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Preface 

Though random matrices were first encountered in mathematical 
statistics by Hsu, Wishart, and others, intensive study of their 
properties in connection with nuclear physics began with the work 
of Wigner in the 1950's. Much material has accumulated since then, 
and it was felt that it should be collected. A reprint volume to satisfy 
this need has been edited by C. E. Porter with a critical introduction 
(see References) ; nevertheless, the feeling was that a book containing 
a coherent treatment of the subject would be welcome. 

We make the assumption that the local statistical behavior of the 
energy levels of a sufficiently complicated system is simulated by 
that of the eigenvalues of a random matrix. Chapter 1 is a rapid 
survey of our understanding of nuclear spectra from this point of 
view. The discussion is rather general, in sharp contrast to the precise 
problems treated in the rest of the book. In Chapter 2 an analysis of 
the usual symmetries that a quantum system might possess is carried 
out, and the joint probability density function for the various matrix 
elements of the Hamiltonian is derived as a consequence. The 
transition from matrix elements to eigenvalues is made in Chapter 3 
and the standard arguments of classical statistical mechanics are 
applied in Chapter 4 to derive the eigenvalue density. An unproved 
conjecture is also stated. In Chapter 5 the method of integration 
over alternate variables is presented, and an application of the Fredholm 
theory of integral equations is made to the problem of eigenvalue 
spacings. The methods developed in Chapter 5 are basic to an under-
standing of most of the remaining chapters. Chapter 6 deals with 
the correlations and spacings for less useful cases. A Brownian 
motion model is described in Chapter 7. Chapters 8 to 11 treat 
circular ensembles; Chapters 8 to 10 repeat calculations analogous 
to those of Chapters 4 to 7. The integration method discussed in 
Chapter 11 originated with Wigner and is being published here for 
the first time. The theory of non-Hermitian random matrices, 
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though not applicable to any physical problems, is a fascinating 
subject and must be studied for its own sake. In this direction an 
impressive effort by Ginibre is described in Chapter 12. For the 
Gaussian ensembles the level density in regions where it is very low 
is discussed in Chapter 13. The investigations of Chapter 16 and 
Appendices A.29 and A.30 were recently carried out in collaboration 
with Professor Wigner at Princeton University. Chapters 14, 15, 
and 17 treat a number of other topics. Most of the material in the 
appendices is either well known or was published elsewhere and is 
collected here for ready reference. It was surprisingly difficult to 
obtain the proof contained in A.21, while A.29, A.30, and A.31 are 
new. 

It is my pleasant duty to thank Professor C. Bloch, Professor 
F. J. Dyson, and Professor E. P. Wigner to whom I owe so much by 
way of education and inspiration. I have made use of the cited literature 
and in particular published as well as unpublished works of E. P. 
Wigner, F. J. Dyson, and M. Gaudin. I am thankful to the editors of 
the various publications for allowing me to do so. This book was 
written in sections at Tata Institute of Fundamental Research, 
Bombay, the Indian Institute of Technology, Kanpur, Delhi Uni-
versity, Argonne National Laboratory, and Princeton University. 
The lectures given at the State University of New York at Stony 
Brook, Long Island, were helpful in the initial stages. I am grateful 
to all these institutions for their hospitality. My thanks are due to my 
colleagues H. S. Mani, N. Rosenzweig, and P. K. Srivastava for their 
critical comments. A few additions and changes were made at almost 
every stage of the process of publication and I am thankful to the 
staff of Academic Press for their cooperation. 

October, 1967 M. L. MEHTA 
Sac lay, France 



1 / Introduction 

1.1. The Need to Study Random Matrices 

The experimental nuclear physicists have been and still are 
collecting vast amounts of data concerning the excitation spectra of 
various nuclei [Garg et al., 1; Rosen et al., 1], The ground state and 
low-lying excited states have been impressively explained in terms 
of an independent particle model where the nucléons are supposed 
to move freely in an average potential well [Mayer and Jensen, 1; 
Kisslinger and Sorenson, 1]. As the excitation energy increases, more 
and more nucléons are thrown out of the main body of the nucleus, 
and the approximation of replacing their complicated interactions with 
an average potential becomes more and more inaccurate. At still 
higher excitations the nuclear states are so dense and the intermixing 
is so strong that it is a hopeless task to try to explain the individual 
states; but when the complications increase beyond a certain point 
the situation becomes hopeful again, for we are no longer required 
to explain the characteristics of every individual state but only their 
average properties, which is much simpler. 

The average behavior of the various energy levels is of prime 
importance in the study of nuclear reactions. In fact, nuclear reactions 
may be put into two major classes—fast and slow. In the first case 
a typical reaction time is of the order of the time taken by the incident 
nucléon to pass through the nucleus. The wavelength of the incident 
nucléon is much smaller than the nuclear dimensions, and the time 
it spends inside the nucleus is so short that it interacts with only a 
few nucléons inside the nucleus. A typical example is the head-on 
collision with one nucléon in which the incident nucléon hits and 
ejects a nucléon, thus giving it almost all its momentum and energy. 
Consequently, in such cases the coherence and interference effects 
between incoming and outgoing nucléons are strong. 

Another extreme is provided by the slow reactions in which the 
1 



2 1.1. The Need to Study Random Matrices 

typical reaction times are two to three orders of magnitude larger. 
The incident nucléon is trapped and all its energy and momentum 
are quickly distributed among the various constituents of the target 
nucleus. It takes a long time before enough energy is again con-
centrated on a single nucléon to eject it. The compound nucleus lives 
long enough to forget the manner of its formation, and the subsequent 
decay is therefore independent of the way in which it was formed. 

In the slow reactions, unless the energy of the incident neutron is 
very sharply defined, a large number of neighboring energy levels 
of the compound nucleus are involved, hence the importance of an 
investigation of their average properties, such as the distribution of 
neutron and radiation widths, level spacings, and fission widths. It is 
natural that such phenomena, which result from complicated 
many-body interactions, will give rise to statistical theories. We shall 
concentrate mainly on the average properties of nuclear levels such 
as level spacings. 

According to quantum mechanics, the energy levels of a system 
are supposed to be described by the eigenvalues of a Hermitian 
operator, called the Hamiltonian. The energy-level scheme of a 
system consists in general of a continuum and a certain, perhaps a 
large, number of discrete levels. The Hamiltonian of the system 
should have the same eigenvalue structure and therefore must operate 
in an infinite dimensional Hubert space. To avoid the difficulty of 
working with an infinite dimensional Hubert space, we make approxi-
mations amounting to a truncation keeping only the part of the Hilbert 
space that is relevant to the problem at hand and either forgetting 
about the rest or taking its effect in an approximate manner on the part 
considered. Because we are interested in the discrete part of the 
energy-level schemes of various quantum systems, we approximate 
the true Hilbert space by one having a finite, though large, number of 
dimensions. Choosing a basis in this space, we represent our Hamil-
tonians by finite dimensional matrices. If we can solve the eigenvalue 
equation, 

ΗΨ, = Ε<Ψ<, 

we shall get all the eigenvalues and eigenfunctions of the system, 
and any physical information can then be deduced, in principle, 
from this knowledge. In the case of the nucleus, however, there are 
two difficulties. First, we do not know the Hamiltonian and, second, 
even if we did, it would be far too complicated to attempt to solve it. 
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Therefore from the very beginning we shall be making statistical 
hypotheses on H, compatible with the general symmetry properties. 
Choosing a complete set of functions as basis, we represent the 
Hamiltonian operators H as matrices. The elements of these matrices 
are random variables whose distributions are restricted only by the 
general symmetry properties we might impose on the ensemble of 
operators. Statistical theory does not predict the detailed level sequence 
of any one nucleus, but it does describe the general appearance and the 
degree of irregularity of the level structure that is expected to occur 
in any nucleus, which is too complicated to be understood in detail. 

In classical statistical mechanics a system may be in any one of the 
many possible states, but one does not ask in which particular state 
a given system is. Here we shall renounce knowledge of the system 
itself. As in orthodox statistical mechanics we shall consider an 
ensemble of Hamiltonians, each of which could describe a different 
nucleus. There is a reasonable expectation, though no rigorous 
mathematical proof, that a system under observation will be described 
correctly by an ensemble average. This expectation is strong because 
the system might be one of a huge variety of systems, and very few 
of them will deviate much from a properly chosen ensemble average. 
On the other hand, our assumption that the ensemble average correctly 
describes a particular system, say the U239 nucleus, is not compelling. 
In fact, if this particular nucleus turns out to be far removed from the 
ensemble average, it will show that the U239 Hamiltonian possesses 
specific properties of which we are not aware. This, then, will prompt 
us to try to discover the nature and origin of these properties 
[Dyson, 1]. 

Wigner was the first to propose in this connection the hypothesis 
alluded to, namely that the local statistical behavior of levels in a 
simple sequence is identical with the eigenvalues of a random matrix. 
A simple sequence is one whose levels all have the same spin, parity, 
and other strictly conserved quantities, if any, which result from the 
symmetry of the system. The corresponding symmetry requirements 
are to be imposed on the random matrix. Porter and Rosenzweig 
were the early workers in the field who analyzed the nuclear experi-
mental data made available by Hughes, Harvey, Rosen, and co-workers 
and the atomic data compiled by C. E. Moore [1]. They found that 
the occurrence of two levels close to each other in a simple sequence 
is a rare event. They also used the computer to generate and 
diagonalize a large number of random matrices. This Monte Carlo 
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analysis indicated the correctness of Wigner's hypothesis. In fact, it 
indicated more; the density and the spacing distribution of eigenvalues 
of real symmetric matrices are independent of many details of the 
distribution of individual matrix elements. All that is required is 
the same distribution for all diagonal elements and that the off-diagonal 
elements be distributed symmetrically about the zero mean and have 
the same mean square deviation. This independence is to be expected 
as well in the case of complex Hermitian or self-dual quaternion 
matrices, but apart from this numerical evidence and a few heuristic 
arguments of Wigner no rigorous derivation of this fact has yet been 
found. The case of the Gaussian distributions of matrix elements is still 
the only one treated analytically by Hsu, Mehta, Gaudin, Dyson, 
Bronk, Ginibre, and others, and we have described these developments 
in great detail in the following pages. From a group-theoretical analysis 
Dyson [5] found that an irreducible ensemble of matrices, invariant 
under a symmetry group G, necessarily belongs to one of three 
classes, named by him orthogonal, unitary, and symplectic. We shall 
not go into these elegant group-theoretical arguments but shall devote 
enough space to the study of the circular ensembles introduced by 
Dyson. It is remarkable that standard thermodynamics can be applied 
to obtain certain results which otherwise would be difficult to derive. 
A theory of the Brownian motion of matrix elements has also been 
created by Dyson thus rederiving a few known results. However, 
it remains largely a curiosity. 

The physical properties of metals depend characteristically on 
their excitation spectra. In bulk metal at high temperatures the 
electronic energy levels lie very near to one another and are broad 
enough to overlap and form a continuous spectrum. As the sample 
gets smaller, this spectrum becomes discrete, and as the temperature 
decreases the widths of the individual levels decrease. If the metallic 
particles are minute enough and at low enough temperatures, the 
spacings of the electronic energy levels may eventually become much 
larger than the other energies, such as the level widths and the 
thermal energy kT. Under such conditions the thermal and the 
electromagnetic properties of the fine metallic particles may deviate 
considerably from those of the bulk metal. This circumstance has 
already been noted by Fröhlich [1] and proposed by him as a test 
of quantum mechanics. Because it is difficult to control the shapes 
of such small particles while they are being experimentally produced, 
the electronic energy levels are seen to be random and the theory for 
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the eigenvalues of random matrices may be useful in their study. 
Random matrices are also encountered in other branches of physics. 

For example, glass may be considered as a collection of random nets, 
that is, a collection of particles with random masses exerting random 
mutual forces, and it is of interest to determine the distribution of 
frequencies of such nets [Dyson, 6]. A one-dimensional model of 
glass is considered in Chapter 14. 

1.2. A Summary of Statistical Facts about 
Nuclear Energy Levels 

1.2.1. LEVEL DENSITY 

As the excitation energy increases, the nuclear energy levels occur 
on the average at smaller and smaller intervals. In other words, 
level density increases with the excitation energy. The first question 
we might ask is how fast does this level density increase for a particular 
nucleus and what is the distribution of these levels with respect to 
spin and parity? This is an old problem treated by Bethe [1]. Even 
a simple model in which the nucleus is taken as a degenerate Fermi 
gas with equidistant single-particle levels gives an adequate 
result. It amounts to determining the number of partitions λ(η) of a 
positive integer n into smaller positive integers νλ , ν2 ,... 

n=vx+v2 + · · · , v1 > 0, v2 > 0,... . 

For large n this number, according to the Hardy-Ramanujan [1] 
formula, is given by 

λ(η) ~ txpK^n)1/2], 

where Θ is equal to 1 or 2 according to whether the vi are all different 
or whether some of them are allowed to be equal. With a slight 
modification due to later work [Lang and Lecouteur, 1; Cameron, 1], 
Bethe's result gives the level density as 

p(EJ, π) OC (2/ +\)(E- J)-«/4 e x p [ - ±rj{j + 1)] exp[2a(E - J)»/*], 

where E is the excitation energy, j is the spin, and π is the parity. 
The dependence of the parameters σ, a, and Δ on the neutron and 
proton numbers is complicated and only imperfectly understood. 
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However, for any particular nucleus a few measurements will suffice 
to determine them all; the formula will then remain valid for a wide 
range of energy that contains thousands and even millions of levels. 

1.2.2. DISTRIBUTION OF NEUTRON WIDTHS 

An excited level may decay in many ways; for example, by neutron 
ejection or by giving out a quantum of radiation. These processes 
are characterized by the corresponding decay widths of the levels. 
The neutron reduced widths Γη° = rjEll2, in which Γη is the 
neutron width and E is the excitation energy of the level, show 
large fluctuations from level to level. From an analysis of the 
then available data Scott [1] and later Thomas and Porter [1] con-
cluded that they had a ^-distribution with v = 1 degree of freedom: 

P(x) = [Γ^ν)]-1 e-iV^&xyvvv-i . iv = (2™)-1/2 e-«1/*)*, 

where P(x) dx is the probability that a certain reduced width will lie 
in an interval dx around the value x. This indicates a Gaussian 
distribution for the reduced width amplitude 

(^1/\xp[-l(Vxf]d(Vx) 

expected from the theory. In fact, the reduced width amplitude is 
proportional to the integral of the product of the compound nucleus 
wave function and the wave function in the neutron-decay channel 
over the channel surface. If the contributions from the various parts 
of the channel surface are supposed to be random and mutually 
independent, their sum will have a Gaussian distribution with zero 
mean. 

1.2.3. RADIATION AND FISSION WIDTHS 1 

The total radiation width is almost a constant for particular spin 
states of a particular nucleus. The total radiation width is the sum 
of partial radiation widths 

m 

t Bohr [1]. 
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If we assume that each of these Γί)Γί has a ^-distribution with one 
degree of freedom like the neutron widths and all the rt are the 
same, then Γ/Γ will have a ^-distribution with m degrees of freedom. 
Even if the Γ{ are different, we have 

i 

and 

( Γ - Λ , = 2Σ(Λ)1, 
i 

so that for m large Γ/Γ has a narrow distribution. It is difficult to 
measure the partial radiation widths. 

Little is known about the fission-width distributions. Some 
known fission widths of U235 have been analyzed [Bohr, 1] and a 
^-distribution with 2 to 3 degrees of freedom has been found to 
give a satisfactory fit. 

From now on we shall no longer consider neutron, radiation, or 
fission widths. 

1.2.4. LEVEL SPACINGS 

Let us regard level density as a function of the excitation energy 
as known and consider an interval of energy 8E centered at E. This 
interval is much smaller compared with E, whereas it is large enough 
to contain many levels; that is, 

where D is the mean distance between neighboring levels. How are 
the levels distributed in this interval ? Although the level density 
varies strongly from nucleus to nucleus, the fluctuations in the 
precise positions of the levels seem not to depend on the nucleus 
and not even on the excitation energy. As the density of the levels 
is nearly constant in this interval, we might think that they occur 
at random positions without regard to one another, the only condition 
being that their density be a given constant. However, such is not 
the case. It is true that nuclear levels with different spin and parity 
or atomic levels with different sets of good quantum numbers seem 
to have no influence on each other. However, levels with the same set 
of good quantum numbers show a large degree of regularity. For 
instance, they rarely occur close together. 
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A more detailed analysis of the experimental data regarding the 
above quantities as well as the strength functions may be found in 
Garg et al. [1] and Rosen et al. [1]. 

1.3. Definition of a Suitable Function for the Study of 
Level Correlations 

To distinguish between various possibilities we define the distribu-
tion of spacings. Let E1, E2,..., En be the positions of the successive 
levels in the interval 8E(E1 < E2 < ···) and let S1, S2,... be their 
distances apart S{ = Ei+1 — Ei. The average value of S{ is the 
mean spacing D. We define the relative spacings ti = SJD. The 
probability density function p(t) is defined by the condition that 
p(t) dt is the probability that any ti will have a value between t 
and t -\- dt. 

For the simple case in which the positions of the energy levels 
are not correlated the probability that any Ei will fall between E and 
E + dE is independent of E and is simply p dEy where p = D~x is 
the average number of levels in*a unit interval of energy. Let us 
determine the probability of a spacing S\ that is, given a level at E> 
what is the probability of having no level in the interval (£, E + S) 
and one level in dS at E + S. For this we divide the interval S into m 
equal parts. Because the levels are independent, the probability of 
having no level in (E, E + S) is the product of the 

ε+Ίη dS 
_ J ! I L_l 

E r-+25 F+5 
c m 

probabilities of having no level in any of these m parts. If m is large, 
so that S/m is small, we can write this as 

( l — p ) * e~Ps 

Moreover, the probability of having a level in dS at E + S is p dS. 
Therefore, given a level at E, the probability that there is no level 
in (£", E + S) and one level in dS at E + S is 

e-osp dS 
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FIG . 1.1. Summary of the experimental data on nuclear level spacings for the 
elements Th and U238. (a) Histogram of the observed density of level spacings as a 
function of t = S/D; the spacing is measured in units of the mean level spacing 
for thorium, (b) The same histogram for the nucleus U238. The two solid curves 
correspond to the random and orthogonal cases. For details, see (1.1), (5.84), and 
(5.105). From Garg et al. [1]. 
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or in terms of the variable t = S/D = pS 

p(t)dt ^e-tdt. (1.1) 

This is known as the Poisson distribution or the spacing rule for 
random levels. 

That (1.1) is not correct for nuclear levels of the same spin and 
parity or for atomic levels of the same parity and orbital and spin 
angular momenta is clearly seen by a comparison with the empirical 
evidence (Figures 1.1 and 1.2). 

FIG. 1.2. Plot of the density of spacings between odd parity atomic levels of a 
group of elements in the region of osmium. The levels in each element were separated 
according to the angular momentum, and separate histograms were constructed for each 
level series, and then combined. The elements and the number of contributed spacings 
are Hfl , 74; Ta l , 180; WI, 262; Rel, 165; Osl, 145; Irl , 131, which lead to a total 
of 957 spacings. The solid curves correspond to the random and orthogonal cases; 
(1.1), (5.84), and (5.105). From Porter and Rosenzweig [1]. 

1.4. Wigner Surmise 

When the experimental situation was not yet conclusive, Wigner [3] 
proposed the following rules for spacing distributions: 

1. In the sequence of levels with the same spin and parity, called 
a simple sequence, the probability density function for a spacing is 
given by 

pw{t)=Y i e x p ( - - ^ ) , , = j S . ( L 2 ) 

1.0-------------------------,

:32o
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2. The levels with different spin and parity are not correlated. 
The function p(t) for a mixed sequence may be obtained by randomly 
superimposing the constituent simple sequences (cf. Appendix A.22). 

Two simple arguments give rise to Rule 1. As pointed out by 
Wigner [3] and by Landau and Smorodinsky [1], it is reasonable to 
expect that, given a level at Ey the probability that another level 
will lie around E + S is proportional to S for very small S. Now, 
if we extrapolate this to all S's and, in addition, assume that the 
probabilities in various intervals of length Sjm obtained by dividing S 
into m equal parts are mutually independent, we arrive at 

ra—1 tr 1 pit) dt = lim Π ί ΐ — — — a) at dt 
m-*co / £ \ mm) 

= at e-»1/2»«1'2 dt. (1.3) 

The constant a can be determined by the condition that the average 
value of t = S/D is unity: 

/•OO 

tp{t)dt = \. (1.4) 

Let us, at this point, define the n-point correlation function 
Rn(E1,..., En) so that Rn dE1 dE2 ··· dEn is the probability of finding 

0.75 

0.50 

0.25 

0 1 2 3 

FIG. 1.3. The probability density functions p(t) and pw(t);( 1.2), (5.84), and (5.105) 
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a level in each of the intervals (E1, Ex + dE^,..., (En , En + dEn), 
all other levels being unobserved. The two simple arguments of 
Wigner given in the derivation of Rule 1 are equivalent to the 
following. The two-point correlation function R2(E1, E2) is linear in 
the variable | E1 — E2 |, and three and higher order correlation 
functions are negligibly small. 

We shall see in Chapter 5 that both arguments are inaccurate, 
whereas Rule 1 is very near the correct result (Figure 1.3). It is 
surprising that the two errors made so nearly compensate each other. 

1.5. Electromagnetic Properties of Small Metallic Particles 

Consider small metallic particles at low temperatures. The number 
of electrons in a volume V is n aa 4np0

3V/3h?y where pQ is the Fermi 
momentum and h is Planck's constant. The energy of an excitation 
near the Fermi surface is E0 & />0

2/2m*, where m* is the effective 
mass of the electron. The level density at zero excitation is therefore 
σ = dn/dE0 & 4np0Vm*lhs, and the average level spacing is the 
inverse of this quantity Δ & σ_1. For a given temperature we can 
easily estimate the size of the metallic particles for which Δ ^> kT, 
where k is Boltzmann's constant and T is the temperature in degrees 
Kelvin. For example, a metallic particle of size 10~6 - 10~7 cm 
contains 104 - 105 electrons and, at T & 10°K, Δ ^ 1 eV, whereas 
kT & 10~3 eV. It is possible to produce particles of this size experi-
mentally and then to sort them out according to their size (e.g., by 
centrifuging and sampling at a certain radial distance). Thus we 
have a large number of metallic particles, each of which has a different 
shape and therefore a different set of electronic energy levels but 
the same average level spacing, for the volumes are equal. It would 
be desirable if we could separate (e.g., by applying a nonuniform 
magnetic field) particles containing an odd number of conduction 
electrons from those containing an even number. The energy-level 
schemes for these two types of particle have very different properties 
(see Chapters 2 and 3). 

Given the position of the electronic energies, we can calculate the 
partition function in the presence of a magnetic field and then use 
thermodynamic relations to derive various properties such as electronic 
specific heat and spin paramagnetism. Fröhlich [1] assumed that the 
energies were equally spaced and naturally obtained the result that 
all physical quantities decrease exponentially at low temperatures 
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as e~àlkT for 1 <^AjkT. Kubo [1] repeated the calculation with 
the assumption that the energies were random without correlations 
and that their spacings therefore follow a Poisson law. He arrived 
at a linear law for the specific heat r^kTjA. The constants are different 
for particles containing an odd number of electrons from those 
containing an even number. For spin paramagnetism even the 
dependence on temperature is different for the two sets of particles. 
Instead of Fröhliche equal spacing rule or Kubo's Poisson law, it 
would perhaps be better to adopt the point of view of Gorkov and 
Eliashberg [1], which may be justified as follows. The energies are 
the eigenvalues of a fixed Hamiltonian with random boundary 
conditions. We may incorporate these boundary conditions into the 
Hamiltonian by the use of fictitious potentials. 

In contrast to nuclear spectra, we have the possibility of realizing 
in practice all three ensembles considered in various sections of this 
book. They apply in particular when (a) the number of electrons (in 
each of the metallic particles) is even and there is no external magnetic 
field, (b) the number of electrons (in each of the metallic particles) 
is odd and there is no external magnetic field, (c) there is an external 
magnetic field H ^> J//x, where μ is the magnetic moment of the 
electron. 



2 / Gaussian Ensembles. The Joint Probability 
Density Function for the Matrix Elements 

2.1. Preliminaries 

In the mathematical model our systems are characterized by their 
Hamiltonians, which in turn are represented by Hermitian matrices. 
Let us look into the structure of these matrices. The low-lying 
energy levels (eigenvalues) are far apart and each may be described 
by a different set of quantum numbers. As we go to higher excitations, 
the levels draw closer, and because of their mutual interference most 
of the approximate quantum numbers lose their usefulness, for they 
are no longer exact. At still higher excitations the interference is so 
great that some quantum numbers may become entirely meaningless. 
However, there may be certain exact integrals of motion, such as 
total spin or parity, and the quantum numbers corresponding to them 

14 
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are conserved whatever the excitation may be. If the basic functions 
are chosen to be the eigenfunctions of these conserved quantities, 
all Hamiltonian matrices of the ensemble will reduce to the form 
of diagonal blocks. One block will correspond uniquely to each set 
of exact quantum numbers. The matrix elements lying outside these 
blocks will all be zero, and levels belonging to two different blocks 
will be statistically uncorrelated. As to the levels corresponding to the 
same block, the interactions are so complex that any regularity 
resulting from partial diagonalization will be washed out. 

We shall assume that such a basis has already been chosen and 
restrict our attention to one of the diagonal blocks, an (N X N) 
Hermitian matrix in which N is a large but fixed positive integer. 
Because nuclear spectra contain at least hundreds of levels with the 
same spin and parity, we are interested in the limit of very large N. 

With these preliminaries, the matrix elements may be supposed to 
be random variables and allowed the maximum statistical inde-
pendence permitted under symmetry requirements. To specify 
precisely the correlations among various matrix elements we need 
a careful analysis of the consequences of time-reversal invariance. 

2.2. Time-Reversal Invariance1 

We begin by recapitulating the basic notions of time-reversal 
invariance. From physical considerations, the time-reversal operator 
is required to be antiunitary [Wigner, 1] and can be expressed, as 
any other antiunitary operator, in the form 

T = KC, (2.1) 

where K is a fixed unitary operator and the operator C takes the 
complex conjugate of the expression following it. Thus a state under 
time reversal transforms to 

φκ = Τφ = Κψ*, (2.2) 

î/r* being the complex conjugate of ψ. From the condition 

(φ, Αψ) = (φ*, Α«φ*) 

for all pairs of states ψ, </>, and (2.2), we deduce that under time 
reversal an operator A transforms to 

AR = KATK-\ (2.3) 
+ Sections 2.2 to 2.5 are based largely on an article by Dyson [1]. 
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where AT is the transpose of A. A is said to be self-dual if AR = A. 
A physical system is invariant under time reversal if its Hamiltonian 
is self-dual, that is, if 

HR = H. (2.4) 

When the representation of the states is transformed by a unitary 
transformation, φ —> ϋφ, T transforms according to 

T -> UTU-1 = UTU+ (2.5) 

or K transforms according to 

K->UKUT. (2.6) 

Because operating twice with T should leave the physical system 
unchanged, we have 

Γ2 = α · 1 , | « | = 1, (2.7) 

where 1 is the unit operator; or 

T2 = KCKC = KK*CC = KK* = oc · 1, (2.8) 

But K is unitary: 

K*KT = 1. 

From these two equations we get 

K = ocKT = OL(OCKT)T = ot2K. 

Therefore 
«2 = 1 or OL = ± 1 , (2.9) 

so that the unitary matrix K is either symmetric or antisymmetric. 
In other words, either 

KK* = 1 (2.10) 

or 
KK* = - 1 . (2.11) 

These alternatives correspond, respectively, to an integral or a 
half-odd integral total angular momentum of the system measured 
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in units of fi [Wigner, 1], for the total angular momentum operator 
J = (Ji y J2 > Js) must transform as 

JiR = -Ji, / = 1,2,3. (2.12) 

For brevity we call the two possibilities the even-spin and odd-spin 
case, respectively. 

2.3. Gaussian Orthogonal Ensemble 

Suppose now that the even-spin case holds and (2.10) is valid. 
Then a unitary operator U will exist such that (cf. Appendix A.23) 

K=UUT. (2.13) 

By (2.6) a transformation φ —>- ΙΙ~χφ performed on the states ψ 
brings K to unity. Thus in the even-spin case the representation of 
states can always be chosen so that 

K=\. (2.14) 

After one such representation is found, further transformations 
φ —> ΙΙφ are allowed only with R a real orthogonal matrix so that 
(2.14) remains valid. The consequence of (2.14) is that self-dual 
matrices are symmetric. In the even spin case every system invariant 
under time reversal will be associated with a real symmetric matrix H 
if the representation of states is suitably chosen. For even-spin systems 
with time-reversal invariance the Gaussian orthogonal ensemble ElG , 
defined below, is therefore appropriate. 

Definition 2.1: The Gaussian orthogonal ensemble E1G is defined 
in the space T1G of real symmetric matrices by two requirements: 

1. The ensemble is invariant under every transformation 

H-+WTHW (2.15) 

of T1G into itself, where W is any real orthogonal matrix. 

2. The various elements Hkj , k ^ 7 , are statistically independent. 

These requirements, expressed in the form of equations, read as 
follows: 



18 2.4. Gaussian Symplectic Ensemble 

1. The probability P(H) dH that a system of E1G will belong to 
the volume element dH = Π Α ^ dHkj is invariant under real orthogo-
nal transformations: 

P(H') dH' = P{H) dH, (2.16) 

where 
H' = WTHW (2.17) 

and 
W T W = W W T = X (2.18) 

2. This probability density function P(H) is a product of functions, 
each of which depends on at most a single variable: 

P{H) = Π /« (#«) · (2.19) 

Suppose, next, that we are dealing with a system invariant under 
space rotations. The spin may now be even or odd. The Hamiltonian 
matrix H which represents the system commutes with every com-
ponent of J. If we use the standard representation of the / matrices 
with ]λ and J3 real and J2 pure imaginary, (2.12) may be satisfied 
by the usual choice [Wigner, 1] 

K = eM* (2.20) 

for K. With this choice of Ky H and K commute and HR reduces 
to HT. Thus a rotation-invariant system is represented by a real 
symmetric matrix H, and once again the ensemble E1G is appropriate. 

2.4. Gaussian Symplectic Ensemble1 

In this section we discuss a system to which E1G does not apply, 
a system with odd-spin, invariant under time reversal, but having no 
rotational symmetry. In this case (2.11) holds, K cannot be diago-
nalized by any transformation of the form (2.6), and there is no 
integral of the motion by which the double-valuedness of the 
time-reversal operation can be trivially eliminated. 

+ Dyson [1]. 
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Every antisymmetric unitary operator can be reduced by a trans-
formation (2.6) to the standard canonical form (cf. Appendix A.23) 

-i: - M Î -a+· 

which consists of (2 X 2) blocks 

G - a 
along the leading diagonal; all other elements of Z are zero. We 
assume that the representation of states is chosen so that K is reduced 
to this form. The number of rows and columns of all matrices must 
now be even, for otherwise K would be singular in contradiction to 
(2.11). It is convenient to denote the order of the matrices by 2N 
instead of N. After one such representation is chosen, for which 
K = Z, further transformations ψ -> Βψ are allowed, only with B 
a unitary (2N X 2N) matrix for which 

Z = BZBT. (2.22) 

Such matrices B form precisely the N-dimensional symplectic group 
[Weyl, 1], usually denoted by Sp(N). 

It is well known [Chevalley, 1; Dieudonné, 1] that the algebra of 
the symplectic group can be expressed most conveniently in terms of 
quaternions. We therefore introduce the standard quaternion notation 
for (2 X 2) matrices, 

βι = [ό ·-,·]· i ! = C Λ e*=[-i 71 (2·23) 

with the usual multiplication table 

* ι 2 =« 2
2 = * 3 2 = - 1 , (2-24) 

1̂̂ 2 ~ 2̂̂ 1 == ^3 » ^2^3 = ^3^2 = ^ 1 > ^ 3 ^ 1 = ^1^3 = 2̂ · \Z.Zj) 

Γ0 
1 
0 
0 

- 1 0 
0 0 
0 0 
0 1 

0 - j 
0 -

- 1 ··· 
0 ··· 

(2.21) 

file:///Z.Zj
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Note that in (2.23), as well as throughout the rest of this book, i is 
the ordinary imaginary unit and not a quaternion unit. The matrices 
ex, e2, and e3 , together with the (2 X 2) unit matrix 

- i l a· 
form a complete set, and any (2 X 2) matrix with complex elements 
can be expressed linearly in terms of them with complex coefficients: 

Z ̂ ^(a + O l - ^ - ^ - ^ - ^ + ^ + ' K · (2.26) 
All the (IN x 27V) matrices will be considered as cut into N2 blocks 
of (2 X 2) and each (2 X 2) block expressed in terms of quaternions. 
In general, a (IN X 2N) matrix with complex elements thus becomes 
an (N X N) matrix with complex quaternion elements. In particular, 
the matrix Z is now 

Z = e2I, (2.27) 

where / is the (N X N) unit matrix. It is easy to verify that the rules 
of matrix multiplication are not changed by this partitioning. 

Let us add some definitions. We call a quaternion "real" if it is 
of the form 

? = <7«»+q-e, (2.28) 

with real coefficients q{0), qa\ q(2\ and q{S). Thus a real quaternion 
does not correspond to a (2 X 2) matrix with real elements. Any 
complex quaternion has a "conjugate quaternion'' 

q = qm - q · e, (2.29) 

which is distinct from its "complex conjugate*' 

2* =0<o)* + q * . c . (2.30) 

A quaternion with q* = q is real; one with q* = —q is pure 
imaginary; and one with q = q is a scalar. By applying both types 
of conjugation together, we obtain the "Hermitian conjugate'' 

q+ = q* =qi0)* - q* · e. (2.31) 

A quaternion with q+ = q is Hermitian and corresponds to the 
ordinary notion of a (2 X 2) Hermitian matrix; one with q+ = —q 
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is anti-Hermitian. The conjugate (Hermitian conjugate) of a product of 
quaternions is the product of their conjugates (Hermitian conjugates) 
taken in the reverse order: 

(fcfc-tfn) =<in~-qtfi3 (2.32) 

(Ma * * * 9n)+ =9n+- ?2+?i+. (2.33) 

Now consider a general (2iV X 2N) matrix A which is to be 
written as an (N X N) matrix Q with quaternion elements qkj> ; 
kyj = 1,2,..., N. The standard matrix operations on A are then 
reflected in Q in the following way: 

Transposition, 
{QT)ià = -e2qjke2. (2.34) 

Hermitian conjugation, 

( 0 + ) « = * £ . (2.35) 

Time reversal, 
(QR)ki=e2(Q

T)kje^=qjk. (2.36) 

The matrix QR is called the "dual" of Q. A "self-dual" matrix is one 
with QR = Q. 

The usefulness of quaternion algebra is a consequence of the 
simplicity of (2.35) and (2.36). In particular, it is noteworthy that 
the time-reversal operator K does not appear explicitly in (2.36) as 
it did in (2.3). By (2.35) and (2.36) the condition 

QR = Q+ (2.37) 

is necessary and sufficient for the elements of Q to be real quaternions. 
When (2.37) holds, we call Q "quaternion real." 

A unitary matrix B that satisfies (2.22) is automatically quaternion 
real. In fact, it satisfies the conditions 

BR = B+ = B-\ (2.38) 

which define the symplectic group. The matrices H which represent 
the energy operators of physical systems are Hermitian as well as 
self-dual: 

HR =H, H+ = //, (2.39) 
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hence are also quaternion real. From (2.35) and (2.36) we see that 
the quaternion elements of a self-dual hermitian matrix must satisfy 

qîk = Çjk = Çkj (2.40) 

or q$ must form a real symmetric matrix, whereas q$, q$, and qffi 
must form real antisymmetric matrices. Thus the number of real 
independent parameters that define a (2iV X 27V) self-dual Hermitian 
matrix is 

iN(N + 1) + %N(N - 1) · 3 = N(2N - 1). 

From this notational excursion, let us come back to the point. 
Systems having odd-spin, invariance under time-reversal, but no 
rotational symmetry, must be represented by self-dual, Hermitian 
Hamiltonians. Therefore the Gaussian symplectic ensemble, as 
defined below, should be appropriate for their description. 

Definition 2.2: The Gaussian symplectic ensemble 2?4σ is defined in 
the space TAG of self-dual Hermitian matrices by the following 
properties: 

1. The ensemble is invariant under every orthomorphism 

H^WRHW (2.41) 

of T4G into itself, where W is any symplectic matrix. 
2. Various linearly independent components of H are also 

statistically independent. 

These requirements put in the form of equations read as follows: 

1. The probability P{H) dH that a system E4G will belong to the 
volume element 

^ - Π ^ ' Π Π ^ (2.42) 

is invariant under symplectic transformations; that is, 

P{H') dHf = P{H) dH (2.43) 
if 

H' = WRHW, (2.44) 
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where 
WZWT = Z (2.45) 

2. The probability density function P(H) is a product of functions 
each of which depends on a single variable: 

P(H) -= Π / £ ? W ) Π Π f%W»). (2.46) 
k^j Λ=1 fc<i 

2.5. Gaussian Unitary Ensemble 

For completeness we discuss briefly a much simpler ensemble, the 
Gaussian unitary ensemble E2G which applies to systems without 
invariance under time reversal. Such systems are easily created in 
principle by putting an ordinary atom or nucleus, for example, into an 
externally generated magnetic field. The external field is not affected 
by the time-reversal operation. However, for the unitary ensemble to 
be applicable, the splitting of levels by the magnetic field must be at 
least as large as the average level spacing in the absence of the 
magnetic field. The magnetic field must, in fact, be so strong that 
it will completely "mix up" the level structure that would exist in zero 
field; for otherwise our random hypothesis cannot be justified. This 
state of affairs could never occur in nuclear physics. In atomic or 
molecular physics a practical application of the unitary ensemble may 
perhaps be possible. 

A system without time-reversal invariance has a Hamiltonian that 
may be an arbitrary Hermitian matrix not restricted to be real or 
self-dual. Thus we are led to the following definition. 

Definition 2.3: The Gaussian unitary ensemble E2G is defined in 
the space of Hermitian matrices by the following properties: 

1. The probability P{H) dH that a system of E2G will belong to the 
volume element 

dH=Y\ dH% ΓΊ äHff, (2.47) 
k^j k<j 

where Η{£- and Η$ are real and imaginary parts of Hkj, is invariant 
under every automorphism 

H-^U-WU (2.48) 

of T2G into itself, where U is any unitary matrix. 
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2. Various linearly independent components of H are also 
statistically independent. 

In mathematical language these requirements are 

1. P(H') dH' = P{H) dH, (2.49) 

H' = U-WU, (2.50) 

where U is any unitary matrix. 
2. P(H) is a product of functions, each of which depends on a 

single variable: 

^(")=n/iW)n/£W)· (2·51) 
k^j k<j 

2.6. Joint Probability Density Function for Matrix Elements 

We now come to the question of the extent to which we are still 
free to specify the joint probability density function P(H). It will be 
seen that the two postulates of invariance and statistical independence 
elaborated above fix uniquely the functional form of P{H). 

The postulate of invariance restricts P(H) to depend only on a 
finite number of traces of the powers of H. We state this fact as a 
lemma [Weyl, 1]. 

Lemma 2.1. All the invariants of an (N x N) matrix H under 
nonsingular similarity transformations A, 

H->H' = AHA~\ 

can be expressed in terms of the traces of the first N powers of H. 

Proof: Because all invariants are symmetric functions of the eigen-
values Xk , k = 1, 2,..., N, of H, and 

N 

tr W = X λ^ = ts, say, 
k=l 

we need to show that any symmetric function of λ̂ . can be expressed in 
terms of the first TV of the tj . Let the secular equation which determines 
the Afc be 

det[H - XI] ΕΕΞ (-Λ)" + σ^-λ )" - 1 + ... + σΝ = 0, 
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so that, given the coefficients 

all the eigenvalues Xk are uniquely determined except for their order. 
Thus any symmetric function of the λ̂ . can be expressed in terms of 
the basic functions σλ, σ2,..., σΝ . To show that the tj form another such 
basis it will then be sufficient to express σ;· in terms of tj . This is 
achieved by the equation (Appendix A.l) 

ar = (r!)-i det[akj]kJ=1>2 r ; 1 < r < N, (2.52) 
where 

7, if * = y + l, (2.53) 
0, if k>j + L 

Incidently, we note that 

det[ew]fcii.lia r = 0, if r>Ny (2.54) 

which expresses the traces of all the powers of H in terms of those 
of the first N powers. 

The postulate of statistical independence excludes everything 
except the traces of the first two powers, and these, too, may occur 
only in an exponential. To see this we will need the following lemma. 

L e m m a 2.2· If three continuous and dtfferentiable functions fk(x); 
k = 1, 2, 3, satisfy the equation 

Mxy) =/ , (*) + / .O0, (2.55) 

they are necessarily of the form a In x + bk with bx = b2 + b3 . 

Proof: Differentiating (2.55) with respect to x, we have 

/l'foO = -/a'(*)> 

which, on integration with respect to y, gives 

\h{xy) =/ , ' (*) In y + \g{x), (2.56) 
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where g(x) is still arbitrary. Substituting f±(xy) from (2.56) into (2.55), 
we get 

*/,'(*) In y + g(x) -f2(x) = / , (y) . (2.57) 

Therefore the left-hand side of (2.57) must be independent of x\ 
this is possible only if 

χίΛχ) = a a n d g(x) —AM = *3 > 
that is, only if 

f2(x) = a In x + b2 = g(x) — b3 , 

where a, b2, and b3 are arbitrary constants. 
Now (2.57) gives 

fz(y) = a\ny + b3 

and finally (2.55) gives 

fi(xy) = a ln(xy) + {h + *8)· 
Let us now examine the consequences of the statistical independence 

of the various components of H. Consider the particular transforma-
tion 

H - U-WU, 
where 

' cos0 sin<9 0 — 0" 
- s i n 0 cos0 0---0 

0 0 1 - 0 

Q.E.D. 

(2.58) 

U = 

0 0 0 - 1 

or, in quaternion notation (provided N is even), 

U = 

(2.59) 

cos Θ — e2 sin Θ 0 · 
0 1 · 

0 0 · 

• 0 
•0 

•1 

(2.60) 

This U is, at the same time, orthogonal, symplectic, and unitary. 
Differentiation of (2.58) with respect to Θ gives 

3H dlF dU 
-de=-dFHU+UH ~ΒΘ 

du' eu 
= ~W UH + HU ~M' 

(2.61) 
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and by substituting for U, UT, dUjdd, and dVT\dd from (2.59) or 
(2.60) we get 

OTT 

= AH + HAT, 

where 
δθ 

A - 8Θ U~ 

(2.62) 

0 
1 
0 

- 1 0· 
0 0· 
0 0 · 

•0" 
• 0 
•0 

_0 0 0 -·0 

or, in quaternion notation, A is diagonal. 

(2.63) 

A = 

e2 0 · 0 ' 
0 0---0 (2.64) 

_0 0 ··· 0_ 

If the probability density function 

(2.65) 

is invariant under the transformation [/, its derivative with respect 
to Θ must vanish; that is 

L· f(<x) 

(a) dH$ 
fil M$ 3Θ 

0. (2.66) 

Let us write this equation explicitly, say, for the unitary case. 
Equations (2.62) and (2.66) give 

i V&\+J_ V (o) 

f(0) 3 / / (0 ) ' f(0) P/7(0) I L—12 J ' f(\ 
J 11 VrLl\ J 22 υι122 J J 12 ~ " 1 2 

1 1 iïfi0) 

\2H(0)] 4- —- J 12 IT/(0) — //(0)1 
J L^rii2 J ^ r(0) £//(0) L^ll ^22 J 

1 3/» „,β, , 1 g / 
' L· f(0) f)tf(O) " 2 

t=3 L J lfc U1Ilk 
m»> + 

(0) 
2k 

KV ***$> 
HSi] 

i V \ — flk H^ 4- — f2k H^A = 0 
"· L· f(l) P7 / (D 2fc ~ f ( l ) PÉ/U) lfc 

i=3 L · / l f c lfc J 2k U112k 

(2.67) 
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The braces at the left-hand side of this equation depend on 
mutually exclusive sets of variables and their sum is zero. Therefore 
each must be a constant; for example, 

Hit dfJS . Hll> 8f, 
f(0) fiff(O) >" f(0) #7/(0) 

J Ik V£1lk J 2k UI12k 

21c =C<°>. (2.68) 

On dividing both sides of (2.68) by Η$ Η$ and applying the 
Lemma 2.2, we conclude that the constant Cj(.0) must be zero, that is, 

1 1 ô/ί* 1 1 0/S? 
Jlk — J ik = constant 

= —2a, say, (2.69) 
which on integration gives 

/«»[#»>] = exp{-«[H<»^}. (2.70) 

In the other two cases we also derive a similar equation. Now 
because the off-diagonal elements come only as squares in the 
exponential and all invariants are "expressible in terms of the traces 
of powers of H, the function P{H) is an exponential that contains 
traces of at most the second power of H. 

Because P{H) is required to be invariant under more general 
transformations than we have here considered, one might think that 
the form of P{H) is further restricted. This, however, is not so, for 

P(H) = exp( - a tr H2 + b tr H + C) 

= ec J ] exp{-e[//g>]» + *//£>} Π «?{-*[»«>]»} (2-71) 
k^.j k<j,X 

is already a product of functions, each of which depends on a separate 
variable. Moreover, because we require P(H) to be normalizable and 
real, a must be real and positive and b and c must be real. 

Therefore we have proved the following theorem [Porter and 
Rosenzweig, 1; Wishart, 1]. 

Theorem 2.1. In all the above three cases the form of P{H) is 
automatically restricted to 

P{H) = exp(-a tr H2 + b tr H + c), (2.72) 

where a is real and positive and b and c are real. 
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In the foregoing discussion we have emphasized the postulate of 
statistical independence of various components of H even at the risk 
of frequent repetitions. This statistical independence is important in 
restricting P{H) to the simple form (2.72), and hence makes the 
subsequent analytical work tractable. However, it lacks a clear physical 
motivation and therefore looks somewhat artificial. 

The main objection to the assumption of statistical independence, 
leading to (2.72), is that all values of Hj$ are not equally weighted 
and therefore do not correspond to all ' 'interactions" being * 'equally 
probable." By a formal change Dyson [1-6] has defined his "circular 
ensembles," which are esthetically more satisfactory to some people 
and equally easy to work with. We shall come to them in Chapters 8 
to 11. On the other hand, Rosenzweig [1] has emphasized the "fixed 
strength" ensemble. Others [Leff, 1; Fox and Kahn, 1] have arbitrarily 
tried the so-called "generalized" ensembles. A brief review of these 
topics is given in Chapter 17. 



3 / Gaussian Ensembles. The Joint Probability 
Density Function for the Eigenvalues1 

3.1. Orthogonal Ensemble 

The joint probability density function (abbreviated j.p.d.f. later in 
the chapter) for the eigenvalues Θ1,Θ2,...,ΘΝ can be obtained from (2.72) 
by expressing the various components of H in terms of the N 
eigenvalues 6j and other mutually independent variables, ρμ, say, 
which together with the θ^ form a complete set. In an (TV X N) real 
symmetric matrix the number of independent real parameters which 
determine all Hkj is ^N(N + 1). We may take these as Hkj with 
k ^ j . The number of extra parameters ρμ needed is therefore 

/ = tN(N +l)-N = m?* - I)· (3.1) 
Because 

t r#« = £ « , * , ΐτΗ = Σθΐ> (3·2) 
1 1 

the probability that the iVroots and the ^N(N — 1) parameters will occur 
in unit intervals around eiy...y6N and px , p2,..., pl is, according to 
(2.72), 

ά(θ1,..., ΘΝ ;Pl ,...,Pl) = exp ( - « £ * , » + b^e, + c) ]{θ,ρ), (3.3) 

where / is the Jacobian 

J(0,P) = 
^ ( - " 1 1 > ^*12 >···> HNN) I 

oft,..., **,/>,,...,*,) I* ^ 

Hence the j.p.d.f. of the eigenvalues 6j can be obtained by integrating 
(3.3) over the parameters px ,...,pi . It is usually possible to choose 

+ This chapter is based largely on Wigner's article [6]. 

