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Abstract In the study of the extremal for Sobolev inequality on the Heisenberg group and
the Cauchy-Riemann(CR) Yamabe problem, Jerison-Lee found a three-dimensional family of
differential identities for critical exponent subelliptic equation on Heisenberg group H" by
using the computer in [5]. They wanted to know whether there is a theoretical framework that
would predict the existence and the structure of such formulae. With the help of dimension

conservation and invariant tensors, we can answer the above question.
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1 Introduction

The Heisenberg group H™ can be defined as the set C" x R, equipped with group law o:
(z,t) 0 (2, t)=(z+ 2, t+t +2Imz-Z'), V(zt),(s,t') € C" xR.

As in [5], we denote the left-invariant vector fields {Z;, Z;, T : ¢ =1,--- ,n}:
0 0 0
= 1z, — ) =1.--- = —,
Gi= gy TV g = Ti= gy
Denote derivatives of f by f; = Z;f, fﬁ = Z;Zif, fo=TFf, fo, =TZ;f, etc. The following

commutative formulae can be verified:
fij = fiis fi5 — 50 =2V =18;5f0, foi = fio-
We shall sum an indice from 1 to n when encountering it twice in one term, such as i and i.
1
Denote f; f5 as |V f|?, and define A f := i(fl; + f;;) as the sub-Laplacian operator on M,
then Ay f = Re f;;. By commutative formulae, f; = Apf +nv/—1fo.
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In celebrated paper [5], Jerison-Lee studied CR-Yamabe equation on H", namely

n+42

Apu+u» =0. (1.1)

They introduced remarkable identities to classify solutions with finite-energy. The classification

theorem is stated as follows:

Theorem 1.1 ([5, Corollary C]) Assume that u € L¥ (H™) is the positive solution of
2
.1), then there exists A € C and p € satistying Im A > ——, such that
1.1), then there exists A € C and (C”'f'I)\"ljl h th

u(z,t) = Coap |t + V1lzP 4z p+ )\|_n.

Remark 1.2 Recently, Catino- Li-Monticelli-Roncoron [2] and Flynn-Vétois in [4] got
more generalizations by weakening finite-energy condition u € L (H™). Besides, motivated

by the Jerison-Lee identity (4.2) in [5], Ma-Ou [6] proved that there is no positive solution of
n+2

Apu+u®* =0 on H® while 1 < o <
n

By auxiliary of an algebric computer program, Jerison-Lee found a three-dimensional family
([5, (4.2)—(4.4)]) of solutions with divergence terms on the left-hand side and positive terms
on the right-hand side. Then, the divergence theorem would prove that the right-hand side
vanishes identically and gets above classification results. However, Jerison-Lee cared about
whether there exists a theoretical framework that would predict the existence and the structure

of such formulae. In [5, p4], they raised the following problem:

An interesting (but vaguely defined) problem raised by this work is to find an
“explanation” for the existence of divergence formulas such as (4.2) and (3.1). Is
there a theoretical framework that would predict the existence and the structure of

such formulas, so that they could be discovered more systematically?

With the help of dimension conservation and invariant tensors, we state the following
theorem, which answers the problem above from a perspective. The meaning of “reasonable”

will be illustrated in Section 4.

Theorem 1.3 Assume that u is the positive solution of (1.1), then all “reasonable”

identities must lie in the three-dimensional family as stated in [5].

In this article, we give an explanation for finding positive-definite identities for the equation
(1.1), which answers the problem raised by Jerison-Lee. Dimension conservation and invariant
tensors are introduced in Section 2. Then we find differential identities in Section 3, and prove
Theorem 1.3 in Section 4, which answers the question of the theoretical framework for finding

differential identities raised by Jerison-Lee [5].

2 Dimension Conservation and Invariant Tensors

In this section, dimension conservation and invariant tensors are introduced for preparing
useful differential identities. Target identities are composed of divergence of some vector fields
and summation of positive terms which contain the complete square of some tensors, then all
tensors in complete square terms are zero by divergence theorem. Thus, how to find those

tensors priorly is essential.

@ Springer



266 ACTA MATHEMATICA SCIENTIA Vol.45 Ser.B

We say a tensor S(u) is of {(r,s),z,y,+/—} type, if it’s linearly composed of some (r,s)
tensors with z-degree u, y-order derivatives, and the number of v/—1 plus the number of vector

field T = — is even/odd for every tensors. For example:

ot

Zu]

{(2,0),1,2,+}: Djj =w;; + 1

\Vbu| 5o

+03Abu5 + canv/ — u0(5 + c5 7

U W
{(171)31727+}: = Uz +02

)

