where there are less than four desti-
nation states in an NFA transition table entry, we introduce a dumb

2 Note that the number of compatible groups can be larger than the maxi-
mum number of simultaneously active states.

state into the NFA. If an NFA transition table entry contains less
than four destination states, we shall add some dumb states to fill
up the int4 type table entry. For example, for a table entry with
two real destination states, we can record them as w and x, respec-
tively; then, we record a dumb state into y and z, respectively. The
dumb state has transitions on all possible input characters, leading
back to the dumb state itself. We implement the dumb state like a
real NFA state and assign it to a compatible group according to the
algorithm described in Section 3.

4.2 Active state array
Each warp (consisting of 32 threads) maintains its own active state
array (consisting of 32 elements), stored in GPU’s shared memory.
Each active state array element is also 32-bit int type, the same as
the four destination states stored in each NFA transition table entry,
since destination states are stored in active state array elements.

4.3 Conflict and divergence
Next, we analyze the operations involved in our design, demon-
strating how potential conflict and divergence are solved through
optimized implementation. As described in Section 3, the opera-
tions involved in processing an input character are as follows.

Step 1. Obtain the next input character. Input characters are
obtained in two stages: (1) from global memory to shared memory;
(2) from shared memory to each thread. During the first stage,
all the 32 threads in a warp read the same 32-byte packet slice,
each thread reading a different byte in the 32-byte slice; there is no
conflict. All the threads execute the same read operation, except the
target addresses are different; there is no divergence, either. After
the first stage, a slice of 32 characters are transferred from global
memory to a buffer in the shared memory, to be read and processed
in the second stage. The second stage consists of 32 rounds of state
transition operations, processing one character from the buffer in
each round. During each round, all the 32 threads in a warp read
the same next character from the buffer in shared memory. There is
no divergence, and the same byte in shared memory can be read by
all the threads simultaneously without conflict.

Step 2. Obtain the current active state. Each thread reads the
current active state ID stored in its assigned active state array
element, and clears that element for properly recording the new
active state. There is neither divergence nor conflict.

Step 3. Obtain the destination states. Each thread combines
the current active state ID with the input character to form a two-
dimensional index into the NFA transition table, in order to obtain
the destination state(s) it will write into the active state array as new
active state(s). Here, notice that not all active state array elements
will contain a valid active NFA state; for example, the entire NFA
may have only one state active at that moment and many active
state array elements simply do not contain any valid active NFA
state. To avoid divergence, even if a thread does not obtain a valid
NFA state ID from its active state array element, it still must index
into the NFA transition table and read out some table entry, just like
a thread that has obtained a valid active state ID. For that purpose,
as the “clear” operation after reading from the active state array
element, we can let each thread put the dumb state into its active
state array element. If no new active state is subsequently written
into that element, during the next round the thread will read out this
dumb state as its active state. Since the dumb state is physically
stored in the NFA transition table like a real state, it allows the
thread to perform subsequent state transition operations as if the
obtained dumb state is a real NFA state. Even if multiple threads
all obtain the dumb state as their current active state and hence read
the same NFA transition table entry simultaneously, there will not
be conflict. Because GPU will coalesce these read requests into one

134

���������	�
���������������
����� �����	������������������������
�����

�������

�������

�������

������� �������

������� ������

������!

�������� �������� �������� ����������!������

Figure 4. Packet storage layout in global memory.

single read request, before issuing the read operation to the texture
memory.

Step 4. Update the active state array. Each thread writes ev-
ery obtained destination state into the active state array element
assigned to that destination state’s compatible group. There is no
divergence, since each thread obtains precisely four destination
states, possibly including dumb states, and the dumb state is phys-
ically stored in the NFA transition table as well. As to conflict, it
is possible that two threads may write their destination states into
the same active state array element simultaneously. On one hand,
note that the two destination states being written will be active si-
multaneously; on the other hand, the two destination states being
written into the same active state array element means they are in
the same compatible group. Therefore, the only possibility is that
the two destination states are the same state. The active state ar-
ray is stored in GPU’s shared memory. Such concurrent writes can
proceed simultaneously, while only one of the concurrent writes
will go through. Since the concurrent writes are writing the same
destination state into the same active state array element, it does
not matter which one goes through. Thus, no cost is paid for this
collision.

