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A Multiobjective Learning and Ensembling
Approach to High-Performance Speech Enhancement
With Compact Neural Network Architectures

Qing Wang ““, Jun Du

Abstract—TIn this study, we propose a novel deepneural network
(DNN) architecture for speech enhancement (SE) via a multiob-
jective learning and ensembling (MOLE) frameworkto achieve a
compact and lowlatency design, while maintaining good perfor-
mance in quality evaluations. MOLE follows the boosting concept
when combining weak models into a strong classifier and consists
of two compact DNNs. The first, called the multiobjective learn-
ing DNN (MOL-DNN), takes multiple features, such as log-power
spectra (LPS), mel-frequency cepstral coefficients (MFCCs) and
Gammatone frequency cepstral coefficients (GFCCs) to predict
a multiobjective set that includes clean speech feature, dynamic
noise feature, and ideal ratio mask (IRM). The second, called the
multiobjective ensembling DNN (MOE-DNN), takes the learned
features from MOL-DNN as inputs and separately predicts clean
LPS and IRM, clean MFCC and IRM, and clean GFCC and IRM
using three sets of weak regression functions. Finally, a postpro-
cessing operation can be applied to the estimated clean features
by leveraging the multiple targets learned from both the MOL-
DNN and the MOE-DNN. On speech corrupted by 15 noise types
not seen in model training the SE results show that the MOLE
approach, which features a small model size and low run-time la-
tency, can achieve consistent improvements over both DNN- and
long short-term memory (LSTM)-based techniques in terms of all
the objective metrics evaluated in this study for all three cases (the
input contexts contain 1-frame, 4-frame and 7-frame instances).
The 1-frame MOLE-based SE system outperforms the DNN-based
SE system with a 7-frame input expansion at a 3-frame delay and
also achieves better performance than the LSTM-based SE sys-
tem with 4-frame, no delay expansion by including only 3 previous
frames, and with 170 times less processing latency.
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1. INTRODUCTION

INGLE-CHANNEL speech enhancement is a challenging
S problem in many applications such as automatic speech
recognition (ASR), mobile speech communication, and hearing
aids [1]. Speech enhancement (SE) [1], [2] aims to improve
the quality and intelligibility of a speech signal degraded by
noisy adverse conditions. However, the performance of current
speech enhancement systems in real acoustic environments is
not always satisfactory due to a large variety of unanticipated
noise types that make it difficult to characterize noisy speech
mathematically. Conventional speech enhancement approaches,
such as spectral subtraction [3], Wiener filtering [4], minimum
mean squared error (MMSE) estimation [5], [6] and optimally-
modified log-spectral amplitude (OM-LSA) speech estimator
[7], [8], are considered to be unsupervised techniques and have
been studied extensively in the past several decades.

Recently, supervised machine learning has shown some ad-
vantages over conventional SE techniques. Xu et al. [9], [10]
adopted deep neural network (DNN) as a regression model to
map the log-power spectra (LPS) features of noisy speech [11]
to those of clean speech. A variety of noise types were included
in the training stage to achieve a good generalization capability
to unseen noise environments. A separate deep auto encoder
(SDAE) to estimate the clean speech and noise spectra by min-
imizing the total reconstruction error of noisy speech spectrum
was proposed in [12]. Deep recurrent neural networks (DRNN’s)
were introduced as a technique for feature enhancement in ro-
bust ASR [13], [14]. Long short-term memory (LSTM) recur-
rent neural networks have also been proven to outperform con-
ventional neural network architectures in speech recognition
and speech enhancement tasks due to their ability in modelling
long-term acoustic context [15]-[17]. In [18], a DNN was em-
ployed to perform binary classification for speech separation.
A single DNN to jointly predict the real and imaginary com-
ponents of the complex ideal ratio mask (cIRM), was adopted
in [19], which demonstrated that cIRM outperformed the con-
ventional magnitude-only ideal ratio mask (IRM) [20]. DRNNs
were employed in [21] to estimate the spectra of two target
sources by integrating the time-frequency (T-F) mask into a loss
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function, yielding performance gains when compared to non-
negative matrix factorization (NMF) [22] and the conventional
DNN approaches.

Thus far, most deep learning based SE approaches have fo-
cused on achieving performance improvements by designing
complicated neural network architectures that involve high com-
putational costs. For example, the approaches based on convo-
lutional neural networks (CNNs) [23] and LSTMs [24] require
more computations and higher latency than the conventional
feedforward and fully connected DNNs due to the use of con-
volutional/recurrent layers and longer acoustic context informa-
tion. In real applications, especially in speech communication,
a strict restriction of run-time latency exists. Clearly, designing
a DNN architecture that simultaneously achieves good perfor-
mance while maintaining a compact and low-latency real-time
performance is a key research topic for deep learning based
speech enhancement, and this aspect is the practical focus of
our study.

In an earlier study [25], we found that a primary set of clean
speech LPS features can be predicted better by incorporating
clean speech mel-frequency cepstral coefficients (MFCCs) [26]
and clean speech IRMs into the objective function through multi-
objective learning. When exploring other auxiliary features,
such as Gammatone frequency cepstral coefficients (GFCCs)
[27], noise LPS and its corresponding MFCCs and GFCCs, and
their IRMs, a preliminary set of experiments found that when
these multiple sets of features are known and utilized, the SE
performance can be greatly improved. For example, the percep-
tual evaluation of speech quality (PESQ) score [28] increased
from 2.89 for our baseline DNN to 3.81 when the known aux-
iliary features were used to train a new DNN for SE. We will
refer to this set of unavailable, yet critical, features as oracle
information later in our experiment section.

Motivated by the usefulness of auxiliary features, we pro-
pose a compact neural network architecture, called the multi-
objective learning and ensembling (MOLE), that is a stack of
two DNNGs. The first, called the multi-objective learning DNN
(MOL-DNN), takes LPS, MFCC and GFCC features of noisy
speech and static noise [9], [10] as input to predict an ensem-
ble of three complementary feature subsets for LPS, MFCC and
GFCC, respectively, in which each subset consists of three com-
ponents, namely, a feature for clean speech and its correspond-
ing IRM, plus that same feature for dynamic noise. Static noise
is calculated using the first several frames of an utterance and
thus fixed within that utterance. In contrast, the dynamic noise
varies in each frame and is estimated from the output of MOL-
DNN. The second DNN, called the multi-objective ensembling
DNN (MOE-DNN), takes the three subsets of predicted multi-
objective ensemble from MOL-DNN as input to jointly predict
an ensemble of three feature sets for clean speech LPS, MFCC
and GFCC, respectively, and their corresponding IRMs. The
primary LPS features and the clean speech IRM can be utilized
for post-processing, and the auxiliary information from MFCC
and GFCC features are used for multi-task learning to improve
the predictions of the primary LPS features and their IRMs [25].

