

Differentially Private Synthetic Graphs Preserving Triangle-Motif Cuts

Author: Pan Peng, Hangyu Xu

Presenter: Hangyu Xu

University of Science and Technology of China

Differential Privacy (DP)

- Requirement: Individual information changes do not have a distinguishable effect on results
- Goal: To ensure utility, aim to minimize error

$$\Pr[\mathcal{M}(x) \in S] \leq \Pr[\mathcal{M}(y) \in S] \cdot e^{\varepsilon} + \delta$$
 (ε, δ) -DP

Post-processing

Applying any function to the output of a DP algorithm (without accessing the original data) does not weaken the privacy guarantee.

Question: How can we release a synthetic graph under differential privacy while preserving cut structues?

- A lot of work have explored this area[GRU12,EKKL20,LUZ24]
- Upper Bound: $\tilde{O}(\sqrt{mn})$ Lower Bound: $\Omega(\sqrt{mn})$

$$\operatorname{Cut}^{(G)}(S, V \setminus S) \approx \operatorname{Cut}^{(G')}(S, V \setminus S)$$

$$G \xrightarrow{\mathsf{DP}} G'$$

- Though powerful, the private synthetic graph for cut structures fails to capture higher-order structure of the graph.
- **Motif**: [MSOI+02]
 - a frequently occurring subgraph within complex networks (e.g. triangles, wedges, cliques,...)
 - Applications: graph clustering, graph data visualization, network analysis
- Motif Cut:
 - the sum of weights of the motifs crossing $(S, V \setminus S)$

$$\operatorname{Cut}_M^{(G)}(S,V\setminus S) = \sum_{I\in\mathcal{M}(G,M): I\text{ crosses }(S,V\setminus S)} w(I)$$

Question: How can we release a synthetic graph under differential privacy while preserving motif-cut structures?

- Generalizing the classical cut problem
- No prior results for motif cuts

$$\operatorname{Cut}_M^{(G)}(S, V \setminus S) \approx \operatorname{Cut}_M^{(G')}(S, V \setminus S)$$

$$G \xrightarrow{\mathsf{DP}} G'$$

- Network Analysis: [BGL16]
 - Triangles → Social network analysis

 - Feedforward loops and bi-fans
 - → Interconnection patterns, neural networks
- Graph Clustering: [BGL16]
 - Some clustering algorithms rely on motif-cut structures
 - Motif-based embeddings capture clustering structures more precisely
- Graph Sparsification: [KMSST22]
 - Motif-cut sparsification can accelerate related methods
 - Applying sparsification to synthetic graphs can preserve privacy

exists
__ private
_ individual
information

2 Our Results

We focus on triangle-motif cuts:

- **Upper Bound:** Given an unweighted graph G, we propose $\operatorname{an}(\varepsilon, \delta)$ -DP algorithm that releases a synthetic graph G' in polynomial time, such that with high probability, G' approximates the sizes of all triangle cuts in G with an additive error of at $\operatorname{most} \tilde{O}(\sqrt{m\ell_3(G)}n/\varepsilon^{\frac{3}{2}})$
- **Lower Bound**: For a graph G, any (ε, δ) -DP algorithm that approximates the sizes of all triangle cuts in G with high probability must incur an additive error of at least $\Omega(\sqrt{mn\ell_3(G)/\varepsilon})$

local sensitivity, ≈ d (the maximum degree)

the error of any triangle cut is **at most**:

$$\tilde{O}(\sqrt{m\ell_3(G)}n/\varepsilon^{\frac{3}{2}})$$

$$\left| \operatorname{Cut}_{\triangle}^{(G)}(S, V \setminus S) - \operatorname{Cut}_{\triangle}^{(G')}(S, V \setminus S) \right| = \tilde{O}(\sqrt{m\ell_3(G)}n/\epsilon^{\frac{3}{2}})$$