J is the Kronecker delta. It’s noteworthy that
0, i#j

ug is of {(0,0),1,2,—} type, and X is of {(0,0),0,2,4+} type. The type of tensors is additive

when several types of tensors are multiplied together. The type of tensors must be conserved

where {¢;}j_, are constants, and §, =

in differential identities. We call this phenomenon as dimension conservation.
Recall the Riemannian case. From Obata [7], Véron and Véron [1], and especially Dolbeault-
Esteban-Loss [3], we know that differential identities are found by multiplying Aw in both sides

of the equation, and using divergence theorem. Namely,

(Au)2 = (Auul)l — (Au)l u”uZ ).+ Z \u”| (Auu;), i
5,j=1
then u;; becomes the main term of some target tensor hoped to be zero. Similar as Riemannian

case, by multiplying equation (1.1) with Apu and divergence theorem,
(Apu)? = (Apuug); — (Apu)zu; — nvV —lugApu
= — (uj; + nvV —lug);u; + (Apuu;); — nv—1ugApu

(ugz ul . Z \u”|2 (n+2)v —lugu; + (Apun;); — nv —lugApu,
4,J=1
n
then we can yield Y |u;;|? term, hence consider u;; as the main term of one of the target
ij=1
tensors. By dimension conservation, we need a {(2,0),1,2,+} type tensor, then we consider
D;; defined as above.

Similarly, use the divergence theorem in another way:
(Apu)? = (Apuu;); — (Apu)u; — nv/—lugApu
=— (uﬁ - nﬁuo)fui + (Apuu;); — nv—1lugAyu
+ n\/iumul + (Apuu;); — nv—lugApu

= (’LL ’Tui) ]z zg

u ul ~ | Z |u \2 + 2V —lugu; + nv —lugu; + (Apuu;); — nvV —lugApu,
i,5=1
then |ui§ 2 term can be attained, hence we consider a {(1,1),1,2,+} type tensor E; defined as
above.

n n
For producing Y |D;;|* and 3 |Eﬁ|27 {(0,0),2,4,+} type identity is enough, such as
Q=1 ij=1
Riemannian case. However, a {(1,0),1,3,—} type tensor G; occurs by the following invariant

tensors argument because of non-commutativity of Z; and Z; caused by the second layer of H".

At last, we need a {(0,0),2,6,+} type identity in order to deal with Y |G;|? term.
i=1
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Now, we hope that D;; and E;; are zero when u is a solution to (1.1). Since we hope that
Eﬁ = O7 let
1 1 1

GB3=——, G4=——, C5=——C2,
n n n

’U.

then Ez=u; +02u7

- (Abu +ny/=Tug + ¢ 'Vl;j"g) 37, and E; = 0.
D”U;

For convenience, set D; = , B = 9 ], E;j = Eig By commutative formulae,
U
no Uuz na |Vyul?
E-=u-— —2 _— (A vV—1lug — 0%
TN Ty 2 n< b T R i
na Uzl na |Viyul?
=U=- Ayt — nyv — 0-. = F-~.
YT 2 < v n+2 wu 7 7
i Ez jUz U Es i Uz U
then Fu! = — =1 = Fju;. Thus, Ej; = E5; and Eju; € R.
u
Differentiate equation (1 1), we yield
n+2 Ayu n—+2Au n—+2Ayu
(Apu); = —u;, (Apu)y = Tu{ (Apu)o = Tuo (2.1)

By direct computation and using (2.1), we compute the divergence of D;; and Eﬁ:

U 7 U; w; (Apu + nyv/—1u Vul?
Diji =uii+a ];14-61 (B O)—C1| vl U

U w2 7

w1
=(Apu + nv—1ug); + 2vV—1ug; + 1 [Eﬂ_@ujuuz +E(Abu

2 . (A 1 v, ul?
+nv=T1ug + c2 v bU| )53'?}%-5-011“( bu+unru0) —C1| 75;” U

vV —1u0uj
u

J
:ClEj =+ (’I’L + 2)\/ —1U0j =+ (Tl + 1)01

1 Apu n—1 Vyul?
+ 2t e+ (2] 2 - (e e b,

-1 uzu, u=(Apu + nv—1u
;:(Abu+n\/71U0);+nn Co ; + co J( b " 0)

e uguy  (Bpu+ny=lug)y n—1 |Vyul
- = — - Co— 5 U3
n ou n n u

wiur 1 Vyul? =
__ 2 |:Eij—62 L= <Abu+n\/—1uo+02| il )5”] Y
U n u

u

V= ’LL()'LL

n—1 UFUTN U,
+ Co (DT—Q j)——i—( — 1)V —1lug; + ncg——
n J v ) j

n—1n+2)] Apu n—1 |Vyul?
+ |:C2+ ( )<2 ):| b u;— Cgl b2| (3
n u n u
n—1 n?—1 V—lugus
CQD* — 7E + ( 1)’\/ _1“05 + C2 ” J
n—1 Apu n—1 Co |Vpul?

