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Abstract — With better trained deep neural network

(DNN) acoustic models, the bottleneck of today’s speech

recognition (ASR) systems transfers to the conventional

n-gram language models which, are found inadequate to

translate the perfect classification at the frame level to the

final task performance of the overall downstream system.

In this paper, we resort to a more robust word sequence

decoding system for continuous speech recognition utiliz-

ing confusion networks. We employ conditional random

field (CRF) to train a word error detection model using

not only N-gram features, but also a semantic similarity

metric to take advantage of the correlation of importance

of the terms in documents. Moreover, our discriminat-

ing process is organized in double runs to deal with the

degradation of N-gram decoding when recognition errors

and skip transitions in the confusion networks are substan-

tial. Experimental results show that our method is more

effective as compared to methods using other features or

finishing in a single run.

Key words — N-gram language model, Confusion net-

work, Conditional random field, Normalized Google dis-

tance

I Introduction

Speech technology is now widely used in the field of speech

search and retrieval applications, such as PodCastle [1] on the

Internet or the MIT lecture browser [2]. In these systems, a

low word-error rate (WER) is necessary to read the speech in

words or to retrieve the proper messages using keywords. A

language model can contribute to selecting the most plausible

words among the candidates presumed by the acoustic model.

However, if the acoustic score of the false word is high, it may

be selected irrespective of the language model.

To solve this problem, some methods have been proposed

to learn and evaluate whether each utterance is linguistically

natural or not, and to correct it if it is not, using a discrimi-

native model. In a discriminative model, features for learning

and testing are vital for the performance and N-gram features

and confidence scores are often used as features for ASR error

detections, even though N-gram features only consider the few

words around a corresponding word, and not the words located

far from the word in utterance. Moreover, the degradation of

N-gram detection is substantial if there are many recognition

errors and skip transitions in the confusion networks.

There are some methods that consider the relevance with

the words located far in the utterance. However, there are

problems with them, such as availability of a corpus and

the computational complexity caused from the corpus size in-

crease [3]. To solve these problems, we employ Normalized Rel-

evance Distance (NRD) as a measure for semantic similarity

between words that are located far from each other. The ad-

vantage of Normalized Relevance Distance [4] is that it uses the

Internet, search engines, and transcripts as a database, thus

solving the problem of corpus availability and computational

complexity.

NRD is obtained by extending the theory behind Normal-

ized Google Distance (NGD) [5] to incorporate relevance scores

obtained over a controlled reference corpus. NRD combines

relevance weights of terms in documents and the joint rele-

vance of the terms to identify not only co-occurrence but also

the correlation of importance of the terms in documents.

In our method, we begin by detecting the acoustic recogni-

tion errors based on long-distance and short-distance context

using the score. Then we delete the skip transitions in the con-

fusion networks from the output to make N-grams effective for

learning and detecting for its second run. In this paper, error

detection is performed by conditional random fields (CRF) [6],

and a confusion network [7] is used as the representation of the

competition hypotheses.

Also, in this paper, we investigate the relation between the

word-error rate (WER) and the error detection. Experimen-
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Fig. 1. Overview of our proposed two-pass discriminative word error detection system

tal results show that our proposed method is more effective as

WER decreases.

This paper is constructed as follows. In Section II, the

overview of our error-detection system is discussed. In Sections

III and IV, our long-distance contextual information measure-

ment and two-pass word decoding approach are described re-

spectively. In Section V, the experimental results are shown.

The conclusion is described in Section VI.

II Overview

1. Error-detection system

Figure 1 shows the flow of our proposed double-pass method.

1. First, speech data are recognized and the recognition

results are output as a confusion network.

2. Second, each word in the confusion network is labeled

as false or true after the similarity scores of the words

are computed using NRD.

3. Then, the error detection model is trained by CRF us-

ing unigram, bigram, trigram, and posterior probability

features on the confusion network and NRD similarity

score.

We obtain two types of error detection models during this

process: the “Error detection model with skip nodes”, which

we obtain without deleting the skip transitions in the confu-

sion network, and “Error detection model without skip nodes”,

which we obtain by deleting all the skip corrections from the

training data. A skip transition in a confusion network indi-

cates no candidate word.

