
An Ant Colony Optimization for Grid Task
Scheduling with Multiple QoS Dimensions

Jing Hu, Mingchu Li, Weifeng Sun*, Yuanfang Chen
School of Software

Dalian University of Technology
Dalian Liaoning, China

cicihj_0795@gmail.com, mingchuli@dlut.edu.cn, wfsun@dlut.edu.cn*, 27596731@qq.com

Abstract—Task scheduling and quality of service (QoS) are two
curial problems in grid computing. Focusing on the meta-task
with QoS requirements, this work presents an ant colony
optimization for grid task scheduling with multiple QoS
dimensions (QACO). The proposed algorithm considers five
kinds of QoS dimensions: time, reliability, version, security and
priority which are transformed to utility as the heuristic
information of the algorithm. The objective of the algorithm is
maximizing the total utility. Simulation studies compare the
performance of QACO, QoS-Min-Min and the improved Min-
Min. Simulation results shown that QACO finds the best results.

Keywords- multiple QoS dimensions; ant colony optimization;
task scheduling; utility

I. INTRODUCTION
Grid computing enables users to assemble large-scale

geographically distributed computational resources to create a
secure virtual supercomputer cooperatively to accomplish a
specific computational goal [1]. The research about task
scheduling is the core in the design and implementation of the
grid resource management which is the important component
of the core middleware in the grid computing. The high-
efficient scheduling strategy could optimize process capability
of grid and sequentially improve the performance of
applications; therefore, it is crucial to study the task scheduling
in grid computing. From the definition of the grid, we can see
“to deliver nontrivial qualities of service (QoS)” is one of the
guide line of estimating grid performance, thus grid task
scheduling strategy should consider the QoS requirements of
users. It is required to have the best task scheduling strategy
and guarantee the QoS as well.

A volume of mature task scheduling algorithms have been
proposed, such as Min-Min ， Max-Min, XSufferage[2-3],
which are the simple efficient heuristics. But they do not
consider the QoS requirements of users. After that, many QoS
guided task scheduling algorithms have been proposed. He etc
al. [4] have proposed QoS-Min-Min by improving traditional

Min-Min using bandwidth as the heuristic information. The
work only considers bandwidth which would affect task
complete time，so it can obtain good performance. Weng etc
al [5] have proposed QoS-Sufferage by improving Sufferage
using average response time as the heuristic information. The
two algorithms only consider the situation of one QoS
dimension, but it can not satisfy the users’ demands of multiple
QoS dimensions. Chen etc al. [6] have proposed the grid
resource scheduling algorithm senior integrating the thought of
forecast mechanism with dual constraints of deadline and
bandwidth. The algorithm can obtain a better accomplishment
ratio according to forecasting executive time of grid tasks.In
the heterogeneous computing environments, many QoS-based
scheduling of task with multiple QoS demands have been
proposed. Tracy D.Braun etc al. [7] have presented static
resource allocation algorithms for heterogeneous computing
environments with tasks having dependencies, priorities,
deadlines, and multiple versions. To aim at task scheduling
model with multiple QoS dimensions, the work adapts the
static techniques from some previous studies and applies to the
model: GA, GENITOR-style algorithm, and a two phase
greedy technique based on the concept of Min-Min heuristics.
The experimental showed that the GENITOR technique finds
the best results, and the faster two phase greedy approach also
performs very well. Braun etc al. [8] have carried on a
comparative study of five heuristics, QSMTS-IP, Min-Min,
Genetic Algorithm, Least Slack First and Sufferage. The
heuristics have been modified from their original
implementations to incorporate additional QoS attributes. The
performances of the five heuristics are compared in terms of
number of satisfied users (tasks), Makespan and sum of utilities
of tasks. It has shown that GA and Min-Min produced better
results.