+

3 [(n+1)ea + (n+2)]— L B (c1 — o + 1)0271@.
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If D;; and E are 0, then D, - and Eﬁ are also 0, in which case

Jt
V=Tuou; 1 A
=(n+ 2)vV/—Tug; + (n + 1)C1% +=[(n+1er + (n+ 2)]7“‘%-

n
2.2
n—1 |Vbu\2 ( )
—( o+ 1)er—5—uj,
U
n?—1 —lugu; n-—1 N
0:—(n—1)Jj1uoj— CQW oY 5 [(n+1)c2+(n+2)]7buj
| ! K u (2.3)
_ 2
n—1 C2 |Vpul
_ (Cl - E + 1)627'&]
Let the coefficients of v/—1ug;, M7 buuj and | bg| u; in (2.2) and (2.3) are propor-
U u U
tional:
n—1
n+2 _ (n+1)cl . (n+1)01+(n+2) _ _( 02+1)81
_ _ - 2 _ - —1 = ' ,
(n=1) —Llcz " " [(n+1)ca + (n + 2)] I (c1 — % +1)ey
n

n+2

then ¢; = — = —1. Rewrite D;j, E;, and define a {(1,0), 1,3, +} type tensor G;:

5

n+ 2 u;u; (T | Vyul?
D’L] = Uij — #7 Eij:u‘f‘_ Zu] _ E (AbU-F?’l /_1u0 _ ‘ ” | 617’

n u K

vV=1lugu; 1 Apu 1 |Vpul?

Gi:n\/ —lu()i—(n—l-l) - - U@‘F* 2 Q-
U n u n o
Then Diﬁ and E;;; are composed of "D, E,G” terms only:
n 4+ 2 n—+2
i =~ i+ ——Gj (2.4)
n—1 1 n—1

The invariance of D;;, E;, and G; in differentiating process are reasonable since those
tensors are hoped to be zero. Hence, we call D;;, E and G; as invariant tensors. With the in-
variance arguments above, invariant tensors can be deduced without any geometric background.

The following lemma summarizes invariance properties of all invariant tensors, including G;.

Lemma 2.1

2Dyu; n+2Eu;  n+2Gu;
_ 71 2 = _ 1%y Uy
: Z |Dyj| + v T (2.6)
3,7=1
= —1Du; 1 Eu; n—1Gu
E=u'S |E-2-2 Tl e A 2.7
i = Z;J il n u nou noou 2.7)
1 Dzu; 1 Gzu;
ImG”Im( i nt Gl“). (2.8)
: n o ou noou
Proof (2.6) and (2.7) can be checked directly by (2.4) and (2.5). Besides,
2 1 2 1
(|Vbu|2)_; =uD; + uE; + % [Voul u; + EAbuu; + vV —1lupy;, (2.9)
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vV—lugu; 1A 1|Vyul?
n /7_1/“0{ = G-+ (n+1) Uouy 1 buu—+ 7| bl us
n

" -y U 2 (2.10)

They can be verified by equation (1.1) and definitions of D;;, E and G; easily. By (2.1), (2.9)
and (2.10), we have that

o Tu-ut A 2
Im G, > =nTmv/—1(Apu)o — (n + 1) (Im Doitt | Dol UO‘VQZ’“' )
’ u u u

woNpu 1 D-u; uo|Vaul|?
—M‘F <Im’b+(n+1)0|2b|)
u n u U
1 Dsu, V—Tugzu; 1)2 uo|Vpul?
zflmif(nJrl)Im Yoitt +(n+ ) ol Qbu\
n U u n u
Im (1 D;u; N n—|—1Giui> .
n o ou noou
O
The following lemma is essential for discussing positivity of identities.
Vyul? & n \Y
Lemma 2.2 | b“' S D2 > 3 Dl | ”“' 3 IR, ifn > 2.
3,j=1 i=1 1,j=1
Proof Assume that A € C™*" is Hermitian, u € C™*!. By Cauchy inequality,
D A <0 1AG Pl
j=1 j=1
Sum ¢ from 1 to n: Z | Aijpi)* < Z |Aij|?||]|*. Then u? Z |D;i|? < |Vpul? _Zl |D;;|2.
i,j=1 i,j=1 ij=
For n > 2, assume that tr A = 0 additionally. Wlthout loss of generality, assume that
AU—Olfz;é]andz] 2, u=(1,0,---,0)7, then
> 1A Pl - it |
ij=1 ij=1
=Y Aul+ 22 Aal - —=lAnP - ——= Z A |2
i=1
Zn:|An|2 L gy o= 1 S lAi—A PP =0
-1 n—1_ ‘= 7
=2 2<i<j<n
Hence |V,ul? Z B > 1u2 S |E;)? for n > 2. O
ij=1 -1 3

3 Differential Identities

n n
By invariance argument in Section 2, we need an identity including > |D;;|%, > |Eﬁ|2
ij=1 ij=1

and Z |G;|?. Because of Z |Gi|?, {(0,0),2,4,+} type identity is not enough, hence the fol-
lowmg {(0 0),2,6,+} type 1dent1ty is considered.
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Proposition 3.1 Let {d;}}_,, {e;}}_,, 1 and 3 be undetermined constants, then
u P Re {uﬁ[( |vb | + do uw +d3n\/ uo)
2
+( |vb ‘ + esu I + esnyv — uo) un\/—lqul}}T