Although each feature set learned from the compact multi-
tasking MOL-DNN might not be as accurate as the oracle
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counterpart, the MOE-DNN can be a strong predictor of clean
speech because similar to the boosting concept [29], it combines
an ensemble of weak regression functions into a strong one.
Moreover, MOE-DNN can also be compact because the
prediction is relatively easy when given prior awareness of the
auxiliary information. To further improve the performance, a
post-processing operation is applied that leverages the comple-
mentary targets learned from both MOL-DNN and MOE-DNN.
The experimental results, on speech corrupted by 15 noise types
not used in model training, show that the MOLE approach, at a
small model size and low run-time latency, can achieve consis-
tent improvements over both DNN and LSTM based techniques
in terms of all the objective metrics evaluated in this study for
all three cases: 1-frame, 4-frame and 7-frame input context ex-
pansion. The 1-frame MOLE-based SE system outperforms the
DNN-based SE system with a 7-frame input expansion at a 3-
frame delay. It also achieves better performance than the LSTM-
based SE system with 4-frame input expansion by including
only 3 previous frames, but 170 times less processing latency.

Compared with other studies, the proposed MOLE approach
combines several findings from our previous works [17], [20],
[25], [30] to achieve a compact, low-latency, high-performance
design for deep learning based speech enhancement. This study
is also related to some previous representative works [31]—
[35]. Zhang and Wang [31] proposed deep ensemble learning
approaches to monaural speech separation, where two multi-
context networks were adopted for averaging and stacking to
leverage the contextual information in noisy speech. However,
this approach requires a longer time delay, a larger model size
and more computational complexity compared with the single
DNN architecture. In [32], a stacked DNN architecture was used
to exploit speech activity information for speech enhancement
using left and right acoustic contexts. Nie et al. [33] presented a
variant of deep stacking networks to model the time correlations
for classification-based speech separation. Multi-task learning
architectures were adopted by Qian et al. for far-field speech
recognition in [34], [35]. The concepts underlying the proposed
multi-objective learning are similar to those in the multi-factor
joint learning proposed in [35], but these two methods have three
main differences: 1) the tasks and the corresponding evaluation
measures are completely different. This study focused on speech
enhancement, while [35] was aimed at far-field speech recog-
nition; 2) the auxiliary information is completely different. In
[35], speaker, phone and environmental factor representations
were used, while in this paper, clean speech, noise, and IRMs of
three feature types were used; 3) to design a compact model, we
applied a single DNN to learn multi-objective simultaneously,
while [35] used one DNN to extract each factor. Additional in-
formation was used in these approaches [31]—[35] for regression
or classification tasks, yielding performance gains over a single
network. Nevertheless, the practical issues in real applications
were not considered in these approaches.

Therefore, in contrast to previous work, the contributions
of this study are summarized as follows: (i) practical issues
are primarily considered in the design of the proposed MOLE
architecture which uses a learning procedure similar to boost-
ing that not only improves the model’s speech enhancement
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performance but also leads to a more compact design and better
convergence (as shown in learning curves); (ii) key informa-
tion for speech enhancement, including clean speech, noise and
IRM, is fully utilized in the proposed framework via multi-task
learning, ensemble learning and post-processing; (iii) the com-
plementarity of different feature types, namely, LPS, MFCC
and GFCC, is used to further enhance the performance and
make the DNN models more compact; and (iv) the long latency
problem that results from the frame expansion of the acoustic
context, which is crucial in the conventional DNN and LSTM ap-
proaches, is partly alleviated in our proposed MOLE approach.
This is because the role the multi-objective plays is somewhat
similar to the role of frame expansion in achieving predictions
of clean speech features.

The rest of the paper is organized as follows. The proposed
MOLE framework is described in detail in Section II. We then il-
lustrate the multi-objective concept in Section III. The results of
comprehensive speech enhancement experiments are presented
in Section IV. Finally, we summarize our finding in Section V.

II. THE MOLE FRAMEWORK

The proposed MOLE framework illustrated in Fig. 1 con-
sists of two stages: MOL and MOE. The MOL stage, shown
in the bottom dashed box, uses one compact DNN to learn
multi-objective in different feature domains, while the MOE
stage, shown in the top dashed box, uses another compact DNN
for the ensemble of learned features. Different from the con-
ventional DNN [10], [30] which is used like a black box to
predict clean speech, the proposed MOLE framework includes
two explicitly designed progressive learning stages, that can
potentially improve both the effectiveness and compactness of
this new model. The details of the multi-objective concept will
be introduced in Section III. In the following subsections, we
elaborate on the three main modules of MOLE: multi-objective
learning, multi-objective ensembling and post-processing.

A. Multi-Objective Learning (MOL)

As shown in Fig. 1, the MOL stage is designed to learn
the multi-objective, including clean speech, dynamic noise and
IRM, defined in K (K = 3 in this study) acoustic feature do-
mains, namely, LPS, MFCC and GFCC. To learn the multi-
objective, one common way is that each target is predicted by
a single DNN. Therefore, multiple DNNs are required leading
to more parameters. In this study, we use a single multi-tasking
DNN to learn all auxiliary targets, which can reduce the pa-
rameter redundancy and improve the generalization capability
of DNN. Furthermore, this MOL-DNN could be compactly de-
signed for predicting multiple types of weak targets, which are
later combined to generate a strong predictor in the MOE stage
similar to boosting [29].

As for the input layer of MOL-DNN, both the noisy speech
and static noise estimation of all acoustic feature types are con-
catenated as:

MOL __ [ 1

51 K 5K
Vi Yirthrys Ztr s Yior, irr 2 | (1
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wherey} . and2} (k = 1,..., K) denote the noisy speech
vector and static noise vector of kth acoustic feature type at ¢th
frame, respectively. Multiple feature streams [36], [37] are con-
catenated in the MOL-DNN for merging different properties of
the input signal. Please note that for the noisy speech vector,
frame expansion includes 7; left frames and 7» right frames,
where 7 and 7o are two important parameters related to the
latency in real applications, which will be discussed in the ex-
periments.

