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We derive expressions for the probability distribution of the ratio of two consecutive level spacings for

the classical ensembles of random matrices. This ratio distribution was recently introduced to study

spectral properties of many-body problems, as, contrary to the standard level spacing distributions, it does

not depend on the local density of states. Our Wigner-like surmises are shown to be very accurate when

compared to numerics and exact calculations in the large matrix size limit. Quantitative improvements are

found through a polynomial expansion. Examples from a quantum many-body lattice model and from

zeros of the Riemann zeta function are presented.
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Random matrix theory (RMT) was introduced half a
century ago in order to describe statistical properties of
energy levels of complex atomic nuclei [1]. Since then, it
has proven to be very useful in a great variety of different
fields [2,3].

In quantum chaos [4], RMT accurately accounts for the
spectral statistics of systems whose classical counterpart is
chaotic. While for quantum Hamiltonians which classical
counterpart is integrable, the Berry-Tabor conjecture [5]
states that their level statistics follows a Poisson law,
Bohigas, Giannoni, and Schmit conjectured [6] that the
case of quantum Hamiltonians with chaotic classical dy-
namics must fall into one of the three classical ensembles
of RMT. These three ensembles correspond to Hermitian
random matrices whose entries are independently distrib-
uted, respectively, as real (GOE), complex (GUE), or
quaternionic (GSE) random variables (see Ref. [2] for
details).

Universality of RMT means that random matrix
ensembles describe energy levels of real systems at a
statistical level, and only in a local energy window when
the mean level density is set to unity. Different models
may and do have very different level densities and to
compare usual spectral correlation functions like the
nearest-neighbor spacing distribution one has to perform
a transformation called unfolding [1,2]. The unfolding
procedure consists of changing variables from the true

levels, en, to new ones, �en ¼ �N ðenÞ, where �N ðeÞ is the
mean number of levels less than e, obtained either by
smoothing over many realizations in the case of disor-
dered systems, or by local smoothing over an energy
window large compared to the level spacing, but small

compared to variations of �N ðeÞ. The unfolded spectrum
has automatically a mean level spacing equal to one, and
its statistical properties can thus be directly compared

with those of RMT. When a functional form of �N is
known (as for billiards), or when large enough statistics
is available, the unfolding is straightforward and easily
implemented.

The situation is different for many-body problems,

where �N ðeÞ increases as a stretched exponential function
of energy [7] with, in general, unknown lower-order terms,
and where it is difficult to calculate a large number of
realizations because of an exponential increase of the
Hilbert space dimension with the number of particles.
In order to circumvent these difficulties which greatly
diminish the precision of statistical tests in systems with
a large number of particles, Oganesyan and Huse [8]
proposed a new quantity defined as follows. Let en be an
ordered set of energy levels and sn ¼ enþ1 � en the
nearest-neighbor spacings. Oganesyan and Huse consid-
ered the distribution of the ratios ~rn defined by

~rn ¼ minðsn; sn�1Þ
maxðsn; sn�1Þ ¼ min

�
rn;

1

rn

�
; (1)

where

rn ¼ sn
sn�1

: (2)

This quantity has the advantage that it requires no unfold-
ing since ratios of consecutive level spacings are indepen-
dent of the local density of states. Such a distribution thus
allows a more transparent comparison with experiments
than the traditional level spacing distribution. For this
reason, many recent works use this quantity in different
contexts of many-body systems. As an example let us
mention quantum quenches, where the tools of RMT
and quantum chaos were used as a phenomenological
approach to quantify the distance from integrability on
finite size lattices [9–11], and also to investigate numeri-
cally many-body localization [8,12]. In these papers the
distribution of consecutive level spacing ratios Pð~rÞ was
shown to yield more precise results than the usual spacing
distribution PðsÞ.
Although the distribution PðrÞ plays a more and more

important role in the interpretation of numerical data in
quantum many-body Hamiltonians, only numerical esti-
mates of it exist, and they are restricted to the GOE
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ensemble. RMT predictions for PðrÞ are lacking. Such
predictions are essential, both for understanding its shape
for the three RMT ensembles, and for providing accurate
estimates with simple formulas that could be used as an
efficient tool.