In the test process, the confusion network is produced in

the same way from the input speech and the NRD score is

computed. Then word re-ranking is carried out on the confu-

sion network using the first “Error detection model with skip

transitions”. After that, skip transitions that are labeled true

are deleted from the output of the first re-ranking result, and

the second re-ranking is carried out using the “Error detection

model without skip transitions”.

In this two-step word-error detection, on learning and cor-

recting, long-distance information becomes to be effective in

the first step (error detection with skip nodes) even if the num-

ber of skip transitions and recognition errors is large. In the

second step (after the first error correction), N-gram (short-

distance information) becomes to be effective because there

are now fewer skip transitions and recognition errors.

2. Confusion network

Before outputting a transcription of the speech, a speech recog-

nition system often represents its results as a “confusion net-

work”. The proposed system detects recognition errors using

CRF, and corrects errors by replacing them with other com-

peting hypotheses. We use a confusion network to represent

competing hypotheses. A confusion network is the compact

representation of the speech recognition result.

Figure 2 shows an example of a confusion network gener-

ated from the speech “Anne studies in Munich”.

Fig. 2. Confusion network and confusion sets

The transition network enclosed by the dotted line includes

the competitive word candidates with the confidence score and

is called the confusion set. In this figure, four confusion sets

are depicted. The skip transition indicates there is no candi-

date word.

III Semantic Similarity Incorporation

1. Normalized Google Distance

NGD is a method that has been proposed to determine the sim-

ilarity between words and phrases, and is derived from Normal-

ized Information Distance. Normalized Information Distance

includes Kolmogorov complexity in its definition. However

Kolmogorov Complexity is not computable for all given input-

s, which leads to computability problems when working with

Normalized Information Distance. Normalized Google Dis-

tance solves this problem by approximating the Kolmogorov
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complexity using the hit numbers of a large collection of web

page text.

We can calculate the Normalized Google distance between

words x and y by the equation below.

NGD(x, y) =
max(log f(x), log f(y))− log f(x, y)

logN −min(log f(x), log f(y))
(1)

Here, f(x) represents the number of pages containing x,

f(y) represents the number of pages containing y, f(x, y) rep-

resents the number of pages containing both x and y, and N

is the sum of all indexed pages on the search engine.

2. Normalized relevance distance

NRD has the theoretical background of NGD. It is long known

in Information Retrieval that words can occur in a document

by chance. In this case, a term x is not really relevant to the

description of documents. Accordingly, one should not con-

sider these documents in estimating f in Equation (1), or at

least to a lower degree.

To improve this problem, NRD is incorporated tf-idf-based

model assigning a weight to each term in each document.

These weights can be considered a metric for the probability

of relevance for a given term and document. We can calculate

the Normalized Relevance Distance between words x and y by

the equation below.

NRD(x, y) =

max(log fNRD(x), log fNRD(y))− log fNRD(x, y)

logN −min(log fNRD(x), log fNRD(y))

fNRD(x) =
∑
d∈D

tfidfnorm(x, d)

fNRD(x, y) =
∑
d∈D

tfidfnorm(x, d) · tfidfnorm(y, d) (2)

To access relevance scores over terms and documents we lever-

age the mature and widely adopted text retrieval software

Lucene∗∗∗ . Lucene implements a length-normalized tf-idf vari-

ant as relevance scores which suits our needs for estimating the

NRD scores. All Lucene scores tfidflucene(x, d) are in a range

between 0 and 1.

tfidfnorm(x, d) =
tfidflucene(x, d)

max(tfidflucene(x, d0)|d0 ∈ D)
(3)

3. Semantic score calculation

Focusing on the content words such as nouns, verbs and adjec-

tives, we calculate the semantic score using the NRD equation

above. For convenience, if the NRD is infinity, which occurs

only under the extreme case when x and y are both contained

in all pages, we calculated the semantic score by replacing it

with 1. The semantic score of a recognized word wi is calcu-

lated as follows:

(1) Context c(wi) of the content word wi is formed as the

collection of the content words around wi not including itself

as shown in Figure 3.