30 
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these parameters so that the Jacobian (3.4) becomes a product of a 
function of θ3· and a function of ρμ . If this is the case, the integration 
provides the required j.p.d.f. as a product of the exponential in (3.3), 
the aforementioned function of the 0;· and a constant. The constant can 
then be absorbed in c in the exponential. 

To define the parameters ρμ [Wigner, 6] we recollect that any real 
symmetric matrix H can be diagonalized by a real orthogonal matrix 
[Wigner, 2]: 

H = UGU-1 (3.5) 
= UQUT, (3.5') 

where Θ is the diagonal matrix with diagonal elements θλ , θ2,..., ΘΝ 

arranged in some order, say, θχ ^ θ2 < · · · < ΘΝ , and U is a real 
orthogonal matrix 

UUT=UTU=l, (3.6) 

whose columns are the normalized eigenvectors of H. They are, or 
may be chosen to be, mutually orthogonal. To define U completely 
we must in some way fix the phases of the eigenvectors—for instance 
by requiring that the first nonvanishing component be positive. Thus 
U depends on ^N(N — 1) real parameters and may be chosen to be 
the Ukj, k > j . If H has multiple eigenvalues, further conditions 
are needed to fix U completely. It is not necessary to specify them, 
for they apply only in regions of lower dimensionality which are 
irrelevant to the probability density function. At any rate, the 
^N(N — 1) parameters ρμ are supposed to characterize the U which 
is subject to the preceding conditions. Once this is done, the matrix / / , 
which completely determines the Θ and the U subject to the preceding 
conditions, also determines the 0; and the ρμ uniquely. Conversely, 
the 6j and ρμ completely determine the U and Θ, and hence by (3.5) 
all the matrix elements of H. 

Differentiating (3.6), we get 

3Ρμ 8ρμ 

and because the two terms in (3.7) are the Hermitian conjugates 
of each other, 

dp 3ρμ 

is an antisymmetric matrix. 

(3.7) 

(3.8) 
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Also from (3.5) we have 

BH dUnTTT , TTndUT 

ορμ 8ρβ 8ρμ 
(3.9) 

On multiplying (3.9) by UT on the left and by U on the right, we get 
OTT 

dp 

In terms of its components, (3.10) reads 

OTT 

j,k "Γ\Ι 

In a similar way, by differentiating (3.5) with respect to 0y, 

j,k 8θ„ 8Θ„ 
: Κβ Say . 

(3.10) 

(3.11) 

(3.12) 

The matrix of the Jacobian in (3.4) can be written in the partitioned 
form as 

imp)] = 
dHfi dH jk 

δθ,, 8Θ., 
8H„ 8Hjk 

L Vu ty» . 

(3.13) 

The two columns in (3.13) correspond to N and ^N(N — 1) actual 
columns: 1 ^ j < k ^ N. The two rows in (3.13) correspond again to 
N and ±N(N-I) actual rows: y = 1,2,...,Ν;μ= 1,2, --,%Ν(Ν- 1). 
If we multiply the [/] in (3.13) on the right by the 

$N(N + 1) X iN(N + 1) 

matrix written in the partitioned form as 

ιτθ (3.14) 

in which the two rows correspond to N and ^N(N — 1) actual rows, 
1 ^ j < k ^ N, and the column corresponds to ^N(N + 1 ) actual 
columns, 1 < α < β ^ N> we get by using (3.11) and (3.12) 

UW] = [ 
8c/3 S«v ]■ (3.15) 
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The two rows on the right-hand side correspond to N and ^N(N — 1) 
actual rows and the column corresponds to ^N(N + 1 ) actual 
columns. Taking the determinant on both sides of (3.15), we have 

7(0,/») det V = Π (θ„ - θα) det [***<"] 
α < / 3 oc/3 

or 
Μ / > ) = Π Ι * Ο - * . Ι / ( Ρ ) . (3·16) 

α<β 

where f(p) is independent of the 0; and depends only on the 
parameters ρμ . 

By inserting this result in (3.3) and integrating over the variables 
Ρμ w e Se t t n e j-p-d.f. for the eigenvalues of the matrices of an 
orthogonal ensemble 

P(0,,..., ΘΝ) = exp [ - £ (a*,* - W, - c)] Π I ^ - », I, (3.17) 

where :̂ is some new constant. Moreover, if we shift the origin of 
the Θ to bjla and change the energy scale everywhere by a constant 
factor y/2ay we may replace dj with (l/\/2a) Xj + bjla. By this 
formal change (3.17) takes the simpler form 

/ 1 N \ PN1(x1,..., xN) = CN1 exp - x X χΛ Π \*i—Xk\> (3.18) 
V Z 1 7 j<k 

where CN1 is a constant. 

3.2. Symplectic Ensemble 

As the analysis is almost identical in all three cases, we have 
presented the details for one particular ensemble—the orthogonal one. 
Here and in the following discussion we indicate briefly the modifica-
tions necessary to arrive at the required j.p.d.f. in the other two cases. 

Corresponding to the result that a real symmetric matrix can be 
diagonalized by a real orthogonal matrix, we have the following: 

Theorem 3.1. Given a quaternion-real, self-dual matrix H, there 
exists a symplectic matrix U such that 

H = UGU-1 = ϋΘυ*, (3.19) 

where Θ is diagonal, real, and scalar (cf. Appendix A.23). 
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The fact that Θ is scalar means that it consists of N blocks of the 
form 

\dj Oi E' a <3-»> 
along the main diagonal. Thus the eigenvalues of H consist of N 
equal pairs. The Hamiltonian of any system which is invariant under 
time reversal, which has odd spin, and no rotational symmetry satisfies 
the conditions of Theorem 3.1. All energy levels of such a system will be 
doubly degenerate. This is the Kramer's degeneracy [Kramer, 1], and 
Theorem 3.1 shows how it appears naturally in the quaternion 
language. 

Apart from the TV eigenvalues Oj, the number of real independent 
parameters ρμ needed to characterize an N X N quaternion-real, 
self-dual matrix H is 

/ = 4 · \N{N - 1) = 2N(N - 1). (3.21) 

Equations 3.2 and 3.3 are replaced, respectively, by 

N N 

tr # 2 = 2 X 0/, tr if = 2 £ 0, (3.22) 
1 1 

and 

Δ(θχ,..., ΘΝ ; Pl,..., Pl) = exp [ - £ (2αθ? - 20Θ, - c)] /(<?, p), (3.23) 
L 1 J 

where /(0, p) is now given by 

^ V " ! ! > — > nNN_>*±12 '*··» " 1 2 >···» nN-l.N >···» nN-l,NJ MP) = 
d(61 , . . . , #N , />! , . . . , p2N(N-l)) 

(3.24) 

Equation 3.5 is replaced by (3.19); (3.6), (3.7), (3.8), (3.9), and (3.10) 
are valid if UT is replaced by UR. Note that these equations are now 
in the quaternion language, and we need to separate the four 
quaternion parts of modified (3.19). For this we let 

Hjk = H$ + H™ e, + H<» e2 + ff <» ea , (3.25) 

S# = S%» + S$> e, + S$> e2 + S%* e3 , (3.26) 
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and write (3.10) and the one corresponding to (3.12) in the form of 
partitioned matrices: 

3H«! (o) 

W, 
(0) 3H„ 

L 3rV 

8H% 

™y δθγ 

8H% 
dp» 

8θγ 

SHJf 
dpu 

V 

AW) 
w 

Am £(3> 

y,aß 
Ύ(3) 

Αμ) s{3tKeß-ea)-'S^(eß-ej 
(3.27) 

l < ; < * < i V , 1 < < * < £ < TV, l < y < N , 1 < / x < 2 i V ( N - 1 ) , 

where the matrices dHffi/δθγ , v9 and p are N X Nf the matrices 
8Η$/3θγ and σ<^ , with λ = 0, 1, 2, 3, are N x $N(N - 1), 
the ^ ( λ ) are all %N(N - 1) X N, the 3Ηβ)/3ρμ and the e<^ are 
2iV(N - 1) x N, the «? is N X 2iV(iV - 1), the 3Η$/δρμ and the 
Slf] are 2N(iV - 1) x $N(N - 1) and the matrices Β{λ) are 
^N(N — 1) X 2N(N — 1). The matrices p and the σ appear as we 
separate the result of differentiation of (3.19) with respect to θγ into 
quaternion components. Because Θ is diagonal and scalar, the σ(λ) 

are all zero matrices. Moreover, the matrix p does not depend on θγ , 
for Θ depends linearly on the θγ . The computation of the matrices 
vy wy Aa)

y and Β{λ) is straightforward, but we do not require them. 
All we need is to note that they are formed of the various components 
of Uy hence do not depend on θγ . 

Now we take the determinant on both sides of (3.27). The 
determinant of the first matrix on the left is the Jacobian (3.24). 
Because the σ(Α) are all zero, the determinant of the right-hand side 
breaks into a product of two determinants: 

d e t f c l det[S'*>(ft, - 0J], (3.28) 

the first one being independent of the θγ, whereas the second is 

r m - ^ d e t ^ n (3.29) 
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Thus 

MP) = II Vß-WM, (3.30) 
<χ<β 

which corresponds to (3.16). 
By inserting (3.30) into (3.23) and integrating over the parameters, 

we obtain the j.p.d.f. 

Ρ{θχ,..., ΘΝ) = exp (-2a £ 0,« + 2b £ fl, + c) f ] (^ - »*)· (3.31) 
^ 1 1 ' »· ^ U 

As before, we may shift the origin to make b — 0 and change the 
scale of energy to make a = 1. Thus the j.p.d.f. for the eigenvalues 
of matrices in the symplectic ensemble in its simple form is 

/ N \ 
Pm(xi , . . · , xN) = CN4t exp ( - 2 X xf) Π (*j - xk)\ (3.32) 

AT 

Σ 
1 ' j<k 

where CN4 is a constant. 

3.3. Unitary Ensemble 

In addition to the real eigenvalues, the number of real independent 
parameters ρμ needed to specify an arbitrary Hermitian matrix H 
completely is N(N — 1). Equations 3.2 and 3.3 remain unchanged, 
but (3.4) is replaced by 

W' M = am ö—* * ΐ ' ( 3 · 3 3 ) 

where i/jj* and //j j* are the real and imaginary parts of Hjk . Equations 
3.5 to 3.10 are valid if UT is replaced by [/+. Instead of (3.11) and 
(3.12), we now have 

Σ ^ ^ = % - " . ) . (3-34) 

l™fV*Ukß = ^ = KßKv. (3.35) 
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By separating the real and imaginary parts we may write these 
equations in partitioned matrix notation as 

dH (o) 

00„ 

dH 

L &ρ'μ 

(o) 

3H: (1) 

00„ 

(1) 
jk 

Γ v 

A(0) 

lA™ 

w; 1 
5(0) 

B{1)\ 

[<2 s%\eß-ej s%\eß-ej 

l < y < k < iv, l < « < 0 < iv, 

1 < μ < ΛΓ(ΛΓ - 1), U y ^ J V , 

(3.36) 

where S ^ } and 5 ^ μ ) are the real and imaginary parts of S[f. The 
matrices 3Η^/8θγ, vy and pare TV x N; the ΘΗ$/3θγ and the σ{

γ
λ)

Λβ are 
iV X JiV(iV - 1); the A™ are ±iV(iV - 1) x N; the 3Η$/θρμ and 5#*> 
a r e i V ( i V - 1) x $N(N - 1); the B^ are JiV(iV- 1) X iV( iV- l ) ; the 
3Η$]Ι3ρμ and the €<£> are N(N — \) X N\ and the matrix o> is 
iV X N(N — 1). To compute z;, α;, ^4(λ), p, €, σ(Λ), etc., is again 
straightforward, but we do not need them explicitly. What we want 
to emphasize is that they are either constructed from the components 
of U or arise from the differentiation of Θ with respect to 0;· and 
consequently are all independent of the eigenvalues 0; . Similarly, 
5 ( μ ) is independent of 0; . One more bit of information we need is 
that σ(0) and σ(1) are zero matrices, which can easily be verified. 

Thus by taking the determinants on both sides of (3.36) and 
removing the factors (θβ — θα) we have 

Λ«,ί)= Y\(^-W(P), (3.37) 

where f(p) is some function of the ρμ . 
By inserting (3.37) into (3.3) and integrating over the parameters 

ρμ we get the j.p.d.f. for the eigenvalues of matrices in the unitary 
ensemble 

Ρ(θ1 ,..., ΘΝ) = exp (-a Σ 0,2 + b £ 0, + c) \\ (0, - θ,)\ (3.38) 
X 1 1 ' j<k 
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and, as before, by a proper choice of the origin and the scale of 
energy we have 

/ N \ PN2(xx,..., xN) = CN2 exp ! - £ xM Π (xi - xk?· (3·39) 
V
 1 j<k 

We record (3.18), (3.32), and (3.39) as a theorem. 

Theorem 3.2. The joint probability density function for the eigen-
values of matrices from a Gaussian ensemble is given by 

Λ*(*ι , . . · , **) = CNß exp ( - I P X xA Π I Xi - xk lß, (3.40) 
X
 1 3<k 

where ß = 1 if the ensemble is orthogonal, ß = 4 if it is symplectic, 
and ß = 2 if it is unitary. The constant CNß is chosen in such a way 
that the PNß is normalized to unity: 

I ·'· ί ΡΝβ(*ι >···> *N) dxi '" dxN = 1. (3.41) 

In the following chapters [see (5.36), (6.3), and (6.49)] we calculate 
CNß for the physically interesting cases ß = 1,2, and 4. For these 
values of ß, CNß is given by 

N 
C-J = (27Γ)ί1/2)^-(1/2)ΑΓ-(1/4)βΛΓ(Ν-1)|-Γ(1 + lß)yN TJ f({ + Ißjy (3^) 

3=1 

It is possible to understand the different powers of ß that appear in 
(3.40) by a simple mathematical argument based on counting 
dimensions. The dimension of the space T1G is ^N(N + 1), whereas 
the dimension of the subspace T'1G , composed of the matrices in T1G 

with two equal eigenvalues, is ^N(N + 1) — 2. Because of the single 
restriction, the equality of two eigenvalues, the dimension should 
normally have decreased by one; as it is decreased by two it indicates 
a factor in (3.40) linear in (XJ — Λ^). Similarly, when β = 2, the 
dimension of T2G is A^2, whereas that of T'2G is N2 — 3. When β = 4, 
the dimension of TAG is N(2N — 1), whereas that of T^G is 
N(2N - 1) - 5 (see Appendix A.2). 



4 / Gaussian Ensembles 

4.1. The Partition Function1 

Consider a gas of TV point charges with positions χλ, χ2,..., xN free 
to move on the infinite straight line — oo < x < oo. Suppose that 
the potential energy of the gas is given by 

W = Wxi^-Yiln\xi-xj\. (4.1) 
i i<j 

The first term in W represents a harmonic potential which attracts 
each charge independently toward the point x = 0; the second term 
represents an electrostatic repulsion between each pair of charges. 
The logarithmic function comes in if we assume the universe to be 
two-dimensional. Let this charged gas be in thermodynamical 
equilibrium at a temperature T, so that the probability density of 
the positions of the N charges is given by 

P(Xl,...,xN) = Cexp(=^), (4.2) 

where k is the Boltzmann constant. We immediately recognize that 
(4.2) is identical to (3.40), provided β is related to the temperature by 

ß = (kT)~\ (4.3) 

This system of point charges in thermodynamical equilibrium is 
called the Coulomb gas model, corresponding to the Gaussian 
ensembles. 

Following Dyson [1-3], we can define various expressions that 
relate to our energy-level series in complete analogy with the classical 
notions of entropy, specific heat, and the like. These expressions, 

+ Mehta and Dyson [1]. 

39 
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when computed from the observed experimental data and compared 
with the theoretical predictions, provide a nice method of checking 
the theory. 

In classical mechanics the join,t probability density in the velocity 
space is a product of exponentials 

Π«ρ(-<>Λ 
3 

with constant C ; , and its contribution to the thermodynamic 
quantities of the model are easily calculated. We simply discard 
these trivial terms. The nontrivial contributions arise from the 
partition function 

ΨΝ(β)=Γ"(β-β*αχ1.-αχΝ (4.4) 
—CO 

and its derivatives with respect to β. Therefore it is important to 
derive an analytical expression for ΨΝ(β). Unfortunately, this has not 
yet been done. Lacking this we put forward the conjecture 

Conjecture 4.1. For any positive integer N and real or complex β 
we have, identically, 

ψΝ(β) = (2πγιρ)Νβ-α/2)Ν-α/Α)β*(Ν-ΐ)[Γ(1 + £0)]-" ]J Γ(1 + tfj). (4.5) 
3=1 

The evidence in favor of Conjecture 4.1 is strong. Equation (4.5) 
can be verified directly for β = 1, 2, or 4 [cf. Chapters 5 and 6, 
especially (5.36), (6.3), and (6.49)]. On the other hand, (4.5) has also 
been verified for general β in the cases N = 1,2, and 3. When N = I 
or 2, the calculation is trivial. When N = 3, the verification is by no 
means trivial, but has been carried through first by Gaudin [2]. An 
independent and much simpler verification of (4.5) for this case, N = 3, 
was later given by C. L. Mehta [1]. We reproduce both these 
methods in Appendix A.3. 

Finally, we can prove that if Conjecture 4.1 is true for β = 2k, 
where k is an arbitrary positive integer, it is true for all complex 
values of β. The argument is based on the fact that the energy W 
given by (4.1) is bounded from below. More precisely, 

W^W0 = ^N(N - 1)(1 + In 2) - \ £ j Inj, (4.6) 
Z 3=1 
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and this minimum is attained when the positions of the charges 
coincide with the zeros of the Hermite polynomial HN(x) (cf. 
Appendix A.4). 

Therefore we can write 

ViW=\rP(y)y»ày, (4.7) 
J 0 

where 
Y = e~w«, (4.8) 

and P(y) is a positive weight function. In other words, ΨΝ(β) is a 
moment function defined over a finite interval (0, Y). This function 
must possess special analytical properties [Shohat and Tamarkin, 1]. 
It must be analytic in the half-plane (real β > 0) and in this region 
must satisfy the inequality 

| ΨΝ(β)\ < C\ Y* \. (4.9) 
Now the function 

φΝ(β) = (2πγΐ/2)Νβ-α/2)Ν-(1/*)βΝ(Ν-1)[Γ(1 + 1β)]-ΛΓ p j Γ ( 1 + Ιφ) (4J0) 

certainly satisfies these conditions. It has singularities only on the 
negative real axis and its behavior for large | β | is 

φΝ(β) ~ (2ττ)(1/2)Ν^-(1/2)Ν-(1/4)βΝ(Ν-1)|-(1^(1/2)^1/2 ^-(1/2)β ν ^ π ] " " 

χ Π [(έ^')(1/2)β;+1/2 ̂ -(1/2W V^r] 

— γβ(2πγι/2)Νβ-α/2)Ν(Νΐγ/2Λ (4.11) 

The function 
ΔΝ(β) = Υ~^[ΨΝ(2β) - ψΝ(2β)] (4.12) 

is thus regular and bounded in the half-plane real β > 0. 
At this point we can apply a theorem of Carlson [Tischmarsh, 1]. 

Carlson's T h e o r e m . If a function of β is regular and bounded in 
the half-plane real β > 0 and is zero for β = 1, 2, 3,..., then it is 
identically zero. 

Applying this theorem to the function ΔΝ(β), we deduce that (4.5) 
holds for all complex values of β if it holds for all even integers 
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ß = 2k. In other words, Conjecture 4.1 is equivalent to the following, 
apparently weaker, statement: 

I ··· I exp ί — k £ xM Yl (x{ — Xjfk dx1-" dxN 

N 

Σ 
1 ' i<j 

N 
(2π)(1/2)Ν(2*)-(1/2)ΑΓ-(1/2)*Ν(ΑΓ-1)(Α|)-Ν "Q ( ^ ( 4 ^ 3 ) 

It is possible to go further and reduce Conjecture 4.1 to a finite 
algebraic identity. For this purpose we introduce the notation 

D> = i-iL· <4-14) d_ 
X3 ' Xj=0 

with the understanding that all differentiations are to be carried out 
before the variables Xj are set equal to zero. The identity 

( 4 f J i «""V *"=y^ D>Ï e~a/2)x' > (4·15) 
which is easily verified (Appendix A.5), enables us to replace all 
integrations in (4.13) by differentiations at the point Xj = 0. Equation 
4.13 then takes the form 

fΠ (A - A-H ex?(-ΐΣχή = (-îywNiN-Dw-N n W)i. 
(4.16) 

Replacing the exponential with its power-series expansion, we 
see that all terms ( ^ Σ * / ) * g i y e z e r o o n differentiation if 
/ < %N(N - 1) k. On the other hand, if / > %N(N - 1) ky the 
differentiations will leave a homogeneous polynomial of order 
/ — ^N(N — 1) k in the variables x1 , #2,..., xN and, on setting 
Xj = 0; 7 = 1, 2,..., iV, once again we obtain no contribution. Only 
the term with / = ^N(N — 1) k contributes and (4.16) is a finite 
combinational identity: 

Ô \ 2 Α Ί Γ / 1 Ν \d/2)AT(N-l)Jfc-| 

= [*JV(JV - 1)*]! (A!)-" ft (#)« (4-17) 
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A somewhat neater form is obtained by interchanging the roles of 
djdXj and Xj . Thus we obtain a statement that is equivalent to 
Conjecture 4.1. 

Conjecture 4.2. The identity 

Λ N £2 v(l/2)N(N-l)fc 
11 f _il_V-
\2 fa dx? ! 

Π (xi - xi)2, 

QN(N - W (*!)-N Π (#)" (4-18) 
3=1 

holds for all positive integers N and k. 
Once the partition function is known, other thermodynamic 

quantities such as free energy, energy, entropy, and specific heat can 
be calculated by elementary differentiation. Because all the known 
properties are identical to those of the circular ensembles, studied at 
length in Chapters 8, 9, and 10, we do not insist on this point here. 

4.2. The Asymptotic Formula for the Level Density1 

Since the expression (3.40) for P(xx ,..., xN), the probability 
that the eigenvalues will lie in unit intervals around χλ , χ2 ,..., xN 

is valid for all values of xi, the density of levels 

°N(X) = N I ··· I Ρ(χχ , x2 , . . · , xN) dx2-" dxN (4.19) 
—oo 

can be calculated for any Λ̂  by actual integration [Mehta and 
Gaudin, 1]. The details of this tedious calculation are not given here, 
for an expression for oN(x)y derived by a different method, appears 
in Chapter 5. 

However, if one is interested in the limit of large N, as we 
certainly are, these complications can be avoided by assuming that 
the corresponding Coulomb gas is a classical fluid with a continuous 
macroscopic density. More precisely, this amounts to the following two 
assumptions: 

t Wigner [4]. 
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1. The potential energy W given by (4.1) can be approximated by 
the functional 

oo 

W(a) = \y Γ dx x2 σ(χ) - \ \ [ dx dy σ(χ) σ(γ) In | x - y |. (4.20) 
—00 

2. The level density σ(χ) will be such as to minimize the 
expression (4.20), consistent with the requirements 

f°° dxa(x)=N (4.21) 
1 —oo 

and 
σ(*) > 0. (4.22) 

The first integral in (4.20) reproduces the first sum in (4.1) 
accurately in the limit of large N. The same is not true of the second 
integral, for it neglects the two-level correlations, which may be 
expected to extend over a few neighboring levels; however, because 
the total number of levels is large their effect may be expected to be 
small. The factor \ in the second term of (4.20) comes from the 
condition i < j in (4.1). 

The problem of finding the stationary points of the functional 
W(a)y (4.20), with the restriction (4.21), leads us to the integral 
equation 

l v 2 
" 2 Λ + Γ dyc{y)\n\x-y\ = C, (4.23) 

J —oo 

where C is a Lagrange constant. Actually (4.23) has to hold only for 
those values of x for which σ(χ) > 0. One cannot add a negative 
increment to σ(χ)> where σ(χ) = 0, and therefore the functional 
differentiation is not valid; hence (4.23) cannot be derived for such 
values of x. It is not difficult to solve (4.23) [Mushkhelishvili, 1]. This 
will not be done here, but the solution will be given and then verified. 

Differentiation of (4.23) with respect to x eliminates C. Before 
carrying it out, we must replace the integral with 

lim ( Γ ' dy + f dy) a(y) \n\x-y\. (4.24) 

When (4.24) is differentiated with respect to x9 the terms arising 
from the differentiation of the limits drop out and only the derivative 

file:///n/x-y/
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of In | x — y | remains. The integral becomes a principal value 
integral and (4.23) becomes 

p Γ AÎLdy^x. (4.25) 
J .a, x — y ' 

Conversely, if (4.25) is satisfied by some o(y) and this σ is an 
even function, then it will satisfy (4.23) also. We try 

(4.26) 
a(y) = C{A*-y*yi\ \y\<A, 

= 0, \y\>A. 

Elementary integration gives 

^ =LI_ dy =x s i n - 1 4 - (A2 - y2)1'2 

J x — y A 

+ (A2 - x2Y'2 In Γ A(x -y)- x(A2 - y2)V* - y(A> - χψ2 ι 
^ K ' lA(x-y)~ x(A2 - y2)1/2 + y(A2 - x2)1/2 V 

(4.27) 

Taking the principal value of (4.27) between the limits (—A, A)> we 
find that only the first term gives a nonzero contribution, which is πχ. 
Hence (4.25) gives 

C = — (4.28) 
Ή 

and (4.21) gives 

— ^-A*=N. (4.29) 
77 2 

Thus 

7,x) = J V (2N - *2)1/2> I x I < (2Λ01'2, 

(0, I x | > (2N)1'2. 
(4.30) 

This is the so-called "semicircle law" first derived by Wigner. 
Actually the two-level correlation function can be calculated (cf. 

Chapters 5 and 6) and the above intuitive arguments put to test. 
Instead, we shall derive an exact expression for the level-density valid 
for any N (cf. Section 5.4.1). The limit iV-> oo can then be taken 
to obtain the "semicircle law." 
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We have noted in Section 4.1 that without any approximation 
whatever the energy W attains its minimum value when the points 
x-t , Λο ,..., ί*Ή a r c the zeros of the iVth-order Hermite polynomial. The 
postulate of classical statistical mechanics then implies that in the 
limit of very large TV the level density is the same as the density 
of zeros of the TVth-order Hermite polynomial. This later problem has 
been investigated by many authors, and we may conveniently refer 
to the relevant mathematical literature [Szegö, 1], 

In Appendix A.29 we present an argument, due essentially to 
Wigner, which shows that the eigenvalue density obeys the semicircle 
law for a much wider class of matrices than those considered here. 
For the spacing distribution no such argument has yet been found. 



5 / The Gaussian Orthogonal Ensemble 

5.1. General Remarks 

In this chapter we shall study the statistical properties of N points 
distributed on an infinite straight line with the joint probability 
density function 

/ 1 N \ P(x1,..., xn) = CN1 exp - - % xM Y[\Xi- Xj |. (5.1) 
X Z 1 ' i<j 

In Chapter 3 it was shown that the probability density function (5.1) 
holds for the eigenvalues of a real symmetric matrix chosen at 
random from the Gaussian orthogonal ensemble. It was suggested 
that if the zero and the unit of the energy scale are properly chosen 
the series of points xx , x2 ,..., xN should provide a good model for 
the statistical behavior of the fluctuations of energy levels of a 
sufficiently complicated system. 

The main objective of the analysis is to calculate the n-level 
correlation function [Dyson, 3] 

TV' r°° r00 

Rn(Xl,..., xN) = ,NJ.ny J ^ ··* J p(xi > ·> xN) dxn+i '"dxN, (5.2) 

which measures the probability of finding a level (regardless of 
labeling) in each of the unit intervals around the points 
the positions of the remaining levels being unobserved. In particular, 
Rx(x) will give the over-all level density. Each function Rn for n > 1 
contains terms of various kinds describing the grouping of n levels 
into various subgroups or clusters. For practical purposes it is con-
venient to work with the n-level cluster function defined by 

m 

Tn(Xl ,..., xn) = Σ (-l)m~n(rn - 1)! Π RG, (** , with k in Gs). (5.3) 
G j=l 

47 
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Here G stands for any division of the indices (1, 2,..., n) into subgroups 
(G x , G2,..., Gm). For example, 

Tx{x) = R&), 

1 2\X\ , X2)
 = -^2(^1 > X2J 1 **>\\Χΐ) -^1(^2)» 

1 3 ( X l , X2 , X3) = -^3(^1 , %2 > X3/ Rl\Xl) ^2\X2 » ^ 3 / ' " " " I 

1 4\X\ , Χ2 » # 3 > # 4 ) — - * Μ ( ΛΊ » ^2 > ^ 3 > XAJ 1 

+ [#l(*l) ^3(^2 , X3 » *4) H + ·" H ] 

+ [R2{x1, *2) R2(x3, *4) + — + ···] 
-2[R2(xlyx2)R1(x3)R1(x4) + - + - + - + - + ···] 
+ 6Ä1(*1)Ä1(*a)Ä1(*8)Ä1(*4), 

where in the last equation the first bracket contains four terms, the 
second contains three terms, and the third contains six terms. 
Equation 5.3 is a finite sum of products of the R functions, the first 
term in the sum being ( — \)nRn(xl9...,xn) and the last being 
(n - 1)! Rfa)... *!(*„). 

We would be particularly pleased if these functions Rn and Tn 

turn out to be functions only of the differences | xi — Xj |. Unfor-
tunately, this is not true in general. Even the level density R1 will 
turn out to be a semicircle rather than a constant or an exponential 
(cf. Section 4.2). However, as long as we remain in the region of 
constant density, we can see that the functions Rn and Tn satisfy 
this requirement. 

It was this unsatisfactory feature of the Gaussian ensembles that 
led Dyson [1] to define the circular ensembles discussed in Chapters 8 
to 11. 

The inverse of (5.3) (cf. Appendix A.6) is 
m 

*»(*i ,·.·, *») = Σ (-l)n-m Π TG, (** , with k in Gs). (5.4) 

Thus each set of functions Rn and Tn is easily determined in terms 
of the other. The advantage of the cluster functions is that they have 
the property of vanishing when any one (or several) of the separations 
I xi — Xj I becomes large in comparison with the local mean level 
spacing. The function Tn describes the correlation properties of a 
single cluster of n levels, isolated from the more trivial effects of lower 
order correlations. 
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Of special interest for comparison with experiment are those 
features of the statistical model that tend to definite limits as N —> oo. 
The cluster functions are convenient also from this point of view. 
While taking the limit N —>- oo, we must measure the energies in 
units of the mean level spacing D and introduce the variables 

*> = ■!■ (5-5) 

The (jj then form a statistical model for an infinite series of energy 
levels with mean spacing D = 1. The cluster functions 

Yndi, fa >·.., in) = jtim DnTn(Xl, x2,..., xn) (5.6) 

are well defined and finite everywhere. In particular, 

Yi(i) = 1, (5-7) 

whereas Υ2(ζ, η) defines the shape of the neutralizing charge cloud 
induced by each particle around itself when the model is interpreted 
as a classical Coulomb gas (see Chapter 4). 

In this chapter it is shown that all cluster functions are calculable 
in principle. The Yn are exhibited as coefficients in the expansion 
of a certain determinant. However, the elementary algebra that is 
required for the extraction of higher Yn is tedious. Explicit evaluations 
will be made only for the one- and two-level functions ΤΎ{χ) and 
T2(x, y); when x and y are in the region of maximum and constant 
density, the limit Υ2(ξ, η) is given, it being a function only of the 
difference | ξ — η |. The two-level form factor defined as the Fourier 
transform of Y2 

b(k) = Γ Y2(r) e2Mr dr (5.8) 
" —00 

is also given, for many important properties of the level distribution, 
such as mean square values, depend only on it. 

5.2. The Method of Integration over Alternate Variables1 

In any exact calculation with the function (5.1) the first serious 
difficulty is its unfavorable symmetry caused by the presence of the 

+ Mehta [1], Bruijn [1]. 
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absolute-value sign. This difficulty can be overcome by integrating 
over alternate variables. Because the method is frequently applied 
in the discussion that follows, a somewhat detailed description is 
given here. 

Let u(x) and v(x) be any two functions defined for the real values 
of x. Consider the average value 

/>* = (Π«(**)ΓΗ*')) (5·9) 
xalt alt / 

taken with respect to the probability density (5.1). Here fiait means 
a product taken over a set of ( JiV) alternate points xi as they lie on 
the real axis, and n a i t denotes the product taken over the set of 
remaining alternate points Xj . From the symmetry of (5.1) we may 
write 

PN = HPN(U> «0 + PN(V> U)] (5.10) 
with 

pN(u, v) = N\ J ··· j [f] M(*2i-i) v(x2i)] Ρ (xx,..., xN) dx1'" dxN 

R(—QO,Xl,...,Xtf,CO) l 

= CmN\ j '" j [l\ u(x2i-i) »(Λ?2.·)] exP ( - 2 Σ xi2) 
R i i 

11 \xi xi) dxi ''' dxN , /c i i \ 

where the region of integration i^ is — oo < x± ^ ··· ^ xN < oo. 
Note that the absolute value sign in (5.11) is no longer required. 

It is convenient to write the integrand in (5.11) as a determinant 
containing oscillator wave functions. To do this we first write the 
product Y[i >j (xt — Xj) as a Vandermonde determinant, its jth row 
being 

Xl i %2 '***' XN ' \ ^ · * ^ / 

j varying from 1 to N. Multiplying the 7th row by 2 ; _ 1 and adding 
to it an appropriate linear combination of the other rows with lower 
powers of the variables, we may replace this 7th row by 

#*-i(*i). ^ i - i W , . , ^ - i ( % ) . (5.13) 
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where Hj is the Hermite polynomial of order j . Now we may take 
the exponentials inside and multiply the^'th row with the normalization 
factor (2j~\j — 1)! \ /π)~1 / 2 , changing this row in turn to 

9=>i-i(*i)> 9 M W <PJ-I(XN)> 

where the ψ^ are the normalized oscillator wave functions 

(5.14) 

= (2>/! V T T ) " 1 ^ *U/2>*» | _ J_j ^ (5.15) 

In each of these manipulations the value of the determinant is 
changed only by a multiplicative factor which can be taken out. 
Thus (5.11) reads 

pN(u9 v) = CN1N\ Π (2~jj\ Vrry/z f . · . f dxx - dxN 

3=0 J RJ 

[Π U(X2i-l) *>(*2i)J detl>t-l(*i)ki=l ΛΓ , 

where, written in full, 

(5.16) 

det[<Pi-i{Xj)]ij=i N = 

9>o(*i) 

9>i(*i) 

<PoO%) 
<ΡΙ(*ΛΓ) 

9ΛΓ-Ι (*Ι ) , , * 9 Γ Ν - Ι ( Λ : Ν ) 

(5.17) 

As we have already emphasized, the difficulty in the evaluation of 
(5.16) is that the integrand is not symmetric. However, if the integra-
tion over, say, χλ , x3 ,..., that is, variables with odd indices, is 
carried out, the remaining integrand becomes a symmetric function 
of the variables 

Integration over χλ replaces the first column in the determinant 
by the column [F0(x2)y F1(x2),...9 FN_1(x2)] where the functions Fj(x) 
are defined by 

Fj(x) = u(y) φ,ΟΟ dy. 
J —00 

(5.18) 
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Now integration over x% replaces the third column by the column 

[FoM - % ) ^ i W -^Ι (* 2 )> · · ·>^Ν-Ι (*4) -*V-i(*2)] 
but because we already have a column of Fj(x2) functions we may 
drop the terms with negative signs. Thus at each integration over 
x3 , x5,.. . the corresponding columns are replaced by columns of 
single Fj functions. In the case of odd N the last column is replaced 
by pure numbers iv^oo), and we have 

pN(u, v) = 0ΝίΝ\2-^^Ν^-^πΝ^ f[ {j\fl\ 

J — j dx2 dx4-~ [f] v(*2<)] de t f /^Ä^) , φ^χ^)], 
R(-oo,x2txA,...,co) i · 1 7V 

> - m · < 5 · , 9 , 
As the integrand in (5.19) is now symmetric in the remaining 

variables, we can integrate separately and independently over them 
on the whole interval — oo, oo and divide by [(1/2) iV]! where 
[(1/2) N] is the largest integer less than or equal to (1/2) N. 

To avoid minor complications we take N even, N = 2m. The 
symmetry of the integrand and the independence of the variables in 
(5.19) allow us to express it as a pfaffian (cf. Appendix A.7): 

N-l m-l o 1/2 

/,„(«, v) = CmN\ 2-«/«W«N-DW(I/4)K Yl (ii)i/2 γ\ U^-j-) 

(detU^u^ 2W_1)1/2, (5.20) 

where the numbers f{j are given by 

hi.* = ff dy dx u(y) v{x)[<Pu(y) φ*(χ) - 9%(*) ψν&)]> (5.21) 

J2i,2}+1 = = J2j+l,2i 

/ 2/ + 1 \X/2 ΛΛ 

= (-^-g—j J J dydx u(y) v(x)[<p2i(y) ψν+Μ - <P2i(x) ç W y ) ] 
(5.22) 

and 

Î2M.2M = (-^-g ) (-^-g ) ff dy dx u(y) v(x) 

[<Fa+i{y) <P2j+i(x) - 9>2.-+i(*) <P2i+i(y)l (5.23) 
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the range of integrations in these equations being — ce < y ^ x < cc. 
From the relation 

VÎ φη{χ) = Vtl cpn-^x) ~ \ / n + 1 <9>n+l(*) ( 5 - 2 4 ) 

we derive 

f ( 2j \ll2f 
J2i,23+1 I 2 J 1 I J2i,23-l 

= ~ 2 / / dydx " ^ Ü W>2<(>0 <p'2i{x) - <p2i(x) <Py(y)] 
—oo<yn^x<oo 

= gu , say, (5.25) 
and 

f ( 2i \ll2f ( 2j \ll2f 
J2Î+1.23+1 \ 2l — 1 / ^ 2 * - 1 · 2 ^ 1 I 2 / — 1 / • ' 2 t '+ 1 · 2 ' - 1 

i ( * \1,2( y \ll2f 

= 4 / / dy dx " ^ ^Mfaai^) ?«(*) - ?«(*) ^ΟΟ] 
— o o < y ^ x < c o 

= μα , say. (5.26) 

On the other hand, we have 

JV-l m-l 

W<1/4)N ]-[ (,'1)1/2 = p | [n(2j)\ (2; + 1 )|]l/t 
j = 0 j = 0 

= Π[ 7 Γ 1 / 2 (2 / ' + 1 ) 1 / 2 Α 2 / · + 1)] 
rn—1 

Π 
;'=o 

m - l = Π[ 2 2 ^0 + έ)η)+ΐ)(2/· + ΐ)1/2] 
;-o 

= 2'"""-" Π (2/ + 1)1/2 Π ϊ r d + ^ ) · (5-27) 

Now, to reduce the determinant in (5.20), we replace its (2/ + 2)-th 
column with 

/ 2/ \1/2 
(2/ + 2) th column — I J ) (2;) th column, 
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for j = m — 1, m — 2,..., 0, in turn. Next, we repeat the same 
procedure for the rows. Thus, using (5.25), (5.26), and (5.27), we get 

pA»,v) = \cN12«!»»Y\r(l+iJ)\ 
L 1=1 

d e t i ^ " ^ Ι , (5.28) 

where 
*ij — J2i,2j (5·29) 

and gij and μ^ are defined by (5.25) and (5.26), respectively. 
Equation 5.28 is a general result. If, moreover, 

u(—x) v(—y) = u(x) v(y)> (5.30) 

there are further simplifications, for we then have 

λ „ = / ι „ = 0 , (5.31) 

and the pfafBan form in (5.28) reduces to a determinant: 

PN(u, v) = Cm2a/nN f Π r d + ii)l d e f e k ^ o . i m_lt 

' -1 (5.32) 

with 

gi> = / / dy dx " ^ V ^ ψ ^ ψ'^' ^53y> 

—oo<y< cc<oo 

5.3. The Normalization Constant 

Let 
u(x) = v(x) = 1 (5.34) 

in (5.9). Equation 5.30 is now satisfied, and (5.33) gives 

*«= β Ηί: ΐί ί ;£ (5·35) 
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Consequently, from (5.32) we get 

C-\ = 2W Π Γ{1 + Jj). (5.36) 
N 

Π 

This vérifies (4.5) for the case ß = 1. 
Substituting the value of CN1 from (5.36) in (5.28), we get 

PN*(«,v) = dtt\*ii f l , (5.37) 

and if, in addition, (5.30) is satisfied we get from (5.32) 

PN(U, V) = d e t ^ ] i t i , 0 i l w_!. (5.38) 

Instead of calculating two pfafBans pN(u, v) and pN(v> u) and then 
taking their arithmetic mean, it is much better to have a single 
pfaffian from the very beginning. This is achieved by the following 
lemma. 

Lemma 5.1. Let the function f{xx ,..., x2m) be antisymmetric under 
any of the interchanges x2j-i ^^ x2j y j — 1 >···> m> Then 

i · · · i j(xi >···> x2m) dx\ '" dx2m 

— I " * l J\X\ >"·> x2m) 1 1 Ι_2€(Λ'2:? X2J-l)\ ^Xl '" ^X2m > 

R'(x1,x2; x3,x^', . . . ; # 2 r n_ 1,χ2ιη) 

where the region of integration R on the left is 

a ^ x1 ^ x2 <J · · · < x2m ^ ό, 

whereas the region R' on the right is a ^ (χλ , x2) ^ (x3 , #4) ^ ··· ^ b. 
The sign function e(x) appearing in the right-hand integrand is 

( 1, if * > 0 , 
e(x) = ! 0, if JC = 0, (5.40) 

( - 1 , if x<0. 

(5.39) 
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Let the expression on the left in (5.39) be denoted by / . To prove 
the validity of (5.39), we interchange the variables χλ and x2 in / . 
Taking account of the antisymmetry of / under this interchange, 
we get 

/ = — j - ' j dxx ··· dx2mf{xx ,..., x2m). 
R(x2 ; x^ ; x3 ; . . . ; xïm) 

Taking the arithmetic mean of both sides of this equation and (5.39), 
we obtain 

I = I ·*· I aXx '" dx2mj(Xi , . . . , x2m)L2~€\x2 ^ l ) J · 
α < (χ1,χ2)^χ3<ζ: -··^x.2m^ b 

A repetition of this procedure for the variables x% , xA will give 

1 = I I λ dX2mf(Xi ,.··> x2m) 11 L^6^^ x2j-l)\· 
o< {xltx2)<: {x3,x^)^xb^ ···<& }~ 

Proof is now obvious. 
As a particular case of (5.39), we write 

PN = I l l X2™ *N\\X1 >···> *2ra) 

—cxXiCj^Xg^ "■ i $ 2 C2m < °° 

| m rn 
X 2 I Π W(*2,-l) *>(*2j) + Π U(X2j) V(X23-l)\ 

= I I 1 ' "^m *N1\X1 >···ι ^m) 

-oo<(x1,x2)< ··· 

1 , rn 
X 9 Π ϋ € (*2; - *2;-l) «(*2i-l) *>(**)] 

L { 3=1 

m \ 

+ Π [l€(X2J - X2j-l) U(x2i) *>(*2i-l)] 

= | | "Xl '" "X2m*Nl\Xl >·"> X2m) 

-cc<(xl,x.1)'-' ··· 
'(a;2w_1,x2m)<oo 

Π ["2€(*2; - * 2 i - l ) U(x2i-l) V(x2i)]· 
3 = 1 
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Now all the previous considerations in this section can be applied 
to this form of pN . Thus pN2 is given by (5.37): 

L 63t rt}Ji,3=0,1 w - 1 

where now 

oo 

—oo 

00 

8i5 = ~ 4 1 { dy dx u(y) *(*) €(χ ~ y)\<P2i(y) ?«(*) - ?2<(*) <4θθ] , ( 5 · 4 3 ) 
—oo 

and 

oo 

^ = ι\\dy dx u ^ v ^ e ^ ~ y^ly) ?«(*) - ?«(*) %iCv)]· (5·44) 
—oo 

If the functions u(x)y v(x) satisfy (5.30), then (5.31) holds and 

PN = d e t fek;=o,i «i-i ; (5-45) 

where g^ is given by (5.43). 

5.4. One- and Two-Level Correlation Functions 

If we can evaluate pN in a closed form while the functions u and v 
remain arbitrary (and this is essential here), we will obtain all the 
correlation functions by functional differentiations. However, as 
Dyson [3] pointed out, we do not need to know pN in any greater 
detail then its power-series expansion when u and v are in the 
neighborhood of unity. So let us write u(x) = v{x) = 1 + a(x) 
in (5.9). 

Equation 5.37 then becomes 

2(1 +a,l+a) = det \^j gii] . (5.46) 
*■ 8 H H'ij^i,j=0,l ra-1 

(5.41) 

oo 

Xij = 2 ίί dy dx U^ V^ ̂  "~ ̂ 2*'^ ψ*(χ) ~ ψ2^χ>> ^ ( J ) ] > 
—OO 

(5.42) 
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From (5.25), (5.26), and (5.29), we have 

00 

= δ„ - i jj dy dx A(x, y)[vjy) φ^χ) - <pu{x) 9'2i(y)], (5.47) 
—oo 

oo 

λ" = iiÎdy dx A<<Xy y ^ ' W ψ2*(χ) ~ψ2ί^ ^ M L (5·48) 
—oo 

and 
00 

μν =îSS dy dx A^^^Cv)^W - ?*(*)φ^ϋθ], (5.49) 
—oo 

where 

^(JC, j ) = €(x - J>)K*) + a{y) + φ ) Λ(^)] (5.50) 

and δ ·̂ is the Kronecker delta: 

(1, if i =7 , 
15 |0, iff ^=7. 

All the cluster functions Tn(x1 ,..., xn) can, in principle, be 
determined by expanding the two sides of the identity (5.46) in 
powers of a(x). According to (5.2), (5.4), (5.9), and (5.46) (cf. 
Appendix A.6), 

PN = Σ —\ ]'" f Rn(Xl >···> xn) Π a(*i) dxi ( 5 · 5 1 ) 

P* = exp [f ^Γ- ί···ί^ΐν..,^)ΠΦ^4 (5.52) 
L n=l n' J _J 1 J 

The pfaffian for pN
2 in (5.46) can be expanded (cf. Appendix A.7). 

The result is a series beginning with the terms 

PN = 1 + Σ va + Ö Σ ("«"tf — 'Wjf + Α /̂χ )̂ 

+ 7 Σ [vuvjjvkk — 3vu(vjkvkj — hkPik) + 2vijvjkVki — 6vijXj^ki] + ··· , 
* · ' '»* ( 5 . 5 3 ) 
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the remaining terms being of the order az and higher. Because a(x) is 
arbitrary, each Tn can be picked out as the coefficient of a(x^) ··· a(xn) 
in the logarithm of the series (5.53), 

l n Pn = Σ VH — 2 Σ (vUvJi ~ λί^η) 

+ ϊ Σ (WikVjci — 5vu\kPki) + ·"· (5.54) 

The summation over the indices z, j , k runs from 0 to m — 1. 

