Differentially Private Release of Synthetic Graphs for Triangle-Motif Cut Structures

Pan Peng, Hangyu Xu

University of Science and Technology of China

ppeng@ustc.edu.cn hangyuxu@mail.ustc.edu.cn

May 25, 2024

Graphs Are Everywhere

social network

- vertex: person
- edge: friendship relation

A social network illustration (by "paixin.com")

healthcare network

- vertex: person
- edge: doctor-patient relation

A healthcare network illustration (by "athenahealth.com")

financial network

- vertex: economic entity
- edge: financial transaction-relation

The Global Financial Network in 1985 (by Haldane)

Private/Sensitive Information in Networks

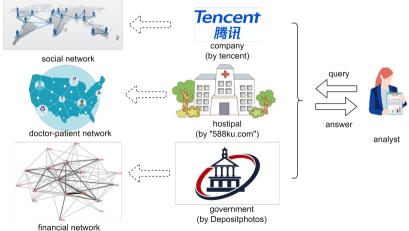
- friendship relation is private
- doctor-patient relation is private
- financial transaction-relation is private

• ...



Private Release of Graph Statistics or Queries

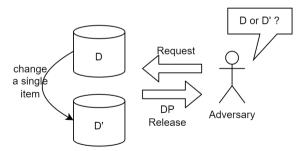
How to protect sensitive information from an analyst who can ask questions about a particular graph?



A Framework: Differential Privacy

Differential Privacy

regardless of the adversary/analyst's knowledge about the query answers, the privacy of **individual users (or edges)** remains intact



Differentially Private (DP) Release of Graph Statistics or Queries

Two approaches:

- DP query release mechanisms
 - ► Input: graph+ queries
 - Output: privacy-preserving responses to the queries
 - dependent on the queries
 - # triangles, degree sequence, cut queries, ...

Differentially Private (DP) Release of Graph Statistics or Queries

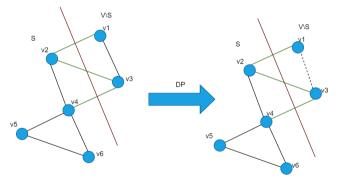
Two approaches:

- DP query release mechanisms
 - ► Input: graph+ queries
 - Output: privacy-preserving responses to the queries
 - dependent on the gueries
 - # triangles, degree sequence, cut queries, ...

- DP release of a synthetic graph
 - ► Input: graph
 - Output: a graph that well approximates the property of the true one, while preserving privacy.
 - independent of queries
 - cut structure, spectral information, ...

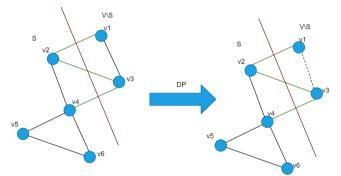
An Example: DP Synthetic Graphs for Cut Structure

- Input: Graph G = (V, E).
- Output: A DP synthetic graph G' = (V, E'), such that for every $S \subset V$, $\operatorname{Cut}^{(G)}(S, V \setminus S) \approx \operatorname{Cut}^{(G')}(S, V \setminus S)$.



An Example: DP Synthetic Graphs for Cut Structure

- Input: Graph G = (V, E).
- Output: A DP synthetic graph G' = (V, E'), such that for every $S \subset V$, $\operatorname{Cut}^{(G)}(S, V \setminus S) \approx \operatorname{Cut}^{(G')}(S, V \setminus S)$.



- received great attention in DP community: [GRU12], [EKKL20], [LUZ24]
- upper and lower bounds $\Theta(\sqrt{mn/\epsilon})$ [EKKL20], [LUZ24]

One Comment and One Question

Though powerful, the private synthetic graph for cut structure fails to capture higher-order structure of the graph

- higher-order structure: motifs or subgraphs (triangles, cliques, ...)
- edge: can be viewed as low-order structure

Question: can we privately release a graph that preserves the higher-order cut structure?