Step 5. Record pattern matching information. As the last step,
each thread checks if the obtained destination state is an accepting
state. If it is, a local flag is set to indicate that the packet being
processed has matched the pattern represented by that accepting
state. As the 32-bit encoding of the destination state contains a bit
indicating whether the destination state is an accepting state, we can
simply let each thread write that indicator bit into a local flag. To
avoid conflict, each thread is allocated a local flag of its own, stored
in shared memory for fast access. Since all the threads execute

the same write operation into their own flag, there is no conflict
or divergence. Finally, after the entire packet has been processed,
the local flags will be transferred to global memory for subsequent
processing. For each packet, if any one of the threads has its flag set,
it means the packet has matched some pattern and hence requires
subsequent further processing.

4.4 Input packets
In our basic design, incoming packets are simply stored sequen-
tially (in GPU’s global memory), one after one in order of arrival,
as shown in Figure 4(a). All the 32 threads in a warp read the same
next byte simultaneously, since they are supposed to work on this
same byte. GPU will coalesce their read requests for this same byte
in global memory into one single request for that byte, before issu-
ing to the global memory.

However, GPU is actually able to perform even more power-
ful coalescence. Specifically, GPU manages its global memory as
aligned 128-byte blocks, each block having the same size as a cache
line. With every single global memory read operation, GPU can
fetch such a 128-byte block out of the global memory and store it
into a cache line for subsequent quick access. Therefore, GPU actu-
ally combines all read requests targeting within the same 128-byte
block into one request.

Given that, we modify packet storage layout in global memory
to better exploit this feature of GPU architecture. In particular, we
partition every packet into 32-byte slices (with padding if needed).
Slices from different packets are interweaved together, so that a
128-byte block in global memory is likely (although not necessar-
ily) composed of four slices from four different packets, as shown
in Figure 4(b). Then in our program, the 32 threads within a warp

135

each reads a different byte from the same 32-byte slice, using their
thread ID as offset inside the slice. These 32 concurrent read re-
quests are coalesced into one request for the block containing that
slice, and the 32 bytes read out of global memory are then stored in
the shared memory, to be processed in the next 32 rounds of state
transition operations.

GPU achieves high computing performance through inherent
massive parallelism, by processing a large number of packets con-
currently. A large number of warps will be running concurrently
inside GPU. By mixing slices from different packets into 128-byte
blocks, after one of the four packet slices is fetched by the warp
responsible for processing that packet, the entire 128-byte block
is stored into a cache line; it increases the chance that the warps
fetching the other three packet slices in the same block will find
their slices already in the cache line. Consequently, computing per-
formance can be effectively boosted. For example, the matching
speed achieved by our design on Snort36 is raised from 1.38 Gbps
to 4.01 Gbps, a 3× speedup.

Packet slicing and interweaving as described above are done by
CPU, which transmits 32-byte slices from different packets to GPU
in interweaving order. Before slicing and transmitting packets to
GPU, CPU can sort packets (in order of arrival) into four queues.
For example, suppose there are eight packets, which are originally
stored sequentially as shown in Figure 4(a). After sorting them into
four queues, CPU transmits the first 32-byte slice from each queue
to GPU, then the second slice from each queue to GPU, and so on,
leading to the storage layout as shown in Figure 4(b), where each
row is a 128-byte block.

4.5 Discussion
The idea of interweaving slices of different packets into the same
128-byte block can also be generalized to boost performance of
other GPU-based parallel applications. On one hand, parallel ap-
plications achieve high computing performance through massive
parallelism; many warps run at the same time. On the other hand,
GPU has a fixed number of cache lines. Thus, if we can preload data
of more warps into the fixed number of cache lines, more (concur-
rently running) warps will benefit from higher cache hit ratio. In the
example of our regular expression matching application, the data
of each warp is the packet to be processed by that warp; the way
to load data of more warps into cache is to make data of different
warps share the same 128-byte block, by slicing and interweaving
data of different warps. In other GPU-based parallel applications,
data of different warps can be similarly sliced and interweaved for
improved performance.

5. Virtual NFA
Thus far, we have stuck to the simplistic design principle of dedi-
cating a whole warp of 32 threads to processing every single packet,
without worrying about the following realistic issues.