5.4.1. LEVEL DENSITY 

Taking n = \ this procedure gives the level density 

ba(x) £o 7«=o 

= Σ k W - ^ W f 9„ω*. ( 5 · 5 5 ) 

or, using (5.24), we get 
2m-l .̂a; 

<72m(*) = Σ ?>i2(*) + V w <?2m-l(*) 9 2 m 0 ) ày. ( 5 . 5 6 ) 
z=0 J 0 

Equation 5.56 was previously obtained [Mehta and Gaudin, 1] by 
straightforward integrations. 

In the limit m —► oo the summation in (5.56) tends to the 
"semicircle law" [Wigner, 4] 

/ x , x j - (4m - O1/2 , | x | < (4m)1/2, 
^2mW -̂  *(*) = J π (5·5 7) 

(θ, I x | > (4m)1/2, 
whereas the remaining isolated term becomes negligible (cf. 
Appendix A.8). 

5.4.2. TWO-LEVEL FUNCTIONS 

For n = 2, the theory of Section 5.4 and (5.54) gives 

δ2 
Γ ö 1 

T2(x,y) = — U / x * / x I*1 PAT 
I8a(x)8a(y) ™Jfl=0 
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X 

-£e(* - y) £ [cp2i(x) tp'2jy) - <p2i(y) φ^.(χ)] 
i 

Σ to»«(*) ?«(y) - 9*(y) ψ«(*)Ά 
i ' 

Σ [«PÎÎM / ^äii«) dz - 9=2i(j) j 9%(*) <**] I 

x j l [?>«(*) 9>«(y) - v'Jy) fo ψ^)dz] \ (5-58) 

where all sums in (5.58) run from i = 0 to i — m — 1 and e(x) is 
defined by (5.40). By using (5.24) we can transform the last term in 
(5.58) to a more suitable form: 

[2m-l y 

Σ <Pi(X) <Pi(y) + ^ m <P2m-l(x) <P2m(z) dz\ 
i=0 J 0 J 

r 2 m - l 
X [ Σ «̂(X) <Pi(y) + ^ ?2»»-ΐΟ0 f <P2m(*)dz\. (5.59) 

L i=0 J 0 J 

Equation 5.58 gives T2 for any arbitrary N = 2my xy and y. Let us 
now restrict x, y to a region of highest, hence constant, level density 
and take the limit as m —► oo; in other words, if 

2 Vm t 2 Vm 
χ = ξ, y=V, (5.60) 

7Γ 77" 

then, as m —̂  oo, we want ξ and 17 to remain finite. With this 
restriction (cf. Appendix A.9), we get 

2m-l 2 Λ / # 2 ~ 

lim £ ç)t(x) φi{y) = ———i(r), (5.61) 
m-»oo ^ - 77 

jj™ Σ fo>8<(*)9a(y)-<F2i(y)?«(*)]«(*- >0 = [ ^ ] ^ * W . (5·62) 

and 
m—1 

lim £ L2,(*) f <p2<(*) <fe - <p2i(y) f φ2ί(*) <fel e(* - j ) = - f s(z) dzy 

(5.63) 
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where 

M i l TTf 

s{r) = —— , (5.64) 77T 

r = \ ( - v \ = ^ ! L \ x - y \ . (5.65) 
77 

Thus in the limit m —> oo we get 

Ytf, v) = [5 - Jo
r *(*) ώ] [ 4 - 'Οθ] + MOI* 

= [ £ ,(,) ώ] [ 4 i(r)] + WO]2· (5-66) 

The behavior of F2(r) for small and large r is given by 

Y»(r) = 1 - Wr + A^V» - T ^ V + - (5.67) 

and 

F«(r) = ̂ f =Εϊ + ' " ' (5·68) 

respectively. The Fourier transform of Y2 yields the two-level form 
factor according to (5.8) (cf. Appendix A. 10): 

b{k) = 1 -2\k\ + | Ä | ln(l + 2 | A | ) , |A| < 1, 

1 + | Ä | In (_|jAj-±-|-), | * | > 1 . (5.69) 

This has the behavior 

b(k) = 1 - 2\k | + 2k2 + - , (5.70) 

for small and large | k |, respectively. At k = ± 1 , where the analytic 
form of b(k) changes, not only b(k) but also its first two derivatives 
are continuous. Discontinuity occurs only in the third derivative. 
This is connected with the fact that the oscillating term in y2(r)> 
according to (5.68), is of the order r - 4 for large r. 

(5.71) 
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The oscillating term in (5.68) is of considerable interest, for it 
indicates the presence of an incipient crystal-lattice structure of 
long-range order in a series of eigenvalues. Even at large separations, 
two eigenvalues feel the natural periodicity of the lattice and have a 
slight preference for separation, which is an integer multiple of the 
mean level spacing. Unfortunately, the r~4 dependence of this effect 
makes it unobservable in practice. 

5.4.3. TWO-LEVEL FUNCTIONS FOR THE ALTERNATE SERIES 

The method of integration over alternate variables provides 
information not only about the total eigenvalue probability density 
but also the separate densities of odd-numbered or even-numbered 
levels. For example, we may take in (5.9) 

u(x) = 1, 

Then 

where 

and 

v(x) = 1 + a(x) or u x) = 1 + a{x), 

PN (alt) = i[pN (odd) + pN (even)], 

PN (odd) = pN(l + a(x), 1) 

Ptf(even) =pN(l,l + a(x)) 

v(x) = 1. 

(5.72) 

(5.73) 

The function pN(odd)[pN(even)] is given by (5.53), (5.47), (5.48), 
and (5.49), where A(x> y) is now replaced by e(x — y) a(y) 
[by e(x — y) a(x)]. Alternatively, we may use (5.41) to (5.44), 
where u(x) = 1 + a(x) and v(x) = 1. The result is 

^ ( a l t ) = d e t [ ^ £«], (5.74) 

where 

gij = &ij + ViS 

1 r°° 
= δ ^ + 9 a(X) <P2i(X) Ψ2ί(Χ) dx 

00 

- 4 I J <*(χ) <x - y) <p2i(y) <p'2j(
x)dx dy, (5.75) 

—00 

00 

Xij = ~ 2 J J a^ €(X ~ y^vW ψ2ί^ ~~ ψ2ί^ ?*(*)] dx dy (5.76) 
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and 
1 r°° 

μ** = 4 J _ ^ ^ * ) ^ * ) - ?«(*) ^2i(Ä)] J*· 

The expression for p involves correlation functions of the alternate 
eigenvalue series. The analysis proceeds as before, only the term 
[82/8a(x) 8a(y)] Σ^ vu is now missing from (5.58). The results are the 
following. 

In an infinite eigenvalue series with mean spacing D = 1 let 

Ml -Y2'{i9v)]d(dv (5.78) 

be the probability of finding two eigenvalues in the intervals 
(L è + d£)> (η, η + άη), both of which belong to the same alternate 
series. Then 

iV(f, V) = [s(rW - [fo '(*) dz] [-£; s(r)] ; (5.79) 

the notation is that of (5.64). For small and large r we find 

Y*'(r) = 1 - - ^ + - (5.80) 

and 

cos 77T 1 + (TT/2) sin nr 1 + cos2 πτ 
Y*{r) - 2i~+ ^ 2 -ϊμ + -

respectively. The corresponding two-level form factor (cf. 
Appendix A. 10) is 

(2 - 2| Ä | + | * | ln(|(2| k \ - 1)|), | k \ < 1, 
M / e ) - (0, | * | 3 * 1. p ' * 2 ) 

The long-range order of the eigenvalue series appears much more 
strongly in (5.81) than in (5.68), and it shows clearest of all in the 
singularity of the Fourier transform be(k) at | k | = \ . This behavior 
of the alternate eigenvalues proves that the long-range crystalline 
structure of the level series is real. In a one-dimensional gas the 
operation of merely picking out alternate atoms for examination could 
not create long-range order if it had not been present to start with. 

(5.81) 

(5.77) 
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5.5. Level Spacings1 

So far we have studied the probability frequencies Rn of finding 
n levels at a given set of positions with no restriction over the positions 
of the other levels. Now we come to the problem of the distribution 
of spacings. The probability density function is defined by the 
statement that p(t) dt is the probability that a spacing, that is, the 
distance between any two adjacent levels, will lie between t and 
t + dt; this distance is measured in units of the mean level spacing. 
The distribution function F(t) is defined by 

F(t)=fp(y)dy, (5.83) 
J 0 

it is the probability that a given spacing will be less than or equal to t. 
If E(t) is the probability that a randomly chosen interval of length t 
will be empty of energy levels, it is easy to see (cf. Appendix A.l 1) that 

M-qP. (5.84) 
In what follows we calculate E(f) when the eigenvalues lie in the 

region of constant density. This calculation can be considerably 
simplified if the excluded interval is taken symmetrically about the 
origin. Actually, it matters little, for the correlations among various 
levels depend only on their mutual separations as long as the levels 
lie in the vicinity of the origin. 

This last statement about the correlations being unaffected by 
small displacements of the origin is corroborated, for example, by 
fixing two levels symmetrically about the origin, integrating others 
outside the interval between them and thus verifying (5.84), or by a 
direct calculation of the derivatives of p(t) at t = 0 without any such 
symmetry of the excluded interval (M. L. Mehta [1], sections 5 and 7). 

Let us then choose 

«x) = v(x) = \Î9 i f | j c | > f f > (5.85) 

in (5.9). Equation 5.30 is satisfied and therefore we obtain from (5.38) 

EJB) = de fe ] , , , = o a ^ , (5.86) 

+ M. L. Mehta [1], Gaudin [1]. 
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where from (5.85) and (5.33) 

Γθ 

gu = δϋ - 92iW <P2,(X) àx. (5.87) J -e 
To find the limit of (5.86) Gaudin [1] devised an ingenious 

application of the Fredholm theory of integral equations. Consider 
the integral equation 

λ/(*) = f Km(xyy)f(y)dy, (5.88) 
·> —a 

where Km(x, y) is the continuous, real, symmetric kernel: 

m—1 

Km(x,y)= Σ 9-w(*)?*O0· (5.89) 
m—1 

Σ 

The eigenfunction/^) is of the form 

m—1 

Σ 
i =0 

f(y)= Σ ci<p*iiy)· (5.90) 

Substituting (5.89) and (5.90) into (5.88) and remembering that 
Ψο y Ψ2 >···> Ψ2ηι-2 a r e linearly independent functions, we obtain the 
system of linear equations 

m - l . 0 

foi = Σ ci\ <pu(y) <pu(y) dy> * = °> 1 >-> m - L (5·91) 
3=0 J - Θ 

This system will have a nonzero solution if and only if λ satisfies 
the following equation: 

det [λδ,, - f <p%i{y) cp2j(y) dy] = 0. (5.92) 
L J -Θ Ji.3=0,1 m-l 

This algebraic equation in λ has m real roots; let them be 
λ0 , λχ ,..., Xm_1 , so that 

det λδ,, - I 92i(y) <p2i(y) dy] = ft (λ - λ,). (5.93) 
L J -Θ Ji.3^0,1 m - l t = 0 

Comparing (5.93) with (5.86) and (5.87), we see that 
rn—1 

EJP) = Π (1 - λ<)> (5-94) 
t=0 

where λ̂  are the eigenvalues of the integral equation (5.88). 
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As m —► oo, the quantity that tends to a finite limit is not Km 

but Qm , defined by 

QJt, v) = (^-Ϋ Km(x, y), (5.95) 
with 

t 2 Vm 2 Vm 
ξ = *, η= y, (5.96) 

and (cf. Appendix A.9) 

m-»oo 

Hit „\ l Γ S i n ^ -ν)π : Sin(f + η) π Λ 

The limiting integral equation is then 

Γ(1/2)ί 

(5.97) 

(5.98) 

¥ i ( f l = | Q(tv)A(v)dV, (5.99) 
J -d /2)< 

where 

/ i ( 0 = / ( T
! 7 = ) and i = 2 0 ^ - ^ = (spacing)-

(mean spacing at the origin). (5.100) 

Because Q(£, η) is even in ξ, all solutions /χ(£) are necessarily even. 
Hence all solutions of (5.99) are also solutions of 

r<i/*>* *ΐη(ξ±η)ιτ„, w 
J -d/2)i ( f i 7 ? ) 7 7 

and conversely all even solutions of (5.101) are solutions of (5.99). 
We note that the kernel sin(£ -f- η) π/(ξ + η) π is the square of 

another symmetric kernel t^^e2^71^, for 

r(1/2,< sinii 4- ΤΪ) 7Γ 
^ - ( l /2 ) i (f + v) * 

The kernel e2vi^^ is equivalent to the kernel οο${2πξηΙί) if we 
restrict ourselves to even solutions. The latter kernel is symmetric 
and real; therefore all eigenvalues corresponding to even solutions of 

/ • U / S S J t 

μ#(ξ) = f-1/2 f*«itol*g{yj) dV (5.102) 
J - (1 /2 ) 

(5.101) 
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are real. A change of scale ξ — ^tx> η = \ty brings the limits of 
integration to ± 1 and (5.102) takes the form 

Ύ ^ = \Ç e(ll2)i7TXVtf{y) dy (5.103) 

with 
f(x) = g(^tx) and y = ί_1/2/χ. 

If we obtain a complete set of solutions of (5.103), we would have 
done the same for (5.102) and (5.100) with the correspondence 

λ=μ* = ίγ*. (5.104) 

Out of these the even functions form a complete set of solutions of 
(5.99) and (5.98). Equation 5.94 then gives 

E(t) = Π (1 - tyl), (5.105) 

where γ2ί, i = 0, 1, 2,... are the eigenvalues of (5.103) corresponding 
to even eigenfunctions. In other words, γ2ί are the eigenvalues of 

γ/(χ) = C cos(^xyt)f(y) dy. (5.106) 
J o 

A careful examination of (5.103) shows that its solutions are the 
spheroidal functions [Robin, 1] that depend on the parameter t. These 
functions are defined as the solutions of the differential equation 

(L - /)/(*) EE [(*« - 1) - ^ + 2x ± + £ «V - /] /(*) = 0, (5.107) 

which are regular at the points x = ± 1 . In fact it is easy to verify 
that the self-adjoint differential operator L commutes with the kernel 
exp(^tnxyt) defined over the interval (—1, 1); that is, 

exp(^inxyt)L(y)f(y) dy = L(x) \ expdinxyt)f(y) dy, (5.108) 
J - l J - l 

provided 
(1 - x*)f(x) = 0 = (1 - *2)/ '(*), | x | -> 1. (5.109) 
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Equation 5.109 implies that f(x) is regular at x = ± 1 . Hence 
(5.103) and (5.107) both have the same set of eigenfunctions. Once 
the eigenfunctions are known, the corresponding eigenvalues can be 
computed from (5.103) by setting, for example, x — 0: 

m = ΜΛ,(Ο)]-1 f f»(y)dy. (5.110) 
J - 1 

The spheroidal functions/0 , / 2 , / 4 ,... form a complete set of even 
functions integrable over ( — 1, 1). They are therefore the complete 
set of even functions for the kernel e{1/2)ilrXyt and the kernel 
sin(£ + η) π/(ξ -f η) π and consequently the complete set of 
eigenfunctions for the limiting kernel £)(£, η). Equations 5.105 and 
5.110 give then the function E(t), where f2j(x) are the spheroidal 
functions, that is, the solutions of the differential equation (5.107). 

A few remarks about this analysis are in order. 
1. We have put aside the question of convergence. In fact, for 

fixed ξ and η> Qm(Ç, η) tends to £)(£, η) uniformly [Goursat, 1] 
with respect to ξ and η in any finite interval | ξ |, | η \ ^ \t. Hence the 
Fredholm determinant of the kernel Qm(Ç, η) converges [Goursat, 1] 
to the Fredholm determinant of the limiting kernel Q{£, η)\ that is, 

lim Em(d) = E{t). (5.111) 

2. For small values of t the spheroidal functions lie near the 
Legendre functions, and hence can be expanded in terms of them: 

/ * ( * ) = Σ ^ Λ Λ Λ * ) · (5.112) 
V 

For example, to the 0th order we get from (5.110) 

y»=\l\P*WdxIP«V) (5.113) 

= 0, if j Φ0 

and 
7 o = l , (5.114) 

which gives 
E(t) = 1 - t + ···. 
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Thus we get to the seventh power in t [Gaudin, 1; M. L. Mehta, 1; 
Kahn, 1] 

£ ( t ) = 1 _ t + gt.__g_i. + _^. t . + ^ L ( T + .., (5.115) 

which yields the probability distribution function 

dE(t) 
F(t) = 1 

dt 

τ2 π 4 ^.4 

- T 2 i 2 - 2 4 Ö i 4 + Ü 5 0 , 5 + TÖÖ80ie + - (5·Π6> 

and the probability frequency function 

^ = ^ = T < - 6 Ô i 3 + 27Ôi4 + Î68Ôi5 + - · ( 5 · Π 7 ) 

From (5.117) we can obtain the derivatives of p(t) at £ = 0. Thus 
the slope of the probability density function at the origin is 

The slope of the "Wigner surmise" 

M0 = y'r'·/·«· (1.2) 

at the origin is π/2 and not π2/6, as given by (5.118). Hence the 
"Wigner surmise" cannot be exact. 

The coefficients of t and t* in (5.117) were computed elsewhere 
[M. L. Mehta, 1] by a different method. 

3. The form (5.105) of E(t) as an infinite product is useful for 
two reasons: (a) the spheroidal functions fj are frequently encountered 
in other problems as well, and therefore are already extensively 
tabulated [Stratton et al.9 1], and (b) the infinite product converges 
rapidly. For these two reasons the numerical computation of E(t) 
is easy. [A table of values of E(t) and its first two derivatives is 
reproduced in Appendix A. 12.] 

(5.118)
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5.6. Bounds for the Distribution Function F(t)f 

In the expression (5.86) for ΕΜ(Θ) we can write 

/•OO 

gis = 2 ΨΛΧ) ΨΛΧ) dx- (5.87') 
J Θ 

We then apply Gram's result (cf. Appendix A. 13) to write 

det <p2i(
x) <Pv(x) dx] 

lJ Θ Ji , j = 0 , l , . . . , m - l 
l rœ r = ~ZV \'"\ {detfe>2i(*i)]<=o.i m-i}2 dx1'" dxm (5.119) 

m- J e i=1.2 m 

In Section 5.2 we expressed the product Πί<; (xi ~ xj) m t n e form 
of a determinant containing the oscillator wave functions ψ^ . 
Following the same procedure step by step but in the reverse 
direction, we can convert the integrand in (5.119) back to the form 

m 

e x p l - Σ ^ 2 ) Π (xi2 - */)2> 

except for some multiplicative factors. Collecting these factors, we 
obtain from (5.86), (5.87') and (5.119) 

Om / 2m , oo 

ΕΛΘ) = -^ j π mm-1] J ·· j ^ ι - d*m 

xexp (-Σ*ή Π (**2-*/)2 · (5-120) 
1 l<i<issm 

Differentiation with respect to Θ gives 

dEJß) 2m ? ï f F V 1 .x , , Cw C j 

(
m—1 m—1 

- Σ *<2 Π (**2 - ö 2 ) 2 Π (χ* - χ > 2 ) 2 · 
1 ' 1 l^i<j<m-l 

(5.121) 
t M. L. Mehta [1]. 
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Introducing new variables yi defined by 

* < 2 = ν + β2, (5.122) 
we may write 

V„ 2««-« ml{m ~~ 1 ) ! ^ = - 1 (Θ) e-^2 (5 123) 
(2m)! </0 m W ' V-ui) 

where 
_ 2 t n - l r oo 

7m(0) = 2 - 2 VTT Π {Γ(1 + έ;)}-1 - dyx ··· dym^ 
1 J Θ J 

exp( -Σ ^2) Π W-y?? Π \y?W + 02)"1/2]· 
1 l ^ i < i < m - l i= l 

(5.124) 

Applying Gram's result once again (cf. Appendix A. 13), we write 
Im(0) as a determinant: 

A/77 2 W _1 

/»(*) = Λ - ( « - 1)! Π [Γ(1 + ei)]"1 detfo^],,,.^ „,_!, (5.125) 
Δ 1 

where 

η,(θ) = ΐΓ e-yy^iy2 + 02)-!/2 dy. (5.126) 
·* ο 

Inserting a power series expansion of η^θ) in (5.125), we obtain a 
power series expansion of Ιηι(θ) (cf. Appendix A. 14): 

4(0) = 1 - i(m - 1) 02 + ^-(m - l)(7in + 1) 04 + - , (5.127) 

and taking the limit of (5.123) as m —► oo, 0 —> 0 in such a way that 
(4/77-) 0 \/rh = t is finite we have 

T—WHT)1· <5·'28» 
where 

7(0 = lim 4 ( ~ ^ = ) . (5.129) 

The form (5.125), expressing Ι,η(θ) as a determinant, is convenient 
for calculations, as in arriving at (5.127), whereas the integral form 
(5.124) is useful for finding bounds for I(t). 
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It is easy to prove (cf. Appendix A. 15) that for all positive values 

1 - 5 Σ V2 < Π [y&i2 + ^)-1/2] < 1· (5-130) 

The expansion (5.127) and the limiting procedure (5.129) then give 
the inequalities 

l - î i ^ ' ^ e X l . (5.131) 

It follows from (5.128), (5.116), and (5.131) that we can obtain 
rigorous lower and upper bounds for the distribution function of the 
spacingsF(i): 

FL(t)^F(t)^FR{t)9 (5.132) 

where 

7Γ2*2 

and 

FL(t) = 1 - exp ( - \ - ) (5.133) 

'*w = i-(i-nJ*)«p(-nr). (5·134) 

Because the differences F — FL and FR — F are everywhere 
positive, the difference between unity and the approximate values 
<7L> and (tR)> obtained by substituting FL and FR for F into 

r°° dF r°° 
<0 = J t-dTdt = \ [l-F(t)]dt = l (5.135) 

provides a good estimation of the accuracy of the corresponding 
approximations to F. We obtain 

<tL> - 1 = - ^ - - 1 ** 0.1284, 

1 - <tR> = 1 - ^ 7 = - ^ °-°597 

(5.136) 
5_ 

3 V* 
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1.0 

0.75 l· 

0.50 l· 

025 

F(\) 
^(t) FR(\) 

FwW 

FIG. 5.1. The distribution functions of the spacings F(t) and Fw(t) lying between 
FL(t) and FR(t). 

For visual comparison, Figure 5.1 is a plot of the functions FL,F,FR , 
and the Wigner surmise 

Fw{t)=\-^?(-~fi), (5.137) 

whereas Figure 1.3 in Chapter 1 is a plot of p(t) and the Wigner curve 

M i ) = y ' e x p ( - ^ - f 2 ) . (5.138) 



6 / The Gaussian Unitary and 
Symplectic Ensembles 

6.1. The Gaussian Unitary Ensemble1 

In Chapter 5 we studied in detail the properties of the eigenvalues 
of random real symmetric matrices chosen from an orthogonal 
ensemble. It is of some interest to compare the results obtained 
there with the corresponding results for the eigenvalues of random 
Hermitian matrices chosen from a unitary ensemble. According to 
(3.39), the joint probability density function for the eigenvalue of 
matrices from the unitary ensemble is given by 

/ N \ PN2(xx,..., xN) = CN2 exp I —Σ xM Y\ (xk - Xjf. (6.1) 
v i i < K j a 

This would be a model for the energy levels of a complex system 
without invariance under time reversal. 

To obtain correlation functions and the like with (6.1) is quite 
simple. As in Section 5.2, we express the product of differences as 
the Vandermonde determinant and introduce the normalized oscillator 
wave functions 

Ψί{χ) = (2ψ. \/π)-ι/2 *<ι/2>*2 (- Ι^ e-x\ 

so that 

Λ,2(*ι , . . · , xN) = CN2 i f [2->{2>jl Vny/ψ { d e t f o f o ) ] ^ W 2 · (6.2) 
j=0 3=1.2 N 

To determine CN2 , we integrate over all the variables, and by 
expanding the square of the determinant we see that all the cross 

+ E. P. Wigner [6]. 

74 
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terms drop out in the integral and every square term contributes 
unity, for 

j ^ <Pk(x) <PÀX) dx = 8kJ = | 0 j k ~£ 

Because the number of square terms is N\, we finally get 
N-l 

1 = CJV22-(1/2)N(N-iW!7rd/2)N j - j y i 
j=0 

which agrees with (3.42) for β = 2. 
Substituting CN2 from (6.3) into (6.2), we get 

*N2\X1 > — > XN) — ~JÜJ {^^[ψk-l(Xj)]k,j=1,2,, .N}2 

(6.3) 

(6.4) 

6.1.1. CORRELATION AND CLUSTER FUNCTIONS 

To obtain the «-level correlation function we must integrate (6.4) 
over all variables except and for this it is convenient 
to make the Laplace expansion of the determinant with respect to its 
first n columns, which depend on the variables χλ , x2,..., xn : 

det[<pk(xs)] = X 
k^k^...^^ 

Qki-kSxn+i >···> ·%)> (6.5) 

Vkfal) '" <Pkx(
xn) 

<Pkn(xi) '"<Pkn(xn) 

where <Pk ...k is the algebraic complement of 

de t [^ t ( ^ ) ] u = l t 2 n. 

On squaring and integrating, we see that all cross terms drop out 
and each square term takes the same coefficient (N — n)\. Thus for 
the «-level correlation function we obtain 

*ϊ°(*1 >-> * J - {N-n)l l"j PN2(X1 . · " . XN) dXn 

I <Pkx(Xl) '" SPkfan) 

+1 ' dXN 

Σ 

1 
<Pkn(xl) ~'<Pkn(Xn) 

= —\ Σ {det[c>ÄI(*,)]Uel nf 
k1,k2,-..,kn 

(6.6) 
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By applying Gram's result (cf. Appendix A. 13), we write (6.6) in the 
more elegant form 

R{nu)(xi , . . · , Xn) = detlK^Xi, *,·)]Μ=1,2 „, (6.7) 

where 

KN(x,y) = Nf<pAx)<pAy)- (6.8) 

Putting n = 1 in (6.6) or (6.7), we get the level density 

σΝ(χ) = Κκ(χ9χ) = Ν£Ψ?{χ). (6.9) 

As N -> oo, (6.9) tends (cf. Appendix A.8) to the semicircle law, 

, . ί λ ( — (27V - χ ψ \ χ*<2Ν, 
σΝ(χ)-+σ(χ) = < π (6.10) 

(θ x2 > IN. 

Putting n = 2 in (6.7), we get the two-level correlation function 

R[u\x,y) = σΝ(χ) aN(y) - [KN(x,y)]\ (6.11) 

hence the two-level cluster function 

T2u(x, y) - [KN(x, y)f = [ Y Ψί(χ) fi(y)]\ (6.12) 

Taking the limit as iV-> oo, this equation and the definition (5.6) 
(cf. Appendix A.9) give 

= Wr) ] .= [ J ^ L ] · , (6.13) 

with 

r = I ξ - η I, f = — (2Λ01/2*, 77 = — (2iV)1/2y. 
77 7Γ 
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The two-level form factor is 

*.(*) = f Y2u(r)e™«*dr 
J - 0 0 

= l l - | * l , I * | < 1 , 
l o , 1*12*1. 

It must be noted that the three and higher level correlation functions 
can all be expressed in terms of the level density and the two-level 
function KN(x, y), as is evident from (6.7). This is a particular feature 
of the unitary ensemble. 

6.1.2. LEVEL SPACINGS 

It is quite simple to integrate (6.4) over all variables from 
— oo to —Θ and again from Θ to oo. If we apply Gram's result 
(cf. Appendix A. 13), we get 

^uN\") = J *"J *N2\X1 >···» XN) "Xl '" "XN 
out 

= det [δ^ — j Ψί(χ) Ψί(χ) dx\ , (6.15) 
L J -Θ Je,i==0,l N-l 

where "out" indicates that all the variables are integrated over the 
entire real axis except for the interval [—0, Θ]. 

Equation 6.15 corresponds to (5.86) and (5.87) and gives the 
probability that no eigenvalues will be found in the interval [—0, Θ], 

Because 

Γθ 
δ ύ — Ψι(χ) <PÀX) dx 

J -Θ 

is zero whenever i-\- j is odd, the determinant in (6.15) factorizes 
as a product of two determinants: 

*.*(*) = * » ( * ) « . (6-16) 

where Ειμ(θ) is given by (5.86) 

EJff) = det [a,,· - f ψ2ί(χ) <p2j(x) dx] (5.86) 
L J -Θ Ji,3=0,1 m-1 

(6.14) 
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and E'm{d) is formed correspondingly from the odd oscillator functions 

E'JO) = det k . - f 9u+1(x) Vtj+1(x) dx] , (6.17) 
L J - Θ Ji.j=0,l m - l 

where m is the largest integer equal to or smaller than \N. 
Now we may repeat the analysis of Chapter 5 and write 

m m 

E»M = [Π 0 -λ*)1 Π a -***)· (6·18) 
L k=l AL k=l J 

where Xk are the eigenvalues of the integral equation (5.88) 

λ / ( * ) = Σ <P2j(x)<P2j(y)\f(y)<ty 
J - Θ L j = o J 

and /Zfc are the eigenvalues of the integral equation 

/*/(*) = Σ φ*+ι(*) ψυ+iiy)] f(y) dy- (6.19) 

The passage to the limit iV—»- cc is exactly the same as in Section 5.5, 
except that we now need the even as well as the odd spheroidal 
functions. The final result is 

EuN(e)-+Eu{t) = E(t)E'(t), (6.20) 
with 

E(t) = Π (1 - ίλ,2) (5.105) 
3=0 

and 

EV) = Π o - W ) . (6·21) 

here λ;· and μ,;· are the eigenvalues of the integral equations 

Xf(y) = f cos (-J tyz)f{z) dz (5.106) 

and 

/./(y) = J* sin ( ^ o*)/(*) dzy (6.22) 
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whereas t is the level spacing measured in units of the mean level 
spacing at the origin: 

< = ( 2 Ö ) " ( 2 ^ · 

The probability distribution (the probability density) function can be 
obtained by differentiating Eu(t) once (twice): 

' . ( 0 = 1 + ^ . 

ΡΛ*) = ^Γ· (6-25) 

As in the derivation of (5.84) we have assumed here that the 
various correlations are unaffected by small displacements of the 
origin. If we do a direct calculation by fixing one (two) level(s) and 
integrating the remaining levels outside a certain interval edged by 
the fixed level(s), we get back (6.24), while (6.25) is replaced by 

, x . dE dE' ir _ _,. 

^ > = 4 Λ - Λ -
 ( 6 · 2 5 ) 

Thus (6.25) and (6.25') are both correct if the following is an identity: 

_, dm' d*E dE dE' 
Ε ^ + Ε ^ = 2~άΤ1Γ-

 ( 6 · 2 5 ) 

A proof of (6.25") is reproduced in Appendix A.31. 
A table of numerical values of the various quantities is reproduced 

in Appendix A. 12. For small values of t the quantities E'(t), Eu(t), 
Fu(t), and pu(t) may also be expanded in powers of t. A few terms 
are listed in the same appendix. 

6.2. Gaussian Symplectic Ensemble 

The joint probability density function for the eigenvalues of a 
self-dual Hermitian matrix taken from a Gaussian symplectic ensemble 
was derived in Chapter 3 [cf. (3.32)]: 

/ N \ 
Pmixi >.··> xN) = CN4 exp ( - 2 £ *£

2J Π (** - *i)4> (6·26) 

(6.24) 

(6.23) 
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which forms a model for the energy levels of a complex system with 
half odd integral spin and time-reversal invariance but no rotational 
symmetry. 

The statistical properties of N points with (6.26) as their joint 
probability density function have not been investigated in detail for 
two reasons: 

1. No experimental situation is yet known in which the symplectic 
ensemble is applicable. 

2. For the corresponding circular ensembles, which we study next 
(Chapters 8 to 11), a remarkable relation (Theorem 9.1) reduces the 
study of the symplectic ensemble to that of the orthogonal ensemble. 
We strongly suspect a similar relation for the Gaussian ensembles 
because all the other known statistical properties in the two Bets of 
ensembles are identical when proper limits are taken. Such a relation 
has not yet been discovered. In view of this lack, we now discuss 
a method of dealing with integrals that contain the fourth power of 
the product of differences. 

6.2.1. T H E DETERMINATION OF THE NORMALIZATION CONSTANT 

It is convenient to express the fourth power of the product of 
differences as a "confluent alternant/' a limiting form obtained from 
the simple alternant when variables become equal in groups. It is 
shown in Appendix A. 16 that 

Π (xi-xiy = det[xiifjx>i-*\; (6.27) 

here and in the rest of this section the indices i and j vary over the 
respective sets of integers: 

i= l ,2 , . . . , iV , 
(6.28) 

7 = 0 , 1 2ΛΓ—1. 

As in Chapter 5 we introduce Hermite polynomials for the new 
variables 

Ji = xt VÏ (6.29) 
to obtain 

r 1 Ί(1/2)Ν(Ν-1)4 , v 
de t [* / ,^ - i ] = [-i=] (Π I'1) d e t t H ^ ) , H',(y()] 

= 2-" , 3"-2) dtt[H{yt), H'fo)], (6.30) 
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where the prime denotes the derivative. In terms of the oscillator 
wave functions (5.15), this gives 

exp ( - 2 £ xA Π (*< - xtf = a detfofcO. Vlj ^ ( y , ) ] . (6.31) 

where 
a = 2-™N-2) Π (2jj\ Vi)!/2 

3 

N-l 

= 2-Ν(2Ν-3/2)π(1/2)Ν JJ [ ( 2 / ) ! (2 / + 1)1/2]. ^ 2 ) 
1=0 

The average value of Υ\τ
 u(xi) is> therefore, given by 

(nu{Xi)) = Cma2-^»fjn[dyiu(lL)} 

X d e t f ^ O ^ y ^ - a t V i ) ] . (6.33) 

Performing the integrations over the yi in (6.33), we get (cf. 
Appendix A.7) 

( Π «(*<)) = CN4 a 2-WNl (defer])1'2, (6.34) 

where 

gir=r_jy[{2j,)V2 9i{y) w-i{y) -{2j)V2 Vi-i{y) ψΛγ)] u (75) 

= Γ VÏ dx[(2j'y2
 9j{x Λ/2) φ^χ Vï) 

J —00 

- (2/)1/2 φ^χ V2) φ,·(χ V2)] u(x). (6.35) 

We may add to any row (column) a linear combination of the other 
rows (columns) without changing the value of the determinant. We 
replace g^y with f^* , which in turn is replaced by h^> , defined 
successively by the following equations: 

J2i-l,j ~ &2Ï-1J > 
/2i — 2 \λΙ2 

J2i-2,j = S2Î-2.J ~\~ I 2 ' 3 ) J2i-A,j (6.36) 



82 6.2. Gaussian Symplectic Ensemble 

and 

"j,2i-l — J3,21-1 > 

/ 2f — 2 x1/2 

hj,2i-2 = fj,2i-2 + ( 2 / 1 ) ^ .2 t -4 · (6.37) 

Equation 6.34 then becomes 

( Π «(*<)) = CN4 a 2 -^ /2 )^ , (det[Ä,r])i/2, (6.38) 

where from (6.36) and (6.37) 

"2i-1.2*'-l = £2t-l ,2i ' - l > (6.39) 

^ Γ Γ ( Ι ) Γ ( / - ^ Ί Ι / « 
Λ2<_2,2ί'-ι - L L r ( / ) r ( î _ i ) J Λ Μ . « ' - Ι ^ · 4 υ ) 

and 

' f ΓΓ(, ·)Γ(/-4) Γ ( Ο Γ ( Γ - ^ ) Ι 
%-2,2i'-2 - L (L [Γ( / ) r ( f · _ I) Γ ( / ; ) Γ( ίν _ 1) J Λΐ-ί.Μ'-Ι · (0.41J 

Writing 

*«-..«'-ι = [2(2*' - 1ψ2 (δ„· + ν«-), (6.42) 

Α*-ι.«'-ι = [2(2«' - 1) 2(2/ - 1)]V* ̂  (6.43) 
and 

"2i-2,2i'-2 = Λ'«' ι (6.44) 

we have 

( Π «(*<)) = Cm a 2-Ί/2.ΝΛΓ! f ] [2(2. - l)]i/* 

xidet[ * ' ( V + ^ ) l j ^ {6A5) 
( L —(on' +^'z) /*ü' -M 

If we write u(x) = 1, we get 

&,. = (2/)V* 8, . ,^ - (2y)V« &,.,,_! (6.46) 
so that 

"2t-l,2i'-l = = ̂ 2t-2,2t'-2 = = ^ , 

* « - . . « ' - ! = [2(2»' - I ) ] 1 /»»«- , (6.47) 
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or 

λ«' = μα' = vw = 0. (6.48) 

Equations 6.45, 6.48, and 6.32 then give the normalization constant 

C-\ = a · 2-^ΝΝ\ Π [2(2/ - l)]1/* 
i 

N 

= (2ΤΓ)<1/2)Ν4-(Ι/2)Ν-Ν(Ν-Ι)2-Ν γΐ (2i)! (6.49) 
1 

Thus (3.42) is verified for β = 4. Substituting this value of CN4 into 
(6.45), we finally obtain 

<n +s> H - U X , , ^:;··Τ- <«·»> 
By writing u(x) = 1 + a(x) and expanding in powers of a(x), as 

in Section 5.4, we may obtain, in principle, all the correlation (cluster) 
functions. For example, the level density and the two-level correlation 
function are given by (5.55), (5.58), and (5.54), where ν^ , λί ; · , and μ^ 
are now given by (6.42), (6.43), and (6.44). However, because the 
limiting process N —>- oo is more tedious in this case, it is hard to get 
at the quantities of interest. 



7 / Brownian Motion Model1 

7.1. Stationary Ensembles 

In Chapter 4 we exploited the idea that the probability Ρ(χλ,..., xN)y 

(3.40) for the eigenvalues of a random matrix to lie in unit 
intervals around the points x1,..., xN , 

P(Xl,..., xN) = Cme-w, (7.1) 

W^^xf-Y^lnlXi-y^, (7.2) 
L 1 t<) 

is identical with the probability density of the positions of N unit 
charges free to move on the infinite straight line — oo < x < oo 
under the influence of forces derived from the potential energy (7.2), 
according to the laws of classical mechanics, in a state of thermody-
namical equilibrium at a temperature given by 

kT = β~\ (7.3) 

This system of point charges in thermodynamical equilibrium is 
called the stationary Coulomb gas model or simply the Coulomb gas 
model, which corresponds to the Gaussian ensembles. 

7.2. Nonstationary Ensembles 

In this chapter we present an idea of Dyson, generalizing the 
notion of a matrix ensemble in such a way that the Coulomb gas model 
acquires meaning not only as a static model in timeless thermodynam-
ical equilibrium but as a dynamical system that may be in an arbitrary 
nonequilibrium state changing with time. The word "t ime" in this 

+ Dyson [4]. 
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chapter always refers to a fictitious time which is a property of 
the mathematical model and has nothing to do with real physical time. 

When we try to interpret Coulomb gas as a dynamical system, we 
naturally consider it first as an ordinary conservative system in which 
the charges move as Newtonian particles and exchange energy with 
one another only through the electric forces arising from the potential 
(7.2). We then have to give meaning to the velocity of each particle 
and to regulate the behavior of the random matrix H in such a way 
that the eigenvalues have the normal Newtonian property of inertia. 
No reasonable way of doing this has yet been found. Perhaps there 
is no such way. 

After considerable and fruitless efforts to develop a Newtonian 
theory of ensembles, Dyson [4] discovered that the correct procedure 
is quite different and much simpler. The Xj should be interpreted 
as positions of particles in Brownian motion [Chandrasekhar, 1 ; 
Uhlenbeck and Ornstein, 1 ; Wang and Uhlenbeck, 1]. This means that 
the particles have no well-defined velocities nor do they possess 
inertia. Instead, they feel frictional forces resisting their motion. The 
gas is not a conservative system, for it is constantly exchanging energy 
with its surroundings through these frictional forces. The potential 
(7.2) still operates on the particles in the following way. The particle 
at Xj experiences an external electric force 

in addition to the local frictional force and the constantly fluctuating 
force giving rise to the Brownian motion. 

The equation of motion of the Brownian particle at Xj may be 
written as 

I F - = -'π + *<*'>+ A^ (7·5> 
where / is the friction coefficient and A(t) is a rapidly fluctuating 
force. For A(t) we postulate the usual properties [Uhlenbeck and 
Ornstein, 1] 

<A(t1)A{t2)~>A(tZn+1)>=0, (7.6) 

0 4 ( 0 A(t2) - A{t2n)> = X <A(t<) Α(φ <A(tk) A(tt)} - , (7.7) 
pairs 

(7.4) 



86 7.2. Nonstationary Ensembles 

and 

<A(t1)A(t2)y=—8(t1-t2), (7.8) 

where the summation in (7.7) extends over all distinct ways in which 
the 2w indices can be divided into n pairs. 

There is nothing new in the integration of the Langevin equation 
(7.5). After long enough time for the effect of the initial velocity 
to become negligible, let xx , x2,..., xN be the positions of the particles 
at time t. At a later time t + St let these positions be changed to 
xx + Sxx, x2 -\- 8x2,..., xN + SxN . The SXJ , j = 1, 2,..., N, will in 
general be different for every member of the ensemble. They are 
random variables. Using (7.6), (7.7), and (7.8) we find that to the first 
order in the small quantities 

/<δ*,>=Ε(*,)δ*, (7.9) 

/<(&c,)2> = 2kTSty (7.10) 

and all other ensemble averages, for example, <δχ;· 8xty, <(δ^·)2 8xty, 
<(δχ,·)3>, are of a higher order in St. 

An alternative description of Brownian motion is obtained 
by deriving the Fokker-Planck or Smoluchowski equation. Let 
P(x1 , x2 ,..., xN ; i) be the time-dependent joint probability density 
that the particles will be at the positions Xj at time t. Assuming that 
the future evolution of the system is completely determined by its 
present state, with no reference to its past (that is, the process is 
a Markov process), we obtain 

P(x1 ,..., xN ; t + 8t) = I ··· I P(x1 — 8χτ ,..., xN — SxN ; t) 

X φ(χλ — Sxx,..., xN — SxN ; Sxx ,..., 8xN ; 8t) ^(δ^) ··· d(SxN)y (7.11) 

where φ under the integral sign is the probability that the positions 
of the particles will change from χλ — 8χλ ,..., xN — 8xN to χλ ,..., xN 

in a time interval St. Expanding both sides of (7.11) in a power series 
of 8xj , 8ty using (7.9) and (7.10), and going to the limit St —* 0, we get 
[Uhlenbeck and Ornstein, 1] 

,dP » ( _ a 2 P d | (7.12) 
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Equation 7.12 describes the development of the Coulomb gas with time. 
If we start from an arbitrary initial probability density P at time 
t = t0 , a unique solution of (7.12) will exist for all t > t0 . Any 
solution of this sort we call a time-dependent Coulomb gas model. 

Equation 7.12 implies in turn (7.9) and (7.10). To see this we 
multiply both sides of (7.12) by Xj and integrate over all xi. Making 
the usual assumptions that P(xx,..., Xtf \ tjy as well as its derivatives, 
vanish quite fast on the boundary, we get on partial integration 

/ ^ <*,·>= <£(*,·)>, (7.13) 

where 

<F> = jF(x1 ,..., χΝ) Ρ{χλ ,..., xN ;t)dx1-~ dxN 

is the ensemble average of F. Starting at the positions xx ,..., xN and 
executing the motion for a small time interval 8t, we find that (7.13) 
is the same as (7.9). Similarly, by multiplying by xf and integrating 
(7.12) we have 

/ ^ < * , * > = 2 * Γ + 2<*, £(*,)>, 

which together with <(δ^·)2> = <#/> — < ^ ) 2 yields (7.10). 
Thus the descriptions of the motion by (7.9) and (7.10), and by 

(7.12) are equivalent. Also there exists a unique solution to (7.12) 
which is independent of time, and this time independent solution is 
given by (7.1) and (7.2). 

A Brownian motion model can also be constructed for the matrix H, 
of which Xj are the eigenvalues. The independent real parameters 
H{$\ 1 < i < j < N, 0 < λ < β - 1, which determine all the 
matrix elements of H, are p = $N(N + 1) + %N(N — l)(j3 — 1) in 
number. Let us denote them by Ημ , where μ is a single index that 
runs from 1 to p and replaces the three indices z, j , and λ. Suppose 
that the parameters Ημ have the values H1 , H2 ,..., Hp at time t and 
H1 + 8Ητ ,..., Hp + SHp at a later time t + St. Brownian motion of 
H is defined by requiring that each 8Ημ be a random variable with 
the ensemble averages 

/<δΗμ> = - / / μ δ ί , (7.14) 

f<(8Hiy>=gJiTSt, (7.15) 
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where 

^=^='+*Hî; u 14 ^ 
All other averages are of a higher order in St. This is a Brownian 
motion of the simplest type, the various components Ημ being 
completely uncoupled and each being subject to a fixed simple 
harmonic force. The Smoluchowski equation which corresponds to 
(7.14) and (7.15) is 

/ f = Σ[^Τ^ + ^ { Η μ Ρ ) 1 (7.17) 

where P(H1,..., Hp ; i) is the time-dependent joint probability 
density of Ημ . The solution to (7.17) which corresponds to a given 
initial condition H = W at t = 0, is known explicitly [Uhlenbeck 
and Ornstein, 1]. 

P(H, t) = C(\ - f)-w exp [- 2 ^ 7 ^ ] . (7.18) 

q = exp [-J-]. (7.19) 

The solution shows that the Brownian process is invariant under 
symmetry preserving unitary transformations of the matrix H\ in 
fact, the awkward-looking factor g^L in (7.15) is put in to ensure this 
invariance. When t —► oo, q -> 0, and the probability density (7.18) 
tends to the stationary form, 

Ρ{Ηλ ,..., Hv) = (constant) exp {-^- tr /72), (7.20) 

which is the unique time-independent solution of (7.17). Note that 
with the relation (7.3) between β and the temperature k T (7.20) is 
essentially the same as (2.72). 

We are now in a position to state the main result of this chapter. 

Theorem 7.1. When the matrix H executes a Brownian motion 
according to the simple harmonic law (7.14), (7.15), starting from any 
initial conditions whatever, its eigenvalues xx , x2,..., xN execute a 
Brownian motion that obeys the equations of motion (7.9), (7.10), and 
(7.12) of the time-dependent Coulomb gas. 
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To prove the theorem we need only show that (7.9) and (7.10) 
follow from (7.14) and (7.15). Suppose, then, that (7.14) and (7.15) 
hold. We have seen that the process described by (7.14) and (7.15) 
is independent of the representation of H. Therefore we may choose 
the representation so that H is diagonal at time t. The instantaneous 
values of Ha at time t are then 

Hl?=xi> 7 = 1,2,..., TV, (7.21) 

and all other components are zero. At a later time t -f St the matrix 
H -f 8H is no longer diagonal and its eigenvalues Xj + Sxj must be 
calculated by perturbation theory. We have to the second order in SH 

8*, = ΜΓ«» + Σ Σ ^ - . (7.22) 
i λ=0 Λ3 xi 

Higher terms in the perturbation series will not contribute to the 
first order in St. When we take the ensemble average on each side of 
(7.22) and use (7.14), (7.21), (7.15), (7.3), and (7.4), the result is (7.9). 
When we take the ensemble average of (δ^)2, only the first term on 
the right side of (7.22) contributes to the order St, and this term 
gives (7.10) by virtue of (7.15) and (7.16). The theorem is thus 
proved. 