The output layer consists of multiple targets to be predicted,
including the reference clean speech, dynamic noise, and IRM
of all acoustic feature types. Using multi-objective MMSE crite-
rion as the loss function, we adopted stochastic gradient descent
(SGD) algorithm to optimize the model parameters with random
initialization:

T
MOL _ RMOL (yMOL yyMOLY _ MOL
E Z Z 1% , WHOR) — x5
=4
T K
1
~MOL (_MOL yx7MOL MOL
+T§ E 15" (vi™OF, WHMOL) — nPb(|3
t=1 k=
T K
1
< MOL (,MOL yx7MOL MoL
3T IO (MO WOL) o
t=1 k=1
(2)
where EMO is an equally weighted mean squared error. X2,
ﬁl,\’[?L and MO are the vectors of clean speech estimation, dy-

namic noise estlmation and IRM estimation for the kth acous-
tic feature type at the tth frame, respectively. Correspondingly,
xp P, mPt and m)'P" are the reference or oracle versions. T is
the mini-batch size for the SGD algorithm. WMOL denotes the
parameters to be optimized in the MOL stage. Similar to [10],
the dropout strategy is also applied as a standard configuration
to address the overfitting problem.

It should be emphasized that the multi-objective function
defined in (2) is quite different from those in our previous work
[25] and recent work [20]. First, we predict more auxiliary
targets in MFCC and GFCC feature domains. Second, in this
study the mean square errors of each target are equally weighted
as all the targets learned in the MOL stage are supposed to be
equally important which are then fed to the subsequent MOE-
DNN. However, in [20], [25], the main purpose of the multi-
objective function is to improve the generalization capability of
DNN for predicting the clean LPS features, where small scaling
factors should be applied for other learning targets to achieve a
good performance. The multi-objective function defined in (2)
is a robust design by avoiding parameter tuning of the scaling
factors for so many learning targets.

B. Multi-Objective Ensembling (MOE)

The design of MOE-DNN is partially motivated by our pre-
vious work on dynamic noise aware training [30]. The MOE-
DNN can be considered as multi-stream aware training because
it uses not only the dynamic noise information in the LPS fea-
ture domain but also the IRM information and other feature
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types. Based on the multi-stream predicted by the MOL-DNN,
the second-stage MOE-DNN forms a strong predictor of clean
speech by adopting a concept similar to boosting. Moreover,
the use of clean speech estimation, dynamic noise estimation,
and the IRM estimation in MOE-DNN for each frame was in-
spired by traditional speech enhancement methods [7], [8], in
which an online tracking procedure is commonly employed by
using estimations of clean speech, noise signal, and speech pres-
ence probability (similar to IRM) in the current frame to predict
those statistics in the next frame. From this perspective, the op-
timization of MOE-DNN seems like adaptive training with the
ensemble of multi-stream.

In Fig. 1, multiple input streams of MOE-DNN vMOE at the
tth frame are formed by concatenating the noisy speech of all
feature types and the output of MOL-DNN:

1 sMOL ~MOL . MOL
X1 oMy M,

K sMOL ~MOL . MOL
Yo Xk sy K 7me]

Vi\/IOE —_ [

3

where each input stream is adopted only at ¢th frame, implying
that MOE-DNN has no hard latency. The MOE-DNN param-
eters are randomly initialized, and then optimized by the SGD
algorithm using a multi-objective MMSE criterion:

EMOE MOE ‘ | 3

Z Z || AMOE

tlkl

ii

VMOE, WMOE) _

OE WMOE) _ mMOEHg (4)

’ﬂ \

Static Noise MFCC Noisy GFCC  Static Noise GFCC

Ilustration of the proposed multi-objective learning and ensemble framework.

where FMOE

is an equally weighted mean squared error, and
£)PF and m)'P* are the clean speech estimation and IRM es-
timation for the kth acoustic feature type in the tth frame, re-
spectively. Correspondingly, x}F and m}}P® are the reference
versions, and WMOE denotes the parameters to be optimized in
the MOE stage. Other training details are similar to those of the
MOL-DNN.

Although both the MOL-DNN and the MOE-DNN conduct
multi-task learning, their motivations are quite different. The
MOL-DNN is mainly intended to provide the learned targets to
the MOE-DNN. However, the role of the multi-task learning in
the MOE-DNN is to improve the framework’s generalization
capability for predicting the clean LPS features, a task that was
inspired by our previous work [17], [25]. In [25], we demon-
strated that multi-objective learning using MFCC features as
additional constraints can improve model generalization. Here,
we extend that concept and use both MFCC and GFCC features
in the MOE-DNN. Moreover, our recent study [17] verified that
learning the targets of clean speech and IRM could be comple-
mentary, an idea that is also incorporated into our MOE-DNN
training process.

C. Post-Processing

To alleviate the over-estimation or under-estimation problem
of the enhanced spectrum [25] and to fully utilize the comple-
mentary targets learned from both the MOL-DNN and MOE-
DNN [17], we perform post-processing via a simple averaging
operation in the LPS domain:

®)

[}A{MOL

MOV + 2)PF + ! + log (m)PF)]

W =
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Fig. 2. Illustration and comparison of the feature extraction procedures for LPS, MFCC and GFCC.
where XML and XMOF are both directly predicted clean LPS  space via Mel-filtering and the correlation among different di-

features that might be complementary, because MOL-DNN and
MOE-DNN are designed with different input features and out-
put targets. Given the noisy LPS input y; and the estimated
IRM 1m'PF (which will be defined in (7)), we can see that

yi + log(m}'PF) are the predicted clean log power spectra fea-
tures from the IRM estimation in the MOE stage, which has
been verified to be complementary with the direct mapping re-

MOE for different SNRs according to [17]. Finally, the

sults X;'
post-processing result %FF is adopted for waveform reconst-

ruction [10].

III. MULTI-OBIJECTIVE FEATURES

The previous section provided our motivation for investigat-
ing the multi-objective design. In Section IV-A, we will further
verify this approach by performing a set of experiments on the
oracle information. In this section, we elaborate on the details
of the noise and IRM information in different feature domains.
Here, the clean speech information refers to clean speech fea-
tures in different feature domains.

A. Feature Extraction

Fig. 2 illustrates the feature extraction procedures for LPS,
MFCC and GFCC. In our previous work [25], we incorporated
the MFCC features and demonstrated their complementarity to
LPS features in reducing speech distortions. Accordingly, we
include MFCC features in the MOLE framework. In contrast
to the MFCC extraction procedure using Mel-filters, the GFCC
features are extracted using Gammatone filters. Because of the
complementarity among these three feature types, we combine
them in the MOLE framework. These acoustic features are all
known to be related to human auditory perception but have
different emphases [38]-[40]. One shared operation for extract-
ing the LPS and MFCC features is discrete Fourier transform
(DFT) for T-F analysis. LPS features which have been widely
adopted for speech enhancement [9], [10], are related to the hu-
man perceptual domain [38], [41] and can be transformed back
to the waveform domain without any information loss. MFCC
features are popular in both ASR [42] and speaker recognition
[43]. High similarity exists between the spacing of Mel-filtering
and the human perception scale [39]. When compared to LPS
features, MFCC features are concentrated in a low-dimensional

mensions are removed using a discrete cosine transform (DCT)
[44]. We used MFCC features to improve the prediction of clean
LPS features in our previous work [25]. GFCC features are
obtained using Gammatone filters to extract auditory features
based on computational auditory scene analysis (CASA) [45],
and they have previously been used in the speech and speaker
recognition community [27], [46], [47].