• Firstly, if an NFA can never have 32 compatible groups, some
of the 32 threads in a dedicated warp will be running in vain,
which means wasted computing power.

• Secondly, if an NFA can have more than 32 compatible groups,
the 32 threads in a dedicated warp will need two or more rounds
of state transition operations to finish processing an input char-
acter. Again, this means degraded matching performance.

• Thirdly, each NFA transition table entry is assumed to contain
at most four destination states, nicely fitting into the int4 data
type. However, this assumption may and may not be the case
in practice. How can we handle more than four destination
states residing in one table entry, or prevent such cases from
happening?

In this section, we present a more elaborated design that is able
to address all these issues, by transforming an original NFA into a
virtual NFA whose states can be partitioned into a small fixed num-
ber of, say K, compatible groups (K = 4 in our design); each com-
patible group is still handled by one separate thread. After transfor-
mation into such a virtual NFA, no matter how many compatible
groups are needed for the original NFA, we can always process a
packet using K threads and one round of state transition opera-
tions for each input character, leading to fast and stable matching
speed. This will address the first two issues discussed above. Fur-
thermore, by using K threads for each packet, instead of using all
the 32 threads in a warp for one single packet in our basic design,
b 32

K
c packets instead of one packet can be processed by a warp of

32 threads simultaneously. In our design where K = 4, eight pack-
ets can be processed by a warp of 32 threads simultaneously. As a
result, further multiplied matching speed can be achieved.

Finally, if we transform into such a virtual NFA that only K = 4
compatible groups are needed, we will be able to ensure that at
most K = 4 states can be active simultaneously in the virtual
NFA. Since destination states residing in the same NFA transition
table entry can obviously become active simultaneously, having at
most four simultaneously active states directly means none of the
virtual NFA’s transition table entries can contain more than four
destination states. Thus, the third issue discussed above will be
solved as well.

The entire process of transforming an original NFA into a vir-
tual NFA is composed of two stages: (1) grouping original NFA
states into compatible groups; (2) combining compatible groups
into K compatible super groups. The first stage has been described
in Section 3. In the rest of this section, we shall present our detailed
solution for the second stage. First of all, combining multiple com-
patible groups into one super group immediately raises a question:
now multiple states in a super group can be active simultaneously,
how can we transform the super group into a compatible one where
at most one of its states can be active at any time, so that it can
still be properly handled using one active state array element and
one single thread? We answer this question in Section 5.1, with the
notion of virtual state. Based on that, we shall then present in Sec-
tion 5.2 an algorithm for combining compatible groups into such
compatible super groups. Finally in Section 5.3, we describe rele-
vant adjustment to the basic design for efficient implementation of
the virtual NFA design.

5.1 Virtual state
Suppose multiple compatible groups are combined into one super
group. Now, two different states (say X and Y) within this super
group, originally from two different compatible groups, can be ac-
tive simultaneously. In this case, our basic design may not be able
to preserve proper operation of the NFA. Because on an input char-
acter, there can be two active states A and B that lead to destination
states X and Y , respectively, while X and Y are combined into the
same super group. The threads responsible for processing A and B
will then try to write X and Y into the same active state array el-
ement assigned to their super group. Consequently, either X or Y
will be lost due to this collision.

Therefore, we need a solution for uniquely representing the
status of such a super group, in terms of which states in this super
group are currently active. For that, we think of each distinct status
of the super group as a distinct virtual state of the super group.
By replacing the original NFA states in this super group with such
virtual states representing all possible combinations of active states
in the super group, the super group will be transformed into a
compatible group where at most one of its virtual states can be
active at any time.

136

Just for illustration purpose, let us suppose all the nine NFA
states in Figure 3 are somehow allocated to the same super group.
Each virtual state of this super group represents a set of active states
in this super group. For instance, if states 0 and 2 are active in the
NFA in Figure 3, the virtual state at that point is the active state
set {0, 2}. We encode every virtual state of the super group as a
bit vector that is unique within the range of this super group. The
super group’s bit vector is composed of smaller bit vectors, each
representing the sole active state within a distinct compatible group
that has been combined into that super group.