When the limit t —> oo is taken, Theorem 7.1 reduces to 
Theorem 3.2. This new proof of Theorem 3.2 is in some respects 
more illuminating. It shows how the repulsive Coulomb potential 
(7.2), pushing apart each pair of eigenvalues, arises directly from 
the perturbation formula (7.22). It has long been known that perturba-
tions generally split levels that are degenerate in an unperturbed 
system. We now see that this splitting effect of perturbations is 
quantitatively identical with the repulsive force of the Coulomb gas 
model. 

Theorem 7.1 is a much stronger statement than Theorem 3.2. It 
shows that the electric force (7.4), acting on the eigenvalues Xj , has 
a concrete meaning for any matrix H whatever, not only for an 
ensemble of matrices in stationary thermal equilibrium. The force 
E(Xj) is precisely proportional to the mean rate of drift of Xj 
which occurs when the matrix H is subjected to a random 
perturbation. 
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7.3. Some Ensemble Averages 

We now describe a general property of the time-dependent Coulomb 
gas model which may be used to calculate a few ensemble averages. 
Dyson observed that if G = G(x1,..., xN) is any function of the 
positions of the charges, not depending explicitly on time, then the 
time variation of <G>,the ensemble average of G, is governed by the 
equation 

/i«»~Ç<£-&> + «T<-£> <-> 
This equation is obtained by multiplying (7.12) throughout by G and 
partial integrations; W is given by (7.2). 

As a first example, choose 
Λ = Σ * , * (7.24) 

j 

for G so that 

d2R 
dxj2 

and (7.23) becomes 

= 2, 

/ ^ > = -2<#> + N(N - 1) + 2kTN 

= 2{R„ - <*», (7.25) 
with 

Rœ = ±N(N - 1) + kTN. (7.26) 
The solution of (7.25) is 

<R> = R«f + R9(l -q% (7.27) 

where q is given by (7.19) and R0 is the value of </?> at ί = 0. 
Equation 7.27 shows that the ensemble average (R} approaches its 
equilibrium value Rœ with exponential speed as t —> oo. 

Next take G = W in (7.23), so that 
dW\2 _ v [y 1 y2 2Xj 

\ ##,· / Y L\ Xj — #8· / ^ — #,· J 
(i^j) 

+ Σ t(*i - **)(** - «i)]-1 + *i* (7-28) 
i,l 

(i,j,l a l l 
different) 
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and 
82W 
_ = - ! + Ç (Xj-Xi)-K (7.29) 

ΗΦ3) 

On performing a summation over j the second term in (7.28) drops 
out (cf. Appendix A.20), whereas the second term in the first bracket 
gives —2N(N — 1). Substituting in (7.23) and simplifying, we get 

f ^ T = {kT - l) Σ <(*' - *<)"2> + (N*-N + NkT) - X <*/>. 
(%Φ3) 

(7.30) 
For the stationary Coulomb gas at temperature kT the left side of 
(7.30) vanishes and (7.26) may be used on the right. Thus we find a 
"virial theorem" for the stationary gas: 

Σ <(*,.-*,.)-*> = | ^ J ) . (7.31) 
(ΪΦ3) 

The probability density of eigenvalues becomes proportional to 
| xi — Xj \ß

y when two eigenvalues xi, Xj come close together. The 
ensemble average of (Xj — x{)~

2 is therefore defined only for ß > 1 
and (7.30) and (7.31) hold only for kT < 1. 

An especially interesting case, ß = 1, requires a passage to the 
limit in (7.30). As kT —> 1, we have for any fixed value of Δ 

Y\m(kT - 1) ί \y ψ~2 dy = l im^T - 1)(]8 - l)-1 2Δ*-1 

* -A 

= - 2 . (7.32) 
We obtain the correct limit in (7.30) if we replace 

(kT - \){x} - *,)"* 
with 

—2(Xj — x^-1 S(XJ — xt), (7.33) 

which has a well-defined meaning as an ensemble average when 
kT = 1, for the probability density then contains a factor | Xj — xi |; 
(7.30) thus becomes in the limit 

/ ^ P = -2 Σ <i Xj - Xi i-1 δ(*, - Äi)> + N 2 - Σ <*i2>. Ä71 = ΐ · 
( t # j ) 

(7.34) 
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The corresponding "virial theorem" is 

£ <(*, - ^)"1 Sfo - *<)> = i m - 1), kT = 1 (7.35) 

for the stationary gas. 



8 / Circular Ensembles1 

8.1. General Remarks 

In the preceding chapters we presented a detailed study of the 
Gaussian ensembles. We pointed out at the end of Chapter 2 that the 
requirements of invariance and the statistical independence of various 
independent components seem to overrestrict the possible choices. In 
particular, the various values of the matrix elements are not equally 
weighted. Rosenzweig has tried to answer this question in part with a 
consideration of the *'fixed-strength ensemble,, in which the joint 
probability density function for the matrix elements is taken to be 
proportional to the Dirac delta function 8(tr H2 — r2), where r is a 
fixed number. However, a uniform probability density cannot be 
defined on the infinite real line. 

Because of this unsatisfactory feature Dyson [1-3] introduced his 
circular ensembles, as follows. 

Suppose that the system is characterized not by its Hamiltonian H 
but by a unitary matrix S, whose elements give the transition 
probabilities between the various states. The matrix S is unitary; its 
eigenvalues are therefore of the form eie'9 where the angles 6j are real 
and may be taken to lie between 0 and 2π. The matrix S is a function of 
the Hamiltonian H of the system. This functional dependence need 
not be specified. All that is needed is that for small ranges of variation 
the 6j be linear functions of the eigenvalues Xj of H. To help the 
reader's imagination he may think of a relation such as 

s = elT' or 5 = TTËT (8J) 

However, such a definite relation between S and H cannot be correct 
in the large. We will deliberately leave this relation vague because 
we are going to restrict the order of our matrices to N x TV, where 

+ Dyson [1]. 
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N is very large but finite. And this cannot represent, say, a nucleus, 
in the large, for the real nucleus has an infinite number of energy 
levels. Like the Gaussian ensembles, the circular ensembles are gross 
mutilations of the over-all actual situation. The most we can expect of 
such models is that in any energy region that is small compared to the 
total excitation energy the statistical distribution of the levels will be 
correctly reproduced. With no further apologies we make the following 
fundamental assumption: 

The statistical behavior of n consecutive levels of an actual system, 
whenever n is small compared with the total number of levels, is the 
same as that of n consecutive angles θ1, θ2,..., θη , where n is small 
compared with N. 

8.2. The Orthogonal Ensemble 

According to the analysis of Chapter 2, a system having time-reversal 
invariance and rotational symmetry or having time-reversal invariance 
and integral spin will be characterized by a symmetric S. Following 
Dyson, we define the orthogonal circular ensemble Elc of symmetric 
unitary matrices S by assigning the probabilities in the following way. 

Every symmetric unitary S (cf. Appendix A.23) can be written as 

S = UTU, (8.2) 

where U is unitary. Define a small neighborhood of S by 

S + dS = UT(l + i dM)U, (8.3) 

where dM is a real symmetric matrix with elements dM{j and the 
elements dMiS for i ^ j vary independently in some small intervals 
of length άμ^ . The "volume" of this neighborhood is defined by 

K(dS) = Π 4*« · (8-4) 

The ensemble Elc is defined by the statement: The probability that a 
matrix from the ensemble Elc lies between S and S + dS is proportional to 

P(S)dS = ±-to(dS), (8.5) 

where Vx is the total volume of the space Tlc of unitary symmetric 
matrices of order N X N and therefore, a normalization constant. 
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For this definition to have a meaning one must be sure that μ^αΞ) 
does not depend on the choice of U in (8.2). The fact that it is so 
can be easily verified. Let 

S = UTU = VTV, (8.6) 

where both U and V are unitary. The matrix 

R = VU-1 (8.7) 

is unitary and also satisfies 

RTR = ^τγιγτγυ-ι = (uT)-iUTUU-1 = 1. (8.8) 

Therefore R is real and orthogonal. Let 

^dS) = Π 4*„ (8-9) 

be the volume derived from V as /x1(rf5) was derived from U. We 
now have 

S + dS=VT(l + i dM') V (8.10) 

with 
dM' = RdMR~K (8.11) 

To prove that ^(dS) = μί(α8) we need to show that the Jacobian 

; = det [ *WÛ) 1 

has absolute value unity when dM, dM' are real symmetric matrices 
related by (8.11). A proof of this is given in Appendix A. 17. Thus the 
volume /χχ(^5) is unique. Incidently, we have established that for 
a fixed S the unitary matrix U in (8.2) is undetermined precisely to 
the extent of a transformation 

U^RU, (8.13) 

where R is an arbitrary real orthogonal matrix. 
The motivation for the choice of the ensemble Elc will be made 

clearer by the following theorem. 

(8.12) 
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Theorem 8.1. The orthogonal ensemble Elc is uniquely defined in 
the space of unitary symmetric matrices of order N X N by the 
property of being invariant under every automorphism 

S^WTSW (8.14) 

of Tlc into itself where W is any N x N unitary matrix. 

Theorem 8.1 comprises two statements: (a) that Elc is invariant 
under the automorphisms (8.14) and (b) that it is unique. To prove 
(a) we suppose that a neighborhood S + dS of S is transformed 
into a neighborhood S' -f dS' of S' by the automorphism (8.14). 
Equations 8.2 and 8.3 then hold and 

S' = WTSW = VTVf V =UW (8.15) 

S' + dS' = VT(l + idM) V. (8.16) 

The volumes μ1(ά8) and μ^άΞ') are then identical by definition as 
the same dM is occurring in (8.3) and (8.16). This proof of (a) is 
trivial, for we could choose a convenient unitary matrix V in (8.15), 
and it was already shown that the value of Px(dS) does not 
depend on the choice of V. To prove (b) let E[ be any ensemble 
invariant under (8.14). The probability density P'(S) dS associated 
with E[ will define a certain volume ^{dS) of the neighborhood 
of S in the space Tlc. The ratio 

ψ{3) um 
is a function of S defined on Tlc and invariant under the transforma-
tions (8.14). If S = UTU, we choose W = C/"1 in (8.14) so that S 
is transformed to unity and therefore <p(S) is a constant. Thus the 
probability densities in Elc and E'lc are proportional. Also they are 
both normalized to unity and are therefore identical. 

8.3. Symplectic Ensemble 

Next we consider systems with half-integral spin and time-
reversal invariance but no rotational symmetry. In this section we 
use the quaternion notation developed in Chapter 2. The systems are 
described by self-dual unitary quaternion matrices (cf. Chapter 2) 

SR=-ZSTZ = S, S+ = S-K (8.18) 

(8.17) 
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Once again we have to assign a probability that a matrix chosen 
randomly from the space T4cof self-dual unitary quaternion matrices 
of order N X N will lie between S and S + dS. This is done as follows: 

Every matrix S in T4c can be written as 

S=URU, (8.19) 

where U is unitary. To see that this is possible, observe that in the 
ordinary language without quaternions SZ is an antisymmetric 
unitary matrix and can be reduced to the canonical form 

SZ = VZVT, (8.20) 

where V is unitary. Choosing U = (ZV)T then gives (8.19). (See 
also Appendix A.23.) For a given S the unitary matrix U in (8.19) 
is precisely undetermined to the extent of a transformation 

U^BU, (8.21) 

where B is an arbitrary symplectic matrix. For a proof it is sufficient 
to observe that the dual of a product of matrices is the product of 
their duals taken in the reverse order; and a symplectic matrix is, 
by definition, one that satisfies 

BRB=BBR = \. (8.22) 

A small neighborhood of S in JT4C is defined by 

S + dS=U*(l +i dM) U (8.23) 

where dM is a self-dual quaternion real matrix with elements 
3 

dM.. = dM™ + Y dM^e . (8.24) 
a = l 

The real coefficients dM\f satisfy 

dM(Q) = dMV\ dMW - -dM(«\ ÖL = 1, 2, 3. (8.25) 

There are N(2N — 1) independent real variables dM\f and they are 
allowed to vary over some small intervals of lengths άμ\γ. The 
neighborhood of S> thus defined, is assigned a volume 

*t(
dS) = Π Π Ή ' Π <¥$· (8·26) 

i <j a=l iX ; 
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In terms of this volume the symplectic ensemble £"4c is defined in 
exactly the same way as Elc was defined in terms of the volume 
(8.4). The statistical weight of the neighborhood dS in T4c is 

P(S)dS = -j-^(dS), (8.27) 
* 4 

where F4 is the total volume of the space T4c of self-dual unitary 
quaternion matrices of order N x N. 

We can now repeat almost without change the arguments in 
Section 8.2. We must first prove that the volume μ4(</5) is independent 
of the choice of U in (8.19). This involves showing that the Jacobian / 
has absolute value unity, where 

I-detl3^^] Î8 28Ï 
; - d * b p # j « ^ l · (8'28) 

dM' = BdMB~\ (8.29) 

and B is symplectic. As before, Appendix A. 17 contains a proof of this. 
The analog of Theorem 8.1 is the following. 

Theorem 8.2. The symplectic ensemble E^. is uniquely defined in 
the space TAc of self-dual unitary quaternion matrices of order 
N X N by the property of being invariant under every automorphism 

S->WRSW (8.30) 

of T4c into itself, where W is any N X N unitary quaternion matrix. 
Theorem 8.2 can be proved by following word for word the proof 

of Theorem 8.2, the operation of transposition being replaced by that 
of taking the dual. 

8.4. Unitary Ensemble 

A system without time-reversal symmetry is associated with an 
arbitrary unitary matrix S not restricted to be symmetric or self-dual. 
A neighborhood of 5 in the space T2r of all unitary N X N matrices 
is defined by 

S + dS = U(\ + idM) V, (8.31) 

where U and V are any unitary matrices that satisfy the equation 
S = UV and dM is an infinitesimal Hermitian matrix with elements 
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dM^ - dM$ + i dM%K The real components dM§\ dM(» are N2 

in number and are allowed to vary independently over small intervals 
of lengths άμ{$\ άμ{^]. The volume μ2{ά8) is defined by the equation 

^(dS) = Π <¥$ Π Ή υ (8-32) 

and is independent of the choice of U and V. The ensemble E2c 

gives to each neighborhood dS the statistical weight 

P(S)dS = 4"M2(^ ) , (8.33) 

where F2 is the total volume of the space T2c. 
The invariance property of E2c , analogous to Theorems 8.1 and 

8.2, is stated in Theorem 8.3. 

Theorem 8.3. The unitary ensemble E2c is uniquely defined in the 
space T2c of all N x N unitary matrices by the property of being 
invariant under every automorphism 

S-+USV (8.34) 

of T2c into itself where U and V are any two N x N unitary matrices. 
This theorem merely expresses the well-known result that μ2(άδ) 

is the invariant group-measure of the TV-dimensional unitary group 
U(N). 

8.5. The Joint Probability Density Function for 
the Eigenvalues 

We give below a few lemmas which will be used subsequently. 
A proof of the first two lemmas is given in Appendix A.23. 

Lemma 8.1. Let S be any unitary symmetric N x N matrix. Then 
there exists a real orthogonal matrix R which diagonalizes S; that is, 

S =-- R^ER, (8.35) 

where E is diagonal. The diagonal elements of E are complex numbers 
eiB> lying on the unit circle. 
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Lemma 8.2. Let S be a unitary self-dual quaternion matrix of 
order N X N. Then there exists a symplectic matrix B such that 

S = BEB-\ (8.36) 

where E is diagonal and scalar (cf. Section 2Λ). The diagonal elements 
of E are N complex numbers ei6j on the unit circle; each is repeated twice. 

Lemma 8.3. Let S be a unitary matrix. Then there exists a unitary 
matrix U such that 

S = UEU-\ (8.37) 

where E is diagonal. The diagonal elements of E are N complex numbers 
eiQj on the unit circle. 

Though this result is well-known [Wigner, 2], we stated it here for 
completeness. 

We are now in a position to prove the main result of this chapter. 

Theorem 8.4. In the ensemble Eßc the probability of finding the 
eigenvalues ei<t>j of S with an angle in each of the intervals [dj, θ^ -\- ddj] ; 
j = 1,..., N is given by 

PNß(eii...ieN)del-deNy (8.38) 
where 

P w ( ^ ,..., ΘΝ) = C'Nß Π I «"· - «"'P. (8.39) 

Here β = 1 for orthogonal, β = 4 for symplectic, and β = 2 for unitary 
circular ensembles. The constant C'Nß is fixed by normalization. 

Proof: 1. Let ß = 1. By Lemma 8.1 every S in Tlc can be diago-
nalized in the form 

S = R^ER, (8.40) 

with R orthogonal. We now wish to express the volume Pi(dS) in 
terms of the volumes μ{άΕ) and μ(άΡ), defined for the neighbor-
hoods of the matrices E and R> respectively. A small neighborhood 
of E is given by 

dE = iEdd, (8.41) 
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where άθ means a diagonal matrix with elements άθχ,..., άθΝ . To 
find the neighborhood of R we differentiate 

RRT = 1, (8.42) 

thus getting 

R(dR)T + (dR) RT = 0 (8.43) 

showing that the infinitesimal matrix 

dA = (dR)RT = -R(dR)T (8.44) 

is a real antisymmetric matrix with elements dA^ . The volumes 
μ(άΕ) and μ(dR) are given by 

μ(άΕ) = Π dB,, (8.45) 

KdR)= Π dAa- (8·46) 

The volume p(dS) is defined by (8.4), where dM is given by (8.3) 
and U is any unitary matrix satisfying (8.2). Differentiating (8.40) 
and using (8.2), (8.3), (8.41), (8.42), and (8.44), we obtain 

iRUT dMUR-1 = -dA E + ιΕάθ + Ε dA, (8.47) 

which is the relation between dM, d9, and dA. Since £ is a diagonal 
unitary matrix, it has a square root F which is also diagonal with 
elements ±eie*l2. There is an ambiguity in the sign of each element, 
but it does not matter how these signs are chosen. A convenient 
choice for U satisfying (8.2) is then 

U = FR (8.48) 

by virtue of (8.40). With this choice of [/, (8.47) reduces to 

iF dM F = -dA F2 + iF2 άθ + F2 dA, (8.49) 

or 
dM = dd + iiF-1 dAF-FdA F-1). (8.50) 
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Equation 8.50 gives dM{j in terms of the quantities άθ^, dA{j, and dj 
for each pair of indices i, j ; namely 

dM„ = άθό (8.51) 

dMu = 2 sin[i(0, - Θ,)] dA{j, i φ j . (8.52) 

Assembling the definitions (8.4), (8.45), and (8.46), we deduce from 
(8.51) and (8.52) 

μ{άΞ) = Π I 2 sin (θι ~ θί) I μ(άΕ) μ{άΗ) 
l<3 ' ^ 2 ' 

= Π I eiQl - eiBj I l*(dE) μ{άΚ). (8.53) 
Ki 

Now keep the angles θ1 ,..., ΘΝ fixed and integrate (8.53) with respect 
to the parameters dAtj over the entire allowed range. This will give 
(8.38) with PN1 given by (8.39). Thus the theorem is proved for the 
orthogonal case. 

2. Next let β = 4. The matrix S is now diagonalized with the help 
of a symplectic matrix 

S = Β-λΕΒ (8.54) 

(Lemma 8.2). The infinitesimal matrix 

dA - dB BR (8.55) 

is quaternion real and anti-Hermitian. The components of dA are 
άΑ\"\ which are real. They are antisymmetric in i, j for oc = 0 and 
symmetric in i, j for a = 1,2, and 3. The volume μ{άΒ) is now given by 

μ(άΒ) = Π dA\f. (8.56) 

The volume /x(rf5) is given by (8.26) with dM given by (8.23). 
The matrix dM is Hermitian and quaternion real. The algebra 
leading up to (8.50) goes exactly as before. Equation 8.51 still holds, 
the diagonal elements dM}j being real scalar quaternions with only 
one independent component. Equation 8.52 now holds separately for 
each of the four quaternion components <x = 0, 1, 2, 3. The equation 
analogous to (8.53) is 

μ(άΞ) - ( Π I eiei - eieJ |4) μ(άΕ) C, (8.57) 
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where C does not depend on the 0;· . The power 4 in (8.57) arises 
from the fact that every nondiagonal element dM{j, i < j , gives 
according to (8.52) four factors corresponding to the four components 
oc = 0, 1, 2, and 3. Note also that the C in (8.57) is not equal to 
μ(άΒ), for the diagonal components dA\f with a = 1, 2, 3 do not 
occur in (8.51), whereas μ{άΒ) contains their product. For our 
purposes it is sufficient to know that C does not depend on the 0;· . 

The rest of the proof proceeds as in the case yS = 1. 
3. Lastly let β = 2. In this case (8.40) holds with a unitary R. The 

infinitesimal matrix JA is now anti-Hermitian, and the diagonal 
elements dAj} are pure imaginary. The real part dAffi of the non-
diagonal elements dA{j is antisymmetric in z, j> whereas the imaginary 
part dA\y is symmetric in i,j. Equation (8.51) holds in this case as well; 
(8.52) holds separately for the real and imaginary components dMffi 
and dMiy of the nondiagonal elements dM^. The equation 
analogous to (8.53) is therefore 

p(dS) = | Π I *iBl - ei°j I2! ^(dE) C, (8.58) 

where C does not depend on the 6i. As in the case ß = 4, this is 
sufficient for our purposes. 

The theorem is thus established for all three cases. 
Counting the dimensions of Tlc, T'lc, etc., proceeds as in the case of 

the Gaussian ensembles (cf. the end of Chapter 2 and Appendix A.2). 



9 / Circular Ensembles. Correlation Functions, 
Spacing Distribution, etc. 

9.1. Orthogonal Ensemble1 

In this chapter we repeat briefly the considerations of Chapters 5, 6, 
and 7 for the case of circular ensembles. 

First let us take the orthogonal ensemble, which is most important 
from a practical point of view. Here again the method of integration 
over alternate variables can be applied. For this purpose we use the 
identity 

| eie, _ eiBx | = i-i^iBi - eiQi) exp[—Jf(^ + 0j)], if θό > θι, (9.1) 

to write 

f ] | eiei -eiQi\ 

Γ N 1 

= /-d/2)N(N-l) e x p _ 1/(7V _ 1) £ ΘΛ Π (βίθΐ - ^^ (9·2) 
L i J Ki<ia 

where the θ$ are supposed to be ordered 

- 7 7 < θχ < θ2 < · · · < ΘΝ < 7Γ. (9.3) 

Writing the product of differences in (9.2) as a Vandermonde deter-
minant and multiplying the column containing the powers of eiQj by 
exp[— \i(N — 1)0./], we have 

Yl \eie>-eiQi\ =:i-(1/2)N(N-i)det[exp(z>^)]; (9.4) 

p = -m -1), -m - 3),.., m -1), 
j=l,2,...,N, 

if dj are ordered as in (9.3). 
+ Dyson [3]. 

104 

(9.5) 
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Let us take N even, N = 2m. As in Chapter 5, let u(6), ν(θ) be 
functions defined over the range (—π, π) and consider the average 

tf = (rLt»Wn!at *(».))' (9-6) 
taken with respect to the orthogonal ensemble β = 1, defined by 
(8.39). Here Halt denotes a product taken over a set of m alternate 
points 6j as they lie on the unit circles and fiait a product over 
the remaining m points. This average can again be calculated by 
integration over alternate variables, using (9.4). We define 

π 

f'vq = \: IT w(0) ν(φ) €(θ - </>)(eip*+iQe - eM+t**) άθ άφ, (9.7) 

with 
(1, θ>φ, 

*{θ-φ)=\θ, θ=φ, (9.8) 
( - 1 , θ<φ, 

and do the integrations step by step as in Section 5.2. The result is 

IP = C£(-l)n(2m)!]2 d e t [ / ; j , (9.9) 

p, q = —m + 4, — m + f,..., m — \. (9.10) 

By reversing the order of the columns we can write (9.9) as 

H* = C£[(2m)!]« de t [ / ; J . (9.11) 

To determine C'N1 put u(ß) = ν(θ) = 1 in (9.6) so that by (9.7) 
we get 

4Τ7 

f =-~-S (9.12) 
v>~q ip pg 

and (9.11) gives 

l = q „ ( 2 « ) ! ( 4 * ) » g ^ . (9.13) 

Inserting this value of C'N1 into (9.11), we finally get 

H2 = det[/M], (9.14) 

p, q = -m + h ~m + i»··.» m - h (9.10) 
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where 

Jpq 4 ,^ J p,-q 

π 

= ί\ί M(Ö) V^ €(6> ~ ^)te < ( î ,*"e 8 ) - e^-"^] άθ d<f>. (9.15) 
—π 

If the functions u(6) and ν(θ) satisfy the relation 

η(-θ)ν(-φ) = η(θ)ν(φ), (9.16) 
then 

/ -p . - , = / , . . (9.17) 

and there are further simplifications. We now have 

det[/p.<z + / -P . J = d e t [ /™ - / -» . J» P,Ç = h i>-> w - i, 

and the first power of / / may be written as a determinant: 

A = det[Fpe]l,.e.èi | m_è , (9.18) 
with 

*»a ~ Jv,q ~T~ J-v.q 

π 

= 4^r jj ν(θ) ν{φ) €(θ - </>)(cos /><£ sin qB - cos />0 sin ςφ) άθ άφ. (9.19) 
— 7Γ 

9.1.1. Two LEVEL CORRELATION FUNCTIONS 

Write u(ff) = ν(θ) = 1 + α(θ) in (9.6). Then 

, 2 m v 

ff = ( n ( l + « ( « i ) ) ) · (9-20) 

Equations 9.14 and 9.15 now become 

# 2 = detfS^ + rPQ]y (9.21) 
where 

J 
27Γ V ' <? 

r«, = -^- (l + -) | π α{θ) e^-^ άθ 

π + ~ L · S Sa^ a^ €^θ ~ ̂  eüve~q<i>) de <%-



9. Circular Ensembles. Correlation Functions, etc. 107 

Expanding the determinant (9.21) along its principal diagonal and 
keeping terms up to the second order in α(θ), we obtain 

+ (9.23) #2 = ι + Σ ^ + Σ 

or, for the logarithm of H, 

In H = ^- j α(θ) , β + I £ J L JJ" α(θ)<Φ) < θ - Φ) β'Ρ{β~Φ) αθάΦ 

- ü b Σ (ι +1)0 +1) // «W <Φ) ̂ -°ηθ-φ) «*Φ-
(9.24) 

The coefficient of the first-order term tn/π is just the level density. 
The second-order term gives the two-level cluster function 

τΜΦ) = -Σ£ΐ<θ-Φ)'ί"ιβ-*) 

= Μθ - φ) DsN(0 - φ) + [εΝ(θ - φψ 

--[ηΝ(θ-φ)][Ό3Ν(θ-φ)], 

where we have written 

ίν («)=(2τ) - 1 £«"*■ = 
2π sin(a/2) 

and 

DM = TJ(a), 

'/(<*) = \Ί{θ)άθ. 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

In the limit m—► oo, while (m/ττ) Θ = ξ and (m/π) φ = η remain finite, 
the function (2π/Ν) sN(0 — φ) becomes identical to the function 
s{r) of (5.64) and (5.65). The two-level cluster function Y2(r) and the 
form-factor b(k) are therefore identical to those of Section 5.4.2. 
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To obtain the cluster functions for the alternate series, put 
u{0) = 1, ν(θ) = 1 + α(θ) in (9.6). The result is 

H2 = {U,u (1 + "(O,))) = d e t^Q + r'J> (9·29) 
with 

r'vq = -^ (l + 1 ) J ^ «(*) « " ^ 8 «*»· (9.30) 

The analysis proceeds as before, only the term in e(9 — φ) is now 
missing from (9.25). The results are identical to those of Section 5.4.3. 

9.1.2. T H E DISTRIBUTION OF SPACINGS 

To determine Em((x)y the probability that a randomly chosen 
interval of length 2a is empty of energy levels, put 

ιι(θ)=ν(θ) = 1, if — 7Γ + oc <θ <7τ — α, 
= 0, otherwise, (9.31) 

in (9.6). We have chosen the center of the excluded interval to be at 
θ = π so that (9.16) will be satisfied. From (9.18) we then have 

Em(oc) = d e t ^ J p ^ / 2 , 3 / 2 w _ l / 2 , (9.32) 

where 
sin(j) — g) oc sin(j> + q) oc 

***-*» {p^q)7T {p+q)7T 

= hm Γ cos ρθ cos qd άθ. (9.34) 

In the limit m —► oo, while (w/77) a = ^ remains finite, the 
determinant (9.32) becomes E(t), the Fredholm determinant of the 
integral equation (5.99) with the kernel (5.98). This can be seen by 
putting ξ = (m/π) poc, η = (tn/π) qocy and taking the limit m —> 00. 
Thus the final results are identical with those of Section 5.5. 

The question of the spacing distribution for the alternate series 
was not raised in Chapter 5. This will be done in Chapter 16. Let 
E'm(oc) denote the expression H resulting from the choice 

u(ß) = ν(θ) = 1, if —77 + oc < θ <π — α, 
(9.35) 

ίΐ(θ) = 0, ν(θ) = 2, if ιτ-<χ<θ<π-\-<χ, 

(9.33) 
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in (9.6); E'm(oc) is then the probability that a randomly chosen interval 
of length 2a will contain at most one eigenvalue. The choice ν(θ) = 2, 
rather than 1, in the interval (π — oc, π -\- a) arises from the fact 
that while ordering — π < θλ < ··· ^ θ2πι ^ π half the interval 
(π — oc, π + OL) becomes unattainable for levels of the alternate series. 
Equations 9.18 and 9.19 then give 

£w(°0 = d e t [ ^J i ) ,9= l /2 .3 /2 «1-1/2 > (9.36) 

sin(j) - q) a sinjp + q) oc 
F»« = *~ - {P~q)7r + (p+q)7r ^ 

= h ™ - v f sin Ρθ sin νθ άθ· (9·3 8) 

When m —► oo, while (w/7r) α = ^ί remains finite, the limit of E'm(a) 
is £"(i)> t n e probability that an interval t will contain not more than 
one eigenvalue in a series with mean spacing D = 1. This limit is 
obtained exactly as in the preceding paragraph, the sole difference being 
we are now concerned with the odd solutions of the integral equation 
(5.101) or (5.102). The E\t) thus coincides with that given by (6.21) 
and (6.22). Note that although E\t) is the probability that a randomly 
chosen interval of length t will not contain any of the eigenvalues 
belonging to the same alternate series its second derivative is not a 
probability. The probability density for spacings between pairs of 
next nearest neighbors is given instead (cf. Appendix A. 11) by 

P'(t) = -^[E(t) + E'(t)], (9.39) 

where E(t), the probability that the interval t will contain none of the 
eigenvalues, is given by (5.105) and (5.106) and E\t) is given by (6.21) 
and (6.22). 

9.2. Symplectic Ensemble, β = 4+ 

The joint probability density function for the eigenvalues of a 
unitary self-dual random matrix taken from the symplectic ensemble 
was derived in Chapter 8 as 

* V * i ····. ΘΝ) = C'mU\ ei"> - ^ I4· (9-40) 
j<k 

+ Mehta and Dyson [1]. 
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To deal with integrals containing such an expression we write (9.40) 
as a confluent alternant. As in (9.2), we have 

J-J | eie, _ eiek |4 = e x p [_2f(iV - 1) £ 0,1 Π &*> - *'*")*- (9·41) 
j<k

 L 1 J
 j<k 

Note that because the power index 4 is an even integer, ordering of 
the angles is no longer necessary. The fourth power of the product of 
the differences expressed as a determinant (cf. Appendix A. 16) is 

f ] ( ^ _ eieky = det[eiieiy le
i^-1^]l=0>1 2N_!. (9.42) 

1^3<k^N J=1.2 N 

If we multiply (2/ - l)th and the (2/')th columns by *-<ι/2)<2ΛΓ-ΐ)ΐβ, 
and ^-(Ι/2)(2ΛΓ-3)ΙΘ^ respectively, we obtain 

r N i 
exp -(2N - 1) ί Σ »J Π («'*' - *"*)4 = det[^»ei, (/> + N - i) e™*] 

L 1 )<k 

= ά&[έ*ρθί, peipei], (9.43) 

where p varies over the half odd integers 

-(N - i), -(N - f ),..., (ΛΓ - i). (9.44) 

We are now in a position to prove the main theorem of this section. 

Theorem 9.1 . The statistical properties of N alternate angles 0;·, 
where ei6i are the eigenvalues of a symmetric unitary random matrix of 
order (2N X 2N) taken from the orthogonal ensemble, are identical to 
those of the N angles φ^, where ei(t>' are the eigenvalues of an N X N 
quaternion self-dual unitary random matrix taken from the symplectic 
ensemble. 

Proof: Suppose that θχ < θ2 < ··· < Θ2Ν < θλ + 2π. We write the 
joint probability density function 

p = -{N - 1), -(N - f) (N 

j=l,2,...,2N, 

(9.45) 

(9.46) 
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as in (9.4), and integrate over the variables θλ, 03 ,..., Θ2Ν_1, as in 
Section 5.2. The limits of integration for θ2}_1 are (d2j_2 , è2j)> except 
when j = 1. For θχ these limits are (Θ2Ν — 2π, θ2). Thus the integra-
tion over the odd-indexed variables replaces the ^-column with 

f 2 άθχ e
ipei = (ip)-1^6* + eipets) (9.47) 

and the θ2}_χ column, for j > 1, with 

f 2} άθ eipe = (ip)-\eipe2i — eivQv-*). (9.48) 
02j-2 

This later column can be changed, as in Section 5.2, to 

(ip)-1 (eipe2i + eipe2N). (9.49) 

The (IN — l)th column is now simply (ip)"1 2eipe*N
y which allows 

us to drop the eipe*N term from every other column. The final result is 

θχ < θ2 < . . . ^ ö2iV< 01+277-

= C'2N1 i~N Y\ (ip)-1 2det[eipe*i, ipeiev] 

= σ 2 ("(ΪΛΟΓ) P N # 2 'θ* -" Μ · ( 9 · 5 0 ) 

which establishes the theorem. 
As an important corollary of Theorem 9.1, we state the following 

result. 

Theorem 9.2. The probability density function for the spacings of 
the eigenvalues in a self-dual, quaternion, unitary random matrix taken 
from the symplectic ensemble is given by 

P(t) = ^-§>[E(2t) + E'(2t)], (9.51) 

where E(t) and E'(t) are given by (5.105) and (6.21). Here t is the spacing 
measured in units of the mean spacing. 
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9.3. Unitary Ensemble, ß = 2 

Systems with no time reversal invariance may be characterized by 
unitary random matrices. The joint probability density function for 
the eigenvalue angles of such matrices taken from the unitary 
ensemble (cf. Chapter 8, Theorem 8.4) is 

PmVi .···. 0N> = C'm Π I eie' - «w* I2· (9-52) 
j<k 

Calculating averages with the probability density PN2 is mathe-
matically the simplest. Writing 

Yl | eiBs _ eiBk 12 = J-J φβ, _ 6ιθή J-J (β-ΐθ, _ 6-ιθή 
j<k j<k j<k 

= det[eil°i] det[e-"ei] (9.53) 

and remembering that 

'2* (2ττ, if / = /', 
/ > ' « - ' · " = 2" » Η θ ? If ΙΦν, (9-54) 

we get, as in Section 6.1.1, the «-level correlation function Rn : 

= ̂ S~ Σ Wfilu-i.t «?> (9-55) 
kltk2,...,kn 

= d e t f ^ ö , , **)],.*_,., » , (9.56) 

with 

«..«-£ Σ ^ - £ « . (,57) 
We have used Gramm's result in getting from (9.55) to (9.56) 
(cf. Appendix A. 13). 

Thus the level density is 

ΚΝ(θ,θ) = -£-, (9.58) 
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as it should be. The two-level correlation function is 

*<">(M) = κΝ(θ, θ) κΝ(φ,φ) - κΝψ,φ) 

N \2 rsin[£iV(0-<£)]-!2 

\ 2π I [2π ein[l(Ö - φ)]\ ' K ' 

and the two level cluster function is 

^ ' *> - b»r ein[i(ö - ^)]J * ( 9 · 6 0 ) 

On taking the limit N -> oo, while keeping Νθβπ = £ and 
Νφ/2π = η fixed, we have 

F2U(£,,) = lim ( - ^ - ) ' T2u(0, φ) = (-^pf, (9.61) 

where 
τ = \ξ-η\. (9.62) 

This result is identical to the two-point correlation function for 
the case of the unitary Gaussian ensemble (6.13). 

For the spacing distribution we first find the probability EuN(oc) 
that a randomly chosen interval of length 2oc will contain none of 
the angles 0;· : 

2π-α 

£«*(«) = / - / PM ,.». ΘΝ) Μχ - MN 
<x 

= det \-^— Γ~* άθ e«'-™] (9.63) 

= det hjk - ^ - Γ ί/ö *w-*>e] 
L 2ττ J _QL h,k=1.2 N 

= det Γδ^ - -^ - Γ άθ e"»-«A (9.64) 
L Ζ7Γ J _ a

 J2J,ç=-(l/2)(Ar-l) (l/2)(iV-l) 

= det Γδ„ - ^ - f </0 cos(/> - ?) θ] 
L Ζ7Γ J _ α

 J î ) ,0=-( l /2) (N-l ) (1/2XJV-1) 

(9.65) 
where we have used the result given in Appendix A. 13 to arrive at 
(9.63). Since 

Σ (̂ i»</ — c o s Ρθ c o s yO)fiqr ~ sm ^ s i n r^) = &pr — cos(/> — r) 0, (9.66) 
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we may factorize the expression (9.65): 

EuN(a) = det [δ„ - - ^ : f β cos(p - q) θ dd] 

= £ » * » (9-67) 

with 

Em(oc) = det Γδ^ -Jrf cos />0 cos ?0 </#], (9.68) 

£ » = det [δ^ - J L J" sin />0 sin g0 <»], (9.69) 

/>, <? = - ( m - i), - ( m - f ),..., (m - J), (9.70) 

where we have put iV — 2m. 
Taking the limit m —> oo, while /wa/77- = ί is kept fixed, is exactly 

the same as in Section 9.1.2 and the results are identically given by 
(6.20), (5.105), (6.21), (5.106), and (6.22). 

9.4. Browning Motion Model· 

Just as in Chapter 7, we can construct a Brownian motion model 
for the elements of our unitary matrices. Every matrix U taken from 
the ensemble Eßc can be written as 

U = VVD (9.71) 

where V is unitary and VD is the transpose or the dual (cf. Chapter 2 
and Appendix A.23) of V, according as ß is 1 or 4. For the unitary 
ensemble, ß = 2, VD is unrelated to V, except that VD is unitary 
and (9.71) holds. A permissible small change in U is then given by 

8U = V(t8M) VD, (9.72) 

where 8M is an infinitesimal Hermitian matrix which is symmetric and 
hence real if ß = 1 and self-dual if ß = 4. Let us denote the in-
dependent real components of 8M by 8Μμ ; μ = 1,2,...,/); 
p = N -\- \N(N — l) β. The isotropic and representation-
independent Brownian motion of U is defined by the statement that U 
at time t moves to U + 8U at time t -f- 8t, where 8U is given by 

+ Dyson [4], 
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(9.72) and the real parameters 8Μμ are independent random variables 
with the moments 

<δΜμ> = 0, (9.73) 

/<(δΜμ)*>=ΛΑΓδί, (9.74) 

where £μ is given by (7.16). 
The effect of the Brownian motion of U on its eigenvalues eie> 

may again be found by choosing U to be diagonal at time t and 
calculating eiWi+BBi) at time t + 8t by perturbation theory: 

8Θ 
β~τ r fi< - -

. = δΜ<°> + Σ Σ (8^) ' [*«* (^y^)l + - (9·75) 
ί λ=0 L \ L 11 

Equations 9.73 and 9.74 imply that the angles 9j execute a Brownian 
motion with 

/<δβ,>=£(β,)δί, (9.76) 

/<(δβ,)2> =2kT8ty (9.77) 
where 

£(ö , )= £ i c o t ( L 5 ) . (9.78) 

This force £*( ·̂) is exactly the component, tangential to the circle, of 
the electric field produced at eiBi by unit charges placed at all the 
other points eiBl at which U has eigenvalues. Thus 

dW 
m) = ~ W r , (9-79) 

W = - X In | eiQi - eie> |. (9.80) 

One may write the corresponding Focker-Planck equation and find 
that the unique stationary probability density for the eigenvalue angles 
which corresponds to the completely diffused probability density 
of C/ is 

Ρ(Θ19...,ΘΝ) = €' Π \e"i-en*\*. (9.81) 
Kj 

This is again a new proof of Theorem 8.4. 
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10.1. General Remarks 

In Chapter 9 we studied the correlation functions, cluster functions, 
and spacing distribution of the eigenvalues of a unitary matrix taken 
from Dyson's circular ensembles. In this chapter we calculate the 
partition function, the energy, the free energy, the entropy, and the 
specific heat of the energy levels defined in complete analogy with 
the classical mechanics. Later we apply thermodynamic ideas to 
"derive" the asymptotic behavior of the spacing distribution for large 
spacings. As Dyson [2] remarks, such a "derivation" is useful in 
two ways. As long as no direct analytical method is known to deal 
with this problem, the thermodynamic argument is the only one at 
our disposal. If, later, an analytical method is found, these results 
will serve, by way of comparison, the purpose of demarking the 
region in which such arguments are reliable. 

10.2. The Partition Function 

Analogous to Chapter 4, consider a thin circular conducting wire 
of radius unity; let TV point charges be free to move on this wire. 
The universe is supposed to be two-dimensional. The charges repel 
one another according to the two-dimensional Coulomb law, so that 
the potential energy due to this electrostatic repulsion is 

W=- £ In | *ίβι - i?ifli | . (10.1) 

As in Chapter 4, we discard the trivial velocity-dependent contribu-
tions. The positional partition function at a temperature kT is given by 

ΨΝ(β) = (2π)-" ί··· f er** αθ,- άθΝ , (10.2) 

ß = (kT)~\ (10.3) 
+ Dyson [2]. 

116 
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where W is given by (10.1). The aim of this section is to prove the 
following theorem. 

Theorem 10.1. For any positive integer N and a real or complex ß 
the ΨΝ(β) is given by 

ΨΝ(β) = Γ{\ + \βΝ)[Γ{\ + ij8)]-". (10.4) 

The proof may be divided into three parts: 

1. If (10.4) holds for all even integers β, it will hold for any 
complex β. 

The argument depends on the fact that W is bounded from below. 
It is intuitively clear (for a proof see Appendix A.21) that this minimum 
is attained when the TV charges are situated at the corners of a regular 
polygon of TV sides inscribed in the unit circle. The value of the 
minimum is easily calculated and gives 

W^W0= -|TV In TV. (10.5) 

As in Chapter 4, we can now express the partition function as a 
moment function and deduce its analytic and asymptotic properties 
[Shohat and Tamarkin, 1]. Denoting the expression (10.4) by ψΝ(β) 
we can then use Carlson's theorem [Tischmarsh, 1] for the function 

Δ(β) = β^ο[ΨΝ(2β) - φΝ(2β)] (10.6) 

to conclude that if the expressions (10.2) and (10.4) are equal for 
all even integers β they are identically equal. 

2. The integral 

(2π)~» · · · Π | eiQi - eiQi \2k αθ1 · · · ddN (10.7) 
J oJ i<j 

is equal to the constant term in the series expansion, involving 
positive as well as negative powers of Zj ; j = 1, 2,..., TV, of the 
product 

n(l-^f· (10.8) 

To see this let Zj = exp(/0,·), so that 

| », - , , I" = (*, - *,)* (*7* - ζΤψ = (l - i|L)* (l - -2-)1" (10.9) 
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and note that any power other than zero of Zj ; j = 1, 2,..., N, 
vanishes on integration. 

3. The constant term in the expansion of 

1.3 v 

(ΙΦΪ) 

is given by 
(ai + ...+aN)l 

A proof is reproduced in Appendix A. 19 [Wilson, 1]. 
If we put αλ = a2 = ··· = aN = k in (10.10) and (10.11), we get 

the constant term in the expansion of (10.8) as 

(Nk)\ (k\)~N = Γ(1 + kN){r(l + k)}-N. (10.12) 

The proof of Theorem 10.1 is now complete. 

10.3. Thermodynamic Quantities 

Theorem 10.1 specifies completely the thermodynamic properties of a 
finite Coulomb gas of N charges on the unit circle. For applications to 
the energy level series we are interested only in the special case of a 
very large N\ N -> oo. In this section we study the statistical 
mechanics of an infinite Coulomb gas or, equivalently, that of an 
infinitely long series of eigenvalues. 

The partition function (10.2) is normalized in a way that the 
energy of the gas is zero at infinite temperature (β = 0). The potential 
energy at zero temperature is then the ground-state energy. 

W0= -JAHnTV. (10.13) 

To obtain finite limits for the thermodynamic variables as TV -> oo 
we must first change the zero of the energy to the position W0 . 
By definition the gas then has zero energy at zero temperature and 
positive energy at any positive temperature. The partition function 
defined on the new energy scale is 

*s(ß) = V")-N !'' f er**-** αθ, - αθΝ . (10.14) 
J o J 

(10.10) 

(10.11) 
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The free energy per particle FN(ß) is 

FN(ß) = -(ßN)-Hn0N(ß) (10.15) 

= i In N - 08ΛΓ)-1 In Γ(1 + tfN) + β-1 In Γ(1 + \ß)y 

(10.16) 
where we have used Theorem 10.1. Taking the limit N —► oo, we 
obtain the following theorem: 

T h e o r e m 10.2. As N —* oo the free energy per particle of the 
Coulomb gas at temperature k T = β~λ tends to the limiting value 

F(ß) = ß->L(iß) + M I - Hmi (10.17) 
L(z) = In Γ(1 + z). (10.18) 

The values of the other thermodynamic quantities follow from 
(10.17). 

Energy per particle: 

U(ß)=F+ß^= \[L'{\ß) - Hiß)]· (10.19) 

Entropy per particle: 

508) = 

Specific heat per particle: 

s(ß)=p^ = m^xm - 1 ] - L{\ß). (10.20) 

C(ß) = -ß*?£= -\ß*L°{\ß) + \ß. (10.21) 

To calculate the values of these thermodynamic quantities for 
physically interesting values of ß the following formulas [Bateman, 3] 
may be used: 

L(z) = -γζ+Σ ( - l ) " î j * » , I z I < 1, (10.22) 
2 H 

L(z) =ζ\ηζ-ζ + ±\ηζ + ϊ 1η(2ττ) + γ ^ + 0 ( ^ - ) , 

| * | - * oo, (10.23) 

L(z + n) -L(z) = £ ln(* + r), (10.24) 
r = l 

L"(z) =Σ(*+ Ό - 2 . (10.25) 
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and 

L'(i) = 2 - y - 2 In 2, (10.26) 

where y is Euler's constant [Bateman, 4] 

y = 0 .5772- (10.27) 

and Sk are the sums of the inverse powers of the integers 

Sk = Σ «-*. (10.28) 
n=l 

In particular, 
00 

<?2 = Σ « - 2 = ; 7 Γ (10.29) 
1 

and 

Σ (2« — 1)-« = ^ - . (10.30) 

Table 10.1 summarizes this calculation. 

10.4. Statistical Interpretation of U and C 

If we denote the ensemble average by < >, 

</> = — , (10.31) 

then from (10.14), (10.15), (10.19), and (10.21) we have 

<W-W0} = -[ΦΜ]-1 jß ΦΝ(β) = NU (10.32) 

and 

<(w - <^»2> = <(w - w0yy - «w - w0»* 
= [^(β)]-1ψφΝ(β)-(Νυγ 

= ß~2NC, (10.3; 
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where W is the electrostatic energy given by (10.1) and 
WQ = — 1}N In N is the minimum value of W when the charges 
are uniformly spaced. Thus U is, apart from normalization, the 
ensembles average of the logarithm of the geometric mean of all 
distances between pairs of eigenvalues, and/?~2C is the statistical mean 
square fluctuation of the same quantity. 

