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Abstract—Technological change and innovation are vitally
important, especially for high-tech companies. However, factors
influencing their future research and development (R&D) trends
are both complicated and various, leading it a quite difficult
task to make technology tracing for high-tech companies. To this
end, in this paper, we develop a novel data-driven solution, i.e.,
Deep Technology Forecasting (DTF) framework, to automatically
find the most possible technology directions customized to each
high-tech company. Specially, DTF consists of three components:
Potential Competitor Recognition (PCR), Collaborative Technol-
ogy Recognition (CTR), and Deep Technology Tracing (DTT)
neural network. For one thing, PCR and CTR aim to cap-
ture competitive relations among enterprises and collaborative
relations among technologies, respectively. For another, DTT is
designed for modeling dynamic interactions between companies
and technologies with the above relations involved. Finally, we
evaluate our DTF framework on real-world patent data, and the
experimental results clearly prove that DTF can precisely help to
prospect future technology emphasis of companies by exploiting
hybrid factors.

Index Terms—Technology Prospecting, Patent Mining

I. INTRODUCTION

Technological change and innovation are important factors

for productivity and competitiveness [1], especially for high-

tech companies whose lifelines depend much on research and

development (R&D) achievements. However, R&D processes

are often time and labor consuming and the available funds

are usually limited [2]. Therefore, there is a great need to

develop efficient technology management techniques for high-

tech companies [3], so that they can make accurate demand

estimates, apply fairness resource allocations, enhance inno-

vation ability, and thus create competitive advantages in the

fierce market circumstances.
In view of the importance of technology management,

many efforts have been made in this area, including technol-

ogy prospecting [3]–[5], R&D portfolio value analysis [2],

competitor monitoring [3], and so on. In particular, tech-

nology forecasting aims to measure the innovation degree

of technologies and prospect their success possibility in the

future, which are often based on quantitative analysis with

indicators [3], [4] or holistic analyses of technologies in the

whole market place [5]. Few of them can be customized to

each company’s personalized needs as well as their dynamic

evolving trends. For this reason, we try to find a possible

solution by forecasting the emerging technologies suitable for

each high-tech company automatically, to provide some data-

driven insights on their future R&D directions.

∗ denotes the corresponding author

Indeed, there are many domain and technological challenges

inherent in designing effective solutions to this problem. First,

factors influencing future R&D trends of companies are both

complicated and various, including the effect of internal and

external factors [6], i.e., their own technical strengths and

weaknesses and technological trend in the whole market place.

Second, there exist many complex relations: 1) In order to

survive from the fierce competition, companies often keep

sensitive to the R&D tendency of their competitors, i.e.,

competitive relations; 2) Some technologies are usually closely

related and show a bundled synchronization, i.e., collaborative

relations. Both of them have potential effects on firms’ R&D

strategies, while can not be easily captured and modeled.

Third, no matter technologies or company themselves are

continuous to evolve, so another challenge is how to model

dynamic interactions between companies and technologies and

capture their potential evolving trends.

To conquer the above challenges, in this paper, we propose

a novel Deep Technology Forecasting (DTF) framework to

automatically identify the most emerging technologies that a

company tends to develop further. Specially, DTF consists of

three components: Potential Competitor Recognition (PCR),

Collaborative Technology Recognition (CTR), and Deep Tech-

nology Tracing (DTT) neural network. For one thing, PCR and

CTR aim to capture competitive relations among enterprises

and collaborative relations among technologies, respectively.

For another, DTT is introduced for modeling the dynamic

interactions between companies and technologies with the

above relations involved. Finally, extensive experiments are

conducted on real-world patent data, whose results prove

that DTF can precisely prospect future technology directions

customized to given companies by exploiting hybrid factors.

II. DATA DESCRIPTION

In this section, we first describe the public patent data we

use, and then provide some supportive statistics.

A. Data Description

Patenting is one of the most important ways to protect core

business concepts and proprietary technologies [7]. Therefore,

most of high-tech companies keep filing patents every year to

protect their products, services and ideas. Since 1972, more

than 6 million patent documents have been issued and granted

in the United States Patent and Trademark Office (USPTO),

https://www.uspto.gov
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and number of patent assignees has reached 389,246, where

more than 89% are companies or corporations. So to speak,

patents provide us with an open window for analyzing tech-

nology evolution of high-tech companies.
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Fig. 1. The visualization of Cooperative Patent Classification (CPC).