(2) For wi, NRD(wi, wk) is calculated as the distance be-

tween each word wk of c(wi).

(3) The average of NRD(wi, wk)is computed as

NRDavg(wi, wk) and is allocated to wi as its similarity s-

core.

NRDavg(wi) =
1

K

∑
k

NRD(wi, wk) (4)

The smaller the value of NRDavg(wi) is, the more the

word wi is semantically similar to the context.

Fig. 3. Computation of semantic score

IV Two-pass Decoding Framework

1. Conditional random fields

Conditional Random Fields (CRF) is one of a number of dis-

criminative language models. CRF processes a series of data,

such as sentences, and is represented as the conditional proba-

bility distribution of output labels when input data are given.

The model is trained from a series of data and labels. The

series of labels that the model estimates are output when test

data are given. Then, labels optimizing individual data are

not assigned to each data, but labels optimizing a series of

data are assigned to them. In short, CRF can also learn the

relationship between data.

In this paper, we use CRF to discriminate the unnatural

N-gram from the natural N-gram. In short, we use CRF to de-

tect recognition errors. This kind of discriminative language

model can be trained by incorporating the speech recognition

result and the corresponding correct transcription. Discrim-

inative language models, such as CRF, can detect unnatural

N-grams and correct the false word to fit the natural N-gram.

In the case of CRF, the conditional probability distribution

is defined as

P (y|x) =
1

Z(x)
exp(

∑
a

λafa(y, x)) (5)

wherex is a series of data and y denotes output labels. fa de-

notes feature function and λa is the weight of fa. Furthermore

Z(x) is the partition function and is defined as

Z(x) =
∑
y

exp(
∑
a

λafa(y, x)) (6)

When training data (xi, yi)(1 6 i 6 N) are given, the pa-

rameter λa is learned in order to maximize the log-likelihood

∗ ∗ ∗ http://lucene.apache.org/
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Fig. 4. Double discrimination enables further word error correctio

of Equation (7)

L =

N∑
i=1

logP (yi|xi) (7)

L-BFGS algorithm [8] is used as a learning algorithm.

In the discrimination process, the task is to compute op-

timum output labels y for given input data x by using the

conditional probability distribution P (y|x) calculated in the

learning process. ŷ can be computed as Equation (8) using

the Viterbi algorithm.

ŷ = arg max
y

P (y|x) (8)

2. Double discrimination process

In this paper, as mentioned previously, recognition errors are

detected using CRF. Word-error detection can be achieved in

the confusion set by selecting the word with the highest value

of the following linear discriminant function. The features for

error detection are mentioned in Section V.

After the learning process is finished, recognition errors

are detected twice using the algorithm below. First, we detect

using “Error detection model with skip nodes”:

(1) Convert syllable/word recognition of test data into the

confusion network.

(2) Extract the best likelihood words of the confusion net-

work, and detect the recognition error using CRF.

(3) Check the confusion set in order of time series. The

words identified as correct data are left unchanged. The words

identified as a misrecognition are replaced with the next likeli-

hood word in the confusion set. After that, detect recognition

errors again using CRF.

(4) Select the best likelihood word in the confusion set if

the word identified as correct data does not exist.

(5) Repeat processes (3) and (4) for all confusion sets in

turn.

(6) Repeat processes (2) to (5) for all confusion networks

in turn.

Next, we detect using “Error detection model without skip

nodes”:

(1) Delete the skip transitions that are labeled True from

the first detection result and make it the test data.

(2) Repeat the process steps 2, 3, 4, 5, and 6 of the above

algorithm.

Because the word bigram and trigram are used as features

for CRF, the correct or misrecognized label of the word may

change to the other when a preceding word is corrected. This

is the reason we mentioned “in order of time series” in the

algorithm (3).