Convex optimization problem:

privacy regularizer convexity regularizer

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_{2}n \sum_{e \in \binom{V}{2}} (\mathbf{w}_{e} - \overline{\mathbf{w}}_{e})^{2} \}$$

$$\mathcal{X} = \{\mathbf{w} \in \mathbb{R}_+^{\binom{V}{2}}: \sum_{e \in \binom{V}{2}} \mathbf{w}_e = W, \mathbf{w}_e \leq C_1 \cdot w_{\mathsf{max}} \}$$

Additional constraints added for upper bound analysis

$$\mathcal{D} = \left\{ \mathbf{X} \in \mathbb{R}^{2n} : \mathbf{X} \text{ is symmetric, } \mathbf{X} \succeq \frac{1}{n} \mathbf{I}_{2n}, \text{ and } \mathbf{X}_{ii} = 1 \text{ for } \forall i \right\}$$

Lemma ([BGL16])

$$\operatorname{Cut}_{\triangle}^{(G)}(S,V\setminus S)=\frac{1}{2}\operatorname{Cut}^{(G_{\triangle})}(S,V\setminus S)$$

$$(\mathbf{A}_M)_{ij} = \sum_{I \in \mathcal{M}(G,M): i,j \in V_I} w(I)$$

not for general motifs

Algorithm: (Privately applying stochastic mirror descent method)

for $t = 1, \ldots, T$ do

Find the maximizer $\mathbf{X}^{(t)} = \arg\min_{\mathbf{X} \in \mathcal{D}} F_{\triangle}(\mathbf{w}^{(t)}, \mathbf{X})$, where F_{\triangle} is defined in

Equation (6);

Choose a random vector $\zeta \sim N(\mathbf{0}, \mathbf{I}_{2n})$ and release $(\mathbf{X}^{(t)})^{\frac{1}{2}}\zeta$;

Compute the approximate gradient for all $e \in \binom{V}{2}$:

Guassian noise

newly added noise

$$\mathbf{g}_e^{(t)} = \left((\mathbf{X}^{(t)})^{\frac{1}{2}} \zeta \zeta^T (\mathbf{X}^{(t)})^{\frac{1}{2}} \right) \bullet \left(\begin{array}{cc} \mathbf{0} & \mathbf{D}_{\triangle}^{(e)(t)} \\ \mathbf{D}_{\triangle}^{(e)(t)} & \mathbf{0} \end{array} \right) + 3 \sum_{s \in V \setminus \{i,j\}} (\mathbf{u}_{(i,s)} + \mathbf{u}_{(j,s)}) (\mathbf{w}_e^{(t)} - \overline{\mathbf{w}}_e + \operatorname{Lap}(\frac{1}{\varepsilon_0}))$$

Mirror Descent Step: $\mathbf{w}^{(t+1)} = \text{MD_Update}(\mathbf{w}^{(t)}, \mathbf{g}^{(t)}, W, \mathbf{u}, \eta);$

novel update step (corresponds to projection)

Novel update step:

Solution: (Greedy: find the nearest solution to the primal)

- Sort the entries e by the decreasing order of $\mathbf{w}_e^{(t)} \exp(-\eta \mathbf{g}_e^{(t)})$.
- Try assign them proportional to $\mathbf{w}_e^{(t)} \exp(-\eta \mathbf{g}_e^{(t)})$.
- If there are ones larger than C_1 , truncated.

Correctness: Proved by KKT Conditions

Greedy: Sort by level of constraint violation

Truncates values that exceed constraints

$$\min_{\mathbf{w}} D_{\Phi}^{(t)}(\mathbf{w}, \mathbf{y}^{(t+1)})$$
s.t. $\sum_{e \in \binom{V}{2}} \mathbf{w}_e = W$ and $\mathbf{w}_e \leq \mathbf{u}_e, \forall e$