For analyzing the properties of observed eigenvalue series, W 
seems to be a good statistic. It has two great advantages over the 
other statistics such as F and S: 

1. W can be computed from the eigenvalue pair-correlation 
function alone without analyzing higher order correlations. 

2. The statistical uncertainty of W is known from the value of C. 

We summarize the situation in the following theorem. 

Theorem 10.3. Let zx, #2 >···> ZN be the eigenvalues of a random 
unitary matrix taken from one of the ensembles Ex, E2, or EA . The 
statistic 

W - W0 = ±ΛΠη N - X In | *< - *, | (10.34) 

has the average value NU and the root mean square deviation ß~\NC)1l2 

with the values of U and C listed in Table 10.1. 

10.5. Continuum Model for the Spacing Distribution 

In this section we exploit an argument of classical statistical 
mechanics to arrive at the asymptotic form of spacing distribution 
for large spacings. 

As in Section 10.2, we write the joint probability density function 
for the eigenvalues ei9i\ j = 1, 2,..., N, of a random unitary N X N 
matrix as 

ΡΝβ(9ι . · · · . ΘΝ) = c'me-ßW ( 1 0 · 3 5 ) 

with 
W = - £ In | eie> - eiQ* |. (10.36) 

The probability that an arc of length 2a will contain none of the 
angles 0;·, that is, the Em((x) of (9.32), is given by 

E(ßy oc) = Ψβ(«)ΙΨβ(0), (10.37) 
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where 
2π-α 

Ψβ(α) = j - j e-W άθι - αθΝ (10.38) 
α 

is the partition function of the analogous Coulomb gas of N charges 
compressed in a circular arc of length 2π — 2α, whereas Ψβ(0) is the 
partition function of the same gas on the whole unit circle. We write 

Ε(β, a) = txp{-ß[FN(ßy a) - FN(ßy 0)]}, (10.39) 

where FN(ß9 a) is the free energy of the Coulomb gas on the arc 
2π — 2α. 

The hypothesis that for large N the Coulomb gas forms a continuous 
electric fluid obeying the laws of thermodynamics may be put in the 
form of the following three assumptions: 

1. There is a macroscopic charge density; that is there exists a 
smooth function σα{θ) such that the average number of charges on 
the arc (0, θ + dB) is σα(0) άθ. 

2. For a given density σα(0) the free energy is the sum of the two 
terms 

F = Vx + V2, (10.40) 

where Vx is the macroscopic potential energy 
t 2ττ-α 

Vi = " 2 S S σ*{θ) σ°{φ) 1η ' e'e -ei* 'άθ αφ 

and V2 is the contribution from the individual arcs, depending only 
on the local density 

V2= Γ~^Μ/βΚ(θ)]αθ, (10.42) 

/β[σ] being the free energy per particle of a Coulomb gas having 
uniform density σ on the whole unit circle. The factor \ in (10.41) 
is there because the interaction between two arc elements is counted 
twice. 

3. In almost all cases the density σα adjusts itself in such a way 
that the free energy FN(ß, a) given by (10.40), (10.41), and (10.42) 
is a minimum, subject to the condition 

ί2π_α σα(0) άθ = N. (10.43) 

(10.41) 
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This last equation expresses the fact that the total number of charges 
is fixed to N. 

There is no rigorous mathematical justification for the above 
assumptions. But they are so much accepted by tradition that we make 
no apologies for adopting them. 

The functional fß(a) remains to be specified, and we write 

ffa) = Ufa)-ß-*Sfa), (10.44) 

where Uß(a) is the energy and Sß(o) is the entropy per particle for a 
uniform gas of 

N' = 2πσ (10.45) 

charges on the whole unit circle. 
As in (10.19), the energy per particle is 

Uß(a) = -±\nN' +U(ß). (10.46) 

The term — \ In N' is included, for we now have to take the total 
energy, including the ground-state energy — ^Ν' In N'. 

The entropy SP(G), if calculated as in Section 10.3, is in-
dependent of N' for large N'. However, one thing should be noted. 
The calculation of the entropy in Section 10.3 was made for a gas 
of N distinguishable particles. The entropy so defined is not an 
extensive quantity. To make it extensive we must subtract N\ from 
the classical entropy, which amounts to treating the particles as 
undistinguishable. As we need the Sß(a) in (10. 44) to be an extensive 
quantity, we write 

S fa) = In ( -A-) + S(ß), (10.47) 

where S(ß) is given by (10.20). 
Putting 

°fa)=-^PAß) (10.48) 

and collecting (10.40) to (10.47), we have 

ßFN(ß,a) = G2 + G1+G0, (10.49) 
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where 
AT 2 2 π _α 

G*= ~i/s ("ΪΓ) / / p M pM) ln '*" ~ *** 'άθ αφ' ( 1 0 · 5 0 ) 

α 

G1 = (l- m ( - g - ) J ' ^ Ρβ(0) In Ρβ(β) d», (10.51) 

G0=ßN[F(ß)-ilnN]; (10.52) 

and F(j8) given by (10.17). One has to minimize the quantity (10.49) 
under the restriction 

J " α pjiß) άθ = 2ττ. (10.53) 

When α = 0, the equilibrium density ρΛ(θ) = 1, and G2 = G± = 0, 
so that 

ßFN(ß, 0) = G0= ßN[F(ß) - è In TV] (10.54) 

and from (10.39) 

E(ß, oc) = exp[-minp (G2 + GJ]. (10.55) 

Using Lagrange's method to minimize (G2 + G^ under the 
restriction (10.53), we get for β Φ 2 

~β (^τ)2 ίΓΡΑΦ) 1η 'eie ~βίΦ 'άφ + (~ë~)(1 _ ij8) ln ρ"{θ) 

+ ( - ^ - ) θ - i j 8 ) - A = 0, < * < 0 < 2 π - α , (10.56) 

where λ is the undetermined constant. Letting 

w = - Γ " A.Win i e < 9 -e<* i ^ > ( i o · 5 7 ) 
we have 

ß (-£-) (1 - iß)-1 να(θ) + In Ρα(0) = constant 

or 
pjfl) = Ae~yv^\ (10.58) 

y = |8 ( - ^ - ) (1 - \βΥ\ (10.59) 
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When ß = 2, Gx is zero, and the minimization leads to 

VJtf) = - f " ° ρΛ(φ) In | eie - e* \ d<f> = constant. (10.60) 
J a. 

The νΛ(θ) is the electrostatic potential at the angle Θ produced by 
all the other charges. If β Φ 2, these charges are in thermal equi-
librium at an effective temperature 

kTe=^{\-m=\-\ (10.61) 

under the potential VJß) generated by themselves. If ß = 2, the 
potential να(θ) is constant and the charges are in electrostatic 
equilibrium on a conducting circular arc of length 2π — 2α. 

The problem in the case of unitary ensemble β = 2 is the easiest 
to handle. The classical problem of charge distribution on a slotted 
conducting cylinder is well known. Here we give only the result 
[Smythe, 1]. The solution of (10.53) and (10.60) is 

Ρα(θ) = sin | (sin2 | - sin2 ̂  (10.62) 

Fe = 2wln(cosj). (10.63) 

Equation 10.55 therefore gives 

In £(2, a) = -min p G2 = N2 In (cos ^j. (10.64) 

In the limit TV —> oo, t = 2ocN/2n finite, we obtain 

£(2, t) = lim exp (N* In cos ^ 

- lim exp(- |N2
a

2) = exp ( - y ί2) (10.65) 

and the probability density function of the spacings 

*0 = i !^~^ex P ( -£4 t>L (1066) 

The case β Φ 2 is more difficult. Dyson has applied perturbation 
theory to expand F in inverse powers of OLN. Since G2 is of the 
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order (ocN)2 and Gx is of the order (aiV), he treats Gx as a "small 
perturbation* ' over G2 . The tedious details of this calculation may be 
found in the original paper [Dyson, 2]. The results are as follows: 

The first- and second-order contributions to free energy in the 
limit of large N and large t = ocN/π are 

ß*i - (1 - iß) N In (sec ? + tan g (10.67) 

*>(! - i f l y ' (10.68) 

ßF2 a» -■ 1 (1 - iß)2 {ln[tff(1 - ^)"1] + y}, (10.69) 

where y is Euler's constant. Equations 10.55 and 5.84 then give the 
results 

E(ßf t) ~ At"» exp [ - ^ ßt* - (1 - iß) ^ t] (10.70) 

and the probability density for the spacings 

pß(t) « A*+'W exp [ - ^j8f« - (1 - i )8)y ί] , (10.71) 

where 

/(/3) = ^ ( l + W (10.72) 

and A is a constant, which cannot, in principle, be determined from 
thermodynamic arguments. 



11 / The Orthogonal Circular Ensemble. 
Wigner's Method 

11.1. General Remarks 

In this chapter we develop a method of calculating the spacing 
distribution in the orthogonal circular ensemble, due originally to 
Wigner. Though this method could not be adapted to numerical 
computation when the order of the matrices becomes large, it gave the 
normalization constant and the slope of the probability density of 
the spacings at zero spacing. The correct slope turned out to be π2/6 
rather than 7r/2, as given by the "Wigner surmise/ ' 

pw(t) = T*r<'l"*, * = - £ . (11.1) 

This was how for the first time (11.1) was put in some "disrepute" 
by Wigner himself. The calculation was never published. Moreover, 
it was believed, incorrectly, to have been a calculation of the mean 
square spacing. This same slope was later calculated by Mehta 
[2, Section 7] and Dyson [6], using different methods (cf. Chapters 5 
and 9). 

11.2. The Method of Integration1 

We start by proving a few lemmas. At first glance they may look 
unrelated, but their relevance to the problem will become clearer as 
we proceed. 

Lemma 11.1. Let Δ(να yvb,vc,...) be defined by 

Δ(να , Vh , VC ,...) - [Va(va + Vh)(va +Vb+ VC) . · · ] - ! . (11.2) 

t Wigner [7]. 
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We then have the identity 

f ( - l ) ^ ^ , ^ , . . . , ^ ) ^ ^ ^ , . . . , ^ ) = 0 . (11.3) 
fc=0 

It is assumed here and in the following that whenever the cor-
responding index does not exist the relevant factor is unity. For 
example, in (11.3) the k = 0 term is Δ(νλ , v2,..., vn) and the k = n 
term is ( - l ) n Δ(νη , νη_1 ,..., Vl). 

Proof. Consider the left-hand side as a function of, say, v± . Its 
possible singularities are at the points νλ — — (v2 -f ··· -\- vt) and at 
vx = 0. At vx = — (^ + ' " + "i) t w o terms in the sum become 
singular, k = 0 and k = I: 

Δ{νχ , v2 ,..., v% ,..., i/n) + ( — \)1 A(vx ,..., V l) A(yl+1 ,..., vn) 

= h K +V2)'"(vl + '"+ Vl-l)(Sl + Vl+l) ~'(Sl + VM + '·· + VrdhV1 

+ (—i^M"! + vi-i) '" (yi H— + "2) ̂ +1(^+1 + VM) -" 

("i+i + -+"»)* i ] - 1 > (11.4) 

where sx = νλ + v2 + · " + vx. The coefficients of sj1 in the 
two terms are equal and opposite at st = 0. To verify this, replace vx 

in the second term by —{yx + ··· + vx_x — st), (vx -\- vx_^ by 
— ΟΊ + ·*· + vi-2 — si)>-> a n d ("i + "1-1 + *·· + ^2) b y — {vi — *i), 
so that at sx = 0 factors in the two terms may be compared. 

This holds for all /, including / = 1; that is, the point vx = 0. 
The original function of vx is therefore nowhere singular and so must 
be a polynomial in vx . Because every term in the sum (11.4) contains 
at least one linear factor in νλ in the denominator, the polynomial 
mentioned above must be identically zero. 

Lemma 11.2. Let a be the antisymmetrization operator\ a = Σ Ρ cpP, 
where P is a permutation of the variables vx , v2,..., vN and ep is its 
parity. We have the identity 

(-l)»aA(Vl , v2,..., vN) = (Vl + v2 + - + ,,*)-1 

N 

X Σ ( - 1 ) * β ^ ( " ι . · · · . » ' » _ 1 , ν 4 + 1 , . . . , ν Ν ) . (11.5) 
Λ = 1 
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Proof: The right-hand side is antisymmetric in all of the variables 
vlyv2,...,vN and contains N(N — 1)! = Nl terms. It also contains 

Δ{νι »···» VN) = (vi + '" + VN)'1 Δ(νι >···> VN-I) 

with the coefficient ( — \)N. Therefore the two sides of (11.5) are equal. 

Lemma 11.3. The antisymmetrized A(vx, v2,..., vN) is 

aA(v1,v2,...,vN) = f[v? Π [("* - ",)(v* + ν , Π . (Π.6) 
k=l l^j<k^N 

We prove (11.6) by induction; let it then be valid for N — 1. 
Using (11.6) on the right-hand side of the identity (11.5) and 
reducing to a common denominator, we note that the degree of this 
common denominator is 1 + N + ^N(N — 1), and by counting 
factors in each term of the sum we find that the degree of the common 
numerator is 1 + ^N(N — 1). Because the right-hand side of (11.5) 
is antisymmetric, it vanishes if vj = vk ; the numerator therefore 
must contain a factor (vj — vk). On taking out all such factors that 
are ^N(N — 1) in number, we are left with a linear factor sym-
metric in all the νλ , v2,..., vN. This linear factor can only be 
("i + v2 + *·· + vN). 

A constant multiplier is still undecided. For this we suppose that 
vi <C v2 ^ " " ̂  VN a n d compare the dominant term on each side of 
(11.6). This term is (νλ · v2 vN)~x. Finally, (11.6) is true for 
N = 2, as can be easily verified. 

Lemma 11.4. The integral 

1>φ2 ρθχ ΛΘ2 

άθΝ άθΝ_χ - άθχ exp[t(vA + - + νΝθΝ)] 
·> φι ·> φι ·> φί 

= j - j dß1-deNtxp[i(u1e1 + -+vIlell)] (11.7) 
Φ ι ^ θ 1 ^ θ 2 < · · · 

^θΝ<:φ2 

is equal to 

N 

X i™-N explifo + - + ν,)φ1 + i{vM + - + νΝ)φ2] 

x A(vk,...,Vl)A(vk+1,...,vN). (11.8) 
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The proof is by induction. Assume that 

J . - J dBx - άθΝ_λ exp t fM + - + Vtf.A-i)] 
Φι<θ1^θ2^···^θΝ 

N-l 
= £ f2*-(N-l) ^ (ν 1 + . . .+^)φ 1 +<( ι ΐ + 1 + . . .+^_ 1 )θ Λ Γ A(vk , . . . , ^ ) J ( v f c + 1 , . . . , VN^). 

fc=0 

Therefore the expression (11.7) is 

N-l 

Σ 
fc=0 

X l-H^Jfc+l + " · + VN)~X A{vk , Vk-1 >···, " l ) ^ K + l > ·> ^ N - l ) 

= £ '2*"Ν expfiK + - + vk)<f>1 + i(vM + - + vN)<£2] 
)t=0 

X ^ Κ . " * - ι . · · · . " i ) ^ ( " f t+ i . · · · , " N ) 

(11.9) 

where we have used the identity 

K+i + *·· + VN)'1 ^ K + I >···> "N-I) = A(vk+1 ,..., vN). 

By Lemma 11.1, the second sum in (11.9) is the k = N term in 
(11.8). 

Finally, for N = 1, 

J Φι »ι 
= i-1 eivi*2 Δ(νλ) + i2-1 eivi*i Δ(νχ). (11.10) 

Thus we have proved the lemma. 

Theorem 11.1. The integral 

ΚΦ1Α2) = J'"J d6l '" dd2m d e t [ e x p ( t v A ) k * - 1 . 2 2m ( H - H ) 
2 φ 1 < θ 1 ^ θ 2 ^ · · · 

<ο2 7 η^2φ2 



132 11.2. The Method of Integration 

is given by 

ζ Ι Φ - ι Φ ο ] ~ = ~—~ 
vl "' v2mili^j<k^2m\vj + vk) 

X det[vf"2 sin vp, vf-1 cos v.oc}^ 2w , (11.12) 
k=\ m 

with a = φ2 — φτ . Note that the columns of the determinant in (11.12) 
are obtained, except for a possible change in sign, by successive differentia-
tions of the first column, that is, of (sin Vjoc). 

Proof From (11.11) and Lemma 11.4, 

2 φ 1 < θ 1 ^ θ 2 ^ · · · 

= * Σ i2k~2m eXPWyl + - + " * ) 2^1 + '("*+! + "" + "2m) 2<̂ 2] 
2m 

Σ 

k=0 

X ^ K > * * - l >.··> " l ) ̂ ( " * + l » - » V 2 m ) 2m 

= Σ (-1)*""' Σ «P[»K + - + v j 2^ + /(„„t+i + - + vaJ 2φ2] 
k=0 (a) 

2m /c 

= Σ (-1)*-"1 Σ exP (2^ιΣ *., + 2>'Φ* Σ O (-ΐ)Σί<"'-ί) 

fc=0 (a) X 1 Jfc+1 

X ( - 1 ) Σ ^ a Δ(Κι, % ,..., % ) a J(v„i+1, ^ , . . . , v„J , (11.13) 

where £(a) means a summation with the conditions ô  < oc2 < ··· < afc , 
α&+ι ^ αλ·+2 < "* < a2/w o v e r all permutations ο̂  , a2,..., cx2m of the 
indices 1, 2,..., 2m. 

Let us call ^ , a2,..., ock the "occupied" states and c^+1, ock+2,..., a2m , 
the ''unoccupied" states. We define an "occupation number" €k , 
which is -f-1 for the "occupied" states, οίλ , oc2 ,..., ock , and zero for 
the "unoccupied" states, αΑ,+1 , ak+2,..., oc2m . With this device we can 
extend the summation over all indices 1, 2,..., 2m. For example, 

k 2m k 2m 

Σ ai = Σ j<i · Σ "«, = Σ w . e t c - (11-14) 
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Using (11.6), we obtain from (11.13) 

I = Σ ( - 1 Γ + Σ ^ exp [2ί Σ e,vA + 2 i Σ (1 - e,) ^ 2 ] 
e l ' * " » € 2 m 

X ("1 ··· "2m)-1 Π [ K - ",)("* + v,)-l]U-*>U-«,>+V,, 

(11.15) 
for e^· + (1 — €^(1 — €;) is unity when both states j , k are occupied, 
or when both are unoccupied, and €k€j -f- (1 — €k)(l — €j) is zero 
otherwise. 

A more symmetrical form is obtained by introducing the "spin" 
that takes the value + 1 for the occupied and — 1 for the unoccupied 
states 

* * = 2 ( € * - * ) . (11.16) 

Equation 11.15 gives then 

/ = £ ( _ 1 y.+u/Dau-M,) exp \ί{φ, + φ2) £ „, + ί(φ, - φ2) £ , Λ | 
» l . - - - . s 2m i i 

X ( V ' J - ' Π [("* - "/)("* + ^)-ΐ]«/«»+'Λ), (11.17) 

(_1)<ι/«)Σ«ι+·,) = p[ (_,.);, (π.18) 

and 

= Π [("* + ^ " V A - Vi» Π ^ 1 · (11·«) 

Substituting (11.18) and (11.19) into (11.17), we get 

/ = ( - 1 ) - exp Γί(^ + φ2) Σ A (-ir^^iv, ..· ,2m)-i Π ("* + "i)"1 

x Σ Π (vksk - *%) exp [i(& - <£2) X Vi] Π si 
s 1 , . . . , s 2 m K i < f c ^ 2 m i j 

= eXP W l + ̂ 2> Σ Vi\ K ' " V2m)_1 Π (V* + ̂ ) " 1 

i l^j<k<^2m 

X X exp^-^X^Jdett^-i].,^ 2m. (11.20) 
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The summation over Sj in (11.20) is over all possible choices Sj = ± 1 . 
By absorbing the factor βί{φι~φ2)δ^ in the yth row of the determinant 
in (11.20), we see that each row depends only on a single Sj . The 
summation over Sj can therefore be carried out in each row, in-
dependently of the others. 

Σ e x p ^ - ^ ^ l ^ f - ^ l v f - i c o s v . « , α=φ2-φ1, (11.21) 

Σ e xPW^i - Φ2) sivH sf^vf = -livf sin ν.α, <χ = φ2 - φχ. (11.22) 

Sj=±l 

Equation 11.12 is now evident. 

T h e o r e m 11.2. This is really a corollary of Theorem 11.1, but 
because of its importance we state it as a theorem. The integral 

J - J de1-dßiMdet[e»°i\ 
2 φ 1 ^ θ 1 < θ 2 ^ · 

<6 

Γ m I"2 

= im2«™(m\)2 Π (2;)! det[Z)(«)] (11.23) 
L 3=1 J 

where p varies over the half-odd integers —m-\- \ , —m-\- §,..., ra — \ y 

whereas j = 1, 2,..., 2m. On the right-hand side det D(OL) is the deter-
minant of 

o -
(q2i-2 s'm qo^ q2i-2 s j n qa 

£>(<*) = 

where 

— (q21'1 cos qoc) q21'1 cos qoc 

= φ2—φ1 

1=1,2 m 
α=*. ί m - i 

(11.24) 

(11.25) 

Proof: In Theorem 11.1 take the limits — v2j-i — v2j — j ~~ h-
Because so many factors vanish in the numerator and the denominator, 
it is best to add the (2/)th row to the (2/ — l)th, divide the sum 
by v2j_1 -f v2j, and then take the limits ν^_λ + v2j —► 0. Finally put 
v2j = j — \ . This procedure gives 

m 
lim Π (ν2._χ + vy)-1 det[vf"2 sin Vj<x, vf-1 cos v.oc] = DT(oc)y (11.26Ï 
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where DT(oc) is the transpose of D(oc). Also 

v 1 - v 2 m = ( - l ) ' » n 0 - ^ = ( - i r [ ^ - ] 2
> (11.27) 

v1 + ··· + v2m = 0, (11.28) 

and a straightforward, though lengthy, calculation (cf. Appendix A. 18) 
gives 

m rm - l 2 

Π iyi + "*) Π ("«-1 + v«)-1 = Π (2/')! · (11-29) 
1^j<fc<2ra i = i "-j=i 

Substituting from (11.26), (11.27), (11.28), and (11.29) into (11.12), 
we obtain (11.23). 

11.3. Spacing Distribution 

Now, putting oc = π — x into (11.23), we obtain the probability 
that there are no levels in an interval of length 2x. 

π—w 

E(x) = f ··· f dOx ··· de2m(42mnmml)-1 Π | eiei - eie* 
l^j<k^2m 

(2m)! 
24%mm! 

f - f άθλ-άθ27ηά*[βΐ*%=1 2m 

^θοη^π-Χ 

= 22mn~n ml 
(2m)\ lj_[ 

where D(x) is the determinant 

m - l 2 

Γ[Π(2;)!] D(x), (11.30) 

D(x) 
— (q2l~2 cos qx) + ττφι~2 sin #jc ^2*-2 cos ̂ x 

— (q21'1 sin ÇA;) — nq21'1 cos x̂ ç2i_1 sin <7# 

q = J, §,..., m — 4, 

/ = 1, 2,..., m. 

(11.31) 

(11.31') 
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To expand D(x) in powers of x it will be convenient to simplify it 
further so that for small x it looks like a checkerboard. We replace the 
(21 — l)th row by the linear combination 

2/ — 2 
?2l-l H r2l-2 + ™2l > (11.32) 

7Γ 

where r;· denotes the jth row. 
For small x9 including powers up to, say, the second, (11.31) can 

therefore be written 

D(x) = 

— (21 - 2)2 q2l~3x + (21 - 1) q21'^2, q2l~2 + — (2/ - 2) q2l~2x + \q2lx2 

7Γ 7Γ 

-7Γ?2'-1 + 2ψ-^χ + J T ^ 1 * 2 , q2lx 

(11.33) 

Following Wigner, one can compute the first few terms in the 
power-series expansion of D(x). For instance, if we write 

D(x) =D0 + DlX + D2x
2 + ···, (11.34) 

then 
r 0 <72*-2i 

Z)0̂ Z)(0) = det[_^i_1 \ } ^ * m-i 
1=1.2 m 

= π™ det[q21-2] det^2*"1] 

= "mY\<iYl(P2-<i2)2 

S If [»■)"]* (1 L 3 5) 
and 

*-[f(^)+i(--£)] «.--£*. 
so that (11.30) gives 

Ε(χ) = 1-—χ+.... (11.37) 
77 

(11.36) 
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To calculate higher terms in the series (11.37) is more laborious. 
The calculation should show that the term in x2 is absent, 

D2=0, (11.38) 

for the probability density of the spacings at zero spacing is zero. 
If one has enough patience, one can go a step further and get the 
slope of the probability density of the spacings at zero spacing. 

However, to make any further progress seems to be difficult. 



12 / Matrices with Gaussian Element 
Densities But with No Unitary 
or Hermitian Condition Imposed1 

An ensemble of matrices whose elements are complex, quaternion, 
or real numbers, but with no other restrictions as to their Hermitian 
or unitary character, is of no immediate physical interest, for their 
eigenvalues may lie anywhere on the complex plane. However, an 
effort [Ginibre, 1] has recently been made to investigate them and 
the results are interesting in their own right. 

To define a matrix ensemble one has to specify two things: the 
space T on which the matrices vary and a probability density function 
over T. With a view to practical applications, one can take T as 
the set of all real symmetric matrices with a reasonable probability 
density. For example, one may assume that the matrix elements are 
independent and have Gaussian probability densities so that all the 
diagonal elements have the same variance σχ and the same mean 
value, whereas all the off-diagonal elements have the mean value zero 
and the same variance σ2 ; the ratio of the variances σλ and σ2 being 
arbitrary. This case has not yet been considered analytically. 

12.1. Complex Matrices 

The more tractable case is to take T as the set of all TV x N 
complex matrices. The probability that a matrix from the set T will 
lie in (5, S + dS) is P(S) /x(rfS), where p(dS) is the linear measure 

^ S ) = n < « j o > ^ > (12.1) 

and Sffi, Sjl] are the real and imaginary parts of the matrix element 

Sik = S<°>+iS}l>. (12.2) 
+ This chapter is based on the articles by Ginibre [1] and Mehta and Srivastava [1]. 
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For the function P(S) we may choose, for example [Ginibre, 1], 

P(S) = expt-triS+S)]. (12.3) 

We denote the ensemble so defined as Tc. It is visibly invariant 
under all unitary transformations. 

To get any information about the eigenvalues, we must first 
find their joint probability density. This can be done, as in Chapter 3, 
by changing the variables from Sjk to the (complex) eigenvalues Zj 
of S and the auxiliary variables pj. Since tr(S*S) is not only a 
function of Zj but contains other variables pj as well, these variables 
have to be chosen carefully to facilitate later integrations. Let the 
eigenvalues of S be distinct; the case when S has multiple eigen-
values need not be considered for the same reasons as in Chapter 3. 
Also, let X be the N X N matrix whose columns are the eigenvectors 
of S so that X is nonsingular and X~XSX = E is diagonal. From 
S = XEX~X we obtain by differentiation 

dS = X(dE + dAE - E dA) X-\ (12.4) 
with 

dA = X-HX. (12.5) 
Equation 12.4 reads in terms of its components: 

(X-1 dSXy* = dzf> = dx., (*-i dSX)$ = dz}» = dy., 

(Jf-i dSX)%> = (xt - *.) dA]» - (yk - y,) dA% 

(X-i dSX)% = (yk - y,) dA$ + (*, - x,) dA$ j Φ * 

where Xj , y$ are the real and imaginary parts of Zj , the diagonal 
elements of E> whereas dAffi and dAffl are the real and imaginary 
parts of dAjk . Whenever any set of differentials is expressed linearly 
in terms of those of the others, the ratio of the volume elements is 
equal to the Jacobian. The volume element in (12.1) is therefore 
given by 

p(dS) = μ(Χ~ι dSX) 

= Π I ** - *, I2 dA% dA% Π ax, dy{. (12.8) 

One still has to evaluate the integral 

] = f exp[-tr(S*S)] Π dA% dAlï> (12·9) 

(12.6) 

(12.7) 
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which can be done by a careful choice of the new variables of 
integration and by using properties of determinant expansions (see 
Appendix A.24). The result is as follows [Ginibre, 1]. 

The joint probability density for the eigenvalues of S belonging 
to the ensemble Tc of all complex matrices is given by 

Pc(zx , z2,..., zN) = Kc exp —£ | Zi |2) Π (12.10) 
1ίζΐ<3^Ν 

where Kc is the normalization constant given later by (12.17). 
With this joint probability density function one can determine 

various quantities of interest as easily as in Section 9.3. For example, 
the probability that all the eigenvalues z{ will lie outside a circle of 
radius a centered at z = 0 is 

^Arc(a) = J · ' · / Λ(*ι >··.> *N) Π dxi tyi · 

By writing 

n i ** - * i ia = π (** - *i)(*r - *f) 

... i 
'" Z N 

KN-1 . . . ~N-1 ~ * N - 1 . . . ~ * N - 1 
Zl ZN 

and multiplying the two determinants row by row we get 

EsM = Kc j - j (Π dxt rfy,) exp ( - £ | *, I2) 
l « ( l > « ' 1 

TV Σ*, Z*r 

Y z*z. ··· y Z*ZN~I 

Σ *t*N_1 Σ *?"-% · · · Σ s*"-1*?-1 

(12.12) 

Since the integrand is symmetric in all the zi , we can replace the 
first row with 1, ζλ , ^2, . . . , ζ"~χ and multiply the result by N\ ζλ can 

(12.11) 
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now be eliminated from the other rows by subtracting a suitable 
multiple of the first row. The resulting determinant is symmetric in 
the N — I variables z2, z% ,..., zN ; therefore we replace the second 
row with z$y z^z2,..., z}z2~

x and multiply the result by N — 1. The 
process can be repeated and we get 

ENc(a) = KCN\ J*··· j * (Π dx{ dyl exp ( - £ | , , |») 
Ι«,·|>« * 1 

1 ζΛ ··· z?-1 

*2 *2 

~ * N - 1 ~ * N - 1 ~ . . . ~*AT-1~N-1 
*tf *N *Ν ZN ZN 

(12.13) 

Since the various rows now depend on distinct variables, we can 
integrate them separately with the exponential factor. By changing to 
polar coordinates and performing the angular integrations first we 
see that 

f érl*l V s * dxdy =77 Sjkr(j + 1, a2) (12.14) 
J \z\>* 

so that 

ENc(oc) = ^ „ Μ π " Π Γ 0 \ «2), 
i= i 

(12.15) 

where Γ(]> oc2) is the incomplete gamma function 

r(j, oc2) = e-V-1 dx = Γ{ j) e-«2 £ -7p . (12.16) 

Since ENc(0) = 1, the constant Kc can be determined from (12.15) as 

N 

K-
3=1 

(12.17) 

and therefore 

N ) - l 21 v 

EsM = Π p Σ -V i=0 
(12.18) 
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It is easy to convince oneself that ENC(OL) tends to a well-defined 
limit as N —► oo. For small values of oc one may expand ENC(OL) in a 
power series: 

ENe(") = 1 - «2 + K - A«8 + Ä«10 - - . (12.19) 
To get the coefficient of oc2i in the above power series one may replace 
e~* ΣιΖο a2 7^ by unity for all j > i. In fact, one can even get for 
Ec(a) = lim^so ENc(a) a series of upper bounds and a series of lower 
bounds converging toward each other. We have the obvious inequality 

0 < Π [e-*2<*A«2)] < 1, r > 0, (12.20) 

where 

«,(*) = Σ 7Γ (12.21) 

is the truncated exponential series. On the other hand, the identity 

' -^■•>="P[-J;'° 'W^)-WH <»*> 
and the inequality a;(x) > ÖJ(#) for j ^ I give us 

1τ=? r 2 , 9X, Γ V r 2 **(*) - «i-iW ^ 1 
Π [e~° <,(«>)] = exp [ - £ Jo ^ ' * ] 

N-l „ α
2 

r L J 0 ar(*) J 

Taking the limit N —* oo, the inequalities (12.20) and (12.23) give 
us finally 

0 <F,(«*)/e(«») <Fr(«*)/r(«*) < £e(«) <*>(«*) <F.<«*) < 1, 
if r > s > 0 , r' > j ' > 0 , (12.24) 

where 

Fr(o?) = f f [e-\{o?)} = £„(«) (12.25) 
j - 0 

(12.23) 
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and 

U«>) = ^[-f/X-^{X)dX}. (12.26) 

Equation 12.24 gives us in particular 

e xp (_a2 _ | α ψζ± dxj ^ £ c ( a ) ^ (i + a2) e-^\ (12.27) 

To get the n-point correlation function 

K(*l ,·.., *n) = ,N _ v, J - J Λ(*1 ,···, *N) Π <**< ̂  (12·28) 

we proceed exactly as in Section 6.1 or 9.3. Equation 12.14 cor-
responds to the orthogonality property of <pk in Section 6.1. The 
final result is 

*n(*i ,··., *») = "~n exp ( - £ I *t I2) detttftfto , * , ) ] M = 1 n , (12.29) 
x l 

where 

**(*<.*,) = Σ^Ψ-- (12-30) 
ι=ο ι· 

As iV —> oo the correlation functions tend to well-defined limits: 

Rn(z1,..., zn) ~ π~« exp ( - £ | *< |2) d e t [ ^ ; ] u = 1 > 2 n . (12.31) 
v l 

In particular, the density of the eigenvalues is 

^(«r) = TT-ie-l-l2 X l ^ i - . (12.32) 

This density is isotropic and depends only on | z \ = r, which was 
to be expected. It is constant R^z) & Ι/π for r2 <^ N and R^z) ^ 0 
for r2 Ξ̂> N. The sum in (12.32) can be estimated in an elementary 
way. From the inequalities 

N-l r2l °° r2l r2N °° r2l 

£ /! £ /i - AT! L {N + 1}i 

r2N TV -j- 1 
= Α Π Λ Γ + ! - > ■ ' for ^ " ( 1 2 · 3 3 ) 
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and 
N-l ,21 r 2 (N- l ) N-l χ _ { I 

\ l\ ^ (N - 1)! \ \ r2 / 
r2(N-l) r 2 

= (N-iy.r>-N+l' f ° r H * " (12·34) 
we get 

0 r2N TV 4 - 1 

l - ^ 1 ( g ) < ^ 2
m j V + 1

+ _ r 2 for r ^ i V (12.35) 

and 

„ r2N N 
"Ri(z)<e-r*Wr2 + l _ N for r^N. (12.36) 

One can also estimate how fast the eigenvalue density falls from 1 /π 
to 0 around r2 = N. Putting r = N1/2 ± u, 0 < u <> 1 << N, the 
leading term in (12.35) and (12.36) is e~u2/2u \Ζπ. 

The two-point correlation function in the limit TV —> oo is 

#2(*i, **) = ^-2[1 - exp(- | zx - z2 \2)] (12.37) 

and depends only on the distance between the eigenvalues. 

12.2. Quaternion Matrices 

In this section we consider matrices whose elements are real 
quaternions (cf. Chapter 2). All four quaternion components of each 
matrix element are random variables. To proceed any further one 
has to know about the diagonalization of these matrices. The eigen-
value equation may be written as 

SY = Υλ, (12.38) 

where y is a vector with N quaternion components (the eigenvector) 
and λ is a quaternion number (the eigenvalue). There is no reason 
a priori for (real quaternion) solutions to (12.38) to exist. Fortunately, 
they do and in sufficient number (Appendix A.25). Writing (12.38) as 

ΞΥμ = Υμ(μ-1λμ), (12.39) 

we see that if λ is an eigenvalue then so is μ~λλμ for arbitrary μ. 
Thus the eigenvalues of a given matrix are not just discrete points 
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but describe closed curves, and one has to talk about the distribution of 
these eigencurves in the four-dimensional space. Even if one chooses 
to describe these curves by some fixed point or points on them, only 
one-sided linear independence of the corresponding eigenvector rays 
can be established by the usual methods. Although, for a given 
quaternion real matrix S another such X can be found (in the favorable 
circumstance of distinct eigencurves) which diagonalizes it, 

S = XEX-1 (12.40) 

[E diagonal and real (Appendix A.25)], it seems difficult to establish it 
by purely quaternion means. 

In view of these difficulties, from now on we shall employ the 
matrix representation of quaternions (cf. Chapter 2), thus doubling 
the size of the matrix Sy and use well-known results on matrices with 
complex elements. Thus, in reality, this section does not deal with 
the quaternion matrices as such but with even-order complex 
matrices having a special structure; the elements of S satisfy the 
relations 

S2i,2j = S2i-l,2j-l > S2i-l,2j = ~S2i,2j-l 02·4 1) 

or, in the matrix notation, 
SZ = ZS*, (12.42) 

where Z is the antisymmetric, real, unitary matrix (2.21). 
If X is the IN X 27V matrix whose columns are the eigenvectors 

of S, the eigenvalues being all distinct, then 

S = XEX-1, (12.43) 

where E is diagonal. The diagonal elements of E occur in complex 
conjugate pairs Zj, zf"\j = 1, 2,..., N. The linear measure is 

μ ( Λ ? ) = Π dS<»vdS«U,v (12.44) 
λ=0 ,1 

where dSffi and dSffi are the real and imaginary parts of dSy . 
For P(S) we take 

P(S) = e x p [ - i t r ( S ^ ) ] ; (12.45) 

the factor \ is there to compensate for the artificial doubling of the 
size of S. We denote the ensemble so defined by TQ . Equations 12.4 
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and 12.5 are valid. If we write (12.4) in terms of the various com-
ponents, the volume element of dS is 

vtds)=n i *4 - *,* i2 n (i *, - *, i21 *, - *r H 
< ίΦί 

x Π dA$MdA$L1M. (12.46) 
A=0,1 

The integration corresponding to (12.9) for this case is carried out in 
Appendix A.26. The result is as follows [Ginibre, 1]. 

The joint probability density function for the eigenvalues of S 
belonging to the ensemble TQ of all complex matrices satisfying 
(12.41) is given by 

PQ{zx,..., zN) = KQ exp ( - £ | zt \A Π I *, - *,* I2 
X 1 ' 1 

x Π (I *i - *i I21 *i - ζΐ I2)· ( 1 2 · 4 7 ) 

where i^0 is the normalization constant given by (12.52). 
With this joint probability density function one can determine the 

various quantities of interest with almost the same ease as in the 
unitary case. The method to be followed in all such calculations is 
to express Ρ0(ζλ ,..., zN) as a confluent alternant type determinant and 
use the integration method developed in Chapter 5 and Appendix A.7. 

Let us write a 2N x 2iV Vandermonde determinant of the variables 
Zj , zfyj = 1, 2,..., TV; that is, the determinant whose (2/ — l)th 
column consists of the successive powers of Zj , (1, Zj , #/,. . . , ζψ-1), 
and whose 2/th column consists of the successive powers of 
zf, (1, zf, zf:2,..., zf™'1), for j = 1, 2,..., TV. We can clearly see that 
this determinant is nothing but 

π (*,* - *,) n (i *, - *i i21 *( - * ; i2)· (12.48) 
i i<j 

Thus we are led to define 

f..(u) = jj e~\z\\z - z*) w(^)(^*J - z'z**) dx dy, (12.49) 
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and the average value of Π* u{zù ( s e e Appendix A.7) is 

Π "(**)) = \'"\ Ρο(ζι '···» *N) Π u(*i) dxi dVi 
i i 

= KQNl (det[ /„]< i M i l m_jW. (12.50) 

Putting w(#) = 1 and equating the average (12.50) to unity, we get 
the value of KQ : 

/«(l) = 27r0-!8 i + l i i - t !8 m . j ) (12.51) 

Κ-ι=Ν\(2π)»Υ[Γ(2β. (12.52) 
1 

Next we put 
u(z) = 0 , if | z | < a 

= 1, if | * | > a, (12.53) 

and obtain an expression for ENQ(<x)y the probability that no eigenvalue 
will lie inside a circle of radius a centered at the origin 

^ - ) = Π ^ . (12.54) 

where the incomplete gamma functions r(j> a2) are defined by 
(12.16). Corresponding to (12.19), (12.20), and (12.26), we now have 

E0{«) = lim ENQ(oc) = 1 - Ja* + Ja« - ice* + ^ « 1 0 _ ..., (12.55) 
/V-»oo 

/ . W ^ / r ^ K ^ X W K W , for r>s,r'>s'>0, (12.56) 

where now 

Fr(a*) = Π ( ^ + ι Κ ) ) (12.57) 

and 

/,(«*) = Fr(<*s) exp f- f K ^ - ^ ) - ^ - t W ^ 1 ( 1 2 < 5 8 ) 
L J 0

 a2r+l J 

with aj(x) given by (12.21). 
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To get the correlation functions Rn(z1, z2,..., zN), equation (5.2), 
we substitute u(z) = 1 -f a(z) and expand in powers of a(z). To avoid 
manipulations analogous to those leading from (6.34) to (6.45) (or to 
get them built in from the very beginning) we replace z2i by 
ΣΜ^ΙΙ z2k/2kkl and z2M by z2M/(2i + 1)! in the determinantal 
form of (12.47). These replacements amount to multiplying (12.47) 
by a known constant. We are thus led to introduce the quantities 

^ ' 2H\ 2jj\ 
λα = (2")~1f2i,2i = (2*-)-1 Σ Σ-^ϊψίϊ 

X jj (*****« - A*2fc)(# - **) e-W2 a(z) dx dy, (12.59) 

IH, s (2ir)-i/t<+1.w+1 = (2π)-ΐ[(2ί + 1)! (2/ + l)!]-i 

X f f (^2t+l^*2i-fl _ ^2i+l^*2t+l)(^ _ ^*) e- |«|» α φ fa dy? 

(12.60) 

S« + vw = (2π)~1/2ί<2ί+1, (12.61) 
and 

with 

"« = (2")-1 [(2/ + l)!]-1 Σ 2Hl 

*=o 2*A! 

X J Ï (*****«+! - ^i+iÄ*2*)(^ _ * * ) β—1*1" α (*) die i y . 

(12.62) 

We thus get the average value of Πί ( 1 + ai(zi)) m terms of v{j, 
Xi}, and μί} (cf. Appendix A.7): 

<̂Π (1 + «(*<))) = / - J Λ>(*ι , «2 ,..·, *„) Π (1 + «(*.)) <** <y* 

= (det[_/« δ»+ν«1 Γ 
\ L 0,-j- Vji μ^ Jt,j-o.l 2N-V 

(12.63) 

= ^ + Σ "« + "5ί Σ (v«vw ~ vtfv* — W + "*> 
(12.64) 
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where the summations are taken from 0 to iV — 1 over the indices 
independently. The various correlation functions can now be 
obtained by functional differentiations of (12.64) at a(z) = 0. 

For example, the eigenvalue density is 

^•)-[w<n(i+«(^>]Ä--5^^-

= (2ττ)-ι e-l'i'(* - **) " f i ^ - f ^ l y . ( A * 2 < + 1 - c-c·)· 

(12.65) 

To get the limiting value when N —»■ oo it is more convenient to 
take k and i — k = Ax as independent summation indices. This 
gives us 

R^z) = e~\*\\z - **) φ(ζ, **), (12.66) 
where 

φ(ζ,**)=(2π)-ν* £ [k\r(k + k, + f )]-i 
fc./c^O 

x [ ( T ) (—) - ( T - ) (—) I <12-67> 

(12.68) 
and 7fc + 1 / 2 is the Bessel function 

V i / i W = Σ [Λ! Γ(* + *i + i)]"1 (i*)tt+*'+1/2· (12.69) 
fc=0 

By using the recurrence relation for Bessel functions, we obtain the 
following simpler equation (cf. Appendix A.27) 

φ(ζ, **) = 7τ-\ζ* - z) ezz* f1
 β<ι/2)(*-**)»χ j fe . (12.70) 

Equations 12.66 and 12.70 give the eigenvalue density. The two-point 
and three-point correlation functions /^(^ι > #2) anc^ ^3(^1 > ^2 > #3) 
can be computed similarly. The same function φ with different 
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arguments makes it appearance, and after a little manipulation the 
final result can be written as 

2 

E Α,(*ι.*ΐ) = Π[*-|,'|,(*1-*4*)] 

X {det (12.71) 
i,J-1.2 / 

and 
3 

Π **(*! >**>**) = II Ι^Λ^-'ΐ)] 

X {det 
,1/2 

t.J-1,2.3/ 
(12.72) 

where 

<£(«, β) = 7Γ-108 - «) ^ I exp[*(« - £)2 *] . (12.73) 
Jo VI — JC 

Although we have no proof, it appears that (12.71) and (12.72) have 
an obvious generalization. 

12.3. Real Matrices 

A matrix with real elements does not necessarily possess a sufficient 
number of real solutions to the eigenvalue equation (12.38). This is 
perhaps the reason for the great difficulties experienced in the 
investigation of random matrices with real elements. If all the 
eigenvalues are real, then, taking 

Ρ(8)μ(ά3 =e _ p-tr (S+S) π^«. (12.74) 
i,i 

Ginibre has shown that the probability density function for the 
eigenvalues is identical to that of Gaussian orthogonal ensembles 
(3.17) (cf. Appendix A.28). If some of the eigenvalues are not real, 
one has only a complicated integral expression for the joint probability 
density function of the eigenvalues, which has not yet been simplified. 
We hope that this will be done some day. 



13 / Gaussian Ensembles. Level Density in the 
Tail of the Semicircle 

The density of nuclear levels increases steeply almost like an 
exponential in the experimentally observed energy range. On the 
other hand, the eigenvalue density for the Gaussian ensembles is a 
semicircle in the first approximation: 

σ(χ) & π~\Λ ~ x2)V2, A = IN. (13.1) 

Therefore one might think that near the lower end, x = — All2, 
this density looks like the actual rise in nuclear level density. Although 
the deviations must be small compared with the dominant behavior 
(13.1), the tail might still contain an infinite number of eigenvalues. 
For example, σ(χ) may be proportional to N1/3 in a region extending 
to iV1/6, so that the number of eigenvalues not accounted for by (13.1) 
will be proportional to iV1/2, increasing rapidly with the dimension 
number N of the matrices of the set. If this were the case, we should 
expect that the correlation functions and the spacing distribution in 
the tail part would be nearer the actual situation. However, the 
following calculation [Bronk, 2] shows that this is not true. Near 
x = ^A1/2 the eigenvalue density σΝ(χ) is ^TV1/6 in a region of 
extent ~Af-1/6, so that the total number of eigenvalues in the tail 
part remains finite and amounts to only a few, even when N —► oo. 

For the Gaussian unitary ensemble the eigenvalue density σΝ(χ) 
is the sum (cf. (6.9) and (A9.1)) 

M*) = Σ 1 *Λ*) = Σ* {2{/!7TV2}-I/2 e-**{Hj{x)}2 ( 1 3 . 2 ) 

= (έΛ01/2 [?*(*) 9>*-i(*) - φΝ(χ) 9&-ι(*)]> (13·3) 

where ψ is the derivative of φ. To have any similarity with the 
exponential the function σΝ(χ) must be convex from below, and we 
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will be interested only in that region. Let us therefore determine the 
inflection point x0 such that σΝ(χ) is convex from below for all x > x0 . 
Differentiating (13.3) and substituting from the differential equation 

φ](χ)+&+1-Χ*)φ,(χ)=0, (13.4) 

satisfied by the harmonic oscillator function ψί{χ)> we get 

σ'Ν(Χ) = -(2Νγ/ΖφΝ(χ)φΝ_1(χ). 