This Letter fills this gap by providing several impor-
tant results on PðrÞ. First, we compute Wigner-like
surmises for all three classical RMT ensembles, which
already provide simple analytical formulas in very good
agreement with exact numerics and analytical expres-
sions in the large matrix size limit. Second, the remaining
small differences are shown to be well fitted to numerical
precision by a rather simple polynomial expansion.
Results are then applied to examples on a quantum
many-body Hamiltonian and to zeros of the Riemann
zeta function.

The ratio of consecutive level spacings distribution.—
Instead of the quantity (1), we find it more natural to
consider directly the ratio of two consecutive level spac-
ings (2) and its probability distribution PðrÞ. Indeed, let
�ðe1; e2; e3Þ be the probability density of three consecutive
levels with e1 � e2 � e3. Assuming translation invariance,
�ðe1; e2; e3Þ ¼ Pðs1; s2Þ where si ¼ eiþ1 � ei. Then,

PðrÞ �
Z

Pðs1; s2Þ�
�
r� s1

s2

�
ds1ds2

¼
Z 1

0
Pðrs2; s2Þs2ds2: (3)

It is physically natural and can be proved analytically that
for all classical RMTensembles in the bulk of the spectrum
(as well as for Poisson variables) the function Pðs1; s2Þ is
symmetric, that is, Pðs1; s2Þ ¼ Pðs2; s1Þ. This left-right
symmetry implies then that the distributions of rn and
1=rn are the same, so that PðrÞ satisfies the following
functional equation

PðrÞ ¼ 1

r2
P

�
1

r

�
: (4)

Whenever (4) holds, it is equivalent to consider the whole
distribution PðrÞ or to restrict the study to the support [0,1]
by considering the variable ~r defined in (1), as was done
in Ref. [8]. Here we concentrate on the whole distribution
PðrÞ; since Pð~rÞ ¼ 2PðrÞ�ð1� rÞ, our results can easily
be translated to the restricted distribution. The integrable
(Poisson) case trivially yields PðrÞ ¼ 1=ð1þ rÞ2. We now
address the behavior of PðrÞ for RMT ensembles.

Wigner-like surmise.—For Gaussian ensembles, the joint
probability distribution of N eigenvalues ei is given by [2]

�ðe1; . . . ; eNÞ ¼ C�;N

Y
1�i<j�N

jei � ejj�
YN
i¼1

e�e2i =2; (5)

where C�;N is a known normalization constant and � is

the Dyson index equal to 1 (GOE), 2 (GUE), or 4 (GSE).
The exact calculation of PðrÞ via Eq. (3) requires the

calculation of Pðs1; s2Þ. Though this calculation is possible
from (5) (as shown at the end of this Letter), it ultimately
requires the use of numerical methods and is not trans-
parent. Exactly the same problem appears in the calcula-
tion of the usual nearest-neighbor spacing distribution,
PðsÞ, which is the probability that the distance between
two consecutive levels is s. Rather than cumbersome
exact calculations, Wigner derived a simple approximate
expression for PðsÞ,

PWðsÞ ¼ a�s
�e�b�s

2
; (6)

with some explicitly known normalization constants a� and

b� [2]. This formula, called theWigner surmise, corresponds

to the exact result for 2� 2 matrices, and is in very good
agreement with the exact large-N expressions [13].
In a similar spirit, we obtain a formula for the ratio

distribution of two consecutive spacings by performing
the exact calculation for 3� 3 matrices, starting from the
joint distribution (5) for three eigenvalues e1, e2, e3. If for
instance e1 � e2 � e3, the ratio r is given by ðe3 � e2Þ=
ðe2 � e1Þ. Consequently, the distribution PðrÞ in the 3� 3
case is proportional to