Task scheduling in grid computing is proved to be a NP-
hard problem, and intelligence optimization algorithms (such as
GA, PSO) suit to solve it. Ant colony optimization (ACO) [9]
is also one of intelligence optimization algorithms. ACO has
the advantages of robustness, positive and negative feedback
mechanism, avoiding premature and so on. Moreover, a good
task scheduling algorithm would adjust its scheduling strategy
according to the changing status of the entire environment and
the types of tasks. Therefore a dynamic algorithm in task
scheduling such as ACO is appropriate for grid [10]. A number
of grid task scheduling algorithms based on ACO have been

Supported by Nature Science Foundation of China under grant No.:
60673046，90715037，University Doctor Subject Fund of Education
ministry of China under grant No.: 200801410028，National 973 Plan of
China under grant No.: 2007CB714205 and Natural Science Foundation
Project of Chongqing, CSTC under grant No.: 2007BA2024.

*Corresponding author.

2009 Eighth International Conference on Grid and Cooperative Computing

978-0-7695-3766-5/09 $25.00 © 2009 IEEE

DOI 10.1109/GCC.2009.57

423

2009 Eighth International Conference on Grid and Cooperative Computing

978-0-7695-3766-5/09 $25.00 © 2009 IEEE

DOI 10.1109/GCC.2009.57

423

2009 Eighth International Conference on Grid and Cooperative Computing

978-0-7695-3766-5/09 $25.00 © 2009 IEEE

DOI 10.1109/GCC.2009.57

415

2009 Eighth International Conference on Grid and Cooperative Computing

978-0-7695-3766-5/09 $25.00 © 2009 IEEE

DOI 10.1109/GCC.2009.57

415

proposed, and they obtained good results [10-11]. But the
algorithms do not take QoS into account to satisfy the
requirements of users.

On the basis of the studies, we apply ACO further to solve
the problem of task scheduling with multiple QoS dimensions
in grid computing. We can improve the performance of task
scheduling at the same time guaranteeing the quality of service.
QoS can be divided into metrics and policies in the large-scale
distributed computing system [12]. QoS of Metrics contains
time-related parameters (such as deadline) and veracity-related
parameters (such as precision) which are used to define
performance, security needs, and the relativity of tasks and so
on. We define the QoS model of metrics considering the five
kinds of QoS attributes: timeliness, reliability, security, version,
and priority. We modify the QoS model in heterogeneous
computing environment proposed in [7-8] to use it in grid
computing. The proposed algorithm aims to maximize the
users’ utilities. From papers [7] and [8], we can see the
modified Min-Min could produce good results. We also modify
the Min-Min with our QoS model, namely improved Min-Min.
Then we compare the proposed QACO (Ant Colony
Optimization for Grid Task Scheduling of multiple QoS
dimensions) algorithm with QoS-Min-Min and improved Min-
Min. According to the simulation results, it can be seen that
QACO is capable of achieving the objective of scheduling
better than the other two algorithms.

The rest of the paper is organized as follows. Section
�describes the details of the task scheduling model with
multiple QoS dimensions. We introduce the proposed
algorithm detailed in section �. In Section � the results from
the simulations are examined. Section � concludes this paper.

II. THE TASK SCHEDULING MODEL WITH MULTIPLE QOS
DIMENSIONS

Task scheduling mode is divided into on-line mode and
batch mode. In the batch mode, tasks are not mapped onto the
machines as they arrive; instead they are collected into a set
that is examined for mapping at prescheduled times called
mapping events. The independent set of tasks that is considered
for mapping at the mapping events is called a meta-task [2].
Our work is based on batch mode and the meta-task with
multiple QoS dimensions. The QoS requirements are
transformed to utility as users’ degree of satisfaction. From the
user perspective, each user expects his utility maximum, but
scheduler should maximize all users’ utilities instead of single
user. Therefore, maximizing all users’ utilities (total utility)
becomes our objective.

A. Prolem Formulation
The tasks in grid computing may have amount of QoS

requirements that need to be satisfied. We list five considered
types.

1) Timeliness: Timeliness includes the start time,
complete time, deadline, transmit delay time and so on. In this
paper, only the deadline is considered. Each task may be
assigned a receivable deadline.

