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.h 1 Background

Differential Privacy (DP)

* Requirement: Individual information changes do not have a
distinguishable effect on results
* Goal: To ensure utility, aim to minimize error

i PriM(x) € 5] < ¢+ 6}

Request V i i (¢,6)-DP !

’:: > | Post-processing [----===============onmo-
DP | i i

':
1
1
Adversary Applying any function to the output of a DP !
i
1

algorithm (without accessing the original data)
does not weaken the privacy guarantee.
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.h 1 Background

Question: How can we release a synthetic graph under
differential privacy while preserving cut structues?

A lot of work hgve explored this area[GRU12,EKKL20,LUZ24]
 Upper Bound: O(v/mn) Lower Bound: Q(\/mn)
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.h 1 Background

* Though powerful, the private synthetic graph for cut structures fails to capture
higher-order structure of the graph.

* Motif: [MsoI+02]

* afrequently occurring subgraph within complex networks

(e.g. triangles, wedges, cliques,...)

* Applications: graph clustering, graph data visualization, network analysis
e Motif Cut:

e the sum of weights of the motifs crossing (S. V' \ S)

i S={v,vs,vs5, v}
L CutW)(S,V\S) =2

v6
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.h 1 Background

Question: How can we release a synthetic graph under
differential privacy while preserving motif-cut structures?

* Generalizing the classical cut problem
No prior results for motif cuts

cutlS)(s, v\ §) ~ cut{)(s, v\ S)
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Network Analy5|s [BGL16]
. Trlanglesg_x, — Social network analysis
 Wedges {_f‘x_s — Transportation, healthcare networks

* Feedforward loops jand bi-fans
— Interconnection patterns, neural networks

Graph Clustering: [BGL16]
* Some clustering algorithms rely on motif-cut structures
* Motif-based embeddings capture clustering structures more precisely

Graph Sparsification: [KmssT22]
* Motif-cut sparsification can accelerate related methods
* Applying sparsification to synthetic graphs can preserve privacy

exists
private

>individual

information
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.h 2 Our Results

We focus on triangle-motif cuts:

'+ Upper Bound: Given an unweighted graph G, we propose an(eg, §)-DP i
' algorithm that releases a synthetic graph G’ in polynomial time, such i
| that with high probability, G’ approximates the sizes of all triangle cuts |
i in G with an additive error of at mostO(\/;'n(’.‘g(G);-z/g%) i

* Lower Bound: For a graph G, any (¢,6)-DP algorithm that approximates
the sizes of all triangle cuts in G with high probability must incur an
additive error of at least Q(y/mnl3(G)/z)

local sensitivity,
------------------------------------------------ ~ d (the maximum degree) [-===============—=—==-—q

the error of any triangle cut is at most:

O(y/ml3(G)n/e?) i

3

Cuty” (5, V\$) - Cutf’(s,V\S)' = O(/ml3(G)n/e?)

o
@
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l|l 3 Overview of Algorithm R ELEEYEE:

Convex optimization problem: privacy convexity
regularizer regularizer

minmad( A _Kx O

(\2/) Additional constraints
X = {w € ]R+ ) Zee(g) we =W, we < (- Wmax}i added for upper

bound analysis

D = {X € R¥ : X is symmetric,X = 1I,,and X;; = 1 for Vi} |

Lemma ([BGL16])
Cut'(s, v\ S) = LCut(€a)(S, v\ S)

N
__________________________ not for general
(Am)ij = ). w(I); :Jj ﬁ motifs
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,J§ 3 Overview of Algorithm
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Algorithm: (Privately applying stochastic mirror descent method)

____________________________________________________________________________________________ ’.
fort=1,...,Tdo |
Find the maximizer XY = arg miny_,, FA (w("),X), where F, is defined in E
Equation (6); 4 Guassian i
~ (t) : i 1

Choose a random vector { ~ N(0,I,,) and releavse (X\*)2g noise newly added

Compute the approximate gradient for alle € (,): noise

_

(e)()
0 D
g = ((xM)zgg" (x)3) '( 5 % ) +3 Y (ugs tuge)(we) —We+Lap(—))

A seV\{i,j} ’

Mirror Descent Step: wttl) =MD Update(w 8 (t) ,W,u,1);

TS msmososossmoooooooeS novel update step oo
(corresponds to projection)




CORLEEE LS

University of Science and Technology of China

,J§ 3 Overview of Algorithm

Novel update step:

Solution:(Greedy: find the nearest solution to the primal)

@ Sort the entries e by the decreasing order of w,(et) exp(—nggt)).

@ Try assign them proportional to w,(st) exp(—nge )) ﬁ Greedy: Sort by level of

@ If there are ones larger than (i, truncated. constraint violation

Correctness: Proved by KKT Conditions Truncates values that
e e e exceed constraints

1

|

! (t) (v o(t+1) . i
! L D¢’ (w,y ) |1 wiexp(—7g1) > waexp(—1g2) > W3 exp(—7g3) > ... > Wi exp(—11gm) 1
1 1 1 1
| 5.t Y we=W and |w,<u,Ve|i ! JI= ll- L | E
i eE(‘Z/) E E G G w3 exp(—7g3) Wm exp(—7gm) i
e o o e o e e o e e e e e e e e 4 : w ) L J I
| |

| 1
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Algorithm 3: MD_Update

Input: w'),g), W, u, 7.
Output: wl!+1),

2

Set ngl) = wi) exp(—r]g,(f)) for Ve € (‘2/) and let N = (3)
(t+1) (t+1)

Sort edges in non-increasing order so that y:: > y:’f = s
fl ez

Compute 5; = ) ;= ,y§+1) fori=1,...,; N
Let Wi =W
fori =:1,...;Ndo

optimal solution without
additional constraints

(nl)

>

Uen

Greedy: Sort by level of
constraint violation

1 Wyttt
w(?+ . min( ,y,‘,. ,Ue,) Truncates values that
€j S, 1

Set Wiry — W, (,+1) exceed constraints
i+1 — .

end for
return w1
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Privacy:

Advanced

@ The privacy loss per iteration =~ 0(8—3()@) Colpesio

BT
e Total privacy loss after T iterations ~ O( ] /\) )

2 ; : : :
= run T = p(’\—G)g steps to achieve differential privacy
. . 3 error from
Utilization: convex optimization
e The cut distance to the original graph G ~ O( + An)
——
o Choose T ~ /7y = the additive error ~ \/m€3 )n) ) error from
gularization terms
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,J§ 5 Summary

Results:
e The first (¢,6)-DP mechanism:
* Release a synthetic graph that approximates triangle-motif cut structures

* Additive error: O(\/mt3(G)n/e3/?)

e QOur algorithm generalizes to weighted graphs

* Alower bound of additive error: Q(/mnl3(G)/e)
* Our lower bound extends to any K,-motif cut

Open questions:
* Improve the algorithm to achieve smaller additive error
* Generalize the algorithm to work for any motif cut

Thanks!