$$C_{1} \qquad C_{1} \qquad C_{1} \qquad C_{1}$$

$$\wedge \qquad \wedge \qquad \vee \qquad \vee$$

$$\mathbf{w}_{1} \exp(-\eta \mathbf{g}_{1}) \geq \mathbf{w}_{2} \exp(-\eta \mathbf{g}_{2}) \geq \mathbf{w}_{3} \exp(-\eta \mathbf{g}_{3}) \geq ... \geq \mathbf{w}_{m} \exp(-\eta \mathbf{g}_{m})$$

$$\downarrow \downarrow = \qquad \qquad \downarrow \downarrow \propto \qquad \qquad \downarrow \downarrow \propto$$

$$C_{1} \qquad C_{1} \qquad \mathbf{w}_{3} \exp(-\eta \mathbf{g}_{3}) \qquad \mathbf{w}_{m} \exp(-\eta \mathbf{g}_{m})$$

$$2C_{1} \qquad \qquad \searrow c_{n} \qquad \qquad \downarrow \downarrow \sim$$

$$\sum_{e} \mathbf{w}_{e} - 2C_{1}$$

Algorithm 3: MD_Update

Input:
$$\mathbf{w}^{(t)}, \mathbf{g}^{(t)}, W, \mathbf{u}, \eta$$
.

Output: $w^{(t+1)}$.

1: Set
$$\mathbf{y}_e^{(t+1)} = \mathbf{w}_e^{(t)} \exp(-\eta \mathbf{g}_e^{(t)})$$
 for $\forall e \in \binom{V}{2}$ and let $N = \binom{n}{2}$

2: Sort edges in non-increasing order so that $\frac{\mathbf{y}_{e_1}^{(t+1)}}{\mathbf{u}_{e_1}} \geq \frac{\mathbf{y}_{e_2}^{(t+1)}}{\mathbf{u}_{e_2}} \geq \cdots \geq \frac{\mathbf{y}_{e_N}^{(t+1)}}{\mathbf{u}_{e_N}}$

3: Compute
$$S_i = \sum_{j=i}^{N} \mathbf{y}_{e_i}^{(t+1)}$$
 for $i = 1, ..., N$

4: Let $W_1 = W$

5: **for**
$$i = 1, ..., N$$
 do

6:
$$\mathbf{w}_{e_i}^{(t+1)} = \min(\frac{\mathbf{w}_i \cdot \mathbf{y}_{e_i}^{(t+1)}}{S_i}, \mathbf{u}_{e_i})$$

7: Set $W_{i+1} = W_i - \mathbf{w}_{e_i}^{(t+1)}$

8: end for

9: return $\mathbf{w}^{(t+1)}$

optimal solution without additional constraints

Greedy: Sort by level of constraint violation

Truncates values that

exceed constraints

4 Overview of Analysis

error from

convex optimization

Privacy:

• The privacy loss per iteration $\approx O(\frac{\ell_3(G)}{\lambda})$

Advanced Composition

• Total privacy loss after T iterations $\approx O(\frac{\ell_3(G)\sqrt{T}}{\lambda})$ \Rightarrow run $T \approx \frac{\lambda^2}{\ell_3(G)^2}$ steps to achieve differential privacy

Utilization:

• The cut distance to the original graph $\overline{G} \approx O(\frac{mn}{\sqrt{T}} + \lambda n)$

• Choose $T \approx \sqrt{\frac{m}{\ell_3(G)}} \Rightarrow$ the additive error $\approx O(\sqrt{m\ell_3(G)}n)$

error from regularization terms

Results:

- The **first** (ε, δ) -DP mechanism:
 - Release a synthetic graph that approximates triangle-motif cut structures
 - Additive error: $\tilde{O}(\sqrt{m\ell_3(G)}n/\varepsilon^{3/2})$
 - Our algorithm generalizes to weighted graphs
- A lower bound of additive error: $\Omega(\sqrt{mn}\ell_3(G)/\varepsilon)$
 - Our lower bound extends to any K_h -motif cut

Open questions:

- Improve the algorithm to achieve smaller additive error
- Generalize the algorithm to work for any motif cut

Thanks!