2) Reliability: It’s possible that the machines in grid

would disable. The reliability of a machine is defined to be the
failure rate of tasks executing on it.

3) Versions: The resources in the grid are not dedicated
machines; hence their attributes are changing continuously. A
task may exist in different versions. We consider various
versions impact the task execution time and user-defined
preference.

4) Security: Each user may require different levels of
security services including authenticity, confidentiality,
integrity, etc for their task and data. Each machine is assigned a
level of security.

5) Priority: When several tasks compete for the exiguous
resources, scheduler should satisfy the QoS requirements of
higher priority. Each task may be assigned the priority which
presents the importance of the task. Priority can be specified by
user and scheduler.

Although we only consider these QoS requirements, our
definition and solution could be applied to more types of QoS.
Assume the execution time of tasks have been forecasted using
the method proposed by Shoukat Ali [13]. Let R=
{ ,, 21 rr … mr } denotes the heterogeneous machines in the grid,

and T= { ,, 21 tt …, nt } denotes the set of n independent tasks.

ET=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

mnm

n

etet

etet

1

111
, defines the expect execution time

for tasks, where ijet denotes the execution time of task it on

machine jr . Let)(iM denotes the machine assigned to task it ,

where ni ≤≤1 . And jS is a function of scheduling which

denotes the order of task it on machine jr ,

where }1,1|)({ mjniijSjS ≤≤≤≤= .)(iV is defined as the

version of task it , where ni ≤≤1 . Let each task it be

associated with id number of QoS dimensions. In addition, let
j

iQ be either a definite or infinite set of QoS choices for the jth

QoS dimension of task it , where idj ≤≤1 and j
i

j
i Qq ∈

denote a QoS choice for the jth QoS dimension of task it .

Thus, iQ ={ 1
iQ , 2

iQ ,…, id
iQ }defines a id dimensional

space of the QoS choices for task it and a point in the space is

given by iq ={ 1
iq , 2

iq ,…, id
iq }.

B. Evaluation
The evaluation standard of the original task scheduling is

Makespan, that is, the time is given by the start time subtracted
from the task complete time. Taking into account QoS
requirements we concern users’ QoS requirements more than
the time of tasks executing. Therefore, we evaluate the
objective of scheduling by total utility. The utility is

424424416416

transformed by QoS requirements through utility functions.
The utility function of task it is defined as,

∑
=

×=
id

j
i

j
i

j
i

j
ii pqUwq

1
i)()(U (1)

where,)(j
i

j
i qU is the utility for the jth QoS dimension

j
iq of task it , j

iw is weight assigned to the jth QoS
dimension, ip is the priority f task it . Maximize the total

utility ∑
=

n

i
ii qU

1
)(is the objective of our algorithm, where, n is

the number of tasks.

III. THE PROPOSED QACO ALGORITHM
We find the best mapping of tasks and machines applying

ant colony optimization (ACO). We assume the scheduler is
the ant, and the process of scheduling is the process of ants
searching for food. We modify the global pheromone update
function in ant colony with total utility, and calculate heuristic
function with complete time to make the complete time less.
When ants select the next task, they will incline to choose the
one with high pheromone density (maximum total utility and
little complete time). Total utility is firstly considered, and then
complete time is considered.

The details of QACO are shown in Fig.1, where jη denotes
heuristic function, Tabu denotes taboo list， iU denotes the
utility of task it , ANT denotes the set of ants, T denotes the set
of task, NC-max is the maximum number of cycles, ijτ is the
pheromone of task it and task jt .

In step 7, ant kant will move from task it to task jt
with probability

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

∈=
∑ ∈

otherwizetp

Aj
tt

tt
tp

k
ij

As sis

jijk
ij

0)(

,
)]([)]([

)]([)]([
)(βα

βα

ητ
ητ

 (2)

In this work, maximizing the total utility is our objective,

thus we update the pheromone with the utility∑
=

n

i
ii qU

1
)(. And

heuristic function is defined as
j

j et
1=η , where jet denotes

the execution time of task jt . α is a parameter to control the
influence of pheromone, and β is a parameter to control the
influence of the heuristic function. A is the set of tasks which
have not been scheduled.