Differentiating once more, we obtain 

σ£(*) = -(27V)V2 WN(X) ψΝι{χ) + ΨΝ(Χ) ^ _ Ι ( * ) ] . (13.5) 

We are interested in the location of the largest zero of σ"Ν(χ). For 
x ^ (IN)1!2, ψΝ(χ) and ΨΝ-^Χ) are both positive and decreasing so 
that φ'Ν(χ) and Ψ'Ν-^Χ) are both negative. Because the outermost 
maxima of φ^χ) move out with the increase of j , φΉ-^χ) is negative 
and <pN(x) is positive when <p'N(x) first becomes zero. As we decrease 
x across the value (27V)1/2, φΝ(χ) will attain its maximum value and 
then decrease to zero, whereas <£y-i(*) will always remain positive. 
Thus σ"Ν(χ) changes sign as x varies from the largest zero of φ'χ(χ) 
to the largest zero of φΝ(χ) and therefore must vanish somewhere in 
between. These largest zeros lie very near each other and their 
location is known [Szegö, 1]: 

x0 & (27V)1/2 - 1.856(2iV)-1/6. (13.6) 

We are interested in estimating the number of eigenvalues larger 
than x0 : 

f°aN(x)dx. (13.7) 

To estimate <Pj{x) near the transition point put 

x = (2/ + l)i/2 _ 2-i/23-i/3y-i/6, n 3 8 ) 

so that the differential equation (13.4) for <pj(x) is transformed to 

£*&{*) + MM = 0, t . y -2 /3 < i < j ; (13.9) 

ΨΑ*) = ^ J ( 0 · (13.10) 
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This is Airy's equation. The solution that goes to zero for t -> — oo 
is given by 

&(f) = i aj-V*(-t)V* *«»/«#$ (2/ ( -^ - ) 3 / 2 ) , t < 0, (13.11a) 

= 2 ( 3 ) r i f l e i - i W j / _ 1 / 3 [2 ( | ) 3 / 2 ] + Λ/3 [2 ( | ) 3 / 2 ] j , t > 0, 
(13.11b) 

The ratio of the normalizations in (13.11a) and (13.11b) is such that 
the two forms of ^(t) join smoothly at t = 0. The constant a may 
be determined from the condition that the average value of | fj(t)\2 

over an interval for t > 0, t ^> 1 coincides with the classical approxi-
mation of the quantum mechanical probability density for a harmonic 
oscillator in that region. The asymptotic form of (13.11b) to be used 
for this purpose is 

fa(t) oc f-1/4 cos(j8i8/2 - fa), t > 0, (13.12) 

ß = 2(3)"3/2. (13.13) 

For our purposes it is sufficient to note that a is a small constant of 
the order of 0.3 and it does not depend on j . Using the power series 
for /_!/3 and j^/3 in (13.11b), we obtain an approximate expression 
for 4 ( 0 for I t\ < 1: 

ΦΜ) ™ &(0 = *iT1/ia *C2<, (13.14) 

cx & 1.477a, c2 & 0.506. (13.15) 

As t -> 0, <ßj(t) —► <l>j(t). We can actually prove that, for 
t < 1.856.61/3;'"176, fj(t) < <?,·(*)· However, we shall evade this issue 
and be satisfied with the approximation of replacing <f>j{t) by fj(t) 
in the entire region x > x0 . Realizing that the only terms contributing 
appreciably to the summation (13.2) are those with a large j , we set 

j = TV - 1 - μ, (13.16) 
(27V)1/2

 + y = ç2j + !)i/2 _ 2-1/23-1/3^-1/6^ ( 1 3 i l 7 ) 

expand in powers of μ/Ν, and keep only the dominant terms to get 

{φΝ-μ-Μ
2 « ' iW- 1 / e exp [ -2»/·3ν·„ΛΓν· (y + p j L j ] 

^ 2.18α2ΛΤ-!/β exp i - l .Oo iV 1 ^ + μ^Ν)-1/2]}. (13.18) 
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Putting this in equation (13.2), 

σΝ(χ) & lAWN-V« exp{-2iV1/ey} f exp(-21/W-1/V) άμ 
J o 

& 1.54aWV6 exp(-27V1/6:v). (13.19) 

Thus the eigenvalue density in the tail varies as iV1/6. The total 
number of eigenvalues in the tail is 

00 

Γ σΝ(χ) dx & \.54a*NV* f exp{-2iV1/6>;) dy 
J Ύ*~ * —1/6 

X° - 1 . 8 5 β ( 2 Λ Γ ) 

& 0.77Λ2 exp(25/ex1·85«) & 14.3α2 ^ 2. (13.20) 

To get the eigenvalue density (5.56) for the Gaussian orthogonal 
ensemble in the tail of the semicircle we need an estimation of 

/ = nV* Γ dx L ^ W \\2m{y)dy\ (13.21) 

where N = 2m. We transform the second integral on the right as 
follows: 

/»£C /»OO /»OO 

<P2m(y) dy = <p2m(y) dy - <p2m(y) dy J o *Ό J x 
1 /»oo /«oo /«oo 

= 9 <P2m(y) dy - <P2m(y) dy = — <p2m(:y) <fy> w Φ ° 
•^ ^ —oo J x J x 

so that 

/ = —m1/2 I J* | ^2^ - Ι (^ ) I 9>2mO0 Φ Ί · (13.22) 
J x0

 L J ÎC J 

Now one can use the approximation (13.14) to see that the right-hand 
side of (13.22) is a small constant independent of m. 



14 / Bordered Matrices 

In some physical situations it is instructive to consider an ensemble 
of matrices that is slightly more difficult than the diagonal ones. 
Matrices that have their elements in the principal diagonal and a few 
neighboring super- or underdiagonals distributed at random, while all 
other matrix elements are zero, are of importance, for example, in the 
theory where glass is represented as a collection of random nets. It is 
required to determine the distribution of the characteristic frequencies 
and of the modulus square of the characteristic amplitudes of such 
random nets. The problem of such a linear chain with nearest neighbor 
interactions was first solved by Dyson [6]. The problem is simple enough 
to be treated analytically. It corresponds to an ensemble of Hermitian 
matrices whose only nonzero elements are those that lie in the layers 
immediately above and immediately below the principal diagonal. Later 
Wigner [5] treated the case of real symmetric matrices whose diagonal 
elements were equispaced. Elements in a few layers on each side 
of this principal diagonal had the same nonzero magnitude with a 
random sign, whereas all other elements were zero. In this chapter we 
present briefly some important features of these investigations. 

In the physical situation of a disordered linear chain in which each 
atom interacts with many of its neighbors one has to deal with 
matrices with many layers of nonzero random elements on both sides 
of the principal diagonal [Englman, 1]. Attempts have also been made 
to treat the two- and three-dimensional lattices of random oscillators. 
A nice review containing references to the earlier work is due to 
Maradudin et al. [1]. 

14.1. Random Linear Chain1 

Consider a chain of N masses, each connected to its immediate 
neighbors by springs that obey Hooke's law. The masses and the 

+ Dyson [6]. 
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spring constants are random variables with known average character-
istics. The problem is to determine the probability density function 
of the normal frequencies of this chain. This theory applies equally 
well to an electric transmission line composed of alternating 
capacitances and inductances with random characteristics. We will be 
interested in the limit N —> oo. 

By simple algebraic manipulations it can be shown [Dyson, 6] that 
the normal frequencies of such a chain are the eigenvalues of the 
(2N — 1) X (2ΛΓ — 1) Hermitian matrix with elements 

HM , = -H, M = i\V\ (14.1) 
3+1,) 3,3+1 3

 J v
 ' 

where the λ;· are given in terms of the masses and the spring 
constants Kj (connecting m$ and τη^+1) by 

V i = ^ , λ « = ^ · 04.2) 
m
3

 m
3+l 

Because H is antisymmetric having an odd order its determinant 
is zero and hence one of its eigenvalues vanishes; this corresponds to the 
degenerate motion in which all the masses have exactly the same 
displacement. All other eigenvalues occur in pairs coj, — ω^ . Let 
Μ(μ) be the distribution function defined as the proportion of the 
eigenvalues ω^ for which ω2 ^ /z, so that a probability density 
function can be defined as 

^) = ά-ψ- (14.3) 

It is required to find either Μ(μ) or Ώ(μ) in the limit TV —> oo 
when the distribution of the λ;· is given. 

Dyson, instead, considers 

Ω(ζ) = Hm (2N - l)"1 £ ln(l + ζω?) 
3 

= f°ln(l +ζμ)Ό(μ)αμ (14.4) 

as a function of the complex variable z. That branch of the logarithm 
is taken which is real for real positive z. Then the integral (14.4) is 
convergent and defines an analytical function of z for the whole 
#-plane, except for the negative real axis. As z tends from above to 
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a point — x on the negative real axis, the imaginary part of ln(l + ζμ) 
tends to zero if χμ < 1 and to π if χμ > 1. Hence (14.4) gives 

Re Γ-i- Hm Ω(-χ + ie)] = Γ Ό(μ) άμ 

= 1 - M ( 1 ) , (14.5) 

or on differentiating, 

D C-) = -*» Re [ 4 - lim ß ' ( - * + *) ] . (14.6) 

Therefore, once Ω'(ζ) is known, £(/x) is determined by its limiting 
values on the negative real axis. Most of the time, however, it is not 
possible to express Ω'(ζ) as a closed analytical expression and direct 
analytical continuation becomes impossible. For use in such cases 
Dyson derived the formula 

Ό(μ) = (277-2/x)-1 Γ doc(cosh ττα) \Γ αχ(χμ)~1 COs[a Ιη(χμ)] Ω'(χ)\ (14.7) 

to express Ό(μ) in terms of the values of Ω\ζ) for the real positive 
values of z. The details of the derivation will not be given. Thus, even 
if Ω'{ζ) is known only numerically or approximately on the positive 
real axis, ϋ(μ) can be evaluated by numerical integration. 

Dyson derives an explicit formula for Ω(ζ) in terms of the λ;·. 
The derivation is based on expanding ln(l + ζω?) in powers of zy 

replacing the sums of powers of ω? by the traces of the even powers 
of H and counting the terms that give a nonzero contribution to such 
traces. We will content ourselves by giving only the results and refer 
the interested reader to the original paper [Dyson, 6]. 

For an arbitrary chain with given coefficients λ^, Ω(ζ) is given by 

1 2 N - 1 

£>(*) = H m - l Σ InO +£(«))· (14·8) 
a=l 

where ξ(α) is the continued fraction 

? l j 1 + 1 + 1 + " " V ; 

Various assumptions can now be made as to what extent the λ;· are 
random and the consequences for the function Ω(ζ) can be derived. 
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For example, if all the λ; were the same, then all the ξ would be the 
same and 

Therefore 

and by (14.8) 

f = y ^ j 5 έ - O , as * ^ 0 . 

ξ = M(l + 4«λ)ΐ/2 _ i] (14.10) 

Ω(χ) = 2 In [J(l + 4zXfl* + \]. (14.11) 

On differentiation we get 

Ω\ζ) = *-i[l - (1 + 4*λ)-1/«], » > 0. (14.12) 

Continuing through the upper half plane to real negative values of 
z < — (4λ)_1 we find 

Ω'{ζ) = ζ-ψ + ί(1 + 4*λ)-ι/*]. (14.13) 

Hence (14.6) gives 

^ ) = - ( 4 λ μ - μ 2 ) - 1 ' 2
) μ < 4 λ , 

77 

- 0 , μ > 4 λ , (14.14) 

a result that in this simple case can be checked directly. 
Two more special cases have been analytically treated by Dyson: 

1. All the λ̂ - are independent random variables with a given 
probability density function G(X). In this case the ξ(ά) also have a 
probability density function -F(£), the same for all a. An integral 
equation for F(£) can be derived by equating the probabilities on 
both sides of the equality 

^) = TTWTT)-
The kernel of the integral equation contains G(X). Once this integral 
equation is solved by iteration or otherwise and F(£) so obtained is 
normalized, 

f F ( £ ) # = l , (14.15) 
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Ω{ζ) is given by (14.8): 
/»OO 

Ω(ζ) = 2 F(£) In(l + £) rff. (14.16) 
J 0 

ΰ(μ) can then be calculated. 
2. The λ;· are correlated in the following manner. The spring 

constants Kj are fixed and equal and the masses are independent 
random variables with a given probability density function G(m). In 
this case the variables η^ = [£(2/)]_1 are uncorrelated and an integral 
equation for their probability density function can be derived from 
the recurrence formula 

•̂ = T + TTt7· (ki = k)- ( 1 4 · 1 7 ) 

Equation 14.17 follows from (14.9) and (14.2). Also from (14.9) we 
have 

[1 + f(2/)][l + i(2j - 1)] = 1 + i(2j) + *- (14.18) 

relating the probability density functions for £{2j) and ξ{2] + 1), 
which will in general be different. Once these probability density 
functions are known as solutions of the above equations, the function 
Ω(ζ), and hence Ζ)(μ), can be calculated. 

14.2. Bordered Matrices1 

Let us consider only the real symmetric matrices. The diagonal 
elements are integers ..., — 2, — 1, 0, 1, 2,... . The elements Hjk for 
which | j — k | > m are zero, whereas the elements Hjk with 
| j — k | ^ m all have the same magnitude h: 

Hjk = ±h, if \j-k\^my 
(14.19) 

= 0, if | ; - k | > m. 

Subject to the symmetry condition Hjk = Hkj , the signs of the Hjk 

are random. Let us denote the eigenvalues and the normalized 
eigenvectors of H by λ and ψ{λ), respectively: 

Ηφ(λ)=λφ(λ) or Σ # ^ λ ) =A0<A>; (14.20) 
k 

t Wigner [5]. 
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and for a λ lying between x and x + 8x find the expectation value of 

WO2- (14-21) 

where φ{
0
λ) is a particular component of ψ(λ). This expectation value 

will be written as σ(χ) Sx, where σ(χ) is named "the strength function/' 
As the absorption of an energy-level depends, under certain conditions, 
only on the square of a definite component of the corresponding 
eigenstate, the function σ(χ) represents the strength of absorption 
around the energy value x. The problem is to find σ(χ) and the 
distribution of the eigenvalues λ. 

When there is a single border, m = 1 (i.e., when Hjk are zero for 
| j — k | > 1), the problem is simple enough for an explicit evaluation 
of the eigenvalues and the eigenvectors. Such an H can be trans-
formed by a diagonal matrix S with diagonal elements ± 1 to a 
matrix Hx and the signs of the diagonal elements of S can be so 
chosen that all the off-diagonal elements of Hx will have the negative 
sign, whereas the diagonal elements are the same as in H. In so doing 
neither the eigenvalues nor the squares of the components of the 
eigenvectors undergo any change. The resulting matrix Hx can be 
transformed to — H1 by interchanging jth and —7th row and column 
and by transforming with an S whose diagonal elements are alternately 
-f 1 and — 1. Furthermore, H1 can be changed to H1 + 1 by renumb-
ering the rows and columns (the dimension of H should be infinite 
for the argument to apply here). Thus, along with λ^ , —λ^ and λ^ -f- 1 
are also eigenvalues. By the continuity in h and the condition that for 
h = 0 the eigenvalues of H are all integers we see that the eigenvalues 
of H always consist of all the integers: 

Xk = ky k=0y ±1 ,±2 , . . . . (14.22) 

Denoting the corresponding eigenvector by i/r(A:), one sees from the 
above remarks about changing H1 to H1 + 1 that ifj[k) = ^}+ί1) 

that is, that the /th component of $(k) depends only on the difference 
(/ - k): 

0 < » = * i V (14.23) 

Again from the remarks about changing Hx to —H1, it follows that 

0i2>=c(-l)l0;o>, 
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where c = ± 1 . The continuity from h = 0 again gives c = 1. The 
equation Ηχψ = λψ can now be written as 

-hï(»\ + ψ» - Α ^ = 0, (14.24) 

and compared with the recursion formula for the Bessel functions 
[Bateman, 2] 

- / i - i M + 7" / i W - / w W = 0. (14.25) 

We infer that 
0«» = /,(2A) = * & . (14.26) 

The irregular Bessel functions also satisfy (14.25), but if the 
eigenvector components are taken as a linear combination of the 
regular and irregular Bessel functions then one cannot normalize. 

The case of thick borders, m ^> 1, and large off-diagonal elements, 
h ^> 1, has been treated by Wigner under the condition that h2/m = q 
remains constant. Some of the remarks that apply for a singly bordered 
matrix also apply here, and from such considerations it can be 
deduced that σ(χ) is an even function. The average number of 
eigenvalues per unit interval at x is a periodic function of x with 
the period 1. Wigner then calculates the moments for the strength 
function 

M9 = Γ x*"a(x)dx (14.27) 
J —en 

and derives an integral equation for σ(χ). Because the calculations 
are long, they are not reproduced here. Putting 

ρ(ξ) = lim m σ(τηξ), 
m-»oo 

the final result is the integral equation 

xo -1 wo c ^ φ - *+( MO /:, R'{t : y ° * 
where 

Λ1(.ν)=Γ+%(0«, ? = £ , (14.29) 

Λ1(0)ρ(0)=(π^)-ι . (14.30) 

(14.28) 



162 14. Bordered Matrices 

In the limiting case q —*■ oo we have 

(14.31) 

whereas in the opposite limiting case q —> 0 we have 

/ > ( 0 ^ π 2 / + | 2 . f < l . (14.32) 

However, for ξ —> oo we have 

/>(£) ~ (constant)(2^2 In ξ)~* e2*. (14.33) 



15 I Invariance Hypothesis and 
Matrix Element Correlations 

The entire theory of Gaussian ensembles is based on the two 
assumptions put forward in Chapter 2: 

1. The ensemble is statistically invariant under a change of basis. 
2. The matrix elements are statistically independent, hence 

uncorrelated. 

As mentioned in that chapter, Assumption 1 is quite natural, 
whereas Assumption 2 is somewhat artificially introduced to simplify 
the calculations. 

There have been efforts [Ullah, 1 ; Ullah and Porter, 1] to determine 
what kind of correlations among the various matrix elements are 
implied by Assumption 1. We shall see here that it leads to the 
vanishing of the ensemble averages of the following quantities: 

1. Any odd power of an off-diagonal element. 
2. The product of an odd power of an off-diagonal element and 

any power of a diagonal or another off-diagonal element. 

We illustrate the method in relation to the orthogonal ensemble, 
though it is equally applicable to the unitary or the symplectic 
ensemble. Thus we consider a set of real symmetric matrices that is 
statistically invariant under real orthogonal transformations 

H = H* = H7\ 

P(H) dH = P(H') dH\ if W = RHR-\ RRT = RTR = 1. 

Choosing some complete set of basic functions, the eigenvalue 
equation can be written as 

ΣΗ^ν = θλαλμ9 (15.1) 
V 
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where θλ is the eigenvalue and αλμ is the μΰι component of the 
corresponding eigenvector. The eigenvectors are orthogonal and form 
a complete set: 

Σ αλμαξμ = Σ ΛμλαΜξ = ^λξ · (3-6) 
μ μ 

Using (3.6) and (15.1), we can express the matrix elements as 

^ = Σ 0 Α Α · (3.5) 
Λ 

Now because the joint probability density function P(H) is invariant 
under orthogonal transformations of the basis, it must depend 
essentially only on the eigenvalues θλ and that, too, in a symmetric 
manner. The discussion leading to (3.16) is valid, and the joint 
probability density function can be written as a product of functions 
depending on mutually exclusive sets of variables: 

Ρ(θλ,ρ) = Ρ(θλ)/(ρ). (15.2) 

We are interested in the averages of products of the matrix elements 
given by (3.5). Because of the separable nature of (15.2), this averaging 
can be done separately over the θλ and the parameters p to get the 
result 

<ΗμΜ<η - > = Σ <^Λ2 ••·><"Λιμ*Λ1ΑΑ, - > . (15.3) 
A l fA 2 . . . . = l 

Thus we have to find the averages of the products of components of a 
set of orthogonal unit vectors randomly oriented in the TV-dimensional 
space. These averages may be written as the ratio of two integrals: 

< 0 K , a A t - ) > = ^ - , (15.4) 

where 

^ = / · · · / ο δ ( ι < μ - , ) δ ( Σ « Λ Λ μ ) 
—OO μ = 1 μ=1 

^(Σ^-·)· · ·Πνν-
μ=1 μ=1 

and 2 is the same integral without the Q inside. 

(15.5) 
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The integral JT can be evaluated when it involves only one or 
two vectors, whereas its evaluation in general is not at all easy. 
However, from the symmetry arguments we can conclude that 

Ο Λ Λ * - *A2m+Am+1v> = 0 , μ φ », (15.6) 

implying that <//^Γ+1) = 0· By similar reasonings we can convince 
ourselves that 

<HT1H& = ° O5·7) 
if μ φ v and the pair (μν) is distinct from (ξη) or (ηξ). 

We can actually evaluate the ratio (15.4) for a simple expression Q> 
the average of the product of two matrix elements, for example 
[Ullah, 1]. Let us first take only one iV-dimensional unit vector with 
random components ux, w2,..., uN. Equation 15.4 then gives 

/ " • i ö ( u ) S ( £ « , . * - l ) n ^ 
<G(«)> = " % . .„ 1 p ^ — · (15.8) 

/ - /δ(Σ«, 2 - ι )Π^ 
—oo 1 1 

For Q we substitute Πίΐι uTli a n d evaluate the integral 

00 N N 

1= ί···ίδ(Σ^-ΐ)Π"Γ^ν (15.9) 

Replacement of u{ with uj\/r gives 

/# Γ1/2ΑΓ+Σ<»η<-1 = — δ (J] U* - A [ ] U*™i du{ . (15.10) 
J - o o J V 1 7 1 

Multiplying on both sides with e~r and integrating (first!) over r 
from 0 to oo, and then over the u{, we get 

IT (\N + Σ »,) = / · " / exp ( -£ «/) Π "Γ' ^ 
t —oo i i 

N I Γ°° \ 
= Π ( e-u*u2mtdu\ 

= n % + i)· (15.11) 
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To get the denominator we put tni = 0, i = 1, 2,..., N. Thus the 
average of Πίΐι " Γ ' is 

/N n%+» r(iiV) 
( n « 2 - ) = ^ f 3 T - T - Ä · (15.12) 

Extending this method to two vectors u = {ux,..., uN) and 
v = (^χ,..., vN)y we can write 

f ■" ί Ô δ (Σ «i2 - 0 δ (Σ «<»<)δ (Σ ^2 - Ο Π Ä< *< 
ß(u, v) = -~V v* i - l i — ' — h '-* 

[··· f 8 (Σ «,· - l) 8(«Λ) S (Σ »,· - l) Π <*«i *« 
—oo t i i 

—ä- (15.13) 

Let us calculate the denominator. The evaluation of the numerator 
is similar, through somewhat lengthy. Replacing ut with i^/V^i and 
vi with t^/V^2 » w e obtain 

Α ( Γ Λ ) « / « ( Ν - » = f." f δ fr „,2 _ ri) 8 (Σ «*,,) 8 (X z>t
2 - r2) Π du, dvt. 

-co i i i i 

(15.14) 

Multiplying by e~ri e~r2 and integrating on rx, r2 from 0 to oo as 
before, we now have 

9\Γ(\Ν - \)f = f*\ exp ( - Σ (u? + «,*)) 8 g ιιΛ) Π ^ <fo,. 

(15.15) 
We substitute 

wf = 7 Ä (Pi + ft). »< = 77Γ (P< - ft) 

to get 

3\Ι\ψ - W = 2 / - · ]* exp [ - Σ [p? + ί4*)] 8 []£ (tf - ff<«)] Γ] <*A dqt. 
—oo i i i 

(15.16) 
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Introducting the spherical polar coordinates and integrating over 
the angles the right hand side gives 

2{NVNf J - J e-^^ δ(/>2 - f){pqY'1 dp dq, (15.17) 

where 

VN = nW[rQN + I)]"1 =jj*il'*)N[r(lN)]-i (15.18) 

is the volume of the Λ/-dimensional unit sphere. The remaining 
integrals are elementary. We finally get 

a = (NvNf r(N - mnr^N - «]-■ 
= 2Ν-*πΝ~ΐ[Γ(Ν - l)]2. (15.19) 

After lengthy algebra, Ullah obtained a complicated expression for 
the average of Π* w?m<^?n<. To get further results by this method for 
three or more vectors seems to be extremely difficult. 

Such calculations may be used to compute some simple correlations; 
for example, the correlation coefficient of two diagonal elements 
[Ullah and Porter, 1] 

^ <δ#μ SHvy 
μν [<(δ#μ)2Χ(δ#Λ2>]1/2 ' μ μμ κ μμ? 

can be obtained from the following averages 

1 
7V + 2 <Ημμ> = <#!>, <Η2

μμ} = — l — [3<Λ2> + (TV - 1)<0A>L 

so that 

<HJI„y = j ^ ^ [<^>2 + (N + 1)<0A>L μφν, (15.21) 

= l + ( i V + l ) C 
" 3 + (TV - 1) C ' K ' 

where C is the correlation coefficient of two eigenvalues: 

C = WêïfX^kfW ' 8θι = θι~ <öl>' (15'23) 

(15.20) 



16 / T h e Joint Probability 
Density Functions for 
Two Nearby Spacings 

Integrating an expression like 

Γ 1 N Ί PN1(Xl,..., xN) = CN1 exp - - £ xfl Y\\xj- xk (3.18) 
1 z l Ji<fc 

over all the variables except a few, though usually very tedious, is 
sometimes possible. A case worthy of demonstration is the following 
calculation. Fix one of the eigenvalues at a, and integrate all other 
eigenvalues outside the interval ( —0, Θ), where | α | < 0. Putting 
Θ + a = 5Χ and Θ — oc = S2 will give us the probability that there 
are no eigenvalues for a distance S1 on one side and a distance S2 on 
the other side of a given eigenvalue. Differentiating partially with 
respect to S± and S2 will then give us the joint probability density 
function for two nearby spacings. 

16.1. Integrations 

As usual, the unitary ensemble is mathematically the simplest to 
work with. However, we will consider the orthogonal (Gaussian) 
ensemble, which is more useful in applications. As in Chapter 5 we 
express PNi(xx,..., xN), equation (3.18), as a determinant of normalized 
oscillator wave functions: 

PN 1(^ ,..., xN) = c ide t fo^ te) ] , .^ N}, 

ΨΑΧ) = (2-ψ. Vnyv* é"* ( - ^)3 er*, ' (5.15) 

where c is a known constant and the ordering xx ^ x2 ^ ··· ^ xN is 
understood. 
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Because the variables are ordered, to fix one of them at a we should 
write 

ΛΝ{Θ>
 a ) = J ··* j Λα(α> x2 >···» XN)

 dx2 '" dxN 

+ j '" j {detfo^fo)],.! N}X2=(Xdx1dxs ··· <&„ + — + -

= 0(0, a) + ' (0 , «), (16.1) 

where 0(0, ex) includes the integrals in which an x with an odd index 
is put equal to oc and ê(d, a) includes the other terms. The integrations 
are supposed to be carried out on the ordered variables — oo < xx ^ 
#2 Ξ̂ "■" Ξ̂ XN < °° a n <i t 0 exclude the interval ( —0, 0). To avoid 
minor complications we will take N even, N = 2m. Introducing the 
functions 

w W (i. i f | * l > * . ( 1 6 2 ) 
" W |0, if -Θ < x < Θ, (lbZ) 

H*) = Γ <Piiy)<y)dy (16.3) 
' — 0 0 

and 

(1, if x > 0, 
^ H o , if*<0, (16-4) 

an integration over the alternate variables (cf. Chapter 5) readily gives 

*» /»oo r
 m 

Θ{θ, a) = -2-<3«>'»(2»«)-1 Π (2f - 1)1/2 · - Π «(*«) r f ^ · 

•det f ?Ϊ i " \ r° J <16·5) 
L 9 i ( a ) ^ ( * 2 i ) 9><(*2i)Ji-1.2 m t=0,l 2ra-l 

We can now drop the ordering and integrate over the remaining 
variables from — oo to oo. This gives, as in Chapter 5, 

0(0, a) = 0e ven(0, «) + ^odd(^, a) (16.6) 
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where 

$even(#, «) = 0even(#, —a) 

= -2-<3/^(2m)-i Π (2; - 1)1/2 detf Ό f,"+1vJ 
j=l lY2i\0C) J 2i, 2j+l\u)J i, j=0.1 r n - 1 

(16.7) 

and 

<9odd(ö, a) = -0odd(0, - « ) 

= 2-«3/2""(2m)-i f j (2y _ 1)1/2 d e t [ ° / 2 i ( ö ) 1 
j= l L 9 9 2 t+ l l a ; / 2 i , 2 t + l W J i . i = 0 . 1 tn-1 

(16.8) 

where we have introduced the functions 

/•OO /»OO 

Pi(^) = € M Μ(Λ) ^ Μ ^ = ^ ( χ ) dx (16.9) 
J -oo J Θ 

and 

f2i,2i+i(e) = I ^ <*y «(*) «üOfateOO 92i+iW - <P2i(x) <P2j+i(y)}· 
** —oo < i / ^ iC<oo 

(16.10) 

As in Chapter 5, we can use (5.25) 

, 2/ \1 / 2 , / 8 \1 /2 

J2i,2j+i ~ \ 2/ 4- 1 / ^2 i ' 2 i _ 1 = \ 2/ 4- 1 / ^ " (16.11) 

and 

/ 2/ \1 / 2 / 2 \1 /2 

^ - ( ■ 2 7 T T ) ^ - = ( ^ T T ) ^ (16·12> 

to reduce (16.7) to the form 

tfeven(0, «) = - J - det f ° ^ 1 , (16.13) 
Am Υφ2ί{α) gij(e)liJ=0tl m_! V ' 

where 

Γθ 

gii = δ^ — 9>2*(*) 9>2J(*) <**· (16.14) 
J -R 
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As for $(θ, a), introducing the functions 

Fl(x)= ΓφΜη(γ)<Ιγ, (16.15) 
J
 X 

(0, if x > —0, 
*'(*) = 1, if x < —0, (16.16) 

one can integrate over the variables with even suffixes. A change of 
variables to their negatives gives then 

ί(0,α) =0(0 , - a ) , (16.17) 

so that 
0(0, ex) + «f(0, oc) = 20even(0, a) . (16.18) 

Putting together (16.1), (16.18) and (16.13) we get 

AUO, «) = - J - det [ % φ*ί2ΐ (16.19) 
V ' 2m ίφ2ί·(α) ^(0)J^=o,i,...,™-i > ' 

w i t h ^ ( 0 ) given by (16.14). 

16.2. An Integral Equation with a Boundary Condition and 

Let us write (16.19) in a slightly different form: 

where 

and 

EJß) = d e t ^ ^ f . ^ o , ! , . . . ^ . ! 

Γ2 λ/^" 
^ ( 1 ) ( 0 , ex) = ^-,= det m v ; 2 \/m 

Ψ2ί(θ) 

(16.20) 

(16.21) 

(16.22) 

In Chapter 5 we expressed Em(ß) as the product 

rw—1 

£m(») = Π 0 - λ«) 
i=0 

i,j^0,l,...,m—l 

(16.23) 
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where λ2ί are the eigenvalues of the homogeneous integral equa-
tion (5.88), 

\f(x) - f Km(x, y)f(y) dy = 0, (16.24) 
J -ft 

whose solutions are even functions 

hj{—x) = hAx)> j = 0, 1,..., m — 1 

and the kernel Km(x, y) is given by (5.89) 

m—1 

i=0 
Km(x,y) = Σ <p*i(x) <p*(y)-

(16.25) 

(16.26) 

One can find a similar expression for Α%\θ, oc) by considering this 
time the inhomogeneous equation 

«(*) - j Km(x> y) g(y) dy = y ^ r κ«ίχ>α)· (I6·27) 

Given μ, not equal to one of the discrete values λ̂  for which the 
homogeneous equation (16.24) has a nonzero solution, the integral 
equation (16.27) has a solution and this solution is unique. It is even 
and has the form 

ra—1 

g(x) = X ci92i(x) (16.28) 

where the constants ci are determined by the simultaneous linear 
equations 

m-\, β j ^ 

Σ \μ *n - J ?2tO0 <p*s(y) dy\ CÔ = 2\fm ψ2ϊ^ l = °* 1··"' m " " L 

(16.29) 
Let us impose the extra restriction 

m - Σ <*>«(*) = i. (16.30) 

and eliminate the ci between (16.29) and (16.30). Thus (16.30) will be 
satisfied if and only if 

det 
1 ΨΜ 

L 2 \/m~ 
φ2ί((χ) μ δ 0 — <p2i(y) <p2j(y) dy 

J -a 

= 0. (16.31) 
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The algebraic equation (16.31) has m roots; let them be 

μ-O > ^ 2 ) ···> ^ 2 m - 2 · 

Therefore we have the identity 

~2Vr7 

2y/m 
det 

<PM m—l 

= Π(ί*-/*«)· (16·32) 
i=0 ^ • ( α ) ^ δ « — ί <p*Ay) <P2,(y) dy 

J -e 

From (16.20), (16.23), (16.22) and (16.32) we thus have 

ra—1 ra—1 

7Γ Vm Α2γη(θ, oc) = Π (1 - λ2>) - Π (1 - /**) (16.33) 

where λ2ί are the eigenvalues of (16.24) and the μ2ί are the "eigen-
values" of (16.27) with the boundary condition (16.30). 

16.3. The Limit of Α2ιη(θ, α) 

Let us define 

_4fl Vrn 4a V\ m (16.34) 

and take the limit as m —> oo, Θ -> 0 and oc —► 0 in such a way that / 
and T are finite. The limit of (16.26) is (cf. Appendix A.9) 

where 

2 Vrn 2 Vrn 
f = *> J = y 

7Γ 77 

η / ί x 1 ( S i n ( | + η) -n , S i n ( | - η) π \ 

(16.35) 

(16.36) 

(16.37) 

and the equations (16.24), (16.27) and (16.30) take the form 

A/i(f) - f " Q(i, V)fx(v) dv = 0, (16.38) 

« i ( 0 - f" 0 ( 6 V) gi(v) dv = 0(É, *r), (16.39) 
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and 

ft(*0 = 1 (16.40) 

where 

>'<«=>(2^r)· *«>= ' (2^Γ) · ( 1 6 · 4 1 ) 

By a change of scale, ξ = ^ί^', η = ^ ' , the limits of integration 
in (16.38), (16.39) and (16.40), can be brought to ( - 1 , 1): 

λ/W - f Q(x, y)f(y) dy=0 (16.42) 
J - 1 

«?(*) - J1
1Q(x>y)i(y) dy = ) Q (*. -7) (16.43) 

and 

where 
m = 1 

ή(ν ΛΛ ! Ssin(x + ^ H ^ , s i n (* - J) έ^ί 

/(*) = Λ(£**)> £(·*) = ΙΊ(£ '*) · 

(16.44) 

(16.45) 

(16.46) 

As in Chapter 5, the eigenfunctions of (16.42) are even prolate 
spheroidal functions, the solutions of the differential equation 

ί(*2 "1)^ + 2χί + τ H /w
 =lf{x) (5·107) 

and are extensively tabulated [Stratton et al., 1]. From a knowledge 
of the eigenfunctions one can calculate the eigenvalues λ as in 
Chapter 5. Let us assume then that the normalized spheroidal func-
tions f2j(x) and the corresponding eigenvalues X2j are known. The 
functions f2j form a complete set for even functions integrable over 
(—1, 1). An expansion in terms of them gives 

00 

fey) = IUWA(y), (16.47) 

£«(*) = Σ cjiMx). (16.48) 
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To determine the cH we substitute (16.47) and (16.48) in (16.43) and 
use the orthonormal properties of the/2 i (^) : 

£/«<*)/*<*) àx = δ„ = | £ * \ = Jj (16.49) 

to get 

(μ2ί — X2i) cH = - X2if2i (-J-J (16.50) 

or in view of (16.48), 

!«(*) = Σ 7 „ K\ L· (τ)Μχ)· (1 6·5 1) 
i=Q l ^2) ~ A2i V l ' 

Substituting (16.51) in (16.44) we get an equation whose roots are 
the eigenvalues /x2j· : 

Î Ï ^ W M T ) ^ ' ) - ' · <1 6 ·5 2> 
2 p X 
1à 

Multiplying by Y\i (μ — λ2ί) to rationalize the denominators in 
(16.52), one gets 

no*- /*« ) -no*-Kd - Ino*-Α 2 ί ) | |Σ-Τ^ΊΗ/«(τ )^ 1 ) · 
(16.53) 

To get (16.33) we put μ = 1 in the identity (16.53) 

= jn (i - AS<)J · j l T ^ / 2 i (f )fM ( 1 6 · 5 4 ) 

Substituting 

*i = W + T), X2 = i(* - T) (16.55) 

we get the probability that there are no eigenvalues for a distance 
xx on one side and a distance x2 on the other side of a given eigenvalue 

Λ{χχ, *2) = A((Xl + *a), \(Xl - x2)\) (16.56) 
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where xx and Ao are measured in units of the mean spacing at the 
origin. The joint probability density function έΡ{χλ, χ2) for two 
adjacent spacings xx and x2 is obtained by differentiating 3$(xx, x2) 
twice (cf. Appendix A. 11 ) : 

' ( # i , #2) — 
dxj dx2 

\xi » #2)· (16.57) 

16.4. Power Series Expansion and Numerical Results 

For small t the spheroidal functions can be expanded in terms of 
the Legendre polynomials. Thus the first few terms in the expansion 
of λ2{, f2i, A(t, T) and S$(xx, x2) as a power series are 

λ» = < - ^ 3 + Ι^<5 + 0^· (16.58) 

FIG. 16.1. Contour map of the function âS{xx , Λ;2), the probability that no eigen-
values lie for a distance xx on one side and x2 on the other side of a given eigenvalue, 
the distances being measured in units of the mean spacing. 
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2 8100 

A2i = O(i'), 

i5 + 0(/7), 

r r * 

(16.59) 

(16.60) 

**> = 71 (I1 - mo *) + (- S '2 + 4B36i4) W 
;iV4(*) + 0(/«)], 1 8400 

AW = (f)1/2i>
2W + o(i2)) 

/«(*) = 0(1). « > 2, 

Λ(ί,τ) = JH(1 -A^ljlj-j-^-A-(y)/2i(l) 

= l - 2 4 ( ^ + ^) + 1920 (t* + 6«V + T4) 

5400 

(16.61) 

(16.62) 

(16.63) 

(ί5 - 5fV) + 0(Γτ«), r + s = 6, (16.64) 

FIG. 16.2. Contour map of the function 0>(x1 , x2), the joint probability density 
function for two adjacent spacings xx and x2 measured in units of the mean spacing. 
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#(*i , *2) = 1 - y^ (*i2 + V ) + ^ (*i4 + V ) 

fo5 - 5*!V(*i + *a) + *25} + "S (16.65) 1350 

&(χι y χ2) = -ΎΓ *i*2(*i + Λ?2) + ···. (16.66) 

Functions «̂ f ) and &(χχ, #2) are represented graphically as 
contour maps on Fig. 16.1 and 16.2, while their numerical values are 
given in Appendix A.30. 

16.5. The Distribution of Spacings between 
Next-Nearest Neighbors 

The probability of having exactly one level anywhere in an interval 
of length t can be immediately calculated by integrating A(ty r), 
equation (16.54), over \r from —\t to \t. The result is 

E\t) - E(t) = j ft 0 - λ«)| j Σ T^J^) f/*<*) dx\, (16.67) 

where E'(t)> as in Chapter 9, is the probability that an interval of 
length t (measured in units of the mean spacing) will contain at most 
one eigenvalue, and 

E(t) = f[(l-X2i) (5.105) 
i=0 

is the probability that an interval t will contain none of the eigenvalues. 
The results are identical to those for the orthogonal circular ensemble, 
as a comparison with the discussion following equation (9.35) will 
show, provided we have the identity 

Π (i—*Η = 1 + i ί π τ ^ ) f /*<*) dx\ (i6. .68) 

(for a proof see Appendix A.31), where the λ are the eigenvalues 
and the / the normalized eigenfunctions of the integral equation 

x ?, χ Γ1 sinUx + y) itn} ?, x , (16.69) 
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The even functions and the corresponding eigenvalues are labeled by 
an even index 

/ « ( - * ) = / « < * ) , (16.70) 

whereas the odd functions and the corresponding eigenvalues are 
labeled by an odd index 

/* + i ( -* ) = - Û 4 (16.71) 

In fact the prolate spheroidal functions fj(x) also satisfy the differential 
equation 

j < * - » > £ + * έ + τ ^ - ' ! ' < * > = ° · ( 5 · 1 0 7 ) 

and for t —> 0, the fj(x) becomes proportional to the Legendre poly-
nomial Pj(x). 



17 / Restricted Trace Ensembles. 
Ensembles Related to the 
Classical Orthogonal Polynomials 

As mentioned toward the end of Chapter 2, Gaussian ensembles 
are unsatisfactory because the various matrix elements H\f are not 
equally weighted. Apart from Dyson's method, efforts have been 
made to equalize this weighting in a straightforward manner. For 
example, by diagonalizing on a computer a large number of random 
matrices [Porter and Rosenzweig, 1], the elements of which can be 
made to conform to a given probability law, we can learn a lot about 
their eigenvalue distributions. Such knowledge, although useful, is 
purely empirical, and we restrict ourselves to only those cases in 
which these empirical findings can be put on a firmer footing. 

17.1. Fixed Trace Ensemble1 

When working with large but finite dimensional Hermitian matrices, 
we cannot allow the elements to grow indefinitely because then one 
would be unable to normalize. Gaussian ensembles overcome this 
difficulty by giving exponentially vanishing weights to large values of 
matrix elements. Another method will be to apply a cut-off. Proceeding 
from the analogy of a fixed energy in classical statistical mechanics, 
Rosenzweig defines his "fixed trace*' ensemble by the requirement 
that the trace of H2 be fixed to a number r2 with no other constraint. 
The number r is called the strength of the ensemble. The joint 
probability density function for the matrix elements of H is therefore 
given by 

Pr{H) = K?s[-LtxH*-l], 

+ Rosenzweig [1]. 

180 
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with 

JCr = / - " / 8 ( - i - t r H I - 1 ) n n '"!,»■ 
e , -oo J V V ' A i^j 

This probability density function is invariant under a change of basis 

H' = WRHWy 

where W is an orthogonal, unitary, or symplectic matrix according 
to the three possibilities noted in Chapter 2: WRW = 1. This is 
evident from the fact that under such a transformation the volume 
element dH = ΠΑ Yli^j dH\f and the quantity tr H2 are invariant. 

The important thing to be noted about these ensembles is their 
moment equivalence with Gaussian ensembles of large dimensions. 
More precisely, if we choose the constant a in (2.72) to give 

<tr H% « K-1 j - j tr H2 e~aiTH2 dH = r2, 
—CO 

then for any fixed value of the sum 

* = Σ Σ ν$, V\? > 0, 
A t'^j 

the ratio of 

W ι) = (ππ WH*') 
and 

tends to unity as the number of dimensions TV tends to infinity. The 
subscripts r and G denote that the average is taken in the fixed trace 
and Gaussian ensembles, respectively. 

Notice the analogy with the assumption 

<Zs> grand canonical = E canonical, 

made in classical statistical mechanics to prove the equivalence there. 
From (3.42) we get, with a little manipulation, 

£ _ a-il/2)N-a/4)ßN(N-l)C 
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so that a partial differentiation with respect to a gives 

<tr #2>G = {\N + ißN(N - 1)) a~\ 

Therefore we make the choice 

a = (2r*)-iN[l + Jj8(JV - 1)]. 

Next, to calculate Mr(N917), put 

HU) = α 1 / 2 ^ ( λ ) ί - 1 / 2 
1} I) » ' 

where £ is a parameter. This gives 

, t y.(l/2)N+il/4)ßN(N-l)+(l/2)8 

= *? I·7·/ δ (-^ψ- - 0 Π Π KW»' ΛίΪΊ 
—οο = A i^j 

Multiplying both sides by e~* and integrating (first!) on ξ from 0 
to 00, we get 

Mr(Ny η) r(L + \s)L~L-W 

= K-i J ·" J β-«^2 π Π MW® <̂ λ)]> 
—oo A i ^ ; 

where we have put 

L = ar* = iiV + i£7V(7V - 1). 

Or 

Setting η^] = 0 in the above and using the normalization condition 
Mr(Ny 0) = MG(7V, 0) = 1, we get the ratio of the constants KG 

and Kr. Substituting this ratio we then obtain 

L{1/2)sr(L) 
Mr(NfV) = r{L+\jMG(N,v). 
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As N -> oo, L —> oo, and we can use Stirling's formula for the gamma 
functions 

Γ(χ) = a*-1/2 β-*(2πγ/ζ [l + 0 (-)] 

to prove the asymptotic equality of all the finite moments s <<ξ Ν. 

17.2. Bounded Trace Ensembles 

Instead of keeping the trace constant, we might require it to be 
bounded [Bronk, 1]. We would then obtain a bounded trace ensemble 
defined by the joint probability density function 

p (ZJ\ _ (constant, if tr H2 < r2, 
FB{H)~\0, if t r H 2 > r 2 . 

The joint probability density function for the eigenvalues is 

PB(x1,..., xN) = K-1 Y\ | xt - xj \f>, if ^ Xi
2 < r2, 

i<3 i 

= 0, if ΣΧ?>Υ\ 
i 

The density of eigenvalues for this ensemble can easily be found 
in the existing literature. A theorem of Stieltjes [1] states that if there 
are iV unit masses located at the variable points x1, x2,..., xN in the 
interval [— oo, oo] such that their moment of inertia is bounded by 

Σ *,* < kN(N - 1), 
t = l 

the unique maximum of the function 

V(xx,..., xN)= Π I *i — XJ \ß 

will be obtained when the xi are the zeros of the Hermite polynomial 

H^ = ^(-Tx) ^ 

Thus, making the usual assumption of classical statistical mechanics 
that the actual eigenvalue density makes the logarithm of V{xx ,..., xN) 
a maximum, we get this result: 
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The eigenvalue density for the bounded trace ensembles is 
identical to the density of zeros of Hermite-like polynomial 

/ // \W 
eN(N-l)x2/2r2 | _ _ ) e-N(N-l)x2/2r2 

and for large N is given by 
# 2 , 4 r 2 vl/2 

<χ) = £μ(-^--χ2) > if l* i<2rJV-i / · 

^ 0, . if | x | > 2riV-!/2. 

To work out the eigenvalue spacing distribution is much more 
difficult. 

17.3. Matrix Ensembles and Classical Orthogonal Polynomials 

One cannot but notice in Chapter 5, for example, that the Gaussian 
ensembles are closely related to the Hermite polynomials. Orthogonal 
polynomials other than the Hermite have been extensively investigated 
[Bateman, 1], and some authors [Fox and Kahn, 1; LefF, 1] have 
tried to take advantage of this fact. We can define a matrix ensemble 
by giving the joint probability density function for its eigenvalues 
arbitrarily: 

N 

p{xx,..., xN) = f ] f(Xi) Π I *< - xi i*> 
i=l i<j 

where the function f(x) can be chosen to suit the needs. 
A series of orthogonal polynomials is uniquely defined, apart from 

a phase factor, by the range (a, b) of the variable and the weight 
function f(x) ^ 0. The construction of these polynomials amounts 
to an application of Schmidt's orthonormalization procedure to the 
series of powers 1, x, x2>... with the scalar product 

(<Pi » 92) = / (χ)<Ρι(χ) 9>2(*) dx 

J n 

and gives the following set of polynomials [Bateman, 1]: 

Pr(x) = (ArAr_1)-v 

X 
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with 
Ar = det[ci+j\ij=z01 r , 

and 
rb 

c{ = f(x) x* dx. 
J a 

The choices f(x) = exp(— ^βχ2), — oo < x < oo, and f(x) = 1, 
x = eie

y 0 < Θ < 277 correspond to the Gaussian and the circular 
ensembles, respectively. The other typical choices 

f{x) = (1 - xy(\ + xy; / A j „ > _ i ; - 1 < * < 1 , 

and 

f(x) = x*x~x, oc > —1, 0 < x < oo 

give the Jacobi and the Laguerre ensembles, respectively. Though 
from the point of view of applications β = 2 is the least interesting, 
it is mathematically the easiest to handle. The eigenvalue density 
σΝ(χ) can be expressed in terms of the related orthonormal 
polynomials. Thus 

N-l 

3=0 

where pj(x) is the normalized polynomial corresponding to the weight 
function f(x) and the interval [a, b]. The w-point correlation function 

N\ r r 
K(xi >·.·, xN) = ,N _ ny J - J p(xi >···> XN) dxn+1 — dxN 

is given by 
Κ{*ι ,···» XN) = det[KN(Xj, Ä?fc)]JiMi2 n , 

where 

KN(x,y)= Σ Pi(*)Ps(y)· 
j=0 

The sum /£#(#, j>) can be expressed in closed form by using the 
ChristofFel-Darboux formula [Bateman, 1], but it is not very useful 
in asymptotic evaluations. 