Z 1

�1
de2

Z e2

�1
de1

Z 1

e2

de3�ðe1; e2; e3Þ�
�
r� e3 � e2

e2 � e1

�
:

After the change of variables x ¼ e2 � e1, y ¼ e3 � e2,
the integration over e2 is trivial and the remaining integrals
read

ZZ 1

0
dxdy�ðrx� yÞx�þ1y�ðxþ yÞ�

� e�ð1=2Þðx2þy2Þþð1=6Þðx�yÞ2 :

After performing the integrals, the surmise takes the simple
form

TABLE I. Values of useful constants and averages hri and h~ri.
Averages h:iW are calculated from Eq. (7), and h:ifit from data in
Fig. 1.

Ensembles Poisson GOE GUE GSE

Z� � � � 8
27

4
81

�ffiffi
3

p 4
729

�ffiffi
3

p

c� � � � 2 ��2
4�� 4 4��

3��8 8 32�9�
45��128

C � � � 0.233378 0.578846 3.60123

hriW 1 7
4

27
8

ffiffi
3

p
� � 1

2
243
80

ffiffi
3

p
� � 1

2

¼ 1:75 � 1:360735 � 1:174661

hrifit � � � 1.7781(1) 1.3684(1) 1.1769(1)

h~riW 2 ln2� 1 4� 2
ffiffiffi
3

p
2

ffiffi
3

p
� � 1

2
32
15

ffiffi
3

p
� � 1

2

� 0:38629 � 0:53590 � 0:60266 � 0:67617
h~rifit � � � 0.5307(1) 0.5996(1) 0.6744(1)
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PWðrÞ ¼ 1

Z�

ðrþ r2Þ�
ð1þ rþ r2Þ1þð3=2Þ� ; (7)

with Z� the normalization constant (see values in Table I).

One can check that this result satisfies the symmetry (4).
The distribution PWðrÞ has the same level repulsion at
small r than PðsÞ, namely, PWðrÞ � r�, while for large r

the asymptotic behavior is PWðrÞ � r�ð2þ�Þ, contrary to
the fast exponential decay of PðsÞ. This surmise also yields
an analytic expression for the mean values hriW and h~riW
widely used in the literature as a measure of chaoticity
(see Table I for the exact values).

Comparison with numerics and polynomial fit.—We
now investigate the accuracy of the surmise (7) with
respect to numerical calculations for large matrix sizes.
As illustrated in Fig. 1, the surmise is almost indistinguish-
able from numerics and can thus be used for practical

purposes as a reference to discriminate between regular
and chaotic dynamics. The absolute difference �PðrÞ ¼
PnumðrÞ � PWðrÞ between numerics and the surmise (7)
is plotted in Fig. 2 for the three ensembles, and has a
maximum relative deviation of about 5%, similar to the
Wigner surmise for PðsÞ [13].
In order to go beyond the surmise (7), we propose a

simple expression which perfectly fits this remaining dif-
ference �PðrÞ within our computational accuracy. In order
to fulfill Eq. (4), and assuming that PðrÞ for large N and
PWðrÞ have the same asymptotic behavior for small and
large r, a reasonable ansatz is the following expansion

�PfitðrÞ ¼ C

ð1þ rÞ2
��

rþ 1

r

���� c�

�
rþ 1

r

��ð�þ1Þ�
; (8)

where c� is easily calculated from the normalization con-

dition
R1
0 �PðrÞdr ¼ 0 (see Table I for the exact value).