For an input signal with a sampling rate of 16 kHz, LPS and
MEFCC use a framing operation with a frame length of 512 sam-
ples (or 32 ms) and a frame shift of 256 samples. After the DFT
operation, a 257-dimensional LPS feature vector is extracted
via the logarithm of the power spectra. For the MFCC features,
40 Mel-filters are applied to magnitude spectra, followed by the
logarithm operation and DCT. Then, a 41-dimensional MFCC
feature vector is formed with 40 static feature dimensions and
one energy dimension as in [25]. For the GFCC features, we
follow a procedure similar to that proposed in [27], [46], [47].
First, a bank of 64-channel Gammatone filters [45] are applied
by decomposing the input signal into the T-F domain. Then,
a resampling strategy is adopted to achieve a frame shift of
256 samples, followed by a cubic root operation and DCT. Fi-
nally, a 30-dimensional GFCC feature vector is generated as in
[46], [47].

B. Noise Information

Noise information has been shown to be effective in improv-
ing DNN training for robust ASR [48] and speech enhancement
[10], [20], [30]. It also plays an important role in this study. In
the MOL stage, input noisy speech features are concatenated
with a static noise feature calculated as follows:

1 &
sk E k
Zf, = T! yT
=1

where the first 7" frames of each utterance are used to estimate
the static noise information for each feature type. Obviously,
the static noise 2/’ is then a fixed vector within each utterance.
For the dynamic noise of each feature type defined in the output
layer of the MOL-DNN or at the input layer of the MOE-DNN,
reference or oracle noise information is provided as the learning
target of the MOL-DNN. In [20], [30], dynamic noise aware
training was shown to perform better than static noise aware
training in non-stationary environments.

(6)
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For the static/dynamic noise LPS features, the high dimen-
sionality of the original feature vector is reduced by mapping
the 257 linear frequency bins to the 64 frequency bins of
Gammatone filter banks. This dimensionality reduction not
only improves the enhancement performance but, according to
our previous work [20], it also reduces the model size and the
computational complexity. For the MFCC and GFCC features
of static/dynamic noise, the same dimensions are adopted as in
the clean/noisy speech feature vectors.

C. Ideal Ratio Mask Information

IRM is a measure to estimate the speech presence in a local T-
F unit. IRM is extended from the ideal binary mask (IBM) [49]
widely used in CASA [50]. We adopt the IRM information in
the proposed framework because continuous targets yield better
performance than do binary targets in speech enhancement [51],
[52]. If we assume that clean speech and noise are statistically
independent, the IRM of each T-F bin for the kth acoustic feature
type is defined following [53]:

.Z’t‘k-(d)
’Iqu- (d) —+ ’nt_k (d)

where my, (d) is the dth element of m, j, and z;;(d) and
ny i (d) denote clean speech and noise energy, respectively, in
the kth feature domain at time frame ¢ and frequency bin d. As
shown in Fig. 2, the clean speech and noise energy in differ-
ent feature domains are calculated after the operation in the red
rectangle boxes. For MFCC and GFCC domains, they are com-
puted before the non-linear transformation, namely, logarithm
and cube root operations. Therefore, the dimensions of MFCC
IRM and GFCC IRM are 40 and 64, respectively. In the LPS
domain, x; j, (d) and n, ;, (d) reflect the exact power spectra of
clean speech and noise in the linear frequency domain. Then,
for the LPS IRM in the output layer of the MOE-DNN, we
use a full-band 257-dimension, which is the same as that of the
clean LPS feature vector used in post-processing. However, for
the MOL-DNN, based on [20], a sub-band 64-dimensional LPS
IRM vector is adopted.

Clearly, the IRM information is used in several parts of the
MOLE framework, including multi-tasking, adaptive training
and post-processing. Because IRM is partially inspired by the
human auditory attention mechanism [52], the MOLE archi-
tecture with IRM information can be considered as an implicit
attention-based neural network design where the IRM functions
as an indicator of speech presence or absence. Finally, the di-
mensionality of multi-objective set in the MOLE architecture
for the different acoustic feature types is summarized in Table I.

me i (d) = (N

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Here, we extend the speech sampling rate from the 8 kHz used
in our previous work [9], [10] to 16 kHz as one commonly used
setting. We adopted 115 noise types, including 100 noise types
recorded by Hu [54] and some other in-house musical noises to
improve the generalization capacity to unseen noise scenarios.
The clean speech data was acquired from the TIMIT corpus [55].
All 4620 utterances from the TIMIT training set were corrupted
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TABLE I
DIMENSIONALITY OF MULTI-OBJECTIVE SET IN THE MOLE ARCHITECTURE
FOR THE DIFFERENT ACOUSTIC FEATURE TYPES

LPS MFCC GFCC
Noisy/Clean Speech 257 41 30
Static/Dynamic Noise 64 41 30
IRM (MOL-DNN) 64 40 64
IRM (MOE-DNN) 257 40 64
TABLE II

THE FIFTEEN UNSEEN NOISE TYPES FROM NOISEX-92 CORPUS

N1: Jet Cockpit 1 N2: Jet Cockpit 2 N3: Destroyer Engine

N4: Destroyer Operations NS5: F-16 Cockpit N6: Factory 1
N7: Factory 2 N8: HF Channel NO: Military Vehicle
N10: M109 Tank N11: Machine Gun N12: Pink
N13: Volvo N14: Speech Babble N15: White

by the abovementioned 115 noise types at six SNR levels (i.e.,
20dB, 15dB, 10dB, 5 dB, 0 dB and —5 dB) to build an 80-hour
multi-condition training set. The 192 utterances from the core
TIMIT test set were used to construct the test set. Because we
only conduct an evaluation of mismatched noise types in this
study, 15 other unseen noise types from the NOISEX-92 corpus
[56] (shown in Table II) were adopted for testing.

The Microsoft Cognitive Toolkit (CNTK) was used for neu-
ral network training [57]. In the MOL-DNN, different context
window sizes were used for acoustic expansion of the input
layer. In the MOE-DNN, we used only the central frame in the
input layer. For both the MOL-DNN and MOE-DNN, sigmoid
activation function were employed for all the hidden layers. Be-
cause the IRM values are in the range [0,1], we also adopted
a sigmoid activation function for the IRM targets in the output
layer. For the other targets in the output layer, linear units were
used. Both MOL-DNN and MOE-DNN use two hidden layers
with 1024 units. All the networks were initialized with random
weights. The mini-batch size 7" was set to 256. For fine-tuning,
the learning rate of a mini-batch was initially 0.01 and decreased
by 10% when the squared loss on the development set increased.
The momentum rate was 0.9 and the weight decay coefficient
was 0.00001. The dropout rate was set to 0.1 for both the in-
put layer and hidden layers. The total number of epochs was
40. Mean and variance normalization was applied to the input
and target feature vectors. To estimate the static noise informa-
tion, the first 7" = 6 frames of each utterance were used. The
dimensionality of each feature vector is described in Table I.