Using this algorithm, CRF distinguishes correct words

from misrecognitions, and all the words identified as misrecog-

nitions are corrected. Figure 4 shows an example of two-pass

discriminative decoding using our algorithm.
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Table 1. Configurations and test subset performance of each model evaluated

Recognition result N-gram Confidence score NGD NRD Skip node SUB DEL INS ERR WER [%]

Baseline 7,253 3,208 1,494 11955 41.0

N-gram model
√ √

5,007 3,556 2,138 10701 36.7

NGD context w/ null (A)
√ √ √

5,706 2,427 2,217 10350 31.5

NGD context w/o null (B)
√ √ √ √

4,390 3,584 1,006 8980 28.8

NGD double ( A + B )
√ √ √ √

4,366 2,959 1,195 8520 26.2

NRD context w/ null (A*)
√ √ √

4,126 3,667 1,367 9160 29.4

NRD context w/o null (B*)
√ √ √ √

4,237 2,887 1,621 8745 27.0

NRD double ( A* + B* )
√ √ √ √

3,452 3,884 688 8024 24.5

Table 2. More evaluations on corpus of varying degrees of challenge

Corpora ID Description Hours Words Sentences

Generic

Benchmarks

1 TIMIT (LDC93S1, 630 speakers each reading 10 phonetically rich sentences) [9] 7.5 78K 6.3K

2 BnTrain (LDC97S44, HUB4 97-98 Broadcast News) [10] 142 1.5M 119K

3 SwitchBoard (LDC97S62, HUB5 Conversational telephone speech) [11] 33 343K 28K

Topic-

Restricted
4 CudaLec (CUDA Programming Lectures provided by NVIDIA Developer)1 7.3 83K 6.5K

5 MlLec (Machine Learning Course Videos offered at Oxford)2 7.8 80K 6.8K

1 https://www.udacity.com/course/intro-to-parallel-programming–cs344
2 https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

V Experimental Results

1. Setup conditions

In order to provide a comparable “Baseline” system without

any post-discriminative processing, we employed the Kaldi

open-source toolkit∗∗∗ , which largely follows the existing s-

tandard hybrid HMM/DNN setup recipe [12]). This “Baseline”

also generates the confusion network from speech data for us,

as we converted the ASR word graphs it created, along with

the acoustic and language model probabilities over each tran-

sition, to word confidence scores and confusion networks with

the pivot algorithm [13].

We first apply a combination of 2 broadcast news bench-

mark, BnTrain97 and BnTrain98, reflecting the years of their

release respectively [10], as our training and evaluation corpora.

They were extracted from a number of standard US broadcast

news shows and are both publicly available at LDC∗∗∗ . After

portions with spontaneous speech, noise, or background music

of the speech are removed, the final combined set gives a total

of 142 hours of speech and is denoted as “BnTrain”.

The total 142 hours of speech were then randomly divided

into 3 subsets for the purpose of “Baseline” acoustic model

training, CRF error detection model training and testing, re-

spectively (shown in Table 3). The 3 subsets share no common

intersections between each other so that the validation of the

evaluation is guaranteed. The random subdivision also en-

sures that phonetic and topical coverage is naturally balanced

without manual intervention. Input features for all acoustic

training are MFCCs with a context of ±10 frames.

For calculating the NGD score and the N-gram language

model training, the total transcripts for the 142h speech with-

out any subdivision, including 240K sentences, were employed.

The context length K described in Figure 3 is set to 3 utter-

ances around the current one.

Table 3. Number of data for training and testing subsets

BnTrain Words Sentences Hours Usage

Subset 1 0.5M 83.7K 49.5 CRF Traning

Subset 2 29K 18.6K 11 CRF Testing

Subset 3 1.1M 137K 81.5 Acoustic Model

Total 1.7M 240K 142
Language Model,

NGD calculation

2. Results discussion

We carried out 7 experiments for comparison other than the

“Baseline”:

1. “N-gram model”, where word errors are detected and

corrected using the N-gram and confusion network like-

lihood features.

2. “NGD context model with skip (A)” which uses the se-

mantic score based on NGD, the N-gram and confusion

network likelihood features.

3. “NGD context model w/o skip (B)”, with the same fea-

tures as above, but differs in that the skip transitions

deleted from training data.