To encode a compatible group of m states, we only need a bit
vector of dlog(m + 1)e bits; because at most one of the states in
a compatible group can be active at any time. We assign to each
state a unique internal ID within the compatible group (starting
from 1). The bit vector being all zero means none of the states in
this compatible group is currently active; otherwise, the bit vector
records the internal ID of the sole active state in that compatible
group.

Suppose the nine NFA states are grouped into four compati-
ble groups — {0}, {3}, {4} and {1,2,5,6,7,8} — that are com-
bined into one single super group. Within the compatible group
{1,2,5,6,7,8}, states 1, 2, 5, 6, 7 and 8 are assigned 1, 2, 3, 4, 5
and 6 as their internal ID, respectively. Internal ID 0 is reserved
for the situation that none of the states is active. (This is why the
number of bits in the bit vector is dlog(6 + 1)e instead of dlog6e,
although they do not make any difference in this particular exam-
ple.) If states 0 and 2 are currently active in this super group, the bit
vector encoding the virtual state representing active state set {0, 2}
will be 1 0 0 010, composed of the four smaller bit vectors en-
coding its four composing compatible groups. The first single-bit
vector indicates state 0, the only state in compatible group {0}, is
currently active; the next two single-bit vectors similarly indicate
that states 3 and 4 are not active; the last 3-bit vector 010 indicates
that state 2 in compatible group {1,2,5,6,7,8} is currently active. It
is clear that any virtual state of this nine-state super group can be
uniquely represented by such a 6-bit vector.

In general cases, compatible groups of an NFA can be combined
into up to four such super groups. To assign to each virtual state
a state ID that is unique within the entire NFA, we can sort the
super groups in non-increasing order of their size; within each
super group, virtual states can be sorted in lexicographic order of
the bit vectors encoding the virtual state. Then in this sorted list
of all virtual states, the kth virtual state can be assigned state ID
k-1, which is clearly unique within the entire NFA. At this point,
the NFA is composed of these virtual states instead of the original
NFA states, and hence is referred to as a virtual NFA. Each virtual
state’s state ID can be used as the row number of this virtual state
in the virtual NFA’s transition table, just like the original NFA.

In this virtual NFA, every super group is now a compatible
group — at most one virtual state of each super group can be active
at any time. Consequently, we can safely assign to each compatible
super group one active state array element and one thread, just like
we allocate to each compatible group one active state array element
and one thread in our basic design. Proper operation of the virtual
NFA is thus achieved with the same mechanism as our basic design.

5.2 Combining into super groups
Suppose the states of an original NFA are partitioned into n com-
patible groups, following the method described in Section 3. We
now proceed to combine these n compatible groups into K su-
per groups, which will then be transformed into compatible super
groups of virtual states as described in Section 5.1.

In principle, the way we group these n groups into K super
groups will not directly affect matching speed. However, it can
have considerable impact on the total number of virtual states, and

hence storage space of the virtual NFA. To minimize the virtual
NFA’s state space, we want to minimize the length of the bit vector
encoding individual super groups. To achieve this objective, we
sort the n compatible groups in decreasing order of their size.
We allocate the largest compatible group to the first super group.
Then, note that every time we add a compatible group into a super
group, the bit vector encoding that super group is appended with
the bit vector encoding the joining compatible group. Therefore,
we add each remaining compatible group to the super group whose
encoding bit vector is currently the shortest.

Just for illustration, suppose we are to use K = 2 super groups
for the example NFA in Figure 3. The NFA, as described in Sec-
tion 3.2, is partitioned into four compatible groups. We first allo-
cate the largest compatible group, {1, 2, 5, 6, 7, 8}, to the first
super group. Then, we keep allocating the remaining three compat-
ible groups to the second super group, since its bit vector is always
shorter than the bit vector of the first super group. Consequently, the
bit vectors of both super groups are 3-bit long. In total, the virtual
NFA is thus composed of 2× 23 = 16 virtual states.

5.3 Memory layout and state transition
Unlike in the basic design, where every warp of 32 threads are
dedicated to a single packet, we hereby allocate 4 threads for each
packet only, having 8 packets share the 32 threads in each warp.
Accordingly, we partition every packet into 4-byte slices (with
padding if needed). To interweave slices from different packets
together, CPU sorts packets (in order of arrival) into 32 queues;
then, CPU keeps transmitting the next 4-byte slice from each queue
to GPU, producing an interweaved storage layout where each 128-
block of GPU’s global memory is composed of 4-byte slices from
the 32 queues.