Viyu Viu
- ;’z' }ZlDuiudlZlDIQ o ]ZIEUP

wl 1,j=1

(3.1)
—|—612|E|2—|—MZ|G|2 (dy + e1) Re D; B= — d3 Re D;G5 — e3 Re E;G-

2 — 2
+Re {Alwb u T At + Ag” uluo]D +{ |v;’ ul +@2un}Eiui

2 V=1
+ Re {” Voul® | 202 +53"“°} Gius.
u2 u
The coefficients are:
n+3 n—1
A= (B+ Ydi — e + —ds,
n+4 n—1 1
Ay =——di +(B+ )da — ey + —ds,
n n
n+3 n
Az =—di + (B + - )ds + es + — [,
n -+ 2 n -+ 2
0, =— di + (B + )er + —es,
1 n+2 n+3
Oy =——e; — do+ (B + Jea + —es,

Proof By (2.1), (2.9), (2.10) and Lemma 2.1, we yield the following {(0,0),2,6,+} type
identities:
uP Re(uﬂ71|vbu|2Dl) :

\Vbu| n+2 |Vbu|2 n+2|Vyul?
Eiu; +

2 2
21|D,J| +2;|D| +Re D, E; — B+ —— - Re G
2,7 7
n+3\ |Vul? 1 2 1nv—1lug
*R‘%K“n)luz‘n“"mu i,

n

u P Re(u’t n D;) 5

& 4 2 2
=un Z |Dyj|* + <B+n+ )ui Re D;u; — nt u%Eiu;-—i—n_'— uw Re Gjuz,
= n n n
u=? Re(u” - nv—lugD;) ;
3 -1 2 -1
—ReDiGi+(,8+n+ )Ren\/ U0 et F2 e Y U g
n u

i
u n
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1 (|Vyul?
+ = < b;” +ui> Re D;uz,
n U

u? Re(u’! |Vbu|2E» ;

-1 2
|Vb“| Z |Eq% + Z |Ei|? + Re D;B; — —= [Voul Re D;u;
U n

)
3,7=1 i=1
2\ [Veul2 1 1 Vul?
[(5+n+ >| bg| ui}Ezul [Vyul* bU| Re G,
u n n o u?
u~ P Re(u” nfE)
S ' 3 ~1
= un Z |Eﬁ|2 - u% Re D;u; + (ﬂ w0 + ) u%Eiug— B % Re Giuz,
ij=1 n

u P Re(u” - nv—1lugE;) ;

U n u2

—1 v—1 —1 v-=1 1 (|Vyul?
= — Re B;G; + i Re L 4o D;u- + n Re i Yo Giu + — ( bt + uﬁ) Eiuz,
n u n

u? Re(—m/—luﬁqui)’;
n — 2
= UG e e G (S

w2

Then identity (3.1) can be proved by linearly combining them.
By commutative formulae, we notice that
Relu
= Relu juzupu; +2v—1 ujou;-\vbuﬁ U FUFUR U]
= Re[u;j’kujf-u?ui + 4\/—1u01u;|vbu|2 U U7 Uk U |
= 4|Vyul? Re vV—Lug;usz,

“UTU; — UFUE U

Uik i45 Uik 4y

thus

Re[ujku;uEui — uﬂuf-ukui} -

i
= Relu Ujp FUFURU; — U Zumkul] + Re UjRUTURL; + Re U UFUTFU;

—Reu, SRR — Re U U U Ui+ UjpUFUR U7 — Re U UFUR U
n n
_ 2 3 o2 I o2
= 4|Vyu|* Re v —1ug;u; + 2 E [ ug| Re u puruzu; E \ujkuj|
j=1 k=1
—2Re v —1uguy, Fuzu; + ApuReu;ju;z uy + Renv— uou”um]
— ApuReuzuzu; — nRe vV—lugusuzu;
n
= 2u2§ D = u ) |Ei]* — v’ Re D; B; + —|Vbu|2ReG uz

=1 =1

s

-1
+Re |Vyul® + ulpu + (n + 1)V —luug | Dyu;

)ReG u;.
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In+5 |Vbu|6 4 |Vbu|4Abu
n? T

2
ulNpu| Euz + 5

?

S\Vbu|2+ 3
u n u

1

— P L2 (Ag)? + (n+ 1) [Vl (3.2)

Hence another {(0, 0)7 2,6,+} type identity is found:
Proposition 3.2 Let 8 be an undetermined constant, then
U,iﬁ Re[uﬁfl(Dju; — EJuj)ul]ﬁ

n+ 3, |Vyul?

= = 3|Vbu\2
=2 D;? — E;|> —Re D, F;
N N [ N

i=1

zn\/ lug

—un

6. |Vyul? 1
Dyu- l:(5+n+ )| b;l‘ _n+

n u

2
U n] Re E;us,

n

Proof By (2.1), (2.9), (2.10) and (3.2), we have that

Re[Djku;-uEui — EEu;ukuz]

j )i

3 [Voul* 1
= Relujrujugu; — wpuzucu] ; + Re [— | Zu| u; + ﬁAbu|Vbu|2ui + \/—1u0|Vbu|2ui] )