Higher-Order Structure

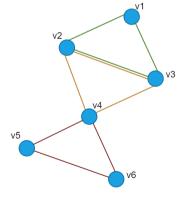
Motif

A motif refers to a frequently occurring subgraph within complex networks. ([MSOI+02])

• motif: triangle, wedge, cliques, ...

Applications:

- graph clustering
- graph data visualization
- social/biological network analysis

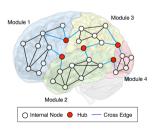


Motif

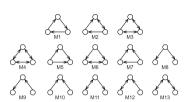
networks exhibit rich **higher-order** organizational structures ([BGL16])

- $M_1 \sim M_7 \Rightarrow$ social networks
- M_{13} \Rightarrow structural hubs in the brain
- $M_8 \sim M_{13} \Rightarrow$ air traffic networks

social network



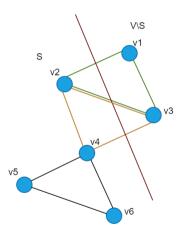
structural hubs in the brain (by Lifang He)



air traffic networks (by Marcelo Ferreira da Costa Gomes)

Motif Cut

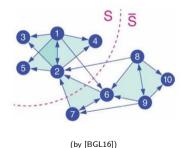
The **motif size** of a cut refers to the amount of motifs crossing the cut.



- S = {v₂, v₄, v₅, v₆}
 Cut^(G)_△(S, V \ S) = 2

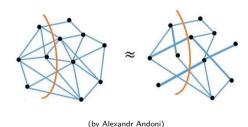
Applications of Motif:

- 1. graph clustering ([BGL16])
 - motif cut can be used to find better clusters



2. motif cut sparsifier ([KMSST22])

• speeding up motif-cut based graph algorithms



The Formal Definitions and Our Problem

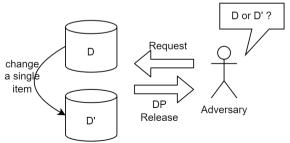
Differential Privacy

Definition ((ε , δ)-differential privacy)

 \mathcal{M} is a (ε, δ) -differentially private (DP) algorithm, if

$$\Pr[\mathcal{M}(x) \in S] \leq \Pr[\mathcal{M}(y) \in S] \cdot e^{\varepsilon} + \delta.$$

where x and y are neighboring inputs (different in weight by 1).



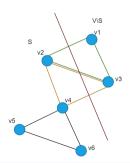
Motif Size of Cut

Given graph G, the M-motif size of a cut $(S, V \setminus S)$ is:

- Informally: the sum of weights of the motif M crossing $(S, V \setminus S)$
- Formally:

$$\operatorname{Cut}_{M}^{(G)}(S,V\setminus S)=\sum_{I\in\mathcal{M}(G,M):I\ \operatorname{crosses}\ (S,V\setminus S)}w(I)$$

w(I) is the product of weights of the edges of the motif instance I



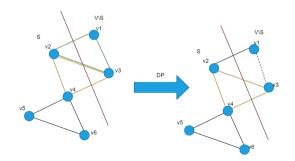
- S = {v₂, v₄, v₅, v₆}
 Cut^(G)_^(S, V \ S) = 2

The Problem: Private Release of Synthetic Graphs for Motif Cut

• Problem: How one can efficiently release a synthetic graph that well preserves the **motif** size of all cuts, in a differentially private manner?

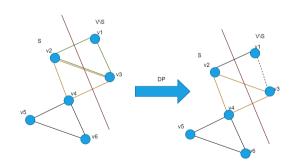
The Problem: Private Release of Synthetic Graphs for Motif Cut

- Problem: How one can efficiently release a synthetic graph that well preserves the **motif** size of all cuts, in a differentially private manner?
- Input: A weighted graph G = (V, E) and a motif M.
- Output: A weighted DP synthetic graph G' = (V, E'), such that for every $S \subset V$, $\operatorname{Cut}_M^{(G)}(S, V \setminus S) \approx \operatorname{Cut}_M^{(G')}(S, V \setminus S)$.