For comparison purposes, we trained a DNN baseline system
according to [10] and used the LSTM-RNN architecture adopted
in [17]. For both architectures, we used only the LPS features
of noisy speech and clean speech signals to serve as the inputs
and the target outputs. The MMSE-based objective function
was adopted to train the DNN and LSTM-RNN with random
initialization. A dropout strategy [58] was used in the DNN
training. In addition, the DNN architecture was fixed at 3 hidden
layers, with 2048 units in each hidden layer and a static noise
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TABLE III
AVERAGE PERFORMANCE COMPARISONS ON TEST SETS ACROSS 15 UNSEEN
NOISE TYPES AT ALL SNR LEVELS WITH VARYING TYPES OF
ORACLE INFORMATION

PESQ STOI SSNR LSD
DNN Baseline 2.89 86.0 4.68 3.21
+ Oracle Noise LPS 3.47 93.2 6.50 2.35
+ Oracle LPS IRM 3.67 94.4 6.70 2.20
+ Oracle (MFCC + GFCC) 3.81 95.5 7.25 1.78

estimation concatenated with the noisy speech input. For the
LSTM-RNN, we employed 2 LSTM layers with 1024 cells in
each layer. The truncated back propagation through time (BPTT)
algorithm [59] was adopted to update the LSTM parameters with
16 frames and 16 utterances processed simultaneously.

We adopted six objective metrics to evaluate the performance
of our proposed framework. A perceptual evaluation of speech
quality (PESQ) [28] and the short-time objective intelligibility
(STOL in %) [60] were used to assess the quality and intel-
ligibility of enhanced speech. Segmental SNR (SSNR) mea-
sures the degree of noise reduction while log-spectral distortion
(LSD) is designed as an indicator of the speech distortion [11].
The instrument-measured noise reduction (NR) and segmental
speech SNR (SSSNR) proposed in [61] were alternative mea-
sures of noise reduction and speech distortion, respectively. For
most of the experiments, we provide performance comparisons
with the PESQ, STOI, SSNR and LSD measures. In addition,
for the overall comparisons among DNN, LSTM and MOLE
systems in Section IV-C, we list all six evaluation measures.

In the following, we conduct experiments to evaluate the ef-
fectiveness of the proposed framework. First, oracle experiments
were conducted to demonstrate the main motivation by assum-
ing that the underlying noise signals and the reference IRM
information were known. Then, we show the complementarity
of the learnable multi-objective in the MOLE framework and the
compactness of the MOLE architecture. Finally, we performed
comparisons with the DNN- and LSTM-based approaches to
show the advantage of MOLE regarding both performance and
practical issues such as model sizes, latency requirements and
computational complexity.

A. Oracle Experiments

We designed a set of oracle experiments to demonstrate the
main motivation of this study. Suppose that all the targets that
MOL-DNN aims to learn are already known (i.e., oracle infor-
mation) and the corresponding feature vectors are concatenated
with noisy LPS features as the input of the DNN in [10]. For
example, as Table III shows, the baseline DNN achieves an
average PESQ score of 2.89. By adding the oracle noise LPS
information, the predictions become better and all the objec-
tive metrics improve substantially. For example, the PESQ level
rises to 3.47. When the additional oracle LPS IRM information
was added, all four evaluation metrics improved consistently,
which implies that the noise information and the IRM informa-
tion are complementary. Moreover, adding oracle information
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TABLE IV
COMPARISON OF AVERAGE PERFORMANCES ON TEST SETS ACROSS 15 UNSEEN
NOISE TYPES WITH ALL SNR LEVELS BETWEEN THE DNN BASELINE AND
ORACLE SYSTEMS USING DIFFERENT SETTINGS OF (7, N1, Ny), WHERE T IS
THE NUMBER OF FRAMES IN THE INPUT LAYER AND N, AND Ny ARE THE
NUMBERS OF HIDDEN LAYERS AND UNITS, RESPECTIVELY

DNN Baseline Oracle
(1, N, Ny) PESQ STOI SSNR LSD PESQ STOI SSNR LSD
(1, 3,2048) 276 84.6 457 359 381 955 7.8 1.77
(4, 3,2048) 2.82 854 467 334 3381 955 7.15 1.80
(4,2,1024) 277 842 384 364 379 952 686 190
(7, 3,2048) 289 860 468 321 381 955 725 178
TABLE V
SYSTEMS TRAINED WITH DIFFERENT ADDITIONAL INFORMATION

Systems Additional Information

DNN [10] Static noise LPS

MOLEI1 Clean LPS + Dynamic noise LPS + LPS IRM

MOLE2 + Clean MFCC  + Dynamic noise MFCC ~ + MFCC IRM

MOLE3 + Clean GFCC  + Dynamic noise GFCC  + GFCC IRM

from the MFCC and GFCC feature domains yielded further
performance gains, especially for SSNR and LSD, improving
the PESQ to 3.81, almost a full point better than that of the
baseline DNN. Based on these results, we would expect that the
proposed MOLE architecture, using the learned multi-objective
set, should boost the performance along a trend similar to that
of using the oracle information.

Table IV show results based on another motivation for this
study: the compactness of the MOLE architecture. The DNN
baseline system and the best oracle system in Table III were
compared with different settings of triplets, namely, acoustic
context size, number of hidden layers and number of units in
each hidden layer. For the baseline system, longer acoustic con-
texts could ensure much better performances by making com-
parisons among the triplet settings (7, 3, 2048), (4, 3, 2048) and
(1, 3, 2048). Meanwhile, the larger model size could also yield
performance gains by making comparisons between the settings
(4, 3,2048) and (4, 2, 1024). These observations imply that the
large latency and model size are necessary for the DNN baseline
model to guarantee a relatively good performance, which is a
primary concern in real-world applications. Therefore, 3 hidden
layers and 2048 units for each layer were the default setting for
the DNN baseline in all subsequent experiments. However, with
the oracle information, all the evaluation metrics seemed to be
insensitive to different settings, which motivated us to design
the compact MOLE architecture with multi-objective to make
clean speech prediction easier.