Then in our program, the 32 threads in a warp each reads a dif-
ferent byte from the 4-byte slice of its packet; the kth thread reads
the (((k−1) mod 4)+1)th byte in the 4-byte slice of the dk/4eth
packet. The 32 read requests are coalesced into one read request for
the contiguous 32-byte region within a 128-byte block of GPU’s
global memory. The eight slices are read out with one single mem-
ory access and then stored in the shared memory. During each of
the following four rounds of state transition operations, one byte
from each of the eight slices will be processed by the four threads
responsible for the packet where that slice is from.

To perform state transition for an input byte, the kth thread
reads the virtual state stored in the kth active state array element,
and clear that element for properly recording the new active virtual
state. Then, each thread uses the obtained active virtual state ID
and the input character as a two-dimensional index to obtain the
destination virtual states from the virtual NFA’s transition table. For
each destination virtual state obtained by the kth thread, suppose
it belongs to the lth compatible super group where 1 ≤ l ≤ 4;
corresponding to that super group is the (4 × b(k − 1)/4c + l)th
active state array element, into which the destination virtual state is
written.

With this virtual NFA design using four compatible super
groups and hence four threads for each packet, we achieved 12.50
Gbps matching speed on Snort36, representing a 3× speedup com-
pared with the design in Section 4.

6. Experiments
We evaluated the performance of our GPU-based NFA implemen-
tation method using real life pattern sets collected from the Snort
intrusion detection system [2], packet traces generated using the
workload generator introduced in [8] and NVIDIA GTX-460 GPU.
We evaluated our proposed method through experiments based on
six Snort pattern sets and compared with iNFAnt [9]. Characteris-
tics of the pattern sets and packet traces are reported in Section 6.1.

137

Snort16 Snort23
pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95 pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95

Virtual NFA (Gbps) 13.08 13.93 13.17 12.41 13.36 13.23 13.42 13.01
iNFAnt (Gbps) 0.44 0.38 0.36 0.33 0.43 0.37 0.34 0.31

Virtual NFA/iNFAnt Speedup 29.39 35.98 36.01 36.52 29.95 34.01 39.18 40.91
Snort24 Snort27

pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95 pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95

Virtual NFA (Gbps) 13.20 12.52 12.43 12.32 13.15 12.34 10.28 10.08
iNFAnt (Gbps) 0.43 0.39 0.34 0.31 0.43 0.39 0.31 0.28

Virtual NFA/iNFAnt Speedup 30.37 31.76 36.15 38.59 30.30 31.62 32.55 35.33
Snort34 Snort36

pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95 pM = 0.05 pM = 0.35 pM = 0.65 pM = 0.95

Virtual NFA (Gbps) 13.12 13.79 12.04 12.52 13.18 13.99 12.99 12.50
iNFAnt (Gbps) 0.42 0.36 0.32 0.29 0.41 0.33 0.30 0.26

Virtual NFA/iNFAnt Speedup 31.08 37.43 37.24 42.38 31.73 42.22 42.01 46.31

Table 2. Matching speed.

Matching speed results are reported in Section 6.2. Storage space
results are reported in Section 6.3.

6.1 Experiment setup
As shown in Table 3, the six Snort pattern sets used in our experi-
ments are diverse in nature. Some pattern sets are relatively simple,
while some others are much more complex. Consequently, in terms
of inflation ratio (i.e., DFA size divided by NFA size), their DFAs
are larger than their NFAs by 15.51 times to 281.22 times; their
DFAs consist of 13,825 states to 190,951 states.

DFA size NFA size DFA/NFA inflation

Snort-16 67,682 447 151.41
Snort-23 32,518 518 62.77
Snort-24 13,886 575 24.14
Snort-27 106,452 499 213.33
Snort-34 13,825 891 15.51
Snort-36 190,951 679 281.22

Table 3. Characteristics of pattern sets.