The Problem: Private Release of Synthetic Graphs for Motif Cut

- Problem: How one can efficiently release a synthetic graph that well preserves the motif size of all cuts, in a differentially private manner?
- Input: A weighted graph G = (V, E) and a motif M.
- Output: A weighted DP synthetic graph G' = (V, E'), such that for every $S \subset V$, $\operatorname{Cut}_M^{(G)}(S, V \setminus S) \approx \operatorname{Cut}_M^{(G')}(S, V \setminus S)$.



- when motif is edge, it is equivalent to cut structure
- we focus on triangle motif

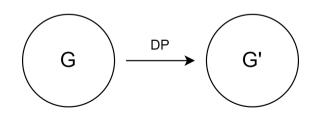
Our Results

Theorem 1 (Upper Bound)

Theorem

There exists a polynomial time (ε, δ) -DP algorithm that given an n-vertex unweighted graph G with m edges, outputs a weighted graph G' such that with probability at least 3/4, for any cut (S, T),

$$|\mathrm{Cut}_{\triangle}^{(G)}(S,T)-\mathrm{Cut}_{\triangle}^{(G')}(S,T)|=\tilde{O}(\sqrt{m}n^{\frac{3}{2}}/\varepsilon^3).$$



for every cut the difference is **at most** $\tilde{O}(\sqrt{m}n^{\frac{3}{2}}/\varepsilon^3)$

(Informal) Theorem 1 (Upper Bound)

Theorem

There exists a polynomial time (ε, δ) -DP algorithm that given an n-vertex unweighted graph G with m edges, outputs a weighted graph G' such that with probability at least 3/4, for any cut (S, T),

$$|\mathrm{Cut}_{\triangle}^{(G)}(S,T)-\mathrm{Cut}_{\triangle}^{(G')}(S,T)|=\tilde{O}(\sqrt{m}n^{\frac{3}{2}}/\varepsilon^3).$$

Remark:

- for a dense graph, the trivial approach has additive error as large as $\Theta(n^3)$.
- the edge cut case: $\Theta(\sqrt{mn})$ ([EKKL20], [UZ24])
- for weighted graph, additive error: $\tilde{O}(\sqrt{W}n^{3/2}w_{\max}^2/\varepsilon^3)$ (W: total edge weight; w_{\max} : maximum edge weight)
- can be extended to other 3-vertex motifs (e.g., wedges)

(Informal) Theorem 2 (Lower Bound)

Theorem

If an (ϵ, δ) -DP algorithm $\mathcal M$ answers the triangle-motif size queries of all (S, T)-cut about G up to an additive error α with probability at least 3/4, then $\alpha \geq \Omega(\frac{m^2}{\epsilon \cdot n^{3/2}})$

Remark:

- our algorithm is **nearly optimal** for unweighted dense graphs when $m = \Theta(n^2)$
 - upper bound: $\tilde{O}(\sqrt{m}n^{3/2}/\varepsilon^3) = \tilde{O}(n^{5/2}/\varepsilon^3)$
 - lower bound: $\Omega(\frac{m^2}{\varepsilon \cdot n^{3/2}}) = \Omega(n^{5/2}/\epsilon)$
- for K_h motifs, lower bound: $\Omega\left(\frac{m^{(h-1)^2/2}}{\varepsilon \cdot n^{h^2-3h+3/2}}\right)$.