s

n n 3
2u? Z |D;|? — u? Z |Ei|? — u? Re D; E; + ~|Vyu|? Re Giuz
n
i=1 i=1

3 1 3 2
+ Re {(n—&—) \Vbu|2 + uApu + ny/ —1uu0] Dju; — {(n—i—)
n

|Voul® +

77

1
uAbu} Fu-

then (3.3) is proved by inserting u~2 into the vector field. O
Remark 3.3 It’s noteworthy that (3.3) type identities in general CR manifolds are omit-

ted, because some Webster curvature terms occur. Without other assumptions of Webster
curvature, those terms are tricky.
To seek for all {(0,0),2,6,+} type identities with invariant tensors as RHS, the vector fields

composed of non-invariant things are also needed. Let 8 be an undetermined constant, and

consider
2 6 2
uP Refu [Vl *u] 5 = 'Vb“‘ (Re Do + By +(8 + " )'Vl’?j' _PE2 2,
(3.4)
3 1
u? Re[u5+%_1|vbu|2ui] i= %(ReD u; + Eiup)+ (8 + %)u%_2|vbu|4—n+ u%|Vbu|2,
(3.5)
u” P Re[u’ 2 |Vyul? - nv/=Tugu,] ;
2 1 6 1 2,2
_ n\ﬁuo D _ Veu? Re Gu |vbf‘ +fu%—2|vbu\4—n(n+1)7|vbu2‘ X,
u? u n u
(3.6)
4 n
uw P Re[uf tatly ;= (8+ nt )u%|Vbu|2 —u

. 1 .
uP Re[uﬁ+% “nvV=luou;] 7 = —u" Re Giu; + 7u5_2|Vbu|4 + fu%|Vbu|2 - nQu%ug, (3.7)
n\/ — U()

5 Refuf~'nudu;] - = [Voulug o2 0

u”” Re[u”" "nugu;] ; = —2Re ————Guz + n(nf +n +2) o —nurug.  (3.8)
U

Eliminate all terms except for invarlant tensor terms, we yield the following identity:
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Proposition 3.4 Let 8 be an undetermined constant, then
worefur [Tl Vil - yTug
U
+(n+1)u’ /= Tug — (n+1)n uo]uz} -
n\/—ilu()}
u

Vbu\z (nB+n+2)

\Y Vyul?
=Re [ | 5 uf* fur +(mB+n+2) D;u; + [2|52u|+ui]Eiui

o

|Viyul?
2

+ Re {(nﬁ—&—n—k?) —(n+ 1)u% +2(n+1) Giu;.

Proof 1It’s (3.4) + (3.5) — (nﬁ +n+2)x(3.6)+(n+1)x(3.7) —(n+1) x (3.8). O

Remark 3.5 Because of u”%" term, the vector field u~? Re[uf* 7 +1 u;] 7 is useless.

4 Theorem 1.3: Answer to the Problem Raised by Jerison-Lee

In Section 3, all needed {(0,0),2,6,+} type identities with invariant tensors as RHS are
found. Since we hope that a non-trivial solution exists, all cross terms must vanish. Here are

those cross terms:

Viul? 2 V-1 Viul?
| bu‘ Re D;u;, u» ReDj;u;, Re MDZ-U;, | bg‘ Eiug,
U u
Vyu|? .y}
u%Eiu;-, | bu' Re G;us, u™ Re Giu;, Re @Giu;.
' ’ u

If not, take some D; term for example, then we’ll yield that D;; 4 cul;j = 0 for some ¢ # 0 by
writing into a complete square form. Hence u can only be a constant combined with D;; = 0.
We call an identity as a “reasonable” identity, if it’s of {(0,0),2,6,+} type, it consists of
divergence of vector field part and positive-definite part, and its positive-definite part consists
of quadratic forms of invariant tensors only. From the discussion above, helpful identities must
be “reasonable”. The following proposition describes Theorem 1.3 detailedly, and answers the

problem raised by Jerison-Lee from a perspective.

Proposition 4.1 For n > 2, the “reasonable” identity is

2 _2 |Vbu|2 n+2 n—2
u Re{u {(d1 " +(di+a)u » +(dy — - a—u)n\/—lu())D
N ((n+2)(d1+a)—u\vbu|2 L EDh ARt )a—p ne

n—1 u n—1
—(n+2)d +2)a+
(n +2)ds = (nl )a i n\/—luo)Ei—,un\/—lqui
n—
1/|Vyul? Voul? - nyv/—1
a[Dju]f—Eju;-—&—n 5 (| b;” —|—u%|Vbu|2—n| pul” - n 4o
n u u

+(n+u = -nv/=1ug — (n + 1)n’ Uo)} u}}’

52
n

|Vbu|2 2, 2
—<d1 ol a)un Z|D”| (d1 +2a) Y | Dl

1,5=1 i=1
+((n+2)(d1+a)—u|VbuI2+(n+2)dl+(2+},)a—u ) z": B

5 Uu
n—1 U n—1 “
2,7=1
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(n+2)d; +3a — p1 & 9 " 5 (2n+1)di+3a—p
E E; E G Re D; E-
+ n—1 i:1| | +Mi:1| | + n_1 (5] i