In step 13, the global pheromone update function is defined
as

)()()1()(ttnt ijijij τρτρτ Δ+−=+ (3)

Fig.1 the proposed algorithm QACO

where, ρ is the rate of pheromone evaporation.)(tijτρΔ is
the amount of pheromone deposited, given by

∑
=

Δ=Δ
m

k

k
ijij

1
ττ (4)

k
k
ij QU=Δτ (5)

where Q is a constant, and kU is the total utility.

IV. SIMULATION AND PERFORMANCE EVALUATION
Braun etc al. [8] have been carried on a comparative study

of five heuristics, QSMTS-IP, Min-Min, Genetic Algorithm,
Least Slack First and Sufferage and found the Min-Min
produces better results. Hence, through comparing with the
improved Min-Min, we can evaluate the performance of the
proposed algorithm adequately. We improved the original Min-
Min which is applied to our task scheduling model. The
improved Min-Min is modified from original Min-Min to
replace the minimum complete time by maximum utility. The
details of the improved Min-Min are shown in Fig.2, where T
is the set of tasks, M is the set of machines.

For performance evaluation of our work, a series of
experiments are performed, and the other two algorithms are
evaluated together with the proposed algorithm QACO: QoS-
Min-Min[6], the improved Min-Min.

A. Simulation Enviroment
In the simulation studies, a grid with 10 machines was

considered and the number of tasks ranged from 20 to 120.

1: Initializeα , β , et , ρ , Q, NC-max
2: while NC < NC-max do
3: initialize Tabu
4: for all tasks in meta-task T, Tti ∈
5: for all ants in ANT, ANTkant ∈
6: Compute iU , jη

7: Compute k
ijP

8: select the next task it ; assign the machine)(iM
giving the task maximum utility to the task

it
9: update Tabu, add the task it into Tabu
10: end for
11: end for
12: set the best utility U_best of the cycle as the jumping-

off of the next cycle
13: update the pheromone ijτ
14: end while
15: compute U, T
16: end

425425417417

Fig.2 the improves Min-Min algorithm

Each task it is associated with five QoS dimensions:

1) Timeliness: Each task it is assigned the value of
deadline id = iii aet +×)(δ , where ∈iδ {1，2，3，4} (each

value is equally to be assigned), and ia is the task arrival time.
A deadline achievement function iD is also defined.
According to the mapping, iD =1 if task it completes

before id , otherwise iD =0.

2) Security: Each machine jm is assigned a security level
from (poor, low, medium, or high) in random.

3) Reliability: The failure rate of a machine is assumed to
be uniformly distributed between 0.0005 and 0.0015 failures
per unit time.

4) Version: We assume the simulation environment has
M=10 machines and V=3 versions. Execution times of
version 1kV + ,)ET(V 1k+ =random *)ET(Vk , where random is
randomly selected between 50% and 90%. Let ikr be the user-

defined preference for task it of version kV . And i0r =1(most
preferred), i1r =)1,0(ri0 UR× , where)1,0(UR is a function
which generates a uniformly distributed random number
between 0 and 1. Users maybe consider the task version of low
preference, because it has less execution time which can be the
only version which can complete before the deadline.

5) Priority: Each task is randomly assigned a priority
chosen from（1，2，3）, and 3 represents the highest priority
level.

These parameters are based on previous research [7-8],
experience in the field. And the expected execution time of
version 0 of tasks on machines ET is generated using the

TABLE I. THE VALUE OF PARAMETERS IN QACO

Parameter values

ant 1.5t (t is the number of tasks)

NC_max 200

α 1.5

β 1
ρ 0.1

Q 10

method proposed by Shoukat Ali etc al. [13], where

taskμ = machμ =100, and tashV = machV =0.5.And the other
parameters about ACO are defined as popular values shown in
TABLEⅠ.