Approach 1:

- utilize the motif cut sparsifier algorithm ([KMSST22]) and add some noise
- Failed Reason: sampling on existing edges and never outputting non-edges poses obstacle for DP

Approach 1:

- utilize the motif cut sparsifier algorithm ([KMSST22]) and add some noise
- Failed Reason: sampling on existing edges and never outputting non-edges poses obstacle for DP

Approach 2:

- convert to a motif hypergraph and apply a private hyperedge cut release algorithm
- However: we do not know how to give a hypergraph cut release algorithm

Approach 1:

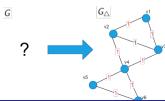
- utilize the motif cut sparsifier algorithm ([KMSST22]) and add some noise
- Failed Reason: sampling on existing edges and never outputting non-edges poses obstacle for DP

Approach 2:

- convert to a motif hypergraph and apply a private hyperedge cut release algorithm
- However: we do not know how to give a hypergraph cut release algorithm

Approach 3:

- convert to a triangle-motif weighted graph and apply a private edge cut release algorithm
- However: the resulting graph may not correspond to a triangle-motif weighted graph



An Inherent Difficulty

• non-linearity: for two graphs $G_1 = (V, E_1), G_2 = (V, E_2)$, the following is NOT true

$$\operatorname{Cut}_{\triangle}^{(G_1)}(S,V\setminus S)+\operatorname{Cut}_{\triangle}^{(G_2)}(S,V\setminus S)=\operatorname{Cut}_{\triangle}^{(G_1+G_2)}(S,V\setminus S)$$

An Inherent Difficulty

• non-linearity: for two graphs $G_1 = (V, E_1), G_2 = (V, E_2)$, the following is NOT true

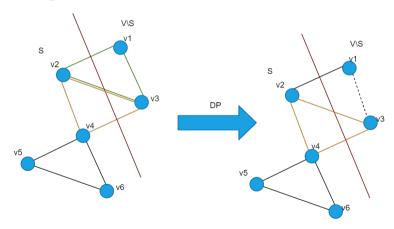
$$\operatorname{Cut}_{\triangle}^{(G_1)}(S,V\setminus S)+\operatorname{Cut}_{\triangle}^{(G_2)}(S,V\setminus S)=\operatorname{Cut}_{\triangle}^{(G_1+G_2)}(S,V\setminus S)$$

• This is in sharp contrast with the edge case

Our Approach

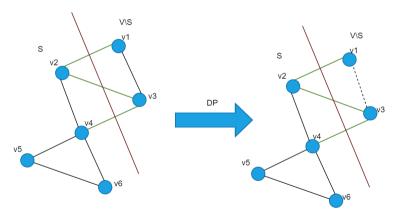
Recall: Our Problem

Given \overline{G} with m edges, the algorithm tries to privately find a synthetic graph G, which approximates the triangle-motif cut of \overline{G} .



Recall: The [EKKL20] Approach for Edge Cuts

Given \overline{G} with m edges, the algorithm tries to privately find a synthetic graph G, which approximates the edge cut of \overline{G} .



Recall: The [EKKL20] Approach for Edge Cuts

The cut difference in \overline{G} and G, can be bounded by the **SDP**:

$$\max_{\mathbf{X}\in\mathcal{D}}\{\left(\begin{array}{cc}\mathbf{0} & \mathbf{A}-\overline{\mathbf{A}}\\ \mathbf{A}-\overline{\mathbf{A}} & \mathbf{0}\end{array}\right)\bullet\mathbf{X}\}$$

where $\mathcal{D} = \left\{ \mathbf{X} \in \mathbb{R}^{2n} : \mathbf{X} \text{ is sym.}, \mathbf{X} \succeq \frac{1}{n} \mathbf{I}_{2n}, \text{and } \mathbf{X}_{ii} = 1 \text{ for } \forall i \right\}$

$$\max_{\mathbf{x},\mathbf{y} \in \{0,1\}^n} \mathbf{x}^T \mathbf{A} \mathbf{y}$$

$$\downarrow \downarrow$$

$$\max_{\|\mathbf{u}_i\| = \|\mathbf{v}_i\| = 1} \sum_{i,j} A_{i,j} \mathbf{u}_i \mathbf{v}_j$$

$$\downarrow \downarrow$$

$$\max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A} - \overline{\mathbf{A}} \\ \mathbf{A} - \overline{\mathbf{A}} & \mathbf{0} \end{array}) \bullet \mathbf{X} \}$$

Recall: The [EKKL20] Approach for Edge Cuts

To preserve differential privacy, add **regularizer** $\lambda \log \det(\mathbf{X})$.