Workloads to be used as input character stream are generated for
each individual pattern set, respectively, using the workload gener-
ator proposed in [8]. Every workload is generated as a byte stream,
according to a specified parameter pM . When generating the next
byte, it is chosen with probability pM such that the byte will lead
away from the start state (of the pattern set’s finite automaton); with
probability 1−pM , the next byte is chosen randomly. After a work-
load is generated by the workload generator, we partition the work-
load into 1KB segments, each segment representing the payload of
a packet.

For each pattern set, we generated four types of workloads using
pM = 0.05, pM = 0.35, pM = 0.65 and pM = 0.95, respectively.
Each generated workload is 280KB in length. For each pM value,
we generated a number of such workloads and combine them into
a single large workload, which is 256MB in size and divided into
256K packets. In total, 24 such large workloads are generated.

6.2 Matching speed
We run our virtual NFA design and iNFAnt3 on each of the 24
workloads, and report the matching speed results in Table 2. 4,096

3 The authors of iNFAnt[9] proposed a multi-striding technique for accel-
erating iNFAnt, by processing multiple bytes per state transition. However,

blocks, each consisting of 256 threads, are employed for each
workload. Here, matching speed is calculated by dividing workload
size with the time taken to finish matching the workload.4 As we
can see, on all pattern sets and parameter settings, our virtual NFA
design consistently achieves matching speed above 10Gbps (OC-
192 link rate). Compared with iNFAnt, our virtual NFA design can
boost matching speed by 29∼46 times.

6.3 Memory space
To compare the scalability our virtual NFA design with DFA-based
methods, we conducted a series of experiments to reveal the growth
trend of virtual NFA size. For a pattern set (which in this case is
Snort-36 whose DFA is the largest) consisting of n patterns, we
generated a series of dn/4e subsets. The kth subset consists of
the first MIN(4k, n) patterns of the original pattern set. For each
subset, we measured the number of states in the virtual NFA and
the DFA, respectively. Then, we plot the results in Figure 5, where
the X-axis represents the number of virtual NFA states and the Y-
axis represents the number of DFA states. As we can see, the virtual
NFA size tends to grow exponentially more slowly than the DFA
size, demonstrating much better scalability.

We also measured the storage space needed for implement-
ing the pattern sets. The virtual NFA transition tables of Snort16,
Snort23, Snort24, Snort27, Snort34 and Snort36 use 3.02MB,
6.5MB, 3.06MB, 12.5MB, 6.13MB and 14MB, respectively.5 As
virtual NFA transition tables are stored in inexpensive texture mem-
ory (which has up to 1GB capacity on NVIDIA GTX-460 GPU),
these memory space requirements incur very low cost.

through private communication we have confirmed with the authors that
their experiments reported in [9] are actually erroneous and the proposed
multi-striding technique is not as practical as demonstrated by the exper-
iment results in [9]. Therefore, we compared our design with their basic
iNFAnt design, where one byte is processed per state transition.
4 The experiment results did not include the time spent on constructing
virtual NFAs. Because the goal is to boost matching speed. Virtual NFA
construction is a one time cost; after the virtual NFA is constructed, we will
not need to pay this cost again during the matching process, until the regular
expressions change (which may not happen over days/months).
5 For these virtual NFAs, we are able to use 64-bit short4 type instead of
128-bit int4 type for their transition table entry.

138

Figure 5. Growth trend of virtual NFA size.

7. Conclusions
In this work, we analyzed and demonstrated some important prop-
erties of NFA, using real life pattern sets as examples. Based on
this understanding of NFA properties as well as GPU architecture,
we conducted in-depth study, both experimental and analytical, of
how NFAs can be best fitted into GPU architecture through proper
data structure and parallel programming design, so that GPU’s par-
allel processing power can be effectively mobilized to achieve high
speed regular expression matching. The three pivot ideas of our
design include compatible group, packet interweaving and trans-
forming the original NFA into our proposed virtual NFA.

We evaluated the performance of our virtual NFA design us-
ing real life pattern sets collected from the Snort intrusion detec-
tion system [2], on NVIDIA GTX-460 GPU. Experiment results
demonstrate that, virtual NFA can achieve 29∼46 times speedup,
consistently yielding over 10Gbps matching speed. Meanwhile,
compared with DFA size, our virtual NFA design only needs a
very small amount of memory space, growing exponentially more
slowly than DFA size. These results make our virtual NFA de-
sign an effective solution for memory efficient high speed (e.g.
10Gbps OC-192 link speed) regular expression matching, and
clearly demonstrate the power and potential of GPU as a platform
for memory efficient high speed regular expression matching.