In order to map patent pieces to technologies, we utilize

the widely used Cooperative Patent Classification (CPC). In

fact, CPC is a patent classification system, which has been

jointly developed by the European Patent Office (EPO) and

the USPTO. As shown in Fig. 1, CPC has four levels. From

the top down, technology categories are partitioned more and

more detailed. For example, the first level ’section’ has 9

classifications, and the code ’H’ represents ’Electricity’; the

third level has 662 classifications and ’H04J’ means ’Multiplex

Communication’. In general, each US patent is allocated

several CPC codes according to their involved technologies at

the beginning of its application. Therefore, given a company,

we can find all its applied or granted patents as well as their

corresponding technologies represented by CPC codes.

B. Statistics on Companies and Technologies

In this part, we give some data statistics for revealing several

supportive observations of companies and technologies.

H04L H04N H01L H04W H04R H04M H04W

H04L     Transmission of Digital InformationH04W     Wireless Communication Networks

2000 2005 2010 2015

Fig. 2. The technology evolving trend of Apple Inc. from 2000 to 2015.

Fig. 2 depicts the evolving trend of 7 typical technologies of

Apple Inc. from 2000 to 2015. Here we can see it is continually

changing with time: some technologies keep increasing while

some decreasing, i.e., the growing ’H04W’ and the shrinking

’H04L’. It may tell the development trend that ’H04W’ acts

as Apple’s current technology emphasizes and may potentially

keep increasing in the next few years.

Then, we analyze the technology distribution (based on CPC

section) of different types of companies shown in Fig. 3, from

which we have three observations:
• Each company has its own technical strengths and weak-

nesses, indicated by the varying proportions of different

technologies. For example, the Procter & Gamble Company

shows a great advantage in technology ’C’ (Chemistry),

while a disadvantage in technology ’G’ (Physics).

• Companies who tend to be competitors share similar tech-

nology distributions. For instance, the top 3 technology

https://en.wikipedia.org/wiki/Cooperative Patent Classification
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Fig. 3. Technology distribution of different types of companies.

categories of both Apple and Samsung are ’G’ (Physics), ’H’

(Electricity) and ’B’ (Performing Operations; Transporting).

• Technology distributions among different types of compa-

nies vary a lot, which can be easily found from any two

columns of Fig. 3.

Fig. 4 shows the number of patents granted in different

CPC sections from 1972 to 2016. Here we can see a booming

increase of most technologies, and the growth of some tech-

nologies seems kind of synchronous. For example, section ’H’

(Electricity) and ’G’ (Physics) have a very similar trend, which

might benefit by the rapid development of the information

industry, especially electronic hardwares like semiconductors.
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Fig. 4. Technology evolving trend from 1972 to 2016 based on CPC section.

The above interesting observations can be instructive and

meaningful, from which we can summarize following instruc-

tions for predicting the R&D directions of a given company:

• Internal and external factors. When predicting the R&D

directions of a given company, we need to consider both

internal factors, i.e., its original technical strengths and

weaknesses, and external factors, i.e., the development trend

of technologies in overall market place.

• Relations among companies and technologies. Competi-

tive relations among companies and collaborative relations

among technologies can be also a great help.

• Dynamics of companies and technologies. Both the com-

panies and technologies keep evolving consistently, so we

need also to model the dynamic interactions among them.

III. PROBLEM STATEMENT

Suppose there are M companies (U = Ui|i = 1, 2, · · · ,M ),

N technologies (U = Uj |j = 1, 2, · · · , N ) and Q patents

(P = Pk|k = 1, 2, · · · , Q) within T years in patent database.

Then, for company Ui ∈ U , its patent filing history can be

represented by SUi
= [SU1

i
, SU2

i
, · · · , SUt

i
, · · · , SUT

i
], where

SUt
i

indicates the set of patents that Ui files in year t. Similarly,

for technology Vj ∈ V , its patent filing records can also be

denoted as SVj = [SV 1
j
, SV 2

j
, · · · , SV t

j
, · · · , SV T

j
], where SV t

j
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Fig. 5. Overall Architecture of Deep Technology Forecasting (DTF) Framework.

indicates the set of patents filed in year t belonging to Vj .