Thus the large-N expression for PðrÞ can be fitted by the
expression PðrÞ ¼ PWðrÞ þ �PfitðrÞ with only one fitting
parameter, which is the overall magnitude C of the
discrepancy. The best fit C can be found in Table I. The
corresponding curves are shown in Fig. 2. Thanks to these
very good fits, one can quickly infer accurate predictions
for hri and h~ri and any average weighted by PðrÞ (see
Table I).
Large-N calculation.—We now turn to the exact calcu-

lation of PðrÞ for GUE (i.e., � ¼ 2) in the limit N ! 1,
following a path similar to the derivation of the exact level
spacing distribution PðsÞ.
Our starting point is Eq. 5.4.29 of Ref. [2]. From that

equation, one can check that the probability pð�t; y; tÞ of
having three consecutive levels at points �t, y, t can be
rewritten as

pð�t; y; tÞ ¼ detð1� KÞ det½Rðx; zÞx;z¼�t;y;t�; (9)

where Rðx; yÞ is the resolvent kernel, i.e., the kernel of the
operator ð1� KÞ�1K, and detð1� KÞ is the Fredholm
determinant of K. Operator K is an integral operator whose
action is defined as

ðKfÞðxÞ ¼
Z t

�t
Kðx; yÞfðyÞdy (10)

with the kernel

Kðx; yÞ ¼ sin�ðx� yÞ
�ðx� yÞ : (11)

It is known (see, e.g., Ref. [14]) that for a kernel of this
form the resolvent kernel can be written as

Rðx; yÞ ¼ QðxÞPðyÞ �QðyÞPðxÞ
x� y

; (12)

with functions QðxÞ and PðxÞ obeying integral equations

FIG. 1 (color online). Distribution of the ratio of consecutive
level spacings PðrÞ for Poisson and RMT ensembles: full lines
are the surmise Eq. (7), points are numerical results obtained
by diagonalizing matrices of size N ¼ 1000 with Gaussian
distributed entries, averaged over 105 histograms. Inset: the
distribution Pð~rÞ.

FIG. 2 (color online). Difference �PðrÞ ¼ PnumðrÞ � PWðrÞ
between the numerics and the surmise (7), with the same data
as in Fig. 1. The fit function is given by Eq. (8). Green diamonds
are results of exact calculations obtained from (9) for GUE.
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QðxÞ �
Z t

�t
Kðx; yÞQðyÞdy ¼ sin�x

�
;

PðxÞ �
Z t

�t
Kðx; yÞPðyÞdy ¼ cos�x: (13)

FunctionQðxÞ and PðxÞ have many useful properties which
allow us to relate the calculation of spectral statistics for
standard RMT ensembles to solutions of Painlevé equa-
tions (see, e.g., Ref. [14] and references therein). Though
this approach is elegant, it still requires numerical resolu-
tion of Painlevé Vequation for detð1� KÞ with subsequent
solutions of linear equations for QðxÞ and PðxÞ whose
coefficients are determined by that solution.

We find it simpler to use the direct method proposed in
Ref. [15] for computing detð1� KÞ. It is based on a quad-
rature method for numerical evaluation of the integrals

Z t

�t
fðxÞdx ¼ Xm

k¼1

wkfðxkÞ (14)

appearing in the definition (10) of the integral operator K.
Such a discretization allows us to approximate the determi-
nant of the integral operator as a finite m�m determinant

detð1� KÞ � det½�jk � Kðxj; xkÞwk� (15)

and functions QðxÞ and PðxÞ defined in (13) can
be obtained by solving a linear system of m equations. As
noted in Ref. [15] the method quickly converges.
The result is presented in Fig. 2, where the Clenshaw-
Curtis method with up to 60 points of discretization has
been used for the discretization (14). Figure 3 (left)
shows how the numerical results converge to the analytic
large-N calculation. As mentioned previously, the fit

PðrÞ ¼ PWðrÞ þ �PfitðrÞ works well for all N, with an
overall N-dependent constant CN in (8). This constant,
which gives the amplitude of the departure from the
Wigner-like surmise, asymptotically decreases as 1=N (see
inset of Fig. 3).
Applications.—To illustrate the above formalism, we

investigate the spectral properties of a quantum Ising chain
of L spins-1=2 with periodic boundary conditions in trans-
verse field � and longitudinal field �. The Hamiltonian is
given by