-2 +2)dy + (n+ 2)a —
(cdr+ =20 4 gy Re DG+ DD n(fl ) R B (4.1)
with parameters d;, a, and p satisfying
1
dy > max{0, —a}, (n+2)d; —p > max {—(n +2)a,—(2+ )a} , (4.2)
n
and the matrix () is semi-positive, where @ is
1 n—2 (n+2)dy + (n+ 2)a—np
—(—d n
a -+ — —atn) 2(n — 1)
1 n—2 2n+1)d; +3a—u
—(—d 2(d
ldit — et (di +a) 2(n — 1)
(n+2)di+(n+2)a—nu 2n+1)d +3a—p 2n—1 n? +5n—3
n dy + ———a—
2(n — 1) 2(n — 1) ozl 2d e —a =y

For n = 1, all “reasonable” identities are (4.1) with n = 1, which are multiples of the

following identity:
2
u? Re {u‘z {(V:A + u3) Dy — v —1up(2D; + 3G1)} }

)

T

Vyul? -
_ <| 52‘ +u2> S DUl +2/Gi + |Gy + D

ij=1
Proof Linearly combine (3.1), (3.3) and (3.9) to eliminate all cross terms:
RHS of [(3.1) +a x (3.3) + b x (3.9)]

|W| u wu -
_< u? +d2U" Z |Dw|2 + (dy +2Q)Z|Di‘2+ u2 te un Z |Eﬁ|2

ij=1 i=1 ij=1

+ (61 — a) Z ‘El‘z + ILLZ |Gl|2 + (dl +e1 — CL) ReDszf d3 ReDiG;—

i=1 i=1
|Vb |2 n\/—1u0>

+A2U” +£3

Re DiU;

~ 2 2 2 ~ 4/ —
+< |V5u| +@2un)Eu + Re (" |VZU| HQUE + 23 n uO)ReGiui,

— €3 Re E,LGz-F Re <

(4.3)
where a and b are undertermined constants. The coefficients are:
+3 -1 +3

= (B+ )i - ——ei + @+w+” Ja +2b,
~ +4 -1
A22_7d1+(5+” Vo= Loy 4 Loy —a o,

n n n

~ +3 -1 1
As —d1+(6+n )d3+n 63+Eu+a+(nﬁ—|—n+2)b,
~ + 2 + 2 1 +6
6, =-" d1+(ﬂ+n )e1+7e3—(6+n Ja + 2b,
~ 1 + 2 3 1 +1
@Qz—ﬁel—n dg—l—(ﬂ—k )62—|—563+n a—l—b,
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= +2 -1 1 3

Elzn dl—n e1— —p+ —a+ (nB+n+2)b,
n n n

= +2 —1 1

AR AL es — —p— (n+1)b,
n n

=~ +2 -1

:gznn ds + es — Bu+2(n+1)b.

Case n > 2: We need ﬁl, (:)l and él to be 0. Fix d;, u, a, b, and solve ¢; from él = Eg =
Eg =0:

o (n+2)d; —p+3a+n(np+n+2)b
1= )

n—1
ey = (n+2)dy —p—n(n+1)b
n—1 ’
o — —(n+2)d3+nﬂu—2n(n+1)b.
n—1

Insert e; into A; — 837 then A, — Az = B(dy — ds + a—2nb— p).
If 8 =0, we have 81 = &3. Fix di, p, a, b, and solve dy, ds from 31 = 32 =0:

dy = dy +na —n(n+1)b, d3 = —dy —na +n?b— p.

Insert ds, ds3, ¢; and 3 into (:)1 and ég, then

5 — 2[2(n + 2)d; + 6a + n2b] 5, — 2(n +2)[2d; + (3n — 1)a — n(3n + 4)b]
' n(n —1) CR T n(n —1) '
~ ~ 3 1)b
Fix b, and solve dy, a from ©; = O3 = 0: dy = — n(n +3)b a = n(n+1) . To ensure the
2(n — 1) n—1
\Y
positivity of the RHS of (4.3), the coefficients of ‘ b uf* Z |D;|? and un E |D;;|? must
1,j=1 i,j=1

have the same sign, i.e. dids > 0. Insert d; and a into ds: do = fb hence b = 0. Similarly,

0 Z |E5[* and Z |G;|> must have the same sign, i.e. esu > 0. Insert
ij=1

the coefficients of u

de = b =0 into ey: ey = —Ll, hence p = 0. Now, all parameters are 0, and the identity
n—
(4.3) is trivial.
If B # 0, then ds = dy + a — 2nb — p. Insert ds and e; into 81, 32, and Ag:

- 1
Ay =A3= E[(nBJr 2)dy + (nB+n+1)a— (nf+n+ 2)nb,
~ 1
Ay = E[(nﬂ +2)dy — (n — 1)a + n2b].
9 ~ ~ ~
If 6#0and g # — dy and ds can be solved from Ay = Ay = A3 =0:

—(nB+n+1)a+ (nf+n+2)nb
d1: ) d2:
nB + 2

(n—1)a—n?b
nB+2

Insert d; and e; into él and ég:
(nB+n+4)-2(n—1)a+ (nf + 2n + 2)nb|
nin —1) ’
(n+2)(nB+4)[-2(n - 1)a + (nf + 2n + 2)nb|
n(n —1)(nB +2) ’

0, =

0, =
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(nB+2n+2)nb

then a = W To ensure the positivity of the RHS of (4.3), the coefficients of
n—
wn E |Dyj |2, un Z |E;[* and Z |G;|?> must have the same sign, i.e. dg, e2 and p have the
1,5=1 i,j=1
21+ n?b

same sign. Insert a into dy and es: dy = §b, ey = — hence b = pu = 0. Then, all

2(n—1)’
parameters are 0, which means that the identity (4.3) is trivial again.