Specifically, technology distribution of Ui ∈ U in year t is

defined as:

rti = [rti,1, r
t
i,2, · · · , rti,j , · · · , rti,N ],

rti,j =
|SUt

i
∩SV t

j
|

|SUt
i
| ,

(1)

where |SUt
i
∩ SV t

j
| means the number of patents belonging to

Vj that Ui files in year t. Obviously, if Ui files a large number

of patents belonging to Vj in year t, we will have a big rti,j ,

indicating that Ui pays a great emphasis on Vj in year t.
Then we can formalize our research problem as follows:

Given the patent filing history of a company Ui before year

T , SUi = [SU1
i
, SU2

i
, · · · , SUT−1

i
], and that of a technology

Vj , SVj = [SV 1
j
, SV 2

j
, · · · , SV T−1

j
], our goal is to predict rTi,j ,

and thus the whole technology distribution of Ui in year T ,

represented by rTi = [rTi,1, r
T
i,2, · · · , rTi,N ].

IV. DTF FRAMEWORK

In this section, we provide a possible solution to the technol-

ogy tracing problem, i.e., Deep Technology Forecasting (DTF)
framework shown in Fig. 5, including Potential Competitors

Recognition (PCR), Collaborative Technology Recognition

(CTR), and Deep Technology Tracing (DTT) neural network.

A. Potential Competitors Recognition (PCR)

Given a company Ui ∈ U , PCR aims to find its most

likely competitors PCt
i ⊂ U in year t. Inspired by [3], we

apply three commonly used patent indicators for evaluating

competitions among companies:

• Patent Activity (I1 = |SUt
i
∩SV t

j
|) is a fundamental patenting

indicator. Decreasing or increasing of I1 can be interpreted

as changing levels of R&D activity, and therefore, future

technological and commercial [3].

• Technology Share (I2 = |SUt
i
∩ SV t

j
|/|SV t

j
|) is based on

patent applications, which measures a firm’s competitive

position in a technological field.

• R&D Emphasis (I3 = |SUt
i
∩ SV t

j
|/|SUt

i
|) illustrates the

importance placed on a specific technological field within a

firm’s entire R&D portfolio.

Then, we develop a competitive score for measuring com-

petitive degrees based on the commonly used Euclidean dis-

tance. Specially, for Ui1 ∈ U and Ui2 ∈ U in year t, the

competitive degree between them are denoted as:

pcrt(Ui1 , Ui2) =

√√√√
3∑

q=1

αq(I
Ui1

,t
q − I

Ui2
,t

q )2, (2)

where I
Ui1 ,t
q , I

Ui2 ,t
q represents the qth indicator of Ui1 and

Ui2 in year t respectively, and αq is the corresponding weight

of Iq . Through Eq.2, given Ui ∈ U in year t, we can rank and

get its top-m potential competitors, indicated by PCt
i .

B. Collaborative Technology Recognition (CTR)

As shown in Fig. 5, for each year, we first construct a

bipartite whose nodes are patents and technologies while edges

represent the ownership between them. In detail, if Pk ∈ P
belongs to Vj ∈ V , there will be an edge connecting Pk

and Vj . Then, a weighted network can be established, whose

nodes are technologies and edges are their collaborations.

Here, weight of edge between Vj1 and Vj2 is calculated by:

ctrt(Vj1 , Vj2) = |SV t
j1
∩ SV t

j2
|/|SV t

j1
∪ SV t

j2
|, (3)

where |SV t
j1

∩ SV t
j2
| means the number of common patents

shared by Vj1 and Vj2 in year t, and |SV t
j1

∪ SV t
j2
| represents

the total number of patents filed in Vj1 and Vj2 in year t. Nat-

urally, bigger ctrt(Vj1 , Vj2) indicates a deeper collaboration.

In this way, given Vj ∈ V in year t, we can rank and get its

top-n collaborations, indicated by CT t
j .