Ĥ ¼ � XL
n¼1

ð�̂x
n�̂

x
nþ1 þ ��̂z

n þ ��̂x
nÞ; �̂x

Lþ1 ¼ �̂x
1;

(16)

where �̂x;z
n are the Pauli matrices at site n. This model

recently attracted attention due to its experimental realiza-
tion in cobalt niobate ferromagnet [16]. The Hamiltonian

(16) commutes with the operator T̂ which translates

the state by one lattice spacing and obeys T̂L ¼ 1.

Consequently, Ĥ takes a block diagonal form in the basis

of eigenstates of T̂, and one has to consider separately each
sector of symmetry. The result for one sector is illustrated
in Fig. 4. Other symmetry sectors give similar results.
As expected, PðrÞ agrees well with the GOE prediction
(7) with � ¼ 1.
Another example of application is to look at nontrivial

zeros of the Riemann zeta function

�ðsÞ ¼ X1
n¼1

1

ns
: (17)

It is well established that statistical properties of Riemann
zeros are well described by the GUE distribution [17].

FIG. 3 (color online). (a) PðrÞ � P1ðrÞ for GUE and various
matrix sizes. Inset: constant CN from the fit (8) as a function of
matrix size N (solid line is a fit 1=N). (b) Density distributions

for the overlapping ratio rð2Þn ¼ ðenþ2 � enÞ=ðenþ1 � en�1Þ for
Poisson variables and for the three classical RMT ensembles
(same color code as in Fig. 1). In the Poisson case it is given by
Pðrð2ÞÞ ¼ rð2Þðrð2Þ þ 2Þ=ð1þ rð2ÞÞ2 for 0 � r � 1, and obtained
from (4) for r 	 1.

FIG. 4 (color online). Histogram of the ratio of consecutive
level spacings PðrÞ. Black: Quantum Ising model in fields � ¼
� ¼ 0:5 in sector of eigenvectors of T̂ with eigenvalue!3 [!j ¼
expð2i�j=LÞ, j ¼ 0; 1; . . . ; L� 1], for L ¼ 18 spins (dimension
of eigenspace ¼ 14541). Violet: The same for zeros of Riemann
zeta function up the critical line (104 levels starting from the
1022th zero, taken from Ref. [18]). Full lines correspond to the
Wigner-like surmise Eq. (7) with, respectively, � ¼ 1 and � ¼
2. Inset: Difference between the numerics and these surmises.
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The probability distribution of the ratio of two consecutive
spacings of these zeros, presented in Fig. 4, is in a perfect
agreement with GUE formula (7) with � ¼ 2.

Conclusion.—The investigation of spectral statistics in
many-body problems with a large number of particles
attracted wide attention in recent years. The absence of a
well-established expression for the mean density of states
greatly diminishes the usefulness of standard correlation
functions such as the nearest-neighbor spacing distribu-
tion. To avoid this problem, a new statistical tool has been
proposed in Ref. [8], namely, the distribution of the ratio of
two consecutive level spacings.

The main result of the Letter is the derivation of simple
approximative formulas for this distribution for classical
RMT ensembles. The resulting Wigner-like surmises agree
very well with direct numerical calculations. The differ-
ence between the surmise and the exact calculations is
small and can be fitted by a one-parameter polynomial
formula with excellent accuracy.

In the same spirit, several different ratios can be intro-
duced which generalize the quantity (2). Analytic expres-
sions and Wigner-like surmises can be derived in a similar
way for the density distributions of these quantities, and
will be discussed elsewhere. An example is given in Fig. 3,
(right). All these distributions are universal in the sense
that they apply without any unfolding or renormalization to
spectra ranging from many-body systems to the Riemann
zeta function.
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