B. Experiments on the MOLE Framework

To demonstrate the complementarity of multiple streams, we
first define three different MOLE variants in Table V. MOLE1
uses only learned targets in the LPS domain while MOLE2
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Fig. 3. Learning curves of DNN and MOLE on the development set.

adopts the additional learned targets in the MFCC domain and
MOLE3 employs all the targets, including that in the GFCC
domain, as shown in Fig. 1. In this subsection, the acoustic
context for both the DNN baseline and MOL-DNN was set
to 4 frames (1 current frame plus 3 historical frames), which
would generate no hard latency (no use of future frames) in
real applications. For MOLE systems without post-processing,
the reconstructed clean speech waveform was obtained from the
clean LPS estimate of the MOE stage. For MOLE2 and MOLE3,
the MFCC and GFCC domain estimates were not directly used
for the final clean speech reconstruction but were adopted to
improve the generalization capability of the network, as inspired
by our previous work [25].

Fig. 3 illustrates the comparison of learning curves between
the DNN and the three MOLE variants using their averaged
squared errors on the development set. Clearly, the learning
curves of the MOLE systems with their multi-objective ensem-
bles achieved more stable and better convergence than did that
of the DNN approach. When MFCCs and GFCCs were included
in the MOLE framework, the squared errors decreased at each
step. In particular, the MOLE3 system with GFCC feature had
a much smaller average squared error, which is consistent with
the LSD values listed in Table VII. This result demonstrates the
strong complementarity among the three feature types. More
interestingly, the initial point of the MOLE3 learning curve was
already close to the convergence point of the DNN learning
curve, which demonstrates the importance of using multiple
feature streams.

Tables VI and VII show comparisons of the average perfor-
mance on the test set by the DNN baseline and several MOLE
systems (PESQ and STOI) and (SSNR and LSD), respectively,
at different SNR levels across 15 unseen noise types. To simplify
Tables VIand VII, we list only four SNR levels because the per-
formances across different SNR levels were quite stable. Several
observations can be made. First, MOLE1 outperformed DNN
in most cases, especially on the STOI metric (e.g., from 66.3 to
70.8 at —5 dB input SNR). This shows the effectiveness of the
dynamic noise and IRM information in the LPS domain, whose
complementarity was verified in our previous work [20]. There
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TABLE VI
COMPARISON OF AVERAGE PESQ AND STOI RESULTS BY THE DNN BASELINE
AND SEVERAL MOLE SYSTEMS ON TEST SETS AT FOUR SNR LEVELS ACROSS
15 UNSEEN NOISE TYPES

SNR 10dB 5dB 0dB —5dB Ave

DNN PESQ 3.07 275 235 1.88 2.51
STOI 914 86.4 782 66.3 80.6

MOLEI1 PESQ 3.09 2779 244 2.03 2.59
STOI 92.0 87.6  80.7 70.8 82.8

MOLE2 PESQ 3.16 286 251 2.10 2.66
STOI 92.8 885 817 72.0 83.8

MOLE3 PESQ 3.18 288 253 2.13 2.68
STOI 92.8 88.6  81.8 72.1 83.9

MOLE3 + PP PESQ 3.25 294 258 2.18 2.74
STOI 93.3 889  81.8 72.0 84.0

TABLE VII

COMPARISON OF AVERAGE SSNR AND LSD RESULTS BY THE DNN BASELINE
AND SEVERAL MOLE SYSTEMS ON TEST SETS AT FOUR SNR LEVELS ACROSS
15 UNSEEN NOISE TYPES

SNR 10dB 5dB 0dB —5dB Ave

DNN SSNR  5.61 4.05 241 0.94 3.25
LSD 2.79 322 392 5.27 3.80

MOLEI1 SSNR  5.75 4.09 233 0.66 3.21
LSD 2.57 298  3.56 4.34 3.36

MOLE2 SSNR  6.12 437 252 0.78 3.45
LSD 2.49 297 361 4.36 3.35

MOLE3 SSNR  6.57 475 282 0.97 3.78
LSD 2.38 286  3.49 4.25 3.25

MOLE3 +PP SSNR  7.28 535 333 1.45 435
LSD 2.28 2779 345 4.29 3.20

are two exceptions for the SSNR measure at the O dB and —5
dB input SNRs. These exceptions may be due to the aggressive
noise reduction of the DNN model at low SNRs (better SSNR)
which often degraded the listening quality and intelligibility
(worse PESQ and STOI). Second, by adding the learned targets
in the MFCC domain, PESQ, STOI and SSNR all consistently
improved from MOLEI to MOLE2. In addition, the PESQ and
STOI gains across the different SNR levels were quite stable.
Third, the learned targets in the GFCC domain (MOLE3) yielded
consistent improvements over MOLE2 on the SSNR and LSD
measures. In addition, the reduction in LSD from MOLE?2 to
MOLE3 (0.1 dB on average) was more effective than that from
MOLE!1 to MOLE2 (0.01 dB on average). Finally, the post-
processing (MOLE3 + PP) by the multi-objective ensemble of
MOL-DNN and MOE-DNN generated consistent gains over
MOLE3, especially in the PESQ and SSNR metrics. Overall,
from Tables VI and VII, we can conclude that all the multi-
objective sets are quite complementary (similar to the oracle
experiments shown in Table III) and it contributed to the rise in
the four evaluation metrics that measure speech quality, speech
intelligibility, noise reduction and speech distortion. From DNN
to MOLE3 + PP, we adopted the boosting concept for the en-
semble of multiple types of learned weak stream to create a
strong predictor. Accordingly, consistently large improvements
were achieved for the four evaluation metrics at four SNR Ilevels,
with average gains of 0.23, 3.4, 1.1 dB, and 0.6 dB for PESQ,
STOI, SSNR and LSD, respectively.
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TABLE VIII
SYSTEMS WITH DIFFERENT INPUT AND OUTPUT FEATURE SETTINGS

System Input Features Output Features

A/B Noisy + Static Noise Clean + Dynamic Noise + IRM
C Output of A Clean LPS

D Output of A + Noisy Clean LPS

E Output of A + Noisy + LPS IRM

F Output of A + Noisy + MFCCs + GFCCs

G Input of F without IRM Output of F

TABLE IX
AVERAGE PERFORMANCE COMPARISON ON TEST SETS ACROSS 15 UNSEEN
NOISE TYPES AT ALL SNR LEVELS AMONG THE SYSTEMS SHOWN IN
TABLE VIII

A B C D E F G

PESQ 289 291 292 29 3.03 3.04 3.03
STOI  86.0 864 87.0 87.7 88.1 883 88.1
SSNR 426 438 424 513 6.00 6.14 5098
LSD 349 347 321 290 280 273 279

Table VIII provides descriptions of several DNN systems
with different input and output feature settings. Systems A and
B are MOL-DNN models with two hidden layers and different
numbers of hidden nodes in each layer (1024 for A and 1600
for B). Systems C-G are all MOE-DNN5 with the same hidden
layer and node settings as System A. System C was a special
MOE-DNN model in which no noisy features were used as the
input and only clean LPS features were predicted in the output
layer. System D, E and F used the same input; however, D
estimated only clean LPS while E estimated clean LPS and LPS
IRM simultaneously, and F is the proposed MOLE3 + PP from
Tables VI and VII. The difference between G and F was that
the IRM information was not included in the input to G.