C. Deep Technology Tracing (DTT) Neural Network

Fig. 6 shows architecture of Deep Technology Tracing

(DTT) Neural Network, which can be partitioned into three

levels: 1) relation-enhanced factor representation; 2) dynamic

embedding for companies and technologies; 3) final prediction

for a given company and technology.
1) Relation-enhanced Factor Representation: As the first

level of DTT, this part aims at learning the semantic represen-

tation of relation-enhanced internal and external factors.

As shown in the right part of Fig. 6, each patent is

combined with a sequence of words e = [e1, e2, · · · , ed1],
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Fig. 6. The architecture of Deep Technology Tracing (DTT) Neural Network.

where ei ∈ R
d0 is initialized by d0-dimensional pre-trained

word embedding and d1 is the length of e. Then, for each

company in each year, we totally sample d2 patents as its

internal factors. Then, patents of one company can be depicted

by a tensor D ∈ R
d2∗d1∗d0 . With the top-m competitors

extracted by PCR, we totally get m + 1 company tensors in

each year. In this way, relation-enhanced internal factors of

company Ui can be represented by Di ∈ R
(m+1)∗d2∗d1∗d0 .

Similar operations are applied in external factor extraction, so

we also have Dj ∈ R
(n+1)∗d2∗d1∗d0 , i.e. the relation-enhanced

external factor tensor in each year.

Next, we try to transform the above Di and Dj into lower

semantic embeddings through the commonly used convolu-

tional neural network (CNN) [8]. Three layers of convolution-

pooling processes are set to gradually summarize the global

interactions of words in a patent and finally reach a vectorial

representation one ė ∈ R
d, where d is the output dimension of

one patent document. Thus, company i who have d2 patents

in each year can be represented as ai = σ(ė1, ė2, · · · , ėd2
),

where ai ∈ R
d and σ is a mean value function. Along this line,

the relation based internal factor tensor Di ∈ R
(m+1)∗d2∗d1∗d0

can be transformed into Di ∈ R
(m+1)∗d.

So, the relation-enhanced internal factor embedding of com-

pany Ui in year t is given by Eq. (4), where pcrt(Ui, Ui′) is

the competition score calculated in PCR, and ati ∈ R
d is the

patent embedding of Ui in year t.

xt
i = at

i +
∑

i′∈PCt
i

pcrt(Ui, Ui′) ∗ at
i′ . (4)

Similarly, the relation-enhanced external factor embedding

of technology j in year t is given by Eq. (5), where

pcrt(Vj , Vj′) is the collaborative score calculated in CTR, and

atj ∈ R
d is the patent latent embedding of Vj in year t.

yt
j = at

j +
∑

j′∈CT t
j

ctrt(Vj , Vj′) ∗ at
j′ . (5)

2) Dynamic Embedding for Companies & Technologies:
We employ Gated Recurrent Unit (GRU) [9] to model the

dynamic interactions of companies and technologies. As de-

picted in Fig. 6, given the yearly internal factor embedding

sequence of company Ui, i.e., xi = {x1
i , x

2
i , · · · , xT−1

i }, GRU

updates the cell vector sequence si = {s1i , s2i , · · · , sT−1
i } and

company hidden state ui = {u2
i , u

3
i , · · · , uT

i } from t = 1 to

t = T − 1. After the initialization, in year t, the company

state ut+1
i is updated by the previous hidden state ut

i and the

current internal embedding vector xt
i, which is shown as:

zt+1
i = σ

(
Wxzx

t+1
i +Wuzu

t
i

)
rt+1
i = σ

(
Wxrx

t+1
i +Wuru

t
i

)
ũt+1
i = tanh

(
Wxux

t+1
i + rt+1

i � (
Wuuu

t
i

))
ut+1
i =

(
1− zt+1

i

)� ũt+1
i + zt+1

i � ut
i

, (6)

where zt+1
i , rt+1

i are the update and reset gate, respectively. �
is an element-wise multiplication and σ is non-linear activation

function which is stated as sigmoid in this paper. W∗ denotes

weight matrices, which are all optimized in training process.

In this way, the whole evolving process of Ui in year t are em-

bedded into a hidden embedding state ut+1
i , in different years

integrated by different relation-enhanced internal embeddings.