4. “NRD context model with skip (A*)” which uses the se-

mantic score based on NRD, the N-gram and confusion

network likelihood features.

∗ ∗ ∗ http://kaldi.sf.net
∗ ∗ ∗ https://catalog.ldc.upenn.edu/LDC97S44
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5. “NRD context model w/o skip (B*)”, with the same

features as above, but differs in that the skip transitions

are deleted from the training data.

6. “NGD Double ( A + B )” and the “Proposed method

NRD Double ( A* + B* )”.

In these methods, we combine two types of detection mod-

els: first, we detect the errors by using “NGD context model

w/skip” and “NRD context model w/skip”. After deleting the

skip transitions that are labeled “True” from the results, we

then detect the errors using “NGD context model w/o skip”

and “NRD context model w/o skip”.

Table 1 shows features that are used by each model and

their word error rate with error types. All of the above models

are trained and tested on the data shown in Table 3. SUB,

DEL and INS denote the number of substitution errors, dele-

tion errors and insertion errors, respectively. As a result, the

word-error rate of the proposed method shows the best values.

Compared with the “N-gram model” and “NGD ( A + B )”,

the word-error rate of the proposed method was reduced by

12.2 points from 36.7%to 24.5% and 1.7 points from 26.2% to

24.5%.

3. Further Evaluation

We next carried our experiment on a variety of different corpus

to more thoroughly test the applicability of our proposed dou-

ble discrimination approach (Table 2). To yield more signifi-

cant differences in vocabulary and topical coverage, the tasks

selected ranges from rather simple conversational telephone

speech to professional video lectures restricted in very narrow

domains. Due to the containing of a considerable amount of

terminologies that hardly appears in daily language, some of

these contents are very challenging even for today’s ASR sys-

tems and can report word error rates above 50%.

The same subdivision procedure for “BnTrain” training

and testing subset separation were followed for each corpora.

Their WER and WER Improvement Ratio (WERIR) were

reported in Table 4. WERIR is defined by the following e-

quation:

WERIR =
WERbefore −WERafter

WERbefore
(9)

where WERbefore and WERafter denote WER before and

after error correction, respectively.

Table 4. WER [%] before and after our proposed NRD double (

A* + B* ) discriminative error correction

ID Corpora WERbefore WERafter WERIR

1 TIMIT 23.3 12.2 47.2

2 BnTrain 41.0 24.5 40.2

3 SwitchBoard 40.2 23.2 42.3

4 CudaLec 55.3 34.0 38.5

5 MlLec 64.7 42.6 34.1

The columns for each test set are in addition plotted in

Figure. 5, where the test ID is sorted by decreasing WER or-

der. The polynomial approximation (colored line) shows the

following trend: as WER decreases, WERIR increases. Be-

cause NRD measures semantic similarities between words, it

may be difficult for the NRD based error-detection system to

detect and correct erroneous words in high WER situations.

On the other hand, NRD based error correction obtained high

WERIR in low WER situations.

Fig. 5. WER and WERIR of our proposed method

VI Conclusion

In this paper, the two-pass error discrimination incorporat-

ing semantic similarity between words was investigated. It is

fully-automatic word-error detection upon the confusion net-

work by combining the N-grams and semantic score based on

Normalized Relevance Distance. The proposed method can

efficiently decrease errors, reducing the recognition errors and

skip transitions, which degrade the effectiveness of N-grams

on the first detection, and making the further correction pos-

sible for the second run. As compared with Normalized Google

Distance, NRD is a better metric to measure contextual infor-

mation between long distance words on word-error detection.

Experimental results also show that the NRD-based error de-

tection becomes more effective as the word-error rate of the

baseline decreases.

A major limitation currently is that our proposed method

is not able to detect errors beyond confusion sets, i.e. if the

word identified as correct does not exist in the confusion set,

or if the “deletion” kind of error occurs even before the time-

aligned lattice is constructed (refer to the case appeared in

Figure. 4, they will escape the discrimination and remain un-

change to the very last output. We plan to better address this

concern in the future by incorporating more active language

models that were able to give extra candidate hypothesis based

on acoustic scores.
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