Appendices 

A . I . Proof of Equation (2.52) 

The proof is by induction. Let us assume that (2.52) has been 
verified for r < n — 1. For r = n we expand the determinant by its 
last row and last column and replace the lower order determinants 
with the corresponding or ; therefore we have to prove that 

η\ση = (n- 1)! [ ^ σ ^ - ί2ση_2 + - + ( - l )*" 1 ^] , 
or 

°n = l-i(-l)r-ltr°n-r, (ALI) 

with the convention σ0 = 1. 
Now ίχση_χ contains ηση . It also contains terms of the form 

xx
2x2 * · · * n _ i . To remove them we subtract t2an_2 ; but then we 

shall also have subtracted terms of the form which 
were not present in t1on_1 . To compensate, we add ί3ση_3 . However, 
we shall then have added something more, so we subtract ί4ση_4 , 
and so on. 

Thus we have proved that (2.52) is valid for r — n if it is true for 
every r ^ n — 1. Moreover, (2.52) is trivially valid for n = 1. The 
proof is thus complete. 

If r > N, no ar exists and 

£ ( - i y / r a ^ = 0, n>N. (A1.2) 
r=n— N 

A.2. Counting the Dimensions of TßG and TpG (Chapter 3) 
and of Tpc and TpC (Chapter 8) 

When we require that two of the eigenvalues be equal, we drop a 
number of parameters needed to specify a certain two-dimensional 

186 
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subspace, the subspace of these two equal eigenvalues. However, 
this degenerate eigenvalue is itself one real parameter. Thus, if 
f(N> ß) is the number of independent real parameters needed to 
specify a particular matrix from the ensemble EßG , the number 
needed to specify a matrix from the ensemble EßG with two equal 
eigenvalues is 

f(N,ß)-f{2,ß) + l. (A2.1) 

In other words if the number of dimensions of the space TßG is/(iV, jS), 
that of the space T'ßG is f(N, ß) - / ( 2 , j8) + 1. 

Now to specify a matrix from any of the ensembles EßG we need 
specify only the matrix elements H{j with / ^ j . The diagonal 
elements are real and therefore require N real parameters for their 
specification. The off-diagonal elements Hy with i < j are ^N(N — 1) 
in number and they need ^N(N — l) ß real parameters. Thus 

/(TV, ß) = N + ±N(N - l)ß. (A2.2) 

By inserting ß = 1, 2, or 4 into (A2.2) and (A2.1) we get the 
dimensions of TßG and T'ßG . 

To count the dimensions of the spaces Tßc and TßC we must find 
the corresponding numbers f(N> ß)> and for this purpose it is sufficient 
to consider matrices in the neighborhood of unity. Let us then have 

S = 1 + iA, 

where A is infinitesimal. Since S is unitary, 

S*S = (1 - iA'){\ + iA) = 1 

or, up to terms linear in A> 

A = Α'; (Α2.3) 

A is then Hermitian. If, in addition, S is symmetric (self-dual), then 
A is symmetric (self-dual). Thus the number of independent real 
parameters needed to specify a symmetric unitary, self-dual unitary, 
or unitary matrix S is the same as that needed to specify a symmetric 
Hermitian, self-dual Hermitian, or Hermitian matrix A, respectively. 
Thus the dimensions of Tßc and TßG are equal, and hence also those of 
Tßc and TßG . 
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A.3. Two Proofs of Equation (4.5) for the Case N = 3 

A.3.1. T H E GAUDIN METHOD [2] 

Because the integrand is a symmetric function of and #3 , 
let us put 

"i = (W/2 (*i + *2 + *s), 
σ 2 ~ \2r) \X2X3 ~t" ^3^1 ι ^1^2)» 

σ3 = (έ0)3/2 Xv**x* » 

so that 

^ 2 = [(*2 - ^)(^3 - *l)(*l - X2)Y = />", 

and the Jacobian is 

υ ν Λ 1 > Λ 2 > Λ 3 / 

The integral can therefore be written with the new variables as 

ψ3(β) = 3!(ij8)-3 f éH*!2-^) pd/2)(ß-i) </σι ^σ2 ώτ3 (Α3.1) 

where /> is the discriminant 

-P = (iß)-* [27σ3
2 - 2σ3(2σι3 - 9σισ2) + 4σ2

3 - ^ V ] 

and D is the domain of integration on which p is nonnegative. Now 
p is a polynomial of second degree in σ3 which must have two real 
roots. Let these roots be a and b: 

p = 27(ij3)-» (a - σ3)(σ3 - 6), a > 6; 
so that 

|α</σ3/>(1/2)<0-ΐ) = 27(1/2><^-1)(^)-<8/2>(^-1>(fl - bfB ( β ~t 1 , ^ 1" 1 ), 

where B is Euler's beta function. The quantity {a — b)2 is the 
discriminant of p as a polynomial in σ3 

(a - b f = ^ [4σχβ - 36σ>2 -f 108(σ, V - σ2
3)] 

= ( ^ ) 2 Κ 2 - 3 σ 2 ) 3 . 
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Therefore we must have σ^ > 3σ2 . Taking σχ and z = |σ1
2(σ1

2 — 2σ2)~1 

as new variables of integration, we see that z varies from 0 to 1 and 
σχ from —oo to oo. We then have 

f ί {a - bf ér-<"i2-2"2> da, da2 

/ a\ß r r / \ — ? \(3/2)β 

= y // «v/* ι * i3* HT-) e»,jr** ** ** 
1 / 4 \β /I \3/3/2 r l roo 

= g i ^ J i i j j dz j rfax r V / 8 * | σχ |3ß+2*-«3/2)ß+2) (J _ ^<3/2)ß 

= J2^1/2)ß27-(1/2)(ß-i)r(fiS + f) f1 dzz-V*{\ - z)WW 
* 0 

= μα/2)β27-^/2)(β-ΐ)Γ(|)3 + f ) B(i, iß + 1). 

Collecting the results, we obtain 

ψ*(β) = 2ß^iß)-lz,2){ß¥1)B ( - ^ - . -^y-^) *(i ti8 + !) r(i£ +1)· 

Using the duplication formula 

IXiß)lXiß + t) = 2-*»ViW, 

we get (4.5) for N = 3; 

The factor 3! in (A3.1) occurs because the correspondence between 
x1 , x2 , #3 , and σλ , σ2 , σ3 is not one to one. 

A.3.2. T H E C. L. MEHTA METHOD [1] 

Introduce the new variables 

y$ =
 Λ / ^ (xi + x2 + 3̂)» 
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so that the Jacobian is 

^Cyi»^2»^8) = £3/2 
o(X1 , Χ2 , #3) 

and 
*(*i2 + *2

2 + *2
3) = Λ 2 + y? + y^ 

The integral 

^3(2^) = f f f exp ( - k £ xA Π (*< - *i)2* dxi dx2 dx*> ß = 2k> 

therefore transforms to 

Ψ,Φ) = j j j exp ( - £ * · ) [V2* Μ^2Λ + VIy,) \{Vlyi - V6yj\» 
—00 1 

X dy1dy2dyzk-^^1+2^ . 

The integration over j / 3 is immediate and gives 

00 

Ψ3 = Vnl-Kk-W^+w jj e-yf-y^y* _ 3y1y2
2)2k dyx dy2 . 

—00 

Now put 
γλ = r1/2 cos 0, y2 = r1/2 sin 0, 

so that 
3 Ί 3 - 3 ^ = ^ cos 30, ^ i ^ = I ; 

hence 
/.OO ^277 

^ 3 = Λ/ΤΓ 2 - * - 1 Ä - < 3 / 2 » 1 + 2 * > <rrr*k dr (cos 30)2fc </0 
•Ό ^ 0 

= Λ / ί 2-fe-1Ä-(3/2)(1+2fc)(3Ä)! i f677(cos(/>)2fc <ty 
J J 0 

= 773/22-3^-(3/2)(l+2fc)(3Ä)! (2k)\ k\ 

which is (4.13). 
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A.4. The Minimum Value of W, Equation (4.6) 

To get the minimum value of the potential energy W we present 
Stieltjes' [1] ingenious arguments. 

The existence of a minimum is clear. Let the points x±,..., xN make 

W = J l * i 8 - Σ ln|**-*il (A4.1) 
Z 1 l < i < j ^ A T 

a minimum; then 

0 = - | ? Ξ - ^ + Σ -^hr- (A4.2) 
Consider the polynomial 

g[x) =(χ — Xl)(x — χ2) ··· (# — #N), (A4.3) 

which has xx, #2,..., ## as its zeros. Differentiation gives 

g\xi) = Π to - *i) 
Ϊ(Φ3) 

and 

^ T 4 = 2 X l_ (A4.4) 

so that (A4.2) can be written as 

g'\x5) - 2χ#'{χ,) = 0. (A4.5) 

This means that the polynomial 

g"{x)-2xg\x) 

of order N has its zeros at x± ,..., xN and therefore it must be propor-
tional to g(x). Comparing the coefficients of xN, we see that 

g"(x) - 2xg\x) + 2Ng(x) = 0. (A4.6) 

The polynomial solution of this differential equation is uniquely 
determined to be the Hermite polynomial of order N: 

HN{x) = N\ X < un l M · (A4.7) 
«So w ! ( ^ ~ 2 m ) ! 
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The discriminant of HN(x) [Szegö, 1] is 

H (*. _ χ . γ = 2-α/2)Ν(Ν-ΐ) γγjs9 ( A 4 8 ) 
l < i < i < N ' 3=1 

and from (A4.7) we get 

J ^ = JiV(iV-l). (A4.9) 
1 

Thus the minimum value of W is 

W0 = iN(N - 1)(1 + In 2) - \ £ / In; 
z l 

which is (4.6). 

A.5. Proof of Equation (4.15) 

We have 

k x1/2 f°° (-£-) | exp[-Ä*2 - i(2*)i/a A*]«« <& 

(
A \ 1/2 /.oo / V / / \ n 

V2ÄdÄ' 

Putting λ = 0 on both sides we get (4.15). 

A.6. Proof of Equations (5.4), (5.51), and (5.52) 

With R^Xx, x2 ,.··> xn)
 an<i ^n(*i y x2 >···> *n) defined by (5.2) and 

(5.3), let us write 

»so n 

—oo 1 
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and the generating functions 

„=o w! tx M! 

n*)=Z(-i)"-1dr*". 
n! 

where the function a(x) is quite arbitrary. 
The numbers tn and rn may be related by the use of (5.3). In fact, 

the sum being taken over all partitions G of w: 

» = G1 + - + G m , G ^ l , m > l . 

We can now relate the functions T(z) and R(z): 

00 (_nn-i 

n = i 

00
 / 1\m-l m r 

n=l G(w) m l\ G,\ 
As we are summing finally over all integers n, the restriction 

m 

Σ Gi- = » 

may be removed; we then have 

œ
 / 1\m-l m γ 

*M = Σ ^ — Π^*σ> 
wi,G1 G m = l

 W
 j = l ° > 

,ra-l / °° y \m 

m = l " * ^ i _ i * · ' 

= In R(z); 
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or 
*(*) = «ρ[Γ(*)]. 

Expanding the exponential and equating the coefficient of zn on 
both sides, we get 

^ = coefficient of *» in Y ~V ( Y V !/ i(*M 

G
 W

* 3=1
 L

 ^ 3 '
 J

 i==l 

or 

In view of the arbitrariness of a(x), this relation is identical to (5.4). 
Finally, expanding 

in powers of a(x) and using the definition of i ? n ( ^ , x2 ,···> *n)> (5-2), 
we get 

PN = [Ä(*)].-i = Ä(l), 
which is (5.51). 

A.7. Proof of Equation (5.20). Expansion of a Pfaffian along 
Its Principal Pseudodiagonal 

Consider an antisymmetric matrix [a^]; i>j= 1, 2,..., n\ a^ = — α^ . 
If its order n is an odd number, it is easy to see that its determinant 
is zero. On the other hand, if n is an even number, it can be shown 
by induction [Aitken, 1] that it is a perfect square; the square root is 

( d c t f a , ] )
1

/ » = ( Ϊ ^ Τ Σ ±
a
hh

a
hh - "in-iin ( A

7
*

1
) 

where the summation is extended over all permutations i± , t2 ,..., in 

of 1, 2,..., «, with the restrictions ιλ < z2 ; i3 < z4 ;...; in_x < zn , and 
the sign is plus or minus depending on whether the permutation 

/l 2 ··· n\ 
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is even or odd. The expression (A7.1) is known as the "pfaffian." 
Now let us take up the problem of evaluating 

/ = f ··· f dx1 — dxn detfofo), ^(^)] t=i m ; (A7.2) 
J J

 j = l 2m 

the limits of integration are fixed. Define 

aa = J [<Pi(x) ΦΑχ) - <PÀX) Φι(χ)] dx> (A7.3) 

so that 

Expanding the integrand in (A7.2) and integrating independently 
over all the variables we make the following observations: 

1. The integral / is a sum of terms, each being a product of m 
numbers atj ; 

2. The indices of the various a^ occurring in any of the above 
terms are all different. In totality they are all the indices from 1 to 2m. 

3. We may restrict i to be less than j in each a^ occurring in / ; 
for if / is not less than j we may replace a^ by — aH . 

4. The coefficient of the term a, 4 a, 4 · · · a, , in / is 4-1 or — 1, 
depending on whether the permutation 

Il 2---2W 
is even or odd. 

From these observations and (A7.1) we conclude that 

/ = m\[aQt[ai3]iJ=lt2 2JV2. 

The expansion of a determinant with large diagonal and small 
off-diagonal elements is well known. The coefficient of ek in the 
power series expansion of 

det[8ei + eo^] i J= l f2 N 

is the sum of all possible k x k principal subdeterminants of [α{;·] 
obtained by suppressing symmetrically (N — k) rows and columns of 
[ay].' This can be seen from the fact that the determinant is a sum 
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(with proper signs) of products of iV elements, one element being 
taken from every row and every column. To get ek we must have 
N — k of the elements in each product equal to unity, which can 
come only from the diagonal. When the rows and columns containing 
these elements equal to one are suppressed, a k X k principal sub-
determinant of [oc^] remains. 

There is an analogous, but not so widely known, expansion of a 
pfaffian. To get the expansion of 

with 
A,·,· — —A,·. Hi = —Ni 

in powers of e we proceed in a similar manner. To get ek we must 
have (N — k) factors in (A7.1) equal to unity, whereas the remaining k 
factors containing e can be regrouped into pfaffians. Thus 

det *Ki &u + €VÙ 

-(Pa + evn) €Ni 

1/2 

ι + « Σ 

+ <3 Σ 
i<j<Jc 

1/2 

+ *2Σ 
0 

—vu 
λ]ί 

—»a 

vii 

0 
vji 

Hi 

\ i 

-»H 

0 
—vii 

vij 

Hi 
vij 

0 

1/2 

«1*2 

V, «2*1 ri\i% i\Ai*=i*i»k 

1/2 

+ (A7.4) 

Whenever any two indices are equal, the corresponding pfaffian is 
identically zero. Therefore we can sum independently over the 
indices and replace efc with €k/k\. 

A.B. The Limit of Σο^ Φ,2(*) 

The dominant term in Σ ^ _ 1 φ2{χ) may be obtained with ease by 
a physical argument. 

The <Pj{x) is the normalized oscillator function, so that <Pj2(x) dx 
gives the probability that an oscillator in the jth state is found in the 
interval (x> x -f- dx). Consider N oscillators, one each in the states 
0, 1,..., TV — 1, so that when N is large, Σ ^ - 1 <p*(x) is the density 
of the particles at the point x. The particles are fermions and the 
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temperature is zero, for there is not more than one particle in each 
state and all states up to a certain energy (Fermi energy) are filled. 
The Fermi momentum corresponding to this maximum energy can be 
obtained from the differential equation satisfied by φχ^χ). 

so that 
-pF

2 + (2N - 1 - x2) h2 = 0. 

Because our oscillators are one-dimensional, their density is given by 

1 rpF 1 *x)~&HéjLF
dp = ^*2pr' p^pF' 

From the last two equations we get 

σ(χ) = — (2N- χψ2, x2 <, 27V, 

= 0, x2 £ 2N. 

This is the dominant term. Terms of the next lower order cannot be 
obtained from physical arguments alone. To get further information 
about σ(χ) we may write from the formula of Christoffel-Darboux 
[Bateman, 1] 

I ' *?(*) = Ν<Ρ*2(χ) - ίΝ(Ν + !)]1/2 ^ i ( ^ ) 9>N+I(*)> o 

and use the known [Erdyeli, 1] asymptotic behavior of the functions 
<PN-I(X)> ΨΝ(Χ)>

 anc* <PN+I(X) f ° r t n e various intervals of x. 

A.9. The Limits of Σ ? " 1 Ψ,(*) <?&)> etc. 

The Christoffel-Darboux formula gives [Bateman, 1] 

Σ ΨΜ9*y) = W Γ ^ ) ^ ω - ^ ) ^ - ι ( » ) ] . (A9.1} 
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Let N = 2m, 2m1 l2x = πξ, 2m1 l2y = πη and let us take the limit 
m -+ co, x—>0, y —> 0; whereas ξ and η are finite. Using the formula 
[Bateman, 1] 

lim( —l^m1/4 %m(«) = ττ-1^ Cos πξ, 

lim(—l^m1/4 <p2rn+i(x) = π"1/2 sin ττ£, 

we get 

1- 2 v^ / x / x 2m1/2 sin 7ri cos 7Γ7? — cos 7rf sin 7Γ77 
lim Σ 9*(*) ?*O0 = — Z7 — L 

0 7Γ 77Ç — 7777 

2 Vw sin(£ — η)π 
77 (ξ — 7/) 7Γ 

(A9.2) 

which is (5.61). 
To obtain the limit of 

Km(*>y) = Σ <P2j(*)<P2i(y) 
0 

we observe that Km(x, y) is the even part in x of (A9.2). 

i 2 w - l 

2 o 

Therefore 

1 2 Vw Γ sin(£ — 77) 7Γ sin(£ + 77) 77- " l»A.(,,,,4^L[^^L + ^ £ ^ . ] (A9.3) 

= ^ - ö ( ^ ) , s a y . (A9.4) 

Also 
m—1 o m—1 

l i m Σ v*/*) ^ ϋ θ = l i m s r Σ 92}(x)<P2}(y) 
0 °7 0 

( ^ ) > ^ > ( Α 9 · 5 ) 
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and 

lim Σ cp2j(x) <p2j{z) dz = lim KJJK, z)dz 
o J o J o 

= fp(f,{)rfC (A9.6) 
J
 0 

By writing similar equations for 

l i m Σ ?«(*) ^ 0 0 a n d l i m Σ <p*j(y) <Py(*)dz 
7Λ—1 m—1 

Σ ?«(*) ^ o o and lim Σ 
0 0 

and combining, we obtain (5.62) and (5.63) 

A.10. The Fourier Transforms of the Two-Point Cluster 
Functions 

The functions s(r), (d/dr)(s(r))y and f s(z) dz are given only for 
positive values of r by (5.64), (5.62), and (5.63); for negative values 
of r they are defined by the statement that they are even functions of r. 
Therefore 

F[s\r)} = eMkr s2(r) dr = 2 cos (2π| * |r) 2 2 </r 

- cos (2TT| A |r) -j-2 dr 

= f ° (277V2)-1 [2 cos (2π| * \r) - cos(2| Ä | + 2) Trr 

— cos(2| k | — 2)777*] </r. 
N o w 

/»CO Λ& /»OO 

r_2(cos «r — cos br) dr = \ dX r~x sin Ar dr 
J 0 ^ a ^ 0 

= y J 6 ^ s i g n A = y ( | 6 | - | « l ) , 
so that 

F\s\r)] = (2π«)-ι y 24( | A | + 1) - | k | + |(| k | - 1)| - \k |] 

= i [ ( i - 1 * 1 ) + 1(1-1*1)1] 

ii - 1 * 1 , . i f i * i < i , , A 1 0 n 

0, if I k I > 1. ( A 1 ( U ) 
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By partial integration we have 

'Ü«>]-2j><WAMi=F* 
= 2 | - 1 + I * I Γ r-1[cos(2| k\-l)nr- cos(2| k \ + 1) nr] dr\ 

= 2 ( - l + | * | drs'mXr). 

Now 
r°° r°° λ 1 ί/r sin Xr = Hm £~ar sin Xr dr = lim 0 , xo = T , J 0 <*->o J 0 «-*o a2 + λ2 λ 

so that 
f ( i 'w)= 2 ( - ' + '*""i ir^) · <ΑΙ°·2> 

Also by partial integration 

and 

^ [ / > Η [ ^ Μ ] | 
- - i W ) ] + 4π\ k I Γ <fr sin (2π\ k \r) ^ ^ - \ f s(z) dz] 

J0 77T U 0 J 

2 r_1 sin (27τ| & |r) sin πτ I */#) dr 

Μ2|*|+ΐ)π Λ<*> / rr
 J sinnx J \ 

= dz \ dr sin ^τ I «* «* I 
^ (2lfcl-l)ff J 0 ^ 0 * ' 

Λ<2|*|+1>* 1 7Γ 
= <** ϊζ [^η(π + z) + *ιζη(π - *)] τ 

J
 (2lfcl-1)7T *"* ^ 

= - y l n | ( 2 | A | - l ) | , i f | A | < l , 

10, i f | * l > l , 
so that 

, | [ />«Η[>]|Η„: , + 1 4 |- | ί | ," ι ( 2 | ί 1- , , , · ί !Ϊ1
!Ξ!: 

(A10.3) 

Combining (AlO.l), (A10.2) and (A10.3), we get all the Fourier 
transforms quoted in Chapter 5. 
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A.11. Proof of Equations (5.84) and (9.39) 

Let E(x + y) be the probability that an interval of length x -\- y 

S* By 
I I I I I 

is empty of eigenvalues. Then E(x -f- 8x + y) is the probability that 
the interval 8x + x -\- y is empty, and 

E(x +y)- E{x + 8x +y) 

is the probability that the interval [x + 3;] is empty and 8x is 
not empty. The probability that 8x will contain more than one 
eigenvalue is of second or higher order in 8x. Therefore, taking the 
limit 8x —> 0 and keeping only the first-order terms, we get 

dE(x + y) ^ — — 8x = probability that x + y is empty and 8x contains 
one eigenvalue 

By a similar argument we obtain 

— 8x by = prob { 8x> l\> 
dx dy 

where 
Sy, 1] 

means the probability that x -\- y is empty and 8x, 8y each contain 
one eigenvalue. Putting x -\- y = t we get (5.84). 

Let E\x -f y) be the probability that the interval x + y will 
contain at most one eigenvalue, so that E' — E = P(x -f y) is the 
probability that x + y will contain exactly one eigenvalue. By 
increasing x by 8x in P(x + y) and subtracting it from P(x + y) we 
find that either the eigenvalue in x -f- y moves in 8x or a new 
eigenvalue appears in 8x. Therefore 

where 
dx 

1 
1 
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means the probability that x -\- y and Sx contain r and s eigenvalues, 
respectively. A second differentiation gives 

d*P(x+y) \X+y' °) \X+y> l) ,: „ Sx δν = —prob { Sx, 1 > + prob { Sx. 1 > 
dxdy s i l l s i 

\ ty, î) \ sy, i) 
lx+y, 0\ 

— prob l Sx, l\. 
( «y, 1) 

Putting P = E' - E, 

ίχ+y, o\ d2E 

prob < 6JC, 1 > = -z—ττ- &x fy and x + y = i, 
\ oy, 1) 

we obtain the probability density for the next nearest neighbor 
spacings or for the spacings of the alternate series (9.39). 

A.12. Various Probability Distribution and 
Probability Density Functions 

The first few terms in the power-series expansions of the quantities 
in Table A.l are reproduced here. 

E(t) 

E\t) 

Eu(t) 

F(t) 

Fu{t) 

P(t) 

Pu(t) 

^ 3 6 1200 ^8100 ^70560 264600 + 

1 36 + 1200 70560 + 

π 2 7Γ4 7Γβ 

1 - ί + 3 - 6 < 4 - 6 7 5 < β + Ί7640-<8 + -

1 + dt 12 240 + 1350 + 10080 + 

dF π2 lit* 7Γ6 

1

 + Λ 9 225 ^ 2 2 0 5 + 

<ft2 6 60 + 2 7 0 + 1 6 8 0 + 

'

 A* A A ~ 3 45 ^ 315 + 
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7Γ 

- t 
2 

0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 

t 

0 
0.064 
0.127 
0.191 
0.255 

0.318 
0.382 
0.446 
0.509 
0.573 

0.637 
0.764 
0.891 
1.018 
1.146 

1.273 
1.400 
1.528 
1.655 
1.782 

1.910 
2.037 
2.164 
2.292 
2.419 

2.546 
2.674 
2.801 
2.928 
3.055 

3.183 

E(t) 

1 
0.936408 
0.873239 
0.810904 
0.749796 

0.690283 
0.632698 
0.577337 
0.524450 
0.474248 

0.426889 
0.341117 
0.267527 
0.205888 
0.155459 

0.115153 
0.083669 
0.059626 
0.041674 
0.028563 

0.019199 
0.012654 
0.008177 
0.005182 
0.003219 

0.001961 
0.001171 
0.0006858 
0.0003937 
0.0002216 

0.0001222 

E\t) 

1 
0.99993 
0.99944 
0.99811 
0.99556 

0.99142 
0.98537 
0.97712 
0.96645 
0.95318 

0.93720 
0.89695 
0.84597 
0.78542 
0.71717 

0.64362 
0.56742 
0.49116 
0.41734 
0.34802 

0.28475 
0.22856 
0.17995 
0.13897 
0.10522 

0.07817 
0.05693 
0.04066 
0.02847 
0.01955 

0.01316 

TABLE A.l 

Eu(t) 

1 
0.93634 
0.87275 
0.80937 
0.74647 

0.68436 
0.62344 
0.56413 
0.50685 
0.45204 

0.40008 
0.30596 
0.22632 
0.16171 
0.11149 

0.07411 
0.04748 
0.02929 
0.01739 
0.00994 

0.005467 
0.002892 
0.001471 
0.000720 
0.000329 

0.000153 
0.000067 
0.000028 
0.000011 
0.000004 

0.000001 

F(t) 

0 
0.00330 
0.01321 
0.02947 
0.05168 

0.07947 
0.11219 
0.14920 
0.18982 
0.23338 

0.27908 
0.37410 
0.46962 
0.56114 
0.64529 

0.71986 
0.78376 
0.83681 
0.87956 
0.91307 

0.93863 
0.95760 
0.97133 
0.98104 
0.98772 

0.99223 
0.99518 
0.99708 
0.9983 
0.9990 

0.9994 

Kit) 

0 
0.0006 
0.0023 
0.0074 
0.0172 

0.0327 
0.0546 
0.0832 
0.1187 
0.1604 

0.2081 
0.3161 
0.4336 
0.5505 
0.6584 

0.7515 
0.8269 
0.8845 
0.9262 
0.9548 

0.9735 
0.9851 
0.9918 
0.9959 
0.9980 

0.9990 

P(t) 

0 
0.104 
0.207 
0.303 
0.395 

0.477 
0.549 
0.6117 
0.6630 
0.7032 

0.7308 
0.7547 
0.7396 
0.6933 
0.6255 

0.5445 
0.4587 
0.3750 
0.2978 
0.2301 

0.1730 
0.1267 
0.0906 
0.0631 
0.0429 

0.0286 
0.0185 
0.0117 
0.0062 
0.0030 

0.002 

Pu(t) 

0 
0.013 
0.052 
0.114 
0.197 

0.292 
0.397 
0.504 
0.608 
0.704 

0.791 
0.898 
0.943 
0.883 
0.789 

0.661 
0.520 
0.387 
0.272 
0.182 

0.115 
0.070 
0.040 
0.022 
0.012 

0.006 
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A.13. Some Applications of Gram's Result 

Gram's result may be stated as follows [Courant and Hubert, 1]. 
Let vi , / = 1, 2,..., m, be m vectors and let via , α = 1, 2,..., w, be 

their components along some basis. Form the scalar products 

n 

then 

hi 
hi 

Kl 

hi ' 
hi ' 

"ml ' 

"hm 
"hm 

"mm 

Σ 
»1«! * 

v 
" » l « -

" ^ " m 

(A13.1) 

where on the right-hand side we sum over all possible ways of 
choosing αχ , α2,..., ocm among 1, 2,..., w. The summation over a may 
be finite, denumerable, or continuously infinite, the summation sign 
being replaced by an integration over a suitable measure. 

One may convince oneself of the validity of this statement as 
follows. By the very definition of a determinant the left-hand side of 
(A13.1)is 

m 
bi j = 

'■mJm 

1 
v. vr 

*τηατη >1α1 

where the summation si is taken over all permutations ix, i2,..., im 

and iy over all permutations ji, J2 >—i j m °f t n e indices 1,2,...,/«; 
the summation (or integration) σ is over the indices αχ , α2 ,..., ocm . 
The sign is + or —, depending on whether the parity of the 
permutation 

Vl h ~'jm' 
(A13.2) 

is even or odd. Interchanging σ and the s, which can certainly be 
done, as the £ s contain a finite number of terms, we get 

=ΓΣ|Σ±»*, 

which is visibly the right-hand side of (A13.1). If the reader has 
any doubt about the sign + or —, which now depends on a different 
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permutation, we may note that the parity of the permutation (A13.2) 
is equal to the product of the parities of the permutations 

ft {* ""M and ft k "Ή 
V«! a 2 · · · QLJ \οίχ a 2 · · · ocj 

If we make the correspondence 

viQL-+V2<p2i(x), Σ~* ) dx> 
a. β 

the scalar products become 
ba = Σ **. K -+ f 2 VMW ?«(*) ώ = fti 

a J Θ 

and the theorem (A13.1) yields (5.119). If we make the correspondence 

the scalar products become 
-00 

Ô . . = Y Î ) . Ü* -> dy 2e~y 

13 Lu ta ia F - / 

•'ft 

,2 J' 
2t+2j+l 

o Cv2 + #2)1/2 i+j 

and the theorem (A13.1) yields (5.125). If we make the correspondence 
N 

VioL -> φ^Χί), Σ -^ Σ 
a a = l 

we obtain (6.7) with (6.8). If we make the correspondence 

*>*« -* ?<(*), Σ -* I ^ = ( | + I ) dxy 
α • ' o u t \

J
 -oo J Θ ' 

the scalar products become 

bio = I <Pi(x) <PÀX) dx = δ ύ — I <Pi(x) <PAX) dx 

J out J -Θ 

and we have (6.15). If we make the correspondence 

W f a-(2 ir)-1 /» «*«»*, Σ-Σ1· 
a a=0 

the scalar products become 
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and we get (9.56). If we make the correspondence 
/»2·7Γ—α 

J rv 

the scalar products become 

>ik = (2*)-ij' άθ ei{j-k)e
y 

and we get (9.63). 

A.14. Power-Series Expansion of /m(B)+ 

Expanding the integrand in (5.126) in powers of Θ and integrating, 
we get 

where 
va») = Ut - m2i-2 + m*-* + - , (A14.1) 

J o 

Taking terms only up to 04, we put the expansion (A14.1) in the 
determinant of (5.125). We see that in writing the determinant as 
a sum of several terms many of them vanish because two rows are 
proportional. Thus we may write 

Ιη(θ) = /m(0)[l - ψα + W(b - c) + -] (A14.2) 

where 
"\Ar 2m-l 

U0) = \-{m - 1)! Π ini + iJ)]-1 detff«^],.^. 

/m(0)e = 
b 2 m - 2 

b2m+2 

?2m b! 2m b2m+2 b 4 m - 4 

/«(0)A 

to ί. b 2 m - 4 

b*2m+2 

b2m b! 2m b 2m+2 b4w—4 

/»(0)c = b8 blO 

b 2 m - 2 

b2m 

b*2m+4 

b 2m b 2m+2 * " * Mm—4 

t M. L. Mehta [1]. 
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The evaluation of determinants whose elements are gamma functions 
is almost as easy as those whose elements are the successive factorials. 
Taking out all the common factors, one may reduce these determinants 
to the triangular form by simple operations. Thus we obtain 

7m(0) = 1, a = f(m - 1), b = Mm - 1), 
and 

c = Um - l)(m - 2). 

Putting these values in (A14.2), we get (5.127). 

A.15. Proof of the Inequalities (5.130) 

Let u{ = e2lyt
2 so that ŵ  > 0. The second inequality in (5.130) 

Π (1 + «<)-1/a < 1 
1 

is immediate, for each factor in the product lies between 0 and 1. 
The first inequality can be proved by induction. Suppose that 

i - \ Σ ui < Π 0 + «i)-1/2 
Δ i=\ t=i 

is true for 1 < r < n and let us prove then that 

i n+1 n+1 

i - 5 Σ ** < Π 0 + «ί)-1/2· 

Let ( 1 / 2 ) Σ ι + 1 " ί < 1> f o r otherwise the left-hand side will be 
negative and therefore smaller than the right-hand side, which is 
positive. Thus 

i r Λ n+1 r n+1 

I1 - k Σ «Ji1 - 5 Σ «<) < Π 0 + «*)-1/a Π (i + «<)-1/2. ' <w> 
V Z 1 ' X Z r+1 ' 1 r+1 

for both quantities in the product on both sides are positive. Therefore 
we have 

w+l i n+1 i r . i n+1 i n+1 

Π (i + «.)-1/2 > i - i Σ «« + ΪΣ**· 5 Σ φ > - Σ« . · 
i=l ^ i=l XZ< 1 7 XZ> r + 1 ' *- »-1 
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Also it is easy to verify that 

1 - *«i < (1 + "i)-1 /2 

and the proof is complete. 

A.16. The Confluent Alternant 

Let mx, m2,..., mN be positive integers and let their sum be 

m = mx + m2 + ··· + mN ; m^ > 1, j = 1, 2,..., iV. 

Let us form a determinant J as follows. The first row consists of the 
powers of x1 

1 v v 2 v 3 y,m—1 

The j th row for 1 ^ j < mx is the (/ — l)th derivative of the first 
row. The (m1 + l)th row consists of the powers of x2. 

1 -y» γι it yt 3 /yWl — 1 

» Λ2 » 2 » 2 , ,· · , 2 

The (mx + i)th row for 1 < j < w2 is the (j — l)th derivative of the 
(m1 + l)th row. The next mz rows are formed in a similar way from 
the powers of x3 and their successive derivatives, and so on. 

The determinant Δ is called the ''confluent alternant'' and it 
factorizes as 

N
 m

i 
Δ = Π f Π Γ(η)1 Π (** - *<)m<mi (Α 1 6 · ΐ ) 

t = l r t = l J
 1<ζΐ<)<ζΝ 

This last statement can be proved in three steps: 

1. The determinant J is a homogeneous polynomial in x1, x2,..., xN 

of degree 
N 1 / * \ 

|m(m — 1) — Σ ■= m^nii — 1) = Urn2 — £ m^j = £ m*m* · 

2. It contains a factor 

(JC, — Xi)mimu 

which can be seen by observing that Δ and several of its derivatives 
with respect to Xj contain two identical rows on setting xi = χΛ 
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Hence they vanish. The lowest derivative that does not vanish is one 
in which each of the rows containing x^ is differentiated mi times. 
Because there are m;. rows containing x^, the lowest nonzero derivative 
at xi = Xj is of the order m-m^. 

3. The term arising from the nij X m$ blocks, j = 1, 2,..., N, 
along the principal diagonal can be computed to give the constant 
coefficient in (A16.1). Equations 6.27 and 9.42 are special cases of 
(A16.1) when mx = m2 -— ··· = mN = 2. 

A.17. Proof of Equations (8.12) and (8.28) 

Let dM and dM' be connected by a similarity transformation 

dMf = AdMA-\ (A. 17.1) 

where A is nonsingular. We now show that the Jacobian 

J - 8(dMi})
 ( Α , 7 · 2 ) 

is unity. 
Considering the various matrix elements dM'y as components of a 

single vector (and similarly for dM{j)y we can write (A17.1) as 

k,l 

or 
dM' = {A x A~1T) dM, (A17.3) 

where the direct or the Kronecker product (A X B) is defined by 
the equation 

{A x B)ijtkl — Aik - Bn . 

The Jacobian (A 17.2) is thus seen to be equal to the determinant 
of (A X A~1T). 

Now it can be easily verified that if P and Q are matrices of the 
order (n X n), whereas R and S are of the order (m x m), 

(P x R) · (Q x S) = (P · Q) x (R · S)y (AHA) 

where a dot means ordinary matrix multiplication. From (A 17.4) 
we obtain 

(RxP) = (Rx ln) · (lm x P), 
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where l r is the (r x r) unit matrix. Taking determinants on both 
sides of this equation we have 

det(Ä X P) = (det R)n (det P)™. (A17.5) 
Thus 

; = ^MH) = det(^x A~1T) = c(det ̂ )(det A~1)]N = h 

which establishes the result we wanted. 

A.18. Proof of Equation (11.29) 

m 

Π ("ί + "*) Π ("»-i + ^Υ1 

l< j<fc<2m j=l 

= (Vl + "sX l̂ + νύ(ν1 + vb) ·*· K + ^τηΧ^ + ^)(^2 + "4) ' * * (V2 + "2m) 
"" (v2m-3 "1 v2m-l)(v2m-3 ~l· v2m)(v2ra-2 1 v2m-l)\v2m-2 1 v2m) 

= (V. + "4 ) 2 ( - "2 + ^)2 ("2 + " 6 ) 2 ( - V 2 + "β)2 - ("2 + " 2 m ) 2 ( - * 2 +Vimf 

X ("4 + V,)«(-V4 + V6)2 - (V4 + V2 m)2(-V4 + V2m)2 

'*' (v2m-2 H~ v2m) ( ν2τη-2 ~f" v2w) 

= [(V2 + "4)(V2 + Ve) ' · · (V2 + V2W)(V4 + V6) — (V4 + V2m) 

•••(^2m-2 + "2m)(—"2 + v4)(—v2 + Ve) — (—V2 + ^2m)(—"4 + "β) 

·'· (—v4 + v2m) '" (—"2m-2 + V2m)]2 

= [2. 3. 4 ··· m. 4. 5 ··· (m + 1) ··· (2m - 2) 
X 1.2 • • • ( m - 1)1. 2 - ( m - 2 ) ··· l]2 

r m l > + 1)! (m + 2)! ... (2m - 2)! _ _ ,. i2 

11! 3! 5! ( 2 m - 3 ) ! 1 1 M h J 
2m—2 . 2 rm—1 

= ( π y«) [Π(2/·-ΐ)·]" 
,2*1-1 2 r m Ί _ 

= (Π/!) [Π(2;-ΐ)ΐ] 

= Π KOT 
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A.19. Wilson's Proof of Equation (10.11) 

Let us write 

ΗΦΪ) X * l ' 

so that when 
P(z) = Ρ(ζ,,..., zN) = Π ϋ>;)α>, (Α.19.2) 

2 

with α χ , α2,..., aN positive integers, is expanded in positive and 
negative powers of the Zj the constant term is 

K = (2irt)-tf jdz1- j άζΝ{ζΎ ··· arN)-i P(*), (A19.3) 

where the contours of integration are unit circles taken counter-
clockwise. We have to prove that K is given by (10.11): 

ax\-aN\ 

The proof can be conveniently divided into a set of lemmas. 

Lemma A I . A polynomial that is antisymmetric in χλ, x2,..., xx is 
necessarily of the form 

G(x1,..., x%) Π (x{ — *,), 

where G(xx, x2,..., Xi) is a symmetric polynomial in all the Xj ; 
j = 1, 2,..., /. 

A polynomial that changes sign when any pair of variables Xj, xk 

is interchanged vanishes when Xj — Xj. SO that it contains (xj — xk) 
as a factor; taking all possible pairs Xj , xk it contains, in fact, 
Yli<j (xi — xj) a s a factor. The remaining factors form a polynomial 
that must now be symmetric in all the x3- . 

Lemma A2. If G(xx, x2,..., xt) is a ratio of two polynomials in 
x1 , x2,..., xt, such that (a) its denominator is the product of all the 
differences Πί<?· (xi ~ xj)> (D) ** ^ homogeneous of degree r in xf, 
j = 1,2,...,/, and (c) Λ w symmetric in all Xj , then G is (a) identically 
zero, if r < 0, (b) a homogeneous polynomial of degree r, if r ^ 0. 

(A19.4) 

(AI9.I)
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Because G is symmetric, and its denominator is-antisymmetric, 
the numerator must also be antisymmetric. Therefore by Lemma Al 
it contains the entire denominator as a factor. Therefore G is a 
homogeneous polynomial of degree r. If r < 0, G must vanish 
identically. 

Lemma A3. By regarding the Uj as functions of ζ^, we have the 
identity 

Σ u, = 1. (A19.5) 

Since Σ?=1
 uj > a s a function of the zi, satisfies all the conditions 

of Lemma A2 with r = 0, it is a constant. To evaluate this constant 
put ^ = 0, so that 

wi = 1, «2 = «a = " · = UN = 0. 

Lemma A4. ΓΑ* Jacobian 

= a(lni/2,...,lnttN) 
^ ; a(ln ^ , . . . , In a r ^ ) 

/(*) = (JV - 1)! ut. (A19.7) 

Proof: The Jacobian / is the determinant of the matrix 

0(ln Ui) 
Ju = 3(\n Zf) 

(rows numbered i = 2 to iV, columns y = 1 to iV — 1). Without 
changing the value of the determinant, we may add columns j = 2 
through AT — 1 to column 1 ; because In u{ is homogeneous of degree 
zero in the Zj, we now have 

= 0(ln Uj) 
Jil d(lnzN)· 

Move this column to the right and call it JiN ; thus 

7 = (-iy-»det[/„]<.M>e „. 

(A19.6) 
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Now 
Ja = —*i{*i - *i)-1> i Φί> 

Jit = 2^ zi\zk ~" zi) · 

Evidently / is a ratio of two polynomials in the zf, the denominator 
being a product of factors (z} — z^. No such factor occurs twice, for 
a denominator (zj — z^ appears only in the elements Ju , Jtj, JH , 
and Jjj, so that the term (zs — z^2 occurs in the denominator of / 
only if it occurs in the 2 x 2 determinant (JaJ^ — Jijjji)> However, the 
last expression does not contain any (z3- — ζ{)~

2. Furthermore, / has 
a factor z2, #3 ,..., zN ; / is symmetric in z2, z3 ,..., zN (but not zx) 
and is homogeneous of degree 0 in the Zj. By the arguments of 
Lemma A3, we must have 

J = cf[zj(zj-ziri = Cu1, 
3=2 

where C is a constant. Since (A 19.4) is known to be true for the 
special case ax = a2 = ··· = aN = 0, we must have 

C = (N- 1)! 

Lemma A5. 

K = (2πί)-"+1 jd»2'~j duN(u2 -·· uN)-i ^ , (A19.8) 

where the Zj are expressed in terms of the Uj \j = 2,..., N, by (A 19.1) 
and (A19.5). The contours of integration are the circles 

\Ui\=Rti (A19.9) 

taken (i — 1) times counterclockwise, where the Rt are arbitrary, 
except that they satisfy 

RM < Rr < 1. 2 < i < N - 1. (A19.10) 

Lemmas A3 and A4 show that / and P are single-valued functions 
of the Uj , and we do not have to specify the branch of the solution 
of(A19.1). 

The lemma is proved by introducing the new variables one at a 
time and using mathematical induction. For more details the reader 
is referred to the original paper by Wilson [1]. 
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Theorem AI . K is given by (A19.4). 

Proof: By the foregoing lemmas 

(1ττΐ\-*ί+1 r r N 

K = W~îy. J du* '" J du» Π V^1. (Α19·π) 
with 

«1 = 1 — Σ Mi . 
3=2 

It is somewhat annoying to have the integrand symmetric in the 
variables ux, u2,..., uN (not all independent, of course) while the 
integrations are not. To overcome this slight inconvenience Wilson 
proceeded as follows. If K(X) were defined by (A19.il), but with 

N 

u1=X~Yjuji 
3=2 

where | λ | = 1, then by making a change of variables u] = Xu^ we 
obtain 

N 

K(X) = X-o-iK, a=Yiaj. (A19.12) 
3=1 

Also 
(2m)-1 j w-^-V du=\ (A19.13) 

if the contour encloses the origin once counterclockwise. From the 
last two equations we get 

K = (2m)-1a\ j e*K(X)dX. 

Now interchange the order of integration, so that keeping 
«2 y u3 ,..., uN fixed, λ is integrated out first to get 

(2m)-1 Γ ex (X - £ ηλ * dX = (a^)-1
 e

u2+~'+uN. 
J ^ 3=2 ' 

Thus 

K=^Γw=w I 2 ■"■ J **» Q Λ " 
_(*! + " + Q! 

ÄJ! ß2! · · · aN\ αλ\ · · · α^! 

http://A19.il
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The factor (N — 1)! is canceled by the requirement that Uj goes 
round the circle (j — 1) times. 

A.20. Proof That the Second Term in Equation (7.28) 

Drops Out on Summation 

By reducing to a common denominator we have 

Σ / \—1 / \_I ^\Xi) 

\Xj — Xi) (Xj — Xi) = n f , , i,j,l
 LJ\xi) (i,i,l all different) 

where 

D(Xi) = Π (*< - *i) 
i<j 

and iV is a certain polynomial whose order is 2 less than that of D. 
As the left-hand side of this equation is symmetric in all the Xj and 
D is antisymmetric, we see that N must be antisymmetric. 

Now the lowest order nonzero polynomial antisymmetric in the 
Xj is clearly D(xj). Because the order of N is less than that of D, 
we conclude that N must be identically zero. 

A.21. Proof of the Inequality (10.5) 

Consider all ^N(N — 1) chords that join the N points A1, A2 ,.··> AN 

which lie on the unit circle. For definiteness let the angle variables 
of these points be in increasing order. Moreover, in the subsequent 
argument, whenever the index of any point exceeds N we subtract a 
multiple of iV so that it is one of the numbers 1, 2,..., N. We want 
to maximize the product of the lengths of all the chords. 

Let us divide the set of chords into a number of classes. In the first 
class we put the chords AtA2, A2AZ ,..., AN_XAN , ANAX. In the second 
one we put AtA3 , A3A5 , A5A7 ,..., and so on until we get back to AY. 
If A2 is left out, we construct a separate class of A2A^ , A^A6 ,..., 
until we get back to A2. In the next class we put the chords 
ΑλΑΑ , Α±ΑΊ, ΑΊΑ10 ,..., until AY is repeated. If A2 is left out, we 
construct a separate class A2A5, ΑδΑ8,... . Similarly for A3. And so 
on, until all the chords are exhausted. We maximize the product of the 
lengths of the chords belonging to a particular class. It is conceivable 
that the maximization conditions are different for different classes. 
If this occurs, we will really be in trouble. 
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Notice that if the points Px, P 2
 a r e fixed, but the point P 3 varies 

over the upper arc, the product of the chords ΡχΡ3 , P2Ps is maximum 
when the two chords are equal. From this it follows that the product 
of the chords belonging to any one class is maximum when the points 
A1, A2,..., AN lie at the vertices of a regular polygon. This condition 
is the same for any of the classes and the above mentioned trouble 
does not arise. 