Similar operations are done for mining dynamics of tech-

nologies. Then, the final latent embedding vt+1
j of Vj in year

t is also captured automatically, in different years referring to

different relation-enhanced external embedding.
3) Technology Distribution Forecasting: After the above

modules, we acquire the latent embeddings of compa-

nies and technologies from year 1 to T , denoted by

ut = [ut
1, u

t
2, · · · , ut

M ] and vt = [vt1, v
t
2, · · · , vtN ]. Then, when

making predictions, we feed u and v into a function, r̂uv =
P(u, v), where P is an arbitrary prediction function or a

prediction neural network. For the sake of simplicity, we set

r̂uv = σ(u · v), which is more efficient for training and easier

to avoid overfitting, and σ is a sigmoid function.

Specially, we adopt the idea of Bayesian Personalized

Ranking (BPR) [10] for pair-wise learning, which has been

widely used in recommendation tasks:

L =
∑

(i,j)∈DS

− lnσ(r̂ij+ − r̂ij−) + λ||Θ||2, (7)

where Θ includes all model parameters, and λ and is the

regularization factor. DS indicates the whole training set,

which consists of many triples in form of (i, j+, j−), meaning

that company i shows a greater emphasis on technology j+

than j−. In order to minimize the above object function, we

adopt Adadelta optimizer [11] to update the model parameters

with back propagation algorithm, which can be implemented

automatically through Tensorflow.

https://www.tensorflow.org
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V. EXPERIMENT

In this section, extensive experiments are conducted on

USPTO patent dataset to verify the effectiveness of Deep

Technology Forecasting framework.

A. Experimental Settings

The USPTO dataset includes 6,014,932 granted US patents

from 1972 to 2017, belonging to 389,246 patent assignees.

After cleaning, we totally get 2,791 high-tech companies, who

have filed at least 200 patents since 1972. In addition, all

experiments are conducted based on CPC group, meaning that

we aim to make predictions on 662 pre-defined technologies.

For better proving the effectiveness of DTF framework, we

divide the patent dataset from 1995 to 2015 into four periods,

on which experiments are made separately. Let’s take 1995

to 2000 as an example. In training stage, we apply patent

filing histories of companies and technologies from 1995 to

1999 as input, and technology distribution in 2000 as a ground

truth. For testing, one year is shifted backwards, i.e. with

data from 1996 to 2000 as input and 2011 as the prediction

target. Treating it as a ranking problem, we evaluate the per-

formance of DTF by the Normalized Discounted Cumulative

Gain (NDCG@K, K = 10, 20, 50, 100). All experiments are

implemented on a Linux server with four 2.0GHz Intel Xeon

E5-2620 CPUs and a Tesla K20m GPU.

B. Compared Methods

Since there are few prior works to directly predict the

possible technologies customized to companies’ personalized

R&D needs, we introduce some variants of DTF to highlight

the effectiveness of each component of our framework.

• PC-DTT excludes the collaborative relations among tech-

nologies as the input of DTT.

• CT-DTT excludes the competitve relations among technolo-

gies as the input of DTT.

• DTT only inputs the patent filing history of companies and

technologies as well as their dynamic interactions.

• CP [12] only models the dynamic interactions between

companies and technologies.

• Tucker [13] has the same settings with CP.

• LR ignores the dynamic embeddings of companies and

technologies.

• Patent Indicator [14] can also give useful advice for pre-

dicting emerging technologies in special technology fields.

C. Experimental Results

Fig. 7 shows the performances of DTF and compared

methods within four time periods. Here, we can observe that

in most cases DTF performs much better than baselines under

all metrics with respect to different K, indicating that it is

meaningful to integrate both the relation-enhanced internal

and external factors along with dynamic interactions among

companies and technologies.

Among DTF and its variants, DTF often performs best,

proving the effectiveness of competitions extracted by PCR

and collaborations extracted by CTR. What’s more, there

seems a tight race between PC-DTT and CT-DTT: on the

first three datasets, CT-DTT shows a great advantage beyond

PC-DTT, while on the last one, CT-DTT behaves much better

than CT-DTT. This phenomenon may indicate that competitive

relations among companies have gradually become more and

more important for technology tracing.