Recall: The [EKKL20] Approach for Edge Cuts

To preserve differential privacy, add **regularizer** $\lambda \log \det(\mathbf{X})$.

⇒ Try to solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}'} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A} - \overline{\mathbf{A}} \\ \mathbf{A} - \overline{\mathbf{A}} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) \}$$

where the total weight of G is m (privately released).

Recall: The [EKKL20] Approach for Edge Cuts

The objective function $f(\mathbf{w})$ is **convex**, optimize it by **stochastic mirror descent**:

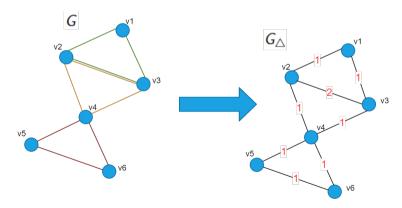
For *T* iterations:

- Privately release the gradient of $f(\mathbf{w})$: g_e
- Mirror descent step: $\mathbf{w}_e^{(t+1)} = m \frac{\mathbf{w}_e^{(t)} \exp(-\eta g_e^{(t)})}{\sum_e \mathbf{w}_e^{(t)} \exp(-\eta g_e^{(t)})}$

A Tool: Motif Weighted Graph

Given graph G and motif M, one can compute a **triangle-motif weighted** graph G_{\triangle} with a weight vector \mathbf{w}_{\triangle}

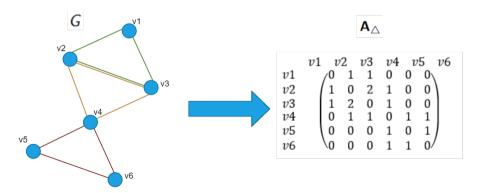
 \Rightarrow **w** $_{\triangle}(i,j)$ denotes the amount of triangles containing i,j simultaneously



A Tool: Motif Weighted Graph

Given graph G and motif M, one can compute a **triangle-motif weighted** graph G_{\triangle} with a weight vector \mathbf{w}_{\triangle}

 \Rightarrow **w** $_{\triangle}(i,j)$ denotes the amount of triangles containing i,j simultaneously



A Useful Equation

Lemma ([BGL16])

$$\operatorname{Cut}_{\triangle}^{(G)}(S, V \setminus S) = \frac{1}{2} \operatorname{Cut}^{(G_{\triangle})}(S, V \setminus S)$$

A Useful Equation

Lemma ([BGL16])

$$\operatorname{Cut}_{\triangle}^{(G)}(S,V\setminus S)=\frac{1}{2}\operatorname{Cut}^{(G_{\triangle})}(S,V\setminus S)$$

Cor:(considering edge cut in G_{\triangle})

The maximum triangle-motif size cut difference in \overline{G} and G, can be bounded by the following SDP up to a constant factor:

$$\max_{\mathbf{X}\in\mathcal{D}}\{(\begin{array}{cc}\mathbf{0} & \mathbf{A}_{\triangle}-\overline{\mathbf{A}}_{\triangle}\\ \mathbf{A}_{\triangle}-\overline{\mathbf{A}}_{\triangle} & \mathbf{0}\end{array})\bullet\mathbf{X}\}$$

where $\mathcal{D} = \left\{ \mathbf{X} \in \mathbb{R}^{2n} : \mathbf{X} \text{ is sym.}, \mathbf{X} \succeq \frac{1}{n} \mathbf{I}_{2n}, \text{and } \mathbf{X}_{ii} = 1 \text{ for } \forall i \right\}$