From discussions above, § = —— is the only possible case when n > 2.
n
2
When g = ——, rewrite d3 and e;:
n

(n+2)dy — p+ 3a+n?b

ds=di—pu+a—2nb, e =

)

n—1
. _ (n+2)dy —p—n(n+1)b . _ —(n+2)dy +np— (n+2)a+2nd
2T n—1 T n—1 '
2, ~ ~
Insert them and 8 = —— into A; and ©;:
n
~ ~ ~ n—1 ~ n—1
A= —Ay = Aw = — O, — —nb
1 2 3 2(n 1 2) 1 " a —no,
3 (n+2) 2
Oy = ——[-2dy + 2d —3)a — n“b|.
2 n(n—l)[ 1+2dy + (n— 3)a — nb
~ ~ -1
Fix dy and a, and solve ds and b from A1 = ©5 = 0: dQ:lera,b:n 5—a. Then
2 -1 -2 2)(d —
p=--, b:nTa, dy=di+a, dy=d——"a—p, 61:(n+ )y ) =
n n n—1
. (n+2)di+ 2+ 2)a—p . —(n+2)dy — (n+ 2)a+nu
2 = 5 3 = .
n—1 n—1

Then (4.1) is deduced by rewriting (4.3) with the parameters above.
\Vb ? & |Vbu| 2
S Dy uE S Dyl > |E;7? and u» _Z |E5l?

7 ]— 7 J— 7 j— K3 j—
are non-negative, i.e. (4.2). By Lemma 2.2, the RHS of 1dent1ty is greater than or equal to a

The coefficients of

quadratic form with @ as matrix.
Case n = 1: Notice that (3.3) degenerates to u*ﬂ[u6*1|vbu|2D1]j, which is the d; term

in the vector field of (3.1). Hence we assume that a = 0. Rewrite (4.3) as

[(3.1) + b x (3.9)]

Viyu
1 ( | Z - + dau >|D11|2+d1|D1|2+/L|G12—d3ReD1G1

Vpul? ~ V-1
Re ( ‘ /SU| + A 3 U UQ) Re DluT (44)
2 ~ /-1
+ Re (H ‘V£U| —|— o E3uuo> Re GluT,

where the coeflicients are:
= (B+4)dy +ds+2b, Ay =—dy+ (B+5)ds+ds+b,
As=di+ (B+4)ds+p+ (B+3)b, E1=3d —p+ (8+3)b,
Zo=3dy— pn—2b, Z5=3ds — Bu+4b.
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‘We need ﬁl and El to be 0. Fix 3, u, b, and solve dy, ds, d3 from El = Eg ==3=0:

2 4
d1:M+(63+3)b, dZZM_; b, dg:mt;— b.

Insert them into ﬁl:
28+ 2)u+ (B2 +78+22)b

&1 = 3 )
X, - 2B+2)pu+ (6+14)b
2 = )
3
X _ (B+2°u+4(28+7)
Az = .
3
Consider A; — Ay =0, i.e. (B+2)(B+4)b=0.
If 8 = —4, then A = —4p £ 10 = 0, ﬁg = 4”;4b = 0, hence p = b = 0, then

d1 = do = d3 = 0, which means that the identity is trivial.
If 6# —2and B # —4, b=0, u =0, then identity is trivial as well.

From discussions above, § = —2 is the only possible case when n = 1.
If p = -2, then Ay =0 yields that b = 0. All parameters are:
" 2
di=dy==, dg=—= =-2, b=0
1 2 3a 3 3,&7 ﬁ )
which is just identical to (4.1) with n = 1. O

Now we prove Theorem 1.3.

Proof of Theorem 1.3 From Proposition 4.1, we know that three constants d;, a, and
1 determine a three-dimensional family of differential identities as Jerison-Lee stated.