Compared with baselines including Tucker, CP and LR,

DTF still behaves better. For one thing, although Tucker and

CP model the same dynamic interactions, they yet do not per-

form very well, which proves that patent content information

can be very useful for mining technology distribution. For

another, LR integrates the yearly content information the same

as DTF while shows a bed performance, especially when K is

set as 10 and 20, indicating the fact that dynamic interactions

among companies and technologies can not be ignored.

In the end, almost all models behave better from 1999

to 2010 except for Patent Indicator, which is understandable

in that patents filed in recent years haven’t received many

citations, so statistics-based Patent Indicators have no ac-

cess to distinctive features (especially citation-based features).

However, DTF shows an advantage in this term, because it

tries to learn potential semantic information from many patent

documents, depending less on statistics-based features.

D. Case Study.

In this section, we present a case study on Hughes Network

Systems, LLC (Hughes), which is the global leader in broad-

band satellite technology and services for home and office.

Table I shows top 10 technologies in 2016 of Hughes predicted

by DTF and its variants. From this table, we can see that both

DTF and its variants successfuly predict LLC (Hughes) will

pay the most emphasis on technologies about network com-

munication, represented by CPC codes as ’H04L’, ’H04W’,

’H04B’, and ’H03M’. However, about the followings, they

have very different ideas: 1) Both DTF and PC-DTT prefer

’B60G’ (Vehicle suspension arrangements), which may give

a signal that its competitors may have some businesses in

this field; 2) Both DTF and CT-DTT think ’H04Q’ (switches,

relays etc.) will be an important technology for Hughes, which

might be due to the big collaboration degrees with the former

technologies, especially ’H04W’. In fact, they share 39,898

common patents according to our statistics.

VI. RELATED WORK

Patent data has been widely explored for decision-making

processes and strategic planning purposes [3]–[5]. Typically,

methods related to technology prospecting can be summa-

rized as two types: qualitative analysis and quantitative min-

ing. Qualitative approaches are mainly based on analysis

by domain experts, which naturally needs many human ef-

forts, and in addition, some researches [15] find that these

subjective strategies may be not always precisely correct

and reliable. Quantified approaches aim to access potential

prospects of technologies through supervised machine learning

methods [5], [14].

https://www.hughes.com
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Fig. 7. The experimental results on four datasets.

Methods Predicted Top@10 Technologies
Ground Truth H04L H04W H04B H03M H03H G06F H04M H01Q G06E A44B

DTF H04L H04W H04B H03M H04M G10C H04Q B60G Y02W G09F

PC-DTT H04L H04W H04B H03M C12Q G10D B60G F02C F16M H04M

CT-DTT H04L H04W H04B H03M G06F D02H G06C E21B H04Q C12P

DTT H04L H04W H04B H03M C23F D06C Y10T C22B H04J F42D

Codes Meanings
H04L Transmission of digital information

H04W Wireless communication networks

H04B Transmission systems

H03M Coding; Decoding; Code conversion

H03H Impedance networks

TABLE I
A CASE STUDY ON HUGHES NET-WORK SYSTEMS, LLC

Nowadays, deep learning has been widely used in many

traditional areas, i.e. education [16], financial analyses [17],

music generation [18], patent mining [7], and etc. In particular,

Recurrent Neural Networks (RNN) are powerful tools for

modeling sequences, which are flexibly extensible and can

incorporate various kinds of information including temporal

order [19]. Its variants, such as Long Short-Term Mem-

ory (LSTM) [20] and Gated Recurrent Unit (GRU) [9], have

capability to model dependency among sequences.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a focused study on technology

tracing problem. Specifically, we designed a novel data-driven

Deep Technology Forecasting (DTF) framework including

three components: Potential Competitor Recognition (PCR),

Collaborative Technology Recognition (CTR), and Deep Tech-

nology Tracing (DTT) neural network. For one thing, PCR

aimed to capture the competitive relations among enterprises

and CTR tried to figure out the collaborative relations among

technologies. For another, DTT targeted at modeling dynamic

interactions between companies and technologies. Finally, we

evaluated our DTF framework on real-world patent data and

the experimental results clearly proved its effectiveness. We

hope this work could lead to more future studies.
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[5] Péter Érdi, Kinga Makovi, Zoltán Somogyvári, Katherine Strandburg,
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