A Useful Equation

Lemma ([BGL16])

$$\operatorname{Cut}_{\triangle}^{(G)}(S,V\setminus S)=\tfrac{1}{2}\operatorname{Cut}^{(G_{\triangle})}(S,V\setminus S)$$

Cor:(considering edge cut in G_{\triangle})

The maximum triangle-motif size cut difference in \overline{G} and G, can be bounded by the following SDP up to a constant factor:

$$\max_{\mathbf{X}\in\mathcal{D}}\{(\begin{array}{cc}\mathbf{0} & \mathbf{A}_{\triangle}-\overline{\mathbf{A}}_{\triangle}\\ \mathbf{A}_{\triangle}-\overline{\mathbf{A}}_{\triangle} & \mathbf{0}\end{array})\bullet\mathbf{X}\}$$

where $\mathcal{D} = \left\{ \mathbf{X} \in \mathbb{R}^{2n} : \mathbf{X} \text{ is sym.}, \mathbf{X} \succeq \frac{1}{n} \mathbf{I}_{2n}, \text{and } \mathbf{X}_{ii} = 1 \text{ for } \forall i \right\}$

Note: We should optimize it w.r.t. \mathbf{w} instead of \mathbf{w}_{\triangle} ; o.w. we can't convert it back to a graph.

- The objective function with respect to \mathbf{w} is **not convex**, we add a convexity regularizer $C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e \overline{\mathbf{w}}_e)^2$.
- To bound the error, we additionally require \mathbf{w} to satisfy $\mathbf{w}_e \leq C_1$. (For weighted graph, here is $\mathbf{w}_e \leq C_1 w_{\text{max}}$)
- ullet i.e. $\mathcal{X} = \{ \mathbf{w} \in \mathbb{R}_+^{inom{V}{2}} : \sum_{e \in inom{V}{2}} \mathbf{w}_e = W, \mathbf{w}_e \leq C_1 \cdot w_{\mathsf{max}} \}$

Solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} \\ \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e - \overline{\mathbf{w}}_e)^2 \}$$

Solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} \\ \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e - \overline{\mathbf{w}}_e)^2 \}$$

Solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} \\ \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e - \overline{\mathbf{w}}_e)^2 \}$$

• The objective function $f_{\triangle}(\mathbf{w}) = \max_{\mathbf{X} \in \mathcal{D}} F_{\triangle}(\mathbf{w}, \mathbf{X})$ is **convex**

Solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} \\ \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e - \overline{\mathbf{w}}_e)^2 \}$$

- The objective function $f_{\triangle}(\mathbf{w}) = \max_{\mathbf{X} \in \mathcal{D}} F_{\triangle}(\mathbf{w}, \mathbf{X})$ is **convex**
- optimize it by stochastic mirror descent

Solve the following **optimization problem**:

$$\min_{\mathbf{w} \in \mathcal{X}} \max_{\mathbf{X} \in \mathcal{D}} \{ (\begin{array}{cc} \mathbf{0} & \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} \\ \mathbf{A}_{\triangle} - \overline{\mathbf{A}}_{\triangle} & \mathbf{0} \end{array}) \bullet \mathbf{X} + \lambda \log \det(\mathbf{X}) + C_2 n \sum_{e \in \binom{V}{2}} (\mathbf{w}_e - \overline{\mathbf{w}}_e)^2 \}$$

- The objective function $f_{\triangle}(\mathbf{w}) = \max_{\mathbf{X} \in \mathcal{D}} F_{\triangle}(\mathbf{w}, \mathbf{X})$ is **convex**
- optimize it by stochastic mirror descent

- the resulting graph is defined by the weight ${f w}$

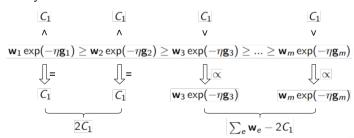
Overview of Analysis

Trouble: Since we require **w** to satisfy $\mathbf{w}_e \leq C_1$, the previous mirror descent step becomes invalid.