A.22. The Probability Density of the Spacings 
Resulting from a Random Superposition of 
n Unrelated Sequences of Energy Levels 

Let pi be the level density in the fth sequence and pi(piS) pt dS> 
the probability that a spacing in the ith sequence will have a value 
between S and S + dS. Because pi(x) is normalized and the level 
density is the inverse of the mean spacing, we have 

/«CO ΛΟΟ 

pi(x) dx = 1, xpi(x) dx = 1. (A22.1) 
J o ^ o 

Let Ft{x) and E{(x) be defined by 

W = fpi(y) dy = \ - Γ Ply) dy = \ -

and 

*<(*) = fx [i -FM] dy = f°x [j~Pi(y + *)«**] dy 

CO 

= f f Pi{* +y +z)dydz= Cypi(x + y) dy, (A22.3) 

\pi{x+y)dy (A22.2) 
J
 n 
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so that F^piS) is the probability that a spacing in the ith. sequence 
is less than or equal to 5 and Ε^ρβ) is the probability that a given 
interval of length S will not contain any of the levels belonging to 
the sequence /. 

Consider the system resulting from the superposition of n sequences. 
The total density is 

Ρ = Σ * · (A22·4) 
i 

Let P(pS) p dS be the probability that a spacing will lie between S 
and S + dS. Analogously to (A22.2) and (A22.3), we introduce the 
functions F(x) and E(x) by 

F(x) = f P(y) dy = 1 - Γ P(x + y) dy (A22.5) 
J n * ft 

and 
/•OO /» /» /»00 

£ ( * ) = ! [1 -F(y)]dy = 11 P(* + ;y + z) dy dz = I ^P(jc+^)i(y. 
° (A22.6) 

From the observation that E(pS) is the probability that a given 
interval of length S will not contain any of the levels and the 
randomness of the superposition we have 

E{pS) = Y\Ei{piS), (A22.7) 
i 

Introducing the fractional densities 

fi = T' Σ / ί = 1 ( Α 2 2 · 8 ) 

and the variable x = pS, we have 

E(x) = l\Ei(fix). (A22.9) 
i 

By differentiating (A22.9) twice, we obtain 

+ [γ* Eiifc) \ L\Ji Ei{fiX) )γ 
(A22.10) 

which was the purpose of this appendix. 
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We now consider three special cases. 

1. Let the levels in each of the sequences be independent of one 
another so that p^x) = e~x. In this case 

1 -Fi(x)=Ei(x) = e^ (A22.il) 

and (A22.10) yields P(x) = e~x, which verifies the obvious fact that 
the random superposition of sequences of independent random 
levels produces a sequence of independent random levels. 

2. Let all fractional densities be equal to \\n and take the limit 
as n goes to oo. Let x = ny so that 

P(„r t = [£W,jim + (l_i)[l^)]'J. (AaI2) 

From (A22.1), (A22.2), and (A22.3) we have 

F(0) = 0, E(0) = 1, E'(0) = - 1 . (A22.13) 

Therefore, taking the limit as w-> oo, j>->0, whereas ny = x is fixed, 
we see that the terms in the square brackets tend to 1, while from 

E(y) * E(0) +yE'(0) + - = \ - y + ·.·, 

keeping only the first term, 

[E(y)Y «* (1 - y)n = (l - Ï )" -> e-. (A22.14) 

This is a verification of the heuristic reasoning that if the number n of 
the sequences to be superimposed is large, a level belonging to a 
sequence will almost certainly be followed by a level of another 
sequence and these two levels will be independent, whatever p(x) 
may be. 

3. For the "Wigner surmise" 

p(x) = JL x exp ( — ̂ - xA (A22.15) 

we have 
/ 7Γ \ 2 Λ ( Ι / 2 ) 3 \ / ; Γ 

1 _ F(x) = exp - -r x2 , E(x) = 1 - -f=- e~^ dy. (A22.16) 

http://A22.il
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For the correct spacing distribution the functions F(x) and E(x) are 
tabulated in Appendix A. 12. 

Because p(0) = 0, we have 

(̂0) = i - £ / * 2 (A22·17) 

and, in particular, P(0) φ 0. 

A.23. Some Properties Connected with Symmetric and 
Antisymmetric Unitary Matrices 

A few lemmas needed at various stages are given here for 
completeness. 

1. If x is a real n X 1 column matrix normalized to unity, 
ΣΓ=ι xi — 1 y a n n χ η r e a l orthogonal matrix can be constructed (in 
many ways) whose first column is x. 

Take any (n — 1) real n X 1 column matrices which together with 
the given column x form a linearly independent system of n columns. 
This is possible due to the invariance of the number of dimensions of 
the space under consideration. Now apply Schmidt's orthonormaliza-
tion procedure to these column matrices, starting with x. 

2. If A is an n x n Hermitian (anti-Hermitian) matrix with 
complex elements, all its eigenvalues are real (pure imaginary). 

In particular the eigenvalues of a symmetric (antisymmetric) real 
matrix are all real (pure imaginary). 

Let λ be an eigenvalue and xy the corresponding eigenvector; 
that is, 

Ax = λχ. (Α23.1) 

Multiplying by xf from the left gives 

x*Ax = λχ'χ. (Α23.2) 

The Hermitian conjugate of the last equation reads 

* M + * = λ**+χ. (Α23.3) 

Because xfx Φ 0, we conclude by comparison of (A23.2) and (A23.3) 
that λ = λ* or λ = —λ* depending on whether Af = A or A* = —A. 
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3. If A is a real symmetric matrix, all its eigenvectors may be taken 
to be real. 

In fact, because the eigenvalue λ is real, by separating the real and 
imaginary parts of (A23.1) we get real eigenvectors. 

4. If A is a real symmetric matrix, there exists a real orthogonal 
matrix B that diagonalizes it; that is, 

BTAB = Ey BTB =B*B = 1, (A23.4) 

where E is diagonal. 
Let λχ be an eigenvalue and x, a normalized real eigenvector 

corresponding to it. Construct a real orthogonal matrix Βλ whose first 
column is x\ Bx = [x, F] . Transforming A by Bt, we get 

B/AB^lf^Aix F] = ß> £ £ £ ] , 

where we have used the fact that YTx = 0. Because BX
TAB is 

symmetric, xTAY = 0 and 

λχ 0 
* ■ * * - & A)· 

where A1 = YTA F is a real symmetric matrix whose order is one less 
than that of A. The process can be repeated on Ax. Let JB2' be an 
orthogonal matrix with 

w-t jj. 
where A2 is a real symmetric (n — 2) X (n — 2) matrix. Putting 

β2=Μο J · 
we see that 

B/AB2 = 
|Λ 
0 

Lo 

0 On 
λ2 0 

o AJ 

The construction of B can thus be carried out step by step. 
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5. If A is a real antisymmetric matrix, there exists a real orthogonal 
matrix B such that it transforms A into the canonical form 

BTAB = £, BTB = ΒΉ = 1, (A23.5) 

where £ is a real antisymmetric matrix whose only nonzero elements 
lie in the 2 x 2 blocks along the principal diagonal; that is, 

^2j,23-l — ~^2j-l,23 — N y N r e a l » 

and (A23.6) 

Ejk = 0, otherwise. 

Let x + iy be the eigencolumn corresponding to the eigenvalue 
λ = —ίμ with x9 y y and μ real [see 2]: 

A(x + iy) = -ιμ(χ + iy). (A23.7) 

Separating the real and imaginary parts, we get 

Ax = /zy, Ay = —μχ, (Α23.8) 

so that 
xTy = yTx = a. number. xTAx ■ H>xTy, 

On taking the transpose of this equation we find that the left-hand 
side changes sign. Therefore the right-hand side must be zero. 
Thus, if μ Φ 0, the real and imaginary parts of the eigenvector are 
orthogonal. 

xTy=yTx = 0, for μ φ 0. (A23.9) 

On the other hand, (A23.8) leads to 

wTy yTAxt μχτχ = —xTAy. 

Taking the transpose of the first of these equations and comparing 
it with the second, we see that if μ Φ 0 we can normalize the 
eigenvector in a way to satisfy 

- yTy = 1. (A23.10) 

Now let μ Φ 0 and construct a real orthogonal matrix Bx whose 
first two columns are x and y: Bx = [x y W]. This is possible 
according to (1). Transforming A by Bx, we get 

B1
TAB1 = 

ΧΤΛ 

yT 

WT\ 
A[x y W] = 

Ό 
μ 

Lo 

-μ XTAW-
0 yTAW 
0 WTAW. 
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where we have used (A23.9) and (A23.10) and the orthogonality of 
Wto both x and y. Because BX

TABX is antisymmetric, we must have 
xTAW = yTAW = 0, and 

B1
TAB1 = 

0 - " ° I r0 -
μ 0 0 ' ' 

L0 0 WTAW. 

[ 0
μ] + [WTAW}. (A23.il) 

The process can be repeated for all nonzero eigenvalues, and we get 

B ' A B = t " o ' ] + - + L°, 7 1 + * · <A2312> 
where Ax is a real antisymmetric matrix with all its eigenvalues equal 
to zero. Hence Ax must itself be zero. Thus we have found a real 
orthogonal matrix B which transforms A to the canonical form. 

6. Any number of commuting real symmetric matrices can be 
diagonalized by the same real orthogonal matrix. Any number of 
commuting real antisymmetric matrices can be transformed to the 
canonical form (A23.5), (A23.6), by the same real orthogonal matrix. 

As the commuting matrices all have the same eigenvectors, 
the process followed in (4) and (5), if applied to all matrices, will 
transform them to the desired form: diagonal for real symmetric 
and canonical (A23.5), (A23.6) for real antisymmetric. 

7. If A is a unitary symmetric matrix with complex elements then 
there exists a real orthogonal matrix B that diagonalizes A; 

BTAB = Ey BTB = B*B = 1, (A23.13) 

where E is diagonal. The diagonal elements of E are the complex 
number eiBi lying on the unit circle. 

Let 
A = Ax + iA2 (A23.14) 

where Ax and A2 are real. As A is symmetric so are both Αλ 

and A2. The unitarity of A gives 

(Ατ - iA2){Ax + iA2) = 1. (A23.15) 

By separating real and imaginary parts of (A23.15) we get 

Ax
2 + A2

2 = 1, ΑλΑ2 - A2AX = 0. (A23.16) 

http://A23.il
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Thus the real symmetric matrices A1 and A2 commute and therefore 
can be diagonalized both by the same real orthogonal matrix B\ 

BTA1B = Ex, BTA2B = E2, (A23.17) 

where Ex and E2 are diagonal and real [see (2) and (6)]. If e^ and e/ 
are the diagonal elements of E1 and E2, respectively, the first relation 
of (A23.16) gives 

e* + e'* = l, 

so that we can write 

e. = cos Θ., é. = sin Θ. . (A23.18) 

Equations A23.14, A23.17, and A23.18, then, give the diagonal 
elements of E as 

e. + ie] = eieK (A23.19) 

8. If A is a unitary antisymmetric matrix with complex elements, 
then there exists a real orthogonal matrix B such that 

BTAB = E, BTB = B*B = 1, (A23.20) 

where E is an antisymmetric matrix with the canonical form (A23.6). 
The elements of E are 

£*.*-i = - £ * - i . * = «"'. (A23.21) 

with dj real. All other elements of E are zero. 
Let 

A = Ax + ii42 (A23.22) 

where ^4j and A2 are real. Because 4̂ is antisymmetric, so are Ax 

and A2 . The unitarity of A> on separating the real and imaginary 
parts, gives the equations 

A^ +A2
2 = -h AXA2 - Α2Ατ = 0. (A23.23) 

Thus the real antisymmetric matrices Αλ and A2 commute. A real 
orthogonal matrix can therefore be found such that 

BTAXB = Ελ, BTA2B = E2 ; (A23.24) 
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Ei and E2 both having the form (A23.6). Let the elements in the 
subdiagonals of Ex and E2 be es and e- , respectively: 

(^1)2^,2^-1 = ei > (^2)2^,25-1 = ei · (A23.25) 

The first of the equations (A23.23) then gives 

e* + e'* = 1, 

so that we may choose 

e. = cos Θ., é. = sin Θ.. (A23.26) 

Equations A23.22, A23.24, A23.25, and A23.26 then give the sub-
diagonal elements of E> as stated. 

9. If A is a unitary symmetric matrix, then there exist unitary 
symmetric matrices U and V such that 

A = UUT and VAVT = 1. (A23.27) 

Let the real orthogonal matrix B diagonalize A: 

A = BEBT 

and choose 
U = BEV\ V = U-\ 

where E1/2 is a diagonal matrix with diagonal elements exp(Jt0;·). 
The matrices U and V are not unique. We may replace U by URy 

where R is any real orthogonal matrix. Moreover, the relation 
VU = 1 need not be valid. 

10. Given a unitary symmetric matrix A> we can find a unitary 
symmetric matrix U (in many ways) such that 

A = U\ U* =U* = U-\ 

Choose 
U = BEV*BT. 

if the real orthogonal B diagonalizes A. 

11. If A is a unitary antisymmetric matrix, then there exist unitary 
matrices U and V such that 

A = UZUT and VAVT = Z, (A23.28) 

where Z is the matrix given by (2.21). 
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Let the real orthogonal matrix B transform A to the canonical 
form (A23.20), (A23.21). 

A = BEBT, BTB = B^B = 1, (A23.29) 

^23,23-1 = ~&23-1.23 = e% j 

Ejk — 0, otherwise. ^ ' ' 

Let X be the diagonal matrix with diagonal elements exp(^'öy), each 
repeated twice. Then we may choose 

U = BX, V= U-1 

which visibly have the required properties. The matrices U and V 
are not unique. We may replace U by £77?, where R is any unitary 
matrix satisfying the relation 

RZRr1 = Z. 

Moreover, the relation VU = 1 need not be valid. 
In the foregoing lemmas we can make these replacements: 

"real" -> "quaternion real," "x.y = £ , **y/ ' -> "x.y = Σ,· xfy" 
"imaginary" -> "quaternion imaginary," "transpose" —> "dual," 
"symmetric" —> "self-dual," "antisymmetric" —> "antiself-dual," 
"real symmetric" —► "Hermitian," "real antisymmetric" —> "anti-
Hermitian," "real orthogonal" —> "symplectic," "diagonal" —► "diag-
onal and scalar," and "unitary" —► "unitary"; and we get new 
propositions about matrices with quaternion elements. (For the 
definitions of terms see Section 2.4.) The proofs also remain valid 
with the same replacements. We shall need the following in particular. 

12. If A is a quaternion real self-dual (i.e., Hermitian) matrix, 
then there exists a symplectic matrix B such that 

BRAB=E, (A23.31) 

where E is diagonal, real, and scalar. The superscript R on B denotes 
its dual [cf. (2.36)]. 

13. If A is a unitary self-dual matrix, then there exist unitary 
matrices U and V such that 

A = UUR and VAVR = 1. (A23.32) 
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14. If A is a unitary self-dual matrix, then there exists a symplectic 
matrix B which diagonalizes A; that is, 

BRAB = Ey (A23.33) 

where E is diagonal and scalar. The diagonal elements of E are the 
complex numbers eie* (0y real), each repeated twice. 

A.24. Evaluation of the Integral (12.9) for Complex Matrices 

In the exposition given here and in Appendix A.26 we follow the 
method of Ginibre [1]. We start with the proposition: 

Any complex nonsingular N X N matrix X can be expressed in 
one and only one way as 

X = UYV, (A24.1) 

where U is a unitary matrix, y is a triangular matrix with all diagonal 
elements equal to unity, y^ = 0, i > j \ yu — 1, and F is a diagonal 
matrix with real positive diagonal elements. 

Proof: Given X = [##], we solve the homogeneous linear 
equations in urj : 

N 

Σ unxa = °> * < r> 
(A24.2) 

N 

3=1 

successively for r = N> N — 1,..., 1. Because the number of unknowns 
is always one greater than the number of equations, the urj for a 
fixed r are not all zero. We may normalize them to satisfy 

Σ «r?:, = i. (A 2 4 ·3) 

without disturbing the equalities (A24.2). Thus we have found a 
unitary matrix Ux = [urj] such that Υλ = ΌλΧ is triangular 
(Yxjij = 0, / > j . Because X is nonsingular, all diagonal elements 
of Yx are different from zero. Writing the diagonal elements of Yx 

in the polar form, (ΥΊ)^ = vi exp(/ö;), we construct two diagonal 
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matrices, one unitary, U2 , with diagonal elements ( U2)^ = exp(/0j), 
and the other positive definite, V> with diagonal elements V^ = Uj. 
Putting Y = UJYiV-1 and U = U^U2 , we see that X = UYV, 
where £/, Y, and V have the properties required in the proposition. 
Next let X = UYV = U'Y'V; then U'W = ΥΎΎ^Υ-1 is 
unitary (left-hand side) as well as triangular with real positive diagonal 
elements (right-hand side). Thus U'W and Y'V'V^Y-1 are unit 
matrices. A comparison of the diagonal elements on the two sides of 
YV = Y'V now gives V = V. The decomposition X = UYV is 
therefore unique. 

Using the fact that S = XEX~\ UfU = 1, and EV = VE, we 
can write 

tr(S+S) = triE'X'XEiX'X)-1] = tr[£+Υ+Υ£(Υ+Υ)-!], (Α24.4) 

dA = X-1 dX = V^Y-^U-1 dU) YV + V^Y-1 dYV + V-1 dV. 
(A24.5) 

The volume element Π ί ^ dAffl dAty needed in (12.9) is the quotient 
of the volume element Πί,, dAf? dAft by that of the set of all 
complex diagonal matrices. We put aside the quantities that do not 
depend on the eigenvalues, for they give only multiplicative constants. 
All of these constants can be adjusted in the final normalization. 
From (A24.5) and the structure of Y and V we see that 

Π dA™ A4g> = Π ( y _ 1 dY)™ (Y"1 dY)lf a, (A24.6) 

where a depends only on U and V. We replace Y\ilkj dA$] dAty in 
(12.9) with Πί<; ( ^ - 1 dY)iy (Y-1 dY)$ and calculate 

f expl-triE'HEH-1)] f ] ( Y"1 dY)<°> ( Y"1 dY)\]\ (A24.7) 

where 
H =Y*Y. (A24.8) 

The matrix H is Hermitian. Any of its upper left diagonal block 
of size n is obtained from the upper left diagonal block of Y of the 
same size: Hn = Yn

fYn . Therefore, for every n, det Hn = 1, and 
the diagonal elements Hnn are successively and uniquely determined 
once the off-diagonal elements are given. Thus we need N(N — 1) 
real parameters to specify H, the same number needed to specify Y. 



228 Appendices 

We can further convince ourselves that the correspondence of Y and 
H is one to one. However, we do not need this last result, for we are 
omitting the constants anyway. Now we make a change of variables. 
First, because det Y = 1, 

n (Y-1 dn? (y-1 «**%» = n w r **$· (A24.9) 

Next, we take Hffl, Hfy for i < j as independent variables. The 
superscripts (0) and (1) denote, as always, the real and the imaginary 
parts. From 

k<i 

one can easily calculate the Jacobian of the transformation from Y 
to H, it being unity. The integral (12.9) is 

J = C( exp[-tr(£t//£i/-i)] f ] dH™ dH™, (A24.10) 
i<j 

where C is a constant. 
The integration over H is done in iV steps. At every step we 

integrate over the variables of the last column and thus decrease by 
one the size of the matrix, whose structure remains the same. For 
this we need the recursion relation (A24.17) derived below. 

Let H' = Yn
fYn , Ε' = [ ^ y i t j = l j 2 , . . . ) 7 l , be the relevant matrices 

of order n and H, E be those obtained from Η', Ε' by removing the last 
row and last column. Let the Greek indices run from 1 to n, and the 
Latin indices from 1 to n — 1. Let Δ[β be the cofactor of Η'αβ in H' 
and Atj, the cofactor of H^ in H. Let gi = H'in. Because 
det W = det H = 1, we have 

Δ« = ΗΡ> Δα=Η?· (A2 4·1 1) 
Expanding det H\ A'in , Α^ by the last row and last column, we have 

1 = ^ . - Σ ί ί ? ^ « . (Α24.12) 

4'„ = - Σ 4 Α * . (A24·13) 
l 

*<, = Κη*„-!*&*& (A24.14) 
l,k 
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where Δ^ is the cof actor obtained from H by removing the zth and /th 
rows and jih and Äth columns. Sylvester's theorem [Gantmacher, 1 ; 
Mohr, 1] expresses Δ$ in terms of Ar8 

Δι* = ΔίόΔΙΊ,-ΔίΊυΔιό. (Α24.15) 

In writing (A24.15), we have replaced det H by unity on the left-hand 
side. Let 

φη = tr(E'*H'E'H'-i) = Σ ^ Ä Δ> . ( A 2 4 - 1 6 ) 

Separating the last row and last column and making use of (A24.il) 
to (A24.15), we get, after some simplification, 

Φη = I *» I' + Φη-1 + <**l H~\E' - O H(E - *„) H^ I S>> (A24.17) 

where 

^*\Β^>=Σζι*
Β<&· (Α24.18) 

Substituting (A24.17) forn = N in (A24.10), we get 

/ = Ce-\*N\2 f e~*N-i Yl dH™ dH™ 

X f exp[-<^*| H-\V - »*) H(E - zN) ff"11 g}] Π *{ 0 ) * } " . 

(A24.19) 

The last integral is immediate and gives 

n»-i{det[H-\E< - z*) H(E - z„) H-*\}-* = ^ i f | z. - zN |->. 

(A24.20) 

The process can be repeated N times and we finally get 

/ = C e x p ( - £ | * 4 | » ) ΓΊ l * i - * < | - * (A24.21) 
1 K t < i < N 

where C is a new constant. 

http://A24.il
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A.25. A Few Remarks about the Eigenvalues of a Quaternion 
Real Matrix and its Diagonalizationf 

A quaternion-real matrix S is one whose elements are real 
quaternions (cf. Chapter 2). To emphasize this aspect we say that S 
is a ^-matrix. If we replace the elements of N X N ^-matrix S by 
their 2 x 2 matrix representation (2.23), we get a 2N X IN matrix S 
with complex elements, a c-matrix. A real quaternion is represented 
by a 2 X 2 matrix of the form 

Yb a* Γ 

so that the c-matrix S has the form 

S = 
U ' 

(A25.1) 

The ^-matrix S has IN (complex or c) eigenvalues and at least one 
(complex or c) eigenvector belonging to each distinct eigenvalue. If 
[y*] is a ^-eigenvector of S belonging to the ^-eigenvalue a, 

that is, 

Σ 
3 

\ 13 X3 

\b.. a* 
\_ 13 13 J w = a 

= a0 + mx ; α0 , OLX real, 

Σ (α..χ. — b*y.) = ax. V 13 3 X3J3' I 
3 

(A25.2) 

(A25.3) 

(A25.2') 

Then, taking the complex conjugate of these equations and changing 
the order in which they are written, we see that 

(A25.4) Σ 
3 

va.. 
13 

b.. 
13 

13 

a* 
13 J 

\-yf-
X* 

L } 
= a * 

"-Λ*1 

#* 
* J 

+ Study [1]. 

file:///-yf
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that is [~χζ\ is another c-eigenvector belonging to the ^-eigenvalue a*. 
We now write (A25.2) and (A25.4) together: 

va.. 
V 

\b.. 

-b*.i 
V 

a*. 
1} J 

rx, 

U 
-yf] 
x* ! 

or, in the quaternion notation, 

Sx = XOL, a = «0 + «!«!. (A25.6) 

We see that the eigenvectors and eigenvalues of S are real quaternions. 
Moreover, the ^-eigenvalue does not contain the e2 and ez parts that 
give rise to off-diagonal terms in its 2 X 2 matrix representation. 
Thus the quaternion a in (A25.6) may be identified with the complex 
number a in (A25.3). 

We say that two quaternions λχ and λ2 are essentially distinct 
if the equation λ±μ = μλ2 implies μ = 0. If xx, x2 ,.··> %r

 a r e 

^-eigenvectors belonging to the essentially distinct ^-eigenvalues 
λ, , λο λ„, then (Α'ΐ · Λ η · · · · « Λ « Cil. C right linearly independent; that is, 
the right linear (vector) equation 

xxcx + x2c2 + ··· + xr
cr = 0 (A25.7) 

implies 
ci = 2̂ = ·" = cr = 0 . 

The proof is by induction. Let the proposition be true for (r — 1) 
vectors and let, if possible, all the c{ in (A25.7) be different from zero. 
Because λ are essentially distinct, not all of them are zero. LetAx Φ 0. 
Multiplying (A25.7) from the left by S and using 

Sxi = *A > (Α25.8) 
we get 

•^l'Vl + *2^2C2 + "" + Xr^rcr = ^. (Α25.9) 

Because £x and Xlc1 are different from zero, they do have inverses. 
We multiply (A25.7) by c? and (A25.9) by ( λ ^ ) - 1 = c^X? from 
the right and subtract to get 

f xT{crf - Xfrf*;1) = 0. (A25.10) 
J-2 

* 0 a* (A25.5) 
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Equation A25.10 is a right linear relation among the (r — 1) vectors. 
Therefore, by the induction hypothesis all the coefficients in (A25.10) 
must be zero; that is, 

c.c-\ = XjC.c-\ erf Φ 0, j = 2, 3,..., r. (A25.11) 

However, this is contradictory to the hypothesis that λχ is essentially 
distinct from λ2 , λ3 ,..., Xr. Because the proposition is evidently true 
for one single vector, the induction has a base and the demonstration 
is complete. 

However, the right linear independence of a set of ^-vectors does 
not necessarily lead to their left linear independence, as may be seen 
from the following example. The vectors 

* = EJ· * = [ - J ( Α 2 5 · 1 2 ) 

are right linearly independent, but they are left linearly dependent. 
Thus we are still far from the diagonalization of S by purely quaternion 
means. 

However, we may again use the intermediatory of the c-matrix S. 
If all the ^-eigenvalues zx, #!*,..., zN , z% of S are distinct, none of 
them being real, the ^-matrix x whose columns are the eigenvectors 
of S belonging to these ^-eigenvalues, is nonsingular and 

x-^Sx = E, (A25.13) 

where E is diagonal with diagonal elements zx , zx*,...y zN, zN* . It is 
easy to be convinced that when χ~Ύ is re-expressed as an iV x JV 
quaternion matrix all its elements will be real quaternions. Therefore, 
if all the iV ̂ -eigenvalues of S are essentially distinct, a quaternion real 
matrix x exists such that 

S = xEx-\ (A25.14) 

where E is diagonal and ç-real. 

A.26. Evaluation of the Integral (12.46) 

As in Appendix A.24, we decompose the 2N X 27V matrix X into 
the unique product X = UYV, where U is unitary, Y is triangular 
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with unit diagonal elements Y{j = 0, i > j \ Yu = 1, and V is diag-
onal with real positive elements. Moreover, because X has the form 

a.. - * * i 

* 
az 

(A26.1) 

the £/, Y, and F all have the same form. In particular, l^t-i i% = 

~^2i.2i-l — 0) a n d *2i-l,2i-l = ^2i,2i · 
Any matrix 4̂ having the form (A26.1) is equivalent to the statement 

that it satisfies the relation ZA = A*Z, where Z is given by (2.21). 
From ZX = X*Z one sees that 

UTZU = Y+VZV-W-1 (A26.2) 

is unitary and antisymmetric (the left-hand side) and has nonzero 
elements only' in the 2 x 2 blocks along the principal diagonal 
(comparison of elements on the two sides). One also has Vu real and 
positive. Thus UTZU = Z and V2i_x 2i_x = V2i 2i. Substituting 
these in (A26.2), we finally get Υ**ΖΥ = VZV-1 = Z. Thus £/, F, 
and V all have the form of (A26.1). 

If we let H = YfY, then, because W = H and H has the 
form (A26.1), i/2i-i,2<-i = H2i,2i = hi and H2i_12i = i ^ ^ = 0. 
Moreover, At- is completely determined by the condition det H2i_x = 
det Yli-iY^i-i = 1· Thus we may consider IItj, * < y and 
(*>i) 7^ (2^ — 1, 2Ä) as independent complex variables. As in 
Appendix A.24, we change from the volume element 

Π Π àAmi1MdA^\v to X[dY™dY™ 
i<j Λ=0 

and finally to f ] dH$] dHffi, where the product Π o v e r the 
elements of dY or dH are taken over all / < j except the pairs 
(i,j) = (2k- 1.2Ä). 

To calculate the integral 

j exp[-(l/2) triE+HEH-1)] Π dH™ dH™, (A26.3) 

a recurrence relation similar to (A24.17) is needed. Let H\ E' denote 
matrices of order 2«; H", E", their upper left diagonal blocks of order 
(2n — 1), and H, Ey their upper left diagonal blocks of order In — 2. 
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The cofactors of H\ H", and H are denoted, respectively, by A', Δ'\ 
and Δ. Let 

* = (*,), * ' = « ) . (A26.4) 

where 

ftn-1 = ftn = * i n - l = ^2n = °« ( A 2 6 ' 5 ) 

Then 

ftt ftt-1 » ftt-l fti » 

or 
g' = Zg*, (A26.6) 

where Z is given by (2.21). Using the facts 

H2n-l,2n-l = HL,2n = kn> Η2η-1,2η= H2n,2n-1= 0> ( A 2 6 . 7 ) 

and 

det H' = det H" = det H = 1, (A26.8) 

we get by expanding according to the last row and last column 

1=A»-Z4M«. (A26.9) 
t'»i 

4".-ι.«=Σ^«. (A26.10) s
k 

jr. = A J . . - Y ^ î ^ J 1 * 

k,l 

= 4, + I t f * , 4 * V (A26.ll) 

where in the last step of (A26.il) we have used (A26.9) and (A24.15). 
The matrices H\ H", and H are positive definite and so are their 
inverses. In particular, 

Σ / ? 4 Λ > 0 (Α26.12) 

http://A26.ll
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if not all fi are zero. By equating to zero the expansion of a deter-
minant whose first In — 1 rows are identical with those of H' and 
whose last row is identical with the last but one of H\ we get 

i 

= Σ*,Ύ, Δ'Ή + ΚΣΕ- 4 V I - (A26·13) 
Ι.ί' 3 

which on making use of (A26.9), (A26.10), and (A26.il) gives 

0 = Σ m 4P (l + Σ it 4Ä)· (A26.14) 

In view of (A26.12), this is equivalent to 

0 = Σ i\ 4 A* = ( Σ C \βΡ)* (Α26.15) 

or 
Σ 4".,_rf; = (H'-V^ = 0. (A26.15') 

Next we put 

φη = itr(E'<H'E'H'-*) (A26.16) 

and apply (A24.17) twice to get 

Φ« = I *» I2 + * _ i + è<£*l tfl#> + Kg'*\ V | /> . (A26.17) 

The notation is that of (A24.18) 

< / * I Ä I / > = I / < * V , · (Α24·18) 
t . i 

where 

U = Z / - 1 ^ - **) # ( £ - *n) //-1, (A26.18) 

V = H"-\E"* - zn)H"(E" - **) J/"-1. (A26.19) 

From (A26.15) we see that F is essentially equal to £/. 

<g'*\V\g'}=<g'*\U\g'}. (A26.20) 

http://A26.il
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Last, from (A26.6), t/+ = U, and UZ = ZU*y Z given by (2.21), we 
have 

<g'*\U\g'>=<g*\U\g>. (A26.21) 

Collecting (A26.17), (A26.20) and (A26.21), the recurrence relation 
becomes 

Φη = I *n I2 + Φη-1 + <£*l U \g> (A26.22) 

where U is given by (A26.18). 
The rest of the integration is identical to that in Appendix A.24. 

A.27. The Proof of Equation (12.70) 

Let us put 

φ(χ, y) = (2TT)-V2 £ Ik+l/2(x)[yW* - jr<*+i/«]. (A27.1) 
k=0 

Differentiating (A27.1) with respect to x and using the relation 

/;w = «u»)+u*)]. (A27·2) 
we have 

-g- = (2w)-i/* I £ [7,+3/2(χ) + /*_,„(*)][/«/« - y-w»] 

= (2w)-i/«i £ Vi / i (* )b* + 1 / 1 - ^ ^ / « » K y + IT1) 
Z
 fc=0 

Ky + y1) Ψ(*> y) + (^)~1β Uy1'2 - y1'2) (—f* «*, 
\ TTX / (A27.3) 

where we have used the fact that 

/ 2 x1/2 

Λ/2Μ + ^-1/2W = I ) (sinh x + cosh x), (A27.4) 
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The diflFerential equation (A27.3) can be immediately solved to give us 

1 rx dx' 
ψ(χ> y) = — exp[J(^ + y'1)*]^1 /2 — JV~1/2) exp|V - \(y + y-1) x'] -—=. π J o V x 

(A27.5) 
Changing the integration variable from x' to t = 1 — #'/#, we get 

φ(χ9γ) = — H*(yiP - y-1/η Vx C βχρ[ | ( / / 2 ~ y1/2)2 **] ,^ 
π Jo v l - i 

(A27.6) 
Finally putting x = zz* and y — #*/# we have 

Φ(χ,γ)=φ(ζ,ζ*)9 (Α27.7) 

and (A27.6) gives (12.70). 

A.28. The Case of Random Real Matrices 

For N X N real matrices the linear measure is 

rtdS) = Π dSu . 

The procedure leading to (12.4) is the same as in the complex case, 
and instead of (12.8) we have 

ti(dS) = Π I *i - zi I dAu > dA = χ~λ dx> 

where Xdiagonalizes the matrix S and zx, z2,..., zN are the distinct 
eigenvalues of S. We then have to evaluate 

j e-tTis*s) YY dA 

In case all the eigenvalues of a real matrix S are real, the corre-
sponding eigenvectors can all be taken to be real and the real X that 
satisfies S = XEX~X can be written uniquely in the form X = UYV 
(as in the Appendix A.24), where £7, Y, and V are real, U is unitary, 
hence orthogonal, Y is triangular with unit diagonal elements, and V is 
diagonal positive. As in Appendix A.24, we can derive the recurrence 
relation 

Φη = *n2 + Φη-1 + <*l ^~\E - Zn) H{E - Zn) H^ |*>, 
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where φη = tr(Z?'//'2?'///_1), Ε' is an n X n real diagonal matrix with 
diagonal elements zx, z2,..., zn , / / ' = Yn

fYn , and 7W is an n X w 
real triangular matrix with unit diagonal elements. The integral 

f expl-triEHEH-1)] Y\ dH{j 

is immediate and comes out to be proportional to 

. Π K*< - *;)2]-1/2· 

The joint probability density of the eigenvalues is therefore 

P{zx,..., zN) = C exp ( - £ zA \l\Xi-Zi\ (A28.1) 
X 1 i<j 

in the case when all the eigenvalues are real. Equation A28.1 has the 
same form as (3.18). 

In case some of the eigenvalues are complex, this procedure can 
still be carried out for the real eigenvalues. One is then left with the 
evaluation of an integral 

f e-ms*s) dfl(H) 

where S is a real matrix, none of whose eigenvalues is real. For 
details the reader may refer to the original paper of Ginibre [1]. 

A.29. The Density of Eigenvalues of a Random Matrix Whose 
Elements All Have the Same Mean Square Value 

Consider a matrix H with elements H^ all having an average value 
zero and a mean square value V2. Let the order N be large enough so 
that the density of its eigenvalues may be taken to be a continuous 
function. Let this function be a(e, V2), so that the number of eigen-
values lying between e and e + de is given by σ(β, V2) de. If we change 
the matrix elements by small quantities δΗ^ such that the δΗ^ 
themselves all have the average value zero and a mean square value v2, 
the change in a particular eigenvalue at ei can be calculated by the 
second order perturbation theory 

Z(€<, V2) = &HU + X i ^ ^ + ···. (A29.1) 

file:///l/Xi-Zi/
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The 8HU do not produce, on the average, any change in et . The 
eigenvalues e;. which lie nearest to e{ give the largest contribution to 
(A.29.1) with an absolute value v2 s where s is the mean spacing at €{. 
But as there are eigenvalues on both sides of ei the two contributions 
arising from the two nearest eigenvalues nearly cancel out, leaving 
quantities of a higher order in v2. The sum in (A.29.1) can therefore 
be approximated by 

Z(€, V2) *; v2 j a^Vp de' (A29.2) 

where the integral in (A.29.2) is a principal value integral and 

V2 = <| Htj |2>, v2 = <| SHti |2> (A29.3) 

the ensemble averages being indicated by < ) . Let us calculate the 
change in the number of eigenvalues lying in an interval (e, e + 8e). 
This can be done in two ways; one gives, as is obvious from the way 
of writing, 

σ(6, V2) Z(e, V2) - σ(β + 8c, V2) Z(e + 8e, V2) <* - %& 8e 

while the other gives in a similar way 

2 3 σ 
v . 

dv2 

If all the matrix elements Hif are multiplied by a constant cy the 
values ei are also multiplied by c> while V2 is multiplied by c2. Hence, 

a(c€, C2V2) cde = σ(β, V2) de. (A29.5) 

Setting cV = 1 the last equation gives 

which could have been inferred by dimensional arguments. Putting 

Z(c, V*) = yZr (-±r), a(e, V*) = 1 σ, (~) (Α29.6) 

(A29.4) 
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in (A.29.2) and (A.29.4), we obtain 

~ ä r ~ - 2 ~ ä T ' x~v (A29*7) 

Z^*) = P J ^ ^ 7 dx'. (A29.8) 

When # = 0, by symmetry requirement Ζλ = 0; therefore (A29.7) 
gives, on integration, 

Ζχ(*) = |*. (A29.9) 

Finally we have the boundary condition 

j σ(β, V2) de = j σι(χ) dx = N. (A29.10) 

Equations (A.29.8), (A.29.9) and (A.29.10) together are equivalent 
to the integral equation (4.25) together with (4.21). The solution, 
as in Chapter 4, is the semicircle law (4.30): 

1 (2NV2 - e2)1/2, c2 < 2NV\ 
σ(€, V2) = Ι2π¥2 

0, e*>2NV2 

A.30. Values of the Functions 3&(xx , x2) (Table A.30.1), and 
^ ( * i » * i ) (Table A.30.2) 

The functions 38{xx, x2) and ^ ( Λ ^ , χ2) are symmetric in the 
variables χλ and #2 . Their values can thus be read from the 
following tables for all positive values of xx and x2 such that 
7T/2(X1 + x2) < 5. 
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A.31. Proof of Equations (6.25 ) and (16.69) 

Consider the integral equation 

Xg(x)= f K(x,y)g(y)dy (A31.1) 
J -t 

whose solutions can always be chosen to be either even, g( —x) = g(x)> 
or odd, g( — x) = —g(x)· The set of even solutions, g2n(

x)> labeled 
by even subscripts, consists of all the solutions of an integral equation 
obtained from (A31.1) when K(x, y) there is replaced by 

*even(*. y) = * { * ( * , y) + K(-Xy y)}. (A31.2) 

Similarly the set of odd solutions g2n+i(x) °f (A31.1), labeled by 
odd subscripts, consists of all the solutions of an integral equation 
with the kernel 

KM(xf y) = i{K(xy y) - K(-x9y)}. (A31.3) 

Let us denote the Fredholm determinants of K(x, y)9 Keven(x, y) 
and Kodd(xy y), by Ψ(ή, ΨβΎβη(ή and Ψοάά(ή, respectively. We have 

Ψ(ί) = dtt[l - K] = f[(l -K) 
n=0 

= Σ (-^Γ S '" S dXl "' dXn d*lK(xi ' *Mi.i-i « (A31.4) 

and similar expressions for ΨβΥβη(ϊ) and Ψ0^ί). In (A31.4) and in 
what follows the integrals will be understood to be taken from —t 
to t. We want to show that 

f v IT/ * o d d u/ d Γ θ ν θ η αΨ e v e n ar'odd 
(«) ^even - j ^ - + ^odd — ^ - = 2 — ^ ^ -

and 

*odd i i V ^2 

n=0 l / v2n 

where the g2n are normalized even solutions of (A31.1): 

(β) ψ^~ = 1 + Σ T 3 T - «Ut) f ft«(*) dx 

jgtn(x)dx=ï; (A31.5) 
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provided the kernel K(x, y) is an even function of the difference of 
its arguments: 

K{x> y) = K(x - y) = K(y - x). (A31.6) 

Proof: (i) Let Q(x, y) be any of the three kernels K, Keven or 
Κοάά and Φ(ί) be the corresponding Fredholm determinant 

φ(0 = Σ - 5 T f '"' ί ώ Γ Ά detK?(*< > **)k*-i » · 
(A31.7) 

Differentiating the above equation with respect to t we have 

Φ 

= - 2 £ ( - ^ J - j dXl .» </*n Gn(0 (A31.8) 

where 

G(i) = d e t [ ! ? ( i ' i ) 2( ' .*i) 1 
W W aetlQ(Xi,t) Qix^xA^ „ (A31.9) 

and in arriving at Gn( — t) = Gn(i) we have used the relations (A31.6). 
A comparison of (A31.8), (A31.9) with the expansions of the 
1 Résolvant'' and the <'minors'' in the Fredholm theory of integral 
equations will show that 

*£> - - 2 I Q ) (t t) Φ(ί) ~ Z\\-Q)V't> 

with 

Q \ /„ ..\ _ m i n o r (*> y)in 0 - Q) 
\T=Q) (*' y) - det(l-0) 

= Σ ί '" ί dxl '" dxnQ(X> Xl)Q(Xl » *2> - ö K j ) . 
(A31.il) 

(A31.10) 

http://A31.il
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Applying this result to the even case we get an expression for 

*even/*even a s 

~ 2 Σ f "' f dxi " ' dx" Keven{t, *i) — ^ e v e n K > 0 
n=0J J 

oo 

= — 2 Σ I "" I ^ ι '" dxn Κ(*> xi) '" Κ(χη-ι > Xn) ^even(*n » 0 
n=0 J J 

(A31.12) 

In a similar way 

^odd 
00 

= — 2 £ j — j <&! ··· <&:„ Κ(ί, Λ )̂ ··· /^(x„_! , xM) Xodd(*„ , <)· 
Vodd 

(A31.13) 

Adding and subtracting the last two equations we get 

a{t) + b(t) = - 2 £ ("···(" dXl ··· dxn K(t, xj - K(x„ , t) 
n - 0 J J 

α(ί) — b(t) = —2 Σ ί ··· ί ^ ι *·· dxn K(t, χχ) ··· #(*„ , — t) 

= - 2 ( j - ^ ) (f, - 0 , (A31.15) 

where for convenience we have put 

„(*\ *even(0 U Λ ^oddCO , * ^ « , ν 
a(<) = ¥Wö· Ä(i) = Mö· (A3U6) 

Differentiating (A31.14) once more we get 

a' + b' = A± + A2 + Bx + B2 (A31.17) 

where 

^! = —2 Σ Σ '" ^*i '" dxj_1dxj+1 -" dxn 
n=l 3=1 J J 

• K(t, xx) ··· #(*,_! , i) X(f, xi+1) - % , 0, (A31.18) 

(A31.14)
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A2 = — 2 £ £ ί ··· ί έ/«! ··· ί/̂ _! <fom ··· dxn 

• *(*, *x) ··· K(Xj_x , - f ) Χ ( - ί , * m ) ··· Κ(χη , ί), (A31.19) 

Βι = ~2 Σ ί - ί <**ι - «**» dK{l\Xl) Κ[χχ, *2) - Κ(χη , ί), (A31.20) 
η=0 J J Gl 

and 

ax(*n, t) 
B, = - 2 Σ J - | <**i - ^ *(*> *i) - *(*W-i > *») ^ ' · (A31.21) 

Since ^ ( * , J ) depends only on x — y, we can in Bx replace dK(ty x^/dt 
by —dK(t, x^)jdx1 and integrate partially with respect to χλ. Next 
in the integral 

j ··· J" <&! ··· dxn K(t, xx) — ^ — K(x2 , *8) ··· K(xn , *) 

we replace dK(x1, x2)/dx1 by — dK(x1, x2)/dx2 and integrate partially 
with respect to x2 > a n d s o o n t ^ t n e Partial derivation is pushed 
to the extreme right. These step-by-step partial integrations give 
finally 

Bx = -Ax + A2-B2. (A31.22) 

Equations (A31.17), (A31.18), (A31.19), (A31.22), and (A31.15) 
give therefore 

a' + V = 2A2 = -{a - bf (A31.23) 

which in view of (A31.16) is the relation (a). 
(ii) Provided the summation and integration can be interchanged, 

relation (β) can be written as 

Ψ~ = 1+ί(τ^-κ){ί>χ)άχ- ( Α 3 1 · 2 4 ) 

One has only to expand the résolvant in terms of the normalized 
eigenfunctions 

(rë-κ) (*·χ) = Σ r=xgn{t) gn{x} ( A3 ' ·25> 
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and note that the odd functions contribute nothing on integration. 
We will prove relation (/?) in the form (A31.24). 

Let us calculate the logarithmic derivatives with respect to t of 
the two sides of (A31.24). 

from equations (A31.16) and (A31.15). Also the derivative of the 
right-hand side is 

_d_ 
dt 

1 + Σ j ' " J dxl "" d0Cn K(*> Xl) '" K(Xn-l , xn)l 

= Σ Σ *" I dxl '" dxi-ldxJ+l '" dxn 

• {K(t, xj ··· Kfa^ , t) K(t, xM) ··· i£(*n_i , xn) 

+ K(ty χλ) ··· K(Xj_x , —t)K(—t, xM) ··· Κ{χη_λ , χη)} 

+ Σ I - J ^ 1 - <**» ^ ^ ^ 1 > **) - K{*n-1 , *») (A31.27) 

In the last line of the above equation one can again shift the partial 
derivation to the extreme right by successively replacing dK(x> y)/dx 
by —3K(x,y)ldy and integrating by parts. The expression in the 
last line of (A31.27) is therefore 

00 n r 

Σ Σ J '" J dxl "" dxi~l dxi+l '" dxn 
n = l j = l 

• {-K(ty xj ··· Κ(χ5_χ , t) K(t, xj+1) ··· Κ(χη_λ , xw) 

+ K(t, Xl) ··· % ! , - 0 K(-t, xj+1) ··· / q * ^ , xn)}. (A31.28) 

Also 

oo n 

Σ Σ '" ^ 1 "' ^ - 1 dxM — dxn 

• K(t, xx) — Κ(χό_χ , —t) K(—ty xj+1) ··· K(xn_x , #w) 

= ( r^ ) ( * ' -0 jl + J Λ ( y ^ ) <-f, *)J (A31.29) 

(A31.26) 
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and 

J Μ Ϊ ^ ) <-'·*> = Μ Γ Ϊ Ε ) <*·-*> 
= jdx(-~^)(t,x). (A31.30) 

Putting together equations (A31.26)-(A31.30) we see that the log-
arithmic derivatives of the two sides of (A31.24) are equal. In 
addition (A31.24) is obviously valid for t = 0. Thus (A31.24) is 
valid for all t. 

(iii) The formal manipulations encountered in this appendix are 
valid of course only when the various expansions are uniformly 
convergent so that term by term differentiation is allowed. This will 
be so if we take 

κ(χ y) = 8 i n ( * - j Q * 

so that relations (a) and (β) are the same as the equations (6.25") 
and (16.69). 

Lately the relations (a) and (β) were circulated as conjectures. 
This appendix is based on a letter of Gaudin which he wrote in 
response to those conjectures. 
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