Table IX shows a performance comparison of the systems
listed in Table VIII. These results provide a strong justification
for the choice of our proposed MOLE setup. First, large perfor-
mance gaps existed between the purely multi-tasking systems
A/B and the proposed MOLE system F on all the evaluation
metrics even though the model sizes of B and F were almost
the same. This result implies that multi-objective ensembling
is quite important and the multi-tasking DNN (MOL-DNN) in
the MOLE is just a way to estimate the multi-stream fed to the
MOE-DNN as the ensemble. Second, comparing C and D, we
can see that the original noisy features are complementary with
the estimated multiple streams. Third, D, E and F were designed
to provide justification for the choices made in the MOE-DNN
setup. When IRM information was incorporated in the training
targets (D versus E), all four metrics improved. Because the di-
mensions of MFCC and GFCC were quite low, we adopted them
in our final MOLE framework because they result in slight but
consistent improvements across all measures (E versus F). Even
the MFCC and GFCC outputs of MOE-DNN were not directly
used for the final clean speech estimate, instead, they served as a
multi-tasking approach to improve the generalization capability
of the network. Fourth, F consistently outperformed G on all
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TABLE X
AVERAGE PERFORMANCE COMPARISON ON TEST SETS ACROSS 15 UNSEEN
NOISE TYPES OF ALL SNR LEVELS AMONG MOLE ARCHITECTURES TRAINED
WITH DIFFERENT SETTINGS OF (N, Ny), WHERE N1, AND Ny ARE THE
NUMBERS OF HIDDEN LAYERS AND UNITS USED IN THE MOL-DNN OR
MOE-DNN, RESPECTIVELY

MOL-DNN MOE-DNN PESQ STOI SSNR LSD
(2,1024) (2, 1024) 3.04 88.3 6.14 2.73
(2, 1024) (3,2048) 3.04 88.3 6.13 2.73
(3,2048) (2, 1024) 3.02 88.6 6.27 2.67
(3,2048) (3,2048) 3.02 88.7 6.40 2.63

metrics although the gains were not large. Accordingly, IRMs
were still included as input to the MOE-DNN.

Table X shows a comparison of the average performance on
the test sets across 15 unseen noise types with all SNR levels
among four MOLE3 + PP architectures trained with different
MOL-DNN and MOE-DNN parameter settings. With the same
MOL-DNN settings, using a quite compact setting (2, 1024)
for the MOE-DNN achieved a comparable performances on all
four metrics compared to the default setting of (3, 2048) used for
the DNN baseline. This indicates that MOE-DNN can be com-
pact given its awareness of the multiple streams and provided
solid confirmation of the findings from the oracle experiments in
Table IV. Similar observations can be made for the MOL-DNN
model. This implies that although each learned target might be
not the most accurate when using a compact setting (2, 1024) for
MOL-DNN, the performance after the multi-objective ensem-
ble using MOE-DNN via the boosting concept is comparable to
that of the default setting (3, 2048). Overall, these results serve
to demonstrate the compactness of the MOLE architecture de-
sign well. Note that in the following experiments the notation
“MOLE” denotes MOLE3 plus post-processing (MOLE3 + PP
in Tables VI and VII).

C. Comparison With DNN and LSTM

In addition to the performance, the time latency, model size
and computational complexity are also crucial for deep learning
based methods in real-time speech applications. In this subsec-
tion, we conduct an overall comparison of both the performance
and practical issues among different speech enhancement ap-
proaches using the DNN, LSTM and MOLE architectures.

First, a comparison of different deep learning approaches on
the test sets for all the evaluation metrics across 15 unseen noise
types at all SNR levels is listed in Table XI. The setting of the in-
put frame number 7 as the acoustic context determined the hard
latency of the deep models: 7 = 1 denoted that only the central
frame was adopted with no hard latency; 7 = 4 used 3 history
frames; and 7 = 7 employed both 3 history and future frames.
For the DNN models, the acoustic context was quite important
for all evaluation metrics, which was also demonstrated in [9],
[10]. For the LSTM model, the concatenated future frames im-
proved the performance while the concatenated history frames
caused the results to be slightly worse. This was reasonable
because the history information is already embedded in the re-
cursive structure of the LSTM; thus, including previous frames
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TABLE XI
PERFORMANCE AND PRACTICAL ISSUE COMPARISON ON TEST SETS ACROSS
15 UNSEEN NOISE TYPES WITH ALL SNR LEVELS AMONG DNN, LSTM AND
MOLE TRAINED WITH DIFFERENT INPUT FRAME NUMBER (7) SETTINGS

7 System Performance Gain Practical Issue
PESQ STOI SSNR LSD NR SSSNR Ny Nt

— Noisy 232 821 120 7.12 - — — —
1 DNN 044 25 337 353 510 2383 1 1
LSTM 059 45 399 3.87 567 3.83 1.4 102
MOLE 0.68 5.8 4.64 428 645 4.39 0.5 0.6
4 DNN 050 33 347 378 517 294 1.2 1.1
LSTM 059 43 3.62 3.73 526 3.32 1.7 103
MOLE 0.72 62 494 439 6.66 4.64 0.6 0.9
7 DNN 057 39 348 391 511 2387 1.3 1.3
LSTM 0.68 5.6 398 4.12 562 3.68 2.0 104
MOLE 0.77 6.6 486 442 657 454 0.7 1.1

For noisy signals, the absolute values of evaluation metrics are presented, while for
other signals, performance gains are presented. Ny and N represent the model size
and run-time latency, respectively, which are normalized by the DNN system with
T =1

in the LSTM might cause information redundancy. The obser-
vation for the MOLE model was similar to that of the DNN
model; however, the problem of hard latency, which is required
for DNNs to achieve better performance, was partly alleviated
in MOLE because the performance gains in the MOLE sys-
tem from 7 = 1to 7 = 7 (e.g., 0.09 in PESQ and 0.8 in STOI)
were less important than those in the DNN system (e.g., 0.13
in PESQ and 1.4 in STOI). This implies that the MOLE model
with its multi-objective set relaxed the constraint of long frame
expansion compared to the DNN model, and it possesses a ca-
pacity similar to the LSTM model for longer acoustic context
modelling. More interestingly, even the MOLE system with no
hard latency (7 = 1) achieved consistent improvements on all
metrics (e.g., a PESQ gain of 0.11 and a STOI gain of 1.9)
over the best DNN system with 7 =7, and it yielded com-
parable PESQ/STOI performance and better SSNR/LSD and
NR/SSSNR performance compared to with the best LSTM sys-
tem with 7 = 7.