Solution:(Greedy: find the nearest solution to the primal)

- Sort the entries e by the decreasing order of $\mathbf{w}_e^{(t)} \exp(-\eta \mathbf{g}_e^{(t)})$.
- Try assign them proportional to $\mathbf{w}_e^{(t)} \exp(-\eta \mathbf{g}_e^{(t)})$.
- If there are ones larger than C_1 , truncated.

Correctness: Proved by KKT Conditions



Overview of Analysis

Privacy:

- ullet The privacy loss per iteration $pprox O(rac{n}{\lambda})$
- Total privacy loss after T iterations $\approx O(\frac{n\sqrt{T}}{\lambda})$ \Rightarrow run $T \approx \frac{\lambda^2}{r^2}$ steps to achieve differential privacy

Overview of Analysis

Privacy:

- The privacy loss per iteration $pprox O(rac{n}{\lambda})$
- Total privacy loss after T iterations $\approx O(\frac{n\sqrt{T}}{\lambda})$ \Rightarrow run $T \approx \frac{\lambda^2}{n^2}$ steps to achieve differential privacy

Utilization:

- ullet The cut distance to the original graph $\overline{G} pprox \mathcal{O}(rac{mn}{\sqrt{T}} + \lambda n)$
- Choose $T \approx \sqrt{\frac{m}{n}} \Rightarrow$ the additive error $\approx O(\sqrt{m}n^{3/2})$

The Lower Bound

We employ the generalized discrepancy of 3-colorings of h-uniform hypergraphs.

Definition

Let **B** be a 0/1 matrix with $\binom{n}{3}$ columns and $\mathcal{C} \subseteq \{-1,0,1\}^{\binom{n}{3}}$ be the set of allowed K_3 colorings. Then

$$\operatorname{disc}_{\mathcal{C}}(\mathbf{B}) = \min\{\|\mathbf{B}\chi\|_{\infty} : \chi \in \mathcal{C}\}$$

Remark:

• If a mechanism is equivalent to compute some Bx with input x, then $\mathrm{disc}_{\mathcal{C}}(B)$ somehow measures the difference between the output with **neighboring** inputs.

Definition

Construct a matrix **A** with $\binom{n}{3}$ columns:

$$\mathbf{A}_{(S,T),I} = \begin{cases} 1 & \text{if } I \in (S \times T) \\ 0 & \text{otherwise} \end{cases}$$

Remark:

- A is fixed and does not depend on G.
- Let $\mathbf{x}_{K_3} \in \{0,1\}^{\binom{n}{3}}$ be the indicator vector of K_3 in G. Then

$$(\mathbf{A}\mathbf{x}_{K_3})_{S,T} = \mathrm{cut}_{K_3}^{(G)}(S,T)$$

• \mathbf{Ax}_{K_3} somehow measures the difference of motif size between neighboring graphs.

Lemma ((Informal) discrepancy lower bound)

Given parameters σ, γ , let $\mathcal{C}_{\sigma, \gamma}$ be the set of all vectors $\chi = \mathbf{x}_{K_3} - \mathbf{x}'_{K_3}$ where \mathbf{x}, \mathbf{x}' are the indicator vector of edges of graphs satisfying some conditions.

$$\operatorname{disc}_{\mathcal{C}_{\sigma,\gamma}}(\mathbf{A}) \geq \Omega(\sigma \cdot \gamma^2 n^{5/2}).$$

Lemma

If \mathcal{M} is a mechanism for the motif size of all cuts that outputs \mathbf{y} with the input x, i.e., $\mathbf{y} = \mathcal{M}(\mathbf{x})$, s.t.

$$\|\mathbf{y} - \mathbf{A} \cdot \mathbf{x}_{K_3}\|_{\infty} \leq \frac{1}{2} \mathrm{disc}_{\mathcal{C}_{\sigma,\gamma}}(\mathbf{A}).$$