Ifdy =1,a=0and p = 3, we yield the classical Jerison-Lee identity (4.2) in [5]:

2
ur Re {u_i [('VZM +u

[Voul* 2 ¢
= ( 2 Ut S (D +1E57) + Y (1D + | Eil* + 3|G4*)

i,5=1

A

"22) (D; + E;) — nv/—1ug(2D; — 2F; + 3Gi)} }

+ 2Re DZE; + 2Re DZG; — 2 Re ElG;
=ur Y (1D +1E51%) + Y _(Gi* +|Gs + Di* +1Gi — Eil*) +u™> > |Dijug + B .

ij=1 i=1 i,5,k=1

Ifdy =0,a=mnand p =n+ 2, we yield the identity (4.3) in [5], which is also positive:
2
u% Re {u_% { (’]’Lun:2 — 277,2\/ _1UO)D'L —+ ((TL + 2)M —+ unTJr'2 + 271\/ —1U0)E
u

— (n+2)nv-1uG; +n {Djuj — Ejuz

]

_n‘VbU|2.n\/j1UO+(n+) 2 n\ﬁuo_(n—kl)nuo)}u}},

U i

Z |D19| +2nZ|D |2 <n+2>|vbu| i) Z |Eﬁ‘2

4,j=1 4,j=1

n—1/|Vyul*
T3 (| b2| + [ Vyu|
n u

+ 22 |Ei|? + (n+2) Z |Gi|? + 2Re D, F; + 2nRe D;G; — 2Re E;G-
= i=1
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=(+2) =5 D> EgP+ ) B+ (=2 D’ +(n+1) ) |Gi+ Dif?
i,j=1 i=1 i=1 i=1
+Z‘Gi_Di_Ei|2+u% Z(|E13|2+n|D”|2)

i=1 ij=1

Ifdy =1, a=0 and p = 3n, we yield the identity (4.4) in [5], which is not positive:

u* Re {u*% { (W Ut ) (D; — 2E;) — nv/—1ug[(3n — 1)D; — (3n + 2)E; + 3nGi]}}

‘vbu|2 5 n n
=< oz Ut Y (D —21B5%) + Y _(Dil® — 2Bl +3n|Gif?)

i,j=1 i=1

— Re DZE{ + (377, — 1) Re DlG; — (377, + 2) Re ElG;
When n =1, by Ei7 =0, identity (4.2), (4.3) and (4.4) in [5] are identical obviously. O

Remark 4.2 Notice that the matrix @ can’t be semi-positive if 4 = 0. W.L.O.G., assume
that ¢ = 3, then the positivity condition (4.2) and the positivity of () determine the range for
dy and a, which can be described by the following figure:

a

A2

Al

\ P1
1 /Bz :

Figure 1 The range for di and a when identity (4.1) is positive.

The coordinates of key points are:

3n 1 3n

P1=(1 P2 = P3=(— Al =
(L), P2=(0.-2) P3=(-.0), Al=(0.5~

),

2\/n(73n7 + 538n8 + 1435m° 4+ 134n? — 1439n3 — 120n2 + 292n + 48)
3nt —2n3 —5n2 4+ 26n + 8

1
X oS {g arccos [\/5(5957110 + 701702 + 306667° + 5501977 — 7692n° — 82095n°

A2 = (0,

— 12345n* + 38598n3 + 255602 — 6920n — 1440)
@ Springer



No.1

X.N. Ma et al: SEMI-LINEAR SUBELLIPTIC EQUATIONS ON HEISENBERG GROUP 279

% (7307 + 538n® + 1435n° + 134n? — 1439n° — 12002 + 292n + 48)—%] }

n(10n3 + 35n2 + 4) )
(n+2)(3n3 —8n?2 +11n+4)/’

Bl — V/468n* + 138003 + n? — 1500n + 612 cos 1227 24n? +43n — 18
B 3n2 4+ 8n + 4 3 20n+2)(3n+2)" ")’

Bo — V/468n* + 1380n3 + n2 — 1500n + 612 cosg 24n? 4+ 43n — 18
N 3n2 4+ 8n + 4 3 2n+2)Bn+2)" ")’

9936n° + 44172n° + 32202n* — 66149n3 — 35622n% + 547560 — 15336
(468n* + 138013 4 n2 — 1500n + 612)2

6 = arccos

7

where P1, P2, P3 correspond with identity (4.2), (4.3), (4.4) in [5], and A1, A2, B1, B2 are

intersections of coordinate axes and boundary of the range. From the figure, it’s obvious that

(4.2) and (4.3) are positive, and (4.4) is not positive.

Conflict of Interest The authors declare no conflict of interest.

References
Bidaut-Véron M F, Véron L. Nonlinear elliptic equations on compact Riemannian manifolds and asymp-
totics of Emden equations. Invent Math, 1991, 106: 489-539
Catino G, Li Y Y, Monticelli D D, Roncoron A. A Liouville theorem in the Heisenberg group. arXiv:
2310.10469
Dolbeault J, Esteban M J, Loss M. Nonlinear flows and rigidity results on compact manifolds. J Funct
Anal, 2014, 267(5): 1338-1363
Flynn J, Vétois J. Liouville-type results for the CR Yamabe equation in the Heisenberg group. arXiv:
2310.14048
Jerison D, Lee J M. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe
problem. J Amer Math Soc, 1988, 1(1): 1-13
Ma X N, Ou Q Z. A Liouville theorem for a class semilinear elliptic equations on the Heisenberg group.
Adv Math, 2023, 413: Art 108851
Obata M. The conjectures on conformal transformations of Riemannian manifolds. J Differential Geometry,
1971, 6(2): 247-258

@ Springer