Table XI also provides comparisons of practical issues
such as model size and computational complexity. The size
of each model (/Ny), measured by the amount of neural
network parameters, and the computational complexity of each
model (Nt), measured by the time latency of neural network
processing were normalized by those of the DNN model with
7 =1. We observed that MOLE model size is one-half the
DNN model size and one-third the LSTM model size for the
same acoustic context 7, which confirms the compact design
of both MOL-DNN and MOE-DNN in the proposed MOLE
framework based on the motivation of the oracle experiments
in Section IV-A. Regarding computational complexity, at a
smaller 7 values, the MOLE model was much more efficient
than were the DNN and LSTM models. When 7 =1, the
MOLE model achieved a 40% reduction in run-time latency
over the DNN model and it was 170 times faster than the LSTM
model. In summary, the MOLE approach achieved consistent
improvements in all the objective evaluation metrics over both
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Fig.4.  Average PESQ/STOI gains of the MOLE and LSTM approaches com-

pared with the DNN approach among 15 unseen noise types across all SNR
levels.

DNN and LSTM approaches while using a much smaller model
size and exhibiting less run-time latency.

Fig. 4 shows the average PESQ and STOI gains of the
MOLE and LSTM approaches compared with the DNN ap-
proach among 15 unseen noise types across all SNR levels.
The input frame number 7 was set to 1 for all the deep models
because this setting was more practical and induced no hard
latency. For both the PESQ and STOI measures, MOLE con-
sistently and substantially outperformed the DNN for all noise
types, demonstrating its effectiveness and robustness for both
stationary and non-stationary environments. The gains by LSTM
were not stable across different noise types (e.g., it achieved
slight improvements on N1/N2, but performed worse on N8).
Comparing MOLE with LSTM, MOLE performs better in most
cases, with two exceptions: N11 and N14. N11 is machine-gun
noise and N14 is speech babble noise. These two noise types are
relatively uncomplicated cases in the NOISEX-92 corpus. The
LSTM approach adopts recurrent layers to preserve information
from a long historical context, while the MOLE approach uses
multi-stream for adaptive training. This is the main difference
between these two approaches. Taking N14 (babble noise) as
shown in Fig. 5 for example, it is relatively easy for both MOLE
and LSTM approaches to remove background noise. However,
speech enhanced by the MOLE approach introduced slightly
more speech distortions than the LSTM approach shown in the
rectangular boxes, thus leading to a slight reduction in PESQ
and STOL

To give intuitive interpretations of the observations made from
Fig. 4, spectrograms of four representative examples with the
noise types of N3 (Destroyer Engine), N8 (HF Channel), N11
(Machine Gun) and N14 (Speech Babble) are shown in Fig. 5.
For N3, MOLE generated the most effective gains over the
DNN in both PESQ and STOI. Without using a longer acoustic
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Spectrograms of four representative examples (from Fig. 4) with four noise types: N3 (Destroyer Engine), N8 (HF Channel), N11 (Machine Gun) and

N14 (Speech Babble), respectively. The input SNRs of noisy speech for all the noise types are 5 dB. Each column corresponds to one example set, showing clean
speech, noisy speech, DNN-enhanced speech, LSTM-enhanced speech and MOLE-enhanced speech. The input frame number 7 for all models was set to 1.

context, the DNN often cut one speech segment into small frag-
ments due to its aggressive noise removal (e.g., the black boxes
of the N3 and N 14 cases) while MOLE preserve the speech seg-
mentation well based on its awareness of the multiple streams,
as shown in the rectangle boxes. Meanwhile, LSTM seemed to
misjudge some noise segmentations as speech, as shown in the
circled area. For N8, it was quite clear that one certain sub-band
noise segmentation remained in the LSTM-processed speech
signal, which led to the poor listening quality with worse PESQ
than the DNN in Fig. 4. When N11 (Machine Gun) was the
burst noise, LSTM, using its historical information, could better
track the noise than MOLE, which used only the central frame,
thus yielding better PESQ results. Similarly, LSTM performed
slightly better than MOLE for the non-stationary N14 (Speech
Babble). For more examples, readers can refer to the link.!
Generally, DNN did well at noise reduction but had a high risk
of yielding more speech distortions or even removing speech

Thttp://home.ustc.edu.cn/~xiaosong/demo/MOLE.htm]

segments. LSTM used its long-term historical information to
better preserve the speech segments than did the DNN. However,
LSTM failed to completely remove the background noise in
several of the unseen environments. The behaviours of the DNN
and LSTM can be explained as resulting from the different trade-
offs made between noise reduction and speech preservation. In
contrast, MOLE achieved better noise reduction and speech
preservation in most cases, which is why MOLE yielded the
best performances across all the evaluation metrics.

V. CONCLUSION

In this study, we focus on the practical issues related to
deep learning based speech enhancement and propose a com-
pact two-stage multi-objective learning and ensembling DNN
framework. This goal is accomplished by effectively utilizing
of multi-stream features. The first-stage MOL-DNN predicts
three useful sets of features: LPS, MFCC and GFCC. Each
feature set consists of that feature for clean speech and its
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corresponding IRM and that for dynamic noise. These three fea-
ture sets are used together with the noisy speech features as input
to the second-stage MOE-DNN, which in turn predicts three sets
of output features for clean speech: LPS and MFCC and GFCC
and their corresponding IRMs. By estimating the auxiliary in-
formation of the related MFCC and GFCC, the primary LPS
and its IRM features are better estimated and used for post-
processing. The experimental results on 15 unseen noise types
show that the proposed MOLE framework yields consistent im-
provements over both DNN- and LSTM-based techniques on the
metrics PESQ, STOI, SSNR, LSD, NR and SSSNR. It delivers
this improved performance using a smaller model size while re-
quiring lower run-time latency based on all three test cases used
for input context expansion, namely, 1 frame with no expansion,
4 frames—including 3 previous frames but with no latency, and
7 frames with a delay of 3 frames. The 1-frame MOLE-based
SE system is of particular interest because it outperforms even
the 7-frame DNN-based SE system. It also yields better perfor-
mances but with 170 times less latency compared to the 4-frame
LSTM-based SE system. Finally, although the proposed MOLE
framework makes strides in addressing the practical issues in
real-time applications, there are still huge gaps between the
performances achievable in oracle experiments and the results
attained thus far on real datasets. In future research, we will
attempt to bridge these gaps.
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