Then there exists a deterministic algorithm A s.t.

$$\|\mathcal{A}(\mathbf{y}) - \mathbf{x}\|_1 \leq \sigma \gamma n^2.$$

Lemma

If \mathcal{M} is a mechanism for the motif size of all cuts that outputs \mathbf{y} with the input x, i.e., $\mathbf{y} = \mathcal{M}(\mathbf{x})$, s.t.

$$\|\mathbf{y} - \mathbf{A} \cdot \mathbf{x}_{\mathcal{K}_3}\|_{\infty} \leq \frac{1}{2} \mathrm{disc}_{\mathcal{C}_{\sigma,\gamma}}(\mathbf{A}).$$

Then there exists a deterministic algorithm A s.t.

$$\|\mathcal{A}(\mathbf{y}) - \mathbf{x}\|_1 \leq \sigma \gamma n^2$$
.

Remark:

- We can approximately recover the input graph if the output of a DP mechanism is too close to the accurate value.
 - ⇒ The mechanism can't be private.

Lemma

If \mathcal{M} is a mechanism for the motif size of all cuts that outputs \mathbf{y} with the input x, i.e., $\mathbf{y} = \mathcal{M}(\mathbf{x})$, s.t.

$$\|\mathbf{y} - \mathbf{A} \cdot \mathbf{x}_{\mathcal{K}_3}\|_{\infty} \leq \frac{1}{2} \mathrm{disc}_{\mathcal{C}_{\sigma,\gamma}}(\mathbf{A}).$$

Then there exists a deterministic algorithm A s.t.

$$\|\mathcal{A}(\mathbf{y}) - \mathbf{x}\|_1 \leq \sigma \gamma n^2$$
.

Remark:

- We can approximately recover the input graph if the output of a DP mechanism is too close to the accurate value.
 - ⇒ The mechanism can't be private.
- The lower bound generalizes to any K_h -motif cut.

Conclusion

Summary: Our Results

- The **first** (ε, δ) -DP mechanism:
 - ▶ Release a synthetic graph that approximate the triangle-motif cut structures
 - Additive error: $\tilde{O}(\sqrt{m}n^{3/2}/\varepsilon^3)$
 - Our algorithm generalizes to weighted graphs
- A lower bound of error: $\Omega(m^2/(n^{3/2} \cdot \varepsilon))$
 - ▶ Our lower bound extends to any K_h -motif cut
 - ⇒ Nearly optimal for unweighted dense graphs

Summary: Our Results

- The **first** (ε, δ) -DP mechanism:
 - ▶ Release a synthetic graph that approximate the triangle-motif cut structures
 - Additive error: $\tilde{O}(\sqrt{m}n^{3/2}/\varepsilon^3)$
 - ▶ Our algorithm generalizes to weighted graphs
- A lower bound of error: $\Omega(m^2/(n^{3/2} \cdot \varepsilon))$
 - ▶ Our lower bound extends to any K_h -motif cut
 - ⇒ Nearly optimal for unweighted dense graphs

Open questions:

- Improve the algorithm to achieve smaller additive error
- Generalize the algorithm to work for any motif cut

Summary: Our Results

- The **first** (ε, δ) -DP mechanism:
 - ▶ Release a synthetic graph that approximate the triangle-motif cut structures
 - Additive error: $\tilde{O}(\sqrt{m}n^{3/2}/\varepsilon^3)$
 - Our algorithm generalizes to weighted graphs
- A lower bound of error: $\Omega(m^2/(n^{3/2} \cdot \varepsilon))$
 - ▶ Our lower bound extends to any K_h-motif cut
 - ⇒ **Nearly optimal** for unweighted dense graphs

Open questions:

- Improve the algorithm to achieve smaller additive error
- Generalize the algorithm to work for any motif cut

Thanks!