References
[1] PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/.

[2] Snort intrusion detection system. http://www.snort.org/.

[3] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W. mei
W. Hwu. An adaptive performance modeling tool for GPU architectures.
In Proceedings of ACM PPoPP, 2010.

[4] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep
packet inspection. In Proceedings of CoNext, 2007.

[5] M. Becchi and P. Crowley. An improved algorithm to accelerate regular
expression evaluation. In Proceedings of ANCS, 2007.

[6] M. Becchi and P. Crowley. Efficient regular expression evaluation:
Theory to practice. In Proceedings of ANCS, 2008.

[7] M. Becchi and P. Crowley. Extending finite automata to efficient match
perl-compatible regular expressions. In Proceedings of CoNext, 2008.

[8] M. Becchi, M. Franklin, and P. Crowley. A workload for evaluating
deep packet inspection architectures. In Proceedings of IISWC, 2008.

[9] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. iNFAnt: NFA pattern
matching on GPGPU devices. SIGCOMM CCR, 40(5):21–26, 2010.

[10] M. Chen. TCAM-based high speed regular expression matching.
Bachelor thesis, Institute of Networked Systems (IONS), University of
Science and Technology of China, June 2010.

[11] M. Chen, Q. Dong, and K. Peng. TCAM-based DFA implementation:
A novel approach to efficient regular expression matching. Technical
report, Institute of Networked Systems (IONS), University of Science
and Technology of China.

[12] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of
sparse matrix-vector multiply on GPUs. In Proceedings of ACM PPoPP,
2010.

[13] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K. Govindaraju.
Auto-tuning of fast fourier transform on graphics processors. In
Proceedings of PPOPP, 2011.

[14] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating
CUDA graph algorithms at maximum warp. In Proceedings of ACM
PPoPP, 2011.

[15] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single compute
device image in OpenCL for multiple GPUs. In Proceedings of ACM
PPoPP, 2011.

[16] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia. In Proceedings of ANCS, 2007.

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner.
Algorithms to accelerate multiple regular expressions matching for
deep packet inspection. In Proceedings of ACM SIGCOMM, 2006.

[18] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In Proceedings
of ACM PPoPP, 2009.

[19] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu. Fast
regular expression matching using small TCAMs for network intrusion
detection and prevention systems. In Proceedings of USENIX Security,
August 2010.

[20] K. Peng, Q. Dong, and M. Chen. TCAM-based DFA deflation: A
novel approach to fast and scalable regular expression matching. In
Proceedings of ACM/IEEE IWQoS, 2011.

[21] K. Peng, S. Tang, Q. Dong, and M. Chen. Chain-based DFA deflation
for fast and scalable regular expression matching using TCAM. In
Proceedings of ANCS, 2011.

[22] E. F. O. Sandes and A. C. M. de Melo. CUDAlign: using GPU
to accelerate the comparison of megabase genomic sequences. In
Proceedings of ACM PPoPP, 2010.

[23] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching with
extended automata. In Proceedings of IEEE Symposium on Security and
Privacy, 2008.

[24] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata. In
Proceedings of ACM SIGCOMM, 2008.

[25] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan.
Evaluating GPUs for network packet signature matching. In Proceedings
of ISPASS, 2009.

[26] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis. Gnort: High performance network intrusion detection using
graphics processors. In Proceedings of RAID, 2008.

[27] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis. Regular expression matching on graphics hardware for
intrusion detection. In Proceedings of RAID, 2009.

[28] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast
and memory-efficient regular expression matching for deep packet
inspection. In Proceedings of ANCS, 2006.

[29] Y. Zhang, J. Cohen, and J. D. Owens. Fast tridiagonal solvers on the
GPU. In Proceedings of ACM PPoPP, 2010.

[30] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. GRace: a low-overhead
mechanism for detecting data races in GPU programs. In Proceedings of
ACM PPoPP, 2011.

139