B. Performance Evaluation
The performances of the three algorithms are compared in

terms of Makespan and total utility∑
=

n

i
ii qU

1
)(. And the total

utility is the chief performance parameter. The one who has the
best utility could offer the best service to the system. We have
done a large number of experiments, and select the
representative results obtained on the scale total utility,
Makespan and number of tasks. The results are shown in Fig.3
and Fig.4.

We can see from Fig.3 that the total utility of QACO finds
the best results. QoS-Min-Min only considers the QoS
requirement related with time instead of utility; hence it
produces the minimum utility. QoS-Min-Min is unfit for the
situation of multiple QoS dimensions. The improved Min-Min
guided by utility is better than QoS-Min-Min but not as good as
QACO. QACO improves increasingly with the positive and
negative feedback information of utility until the total utility is
the maximum.

Fig.4 shows that QoS-Min-Min provides the minimum
Makespan in the most case, since it optimizes the complete
time specially, however, it is not obvious. QoS-Min-Min is

Fig. 3 the comparison of total utility

1: for each task Tit ∈ (in an arbitrary order)
2: for each machines Mjm ∈ (in a fixed arbitrary order)
3: compute each utility

 ∑
=

×=
id

k
i

k
i

k
ij

k
iij p)(qUwU

1

4: endfor
5: endfor
6: repeat
7: for each task in T find the maximum utility and the

machine that obtains it
8: find the task kt with the maximum utility
9: assign task kt to the machine lm that gives the

maximum utility
10: remove task kt from T
11: update ijU for all tasks
12: until all tasks in T are mapped

426426418418

Fig.4 the comparison of Makespan

worse than QACO once in a while, because QACO takes the
probability into account as the time factor, and it finds the less
complete time guaranteeing utility maximum. The Makespan
of QACO fluctuates slightly between that of the other two
algorithms; because it depends the complete time of the case
with maximum utility. While the Makespan of QACO is also
acceptable.

 In a word, although the Makespan of QACO is not
always the best, it reaches the aim of scheduling in term of the
total utility. Therefore, QACO can solve the problem of task
scheduling with multiple QoS dimensions effectively.

V. CONCLUTION
Our contribution is applying ACO in grid task scheduling

with QoS guaranteed. Because of the complexity of grid task
scheduling and the importance of QoS, an ant colony
optimization for grid task scheduling of multiple QoS
dimensions (QACO) is presented. QACO use the utility as the
heuristic information to finish task scheduling effectively, and
it can maximize user’s utilities at the same time. Simulations
are done to compare the QACO with QoS-Min-Min and
improved Min-Min in terms of two performance parameters,
Makespan and total utility. The simulation rerults show that
QACO performs higher utility than the other two algorithms all
the time. Although QACO is not as good as QoS-Min-Min in
Makespan, the gap couldn’t affect the performance of grid task
scheduling.

In future work, we will study more situations where we
don’t consider in our task scheduling model, and will improve
the performance of QACO.

REFERENCES

[1] Foster. What is the grid? A three point checklist, Grid Today, vol. 1, p. 6,
2002.

[2] Muthucumaru M, Shoukat A, Howard JS et al., “Dynamic Matching and
Scheduling of a Class of Independent Tasks onto Heterogeneous
Computing Systems”, In: Proc. of the 8th Heterogeneous Computing
Workshop(HCW’99), 1999.

[3] Henri C, Arnaud L, Dmitrii Z, et al., “Heuristics for Scheduling
Paramete Sweep Applications in Grid Environments”, In: Proc. of the
9th Heterogeneous Computing Workshop (HCW’2000), 2000.

[4] He XS, Sun XH, von Laszewski G, “QoS guided min-min heuristic for
grid task scheduling”, Journal of Computer Science and Technology, vol.
18, pp. 442-451, 2003.

[5] C Weng , X Lu, “Heuristic scheduling for bag-of-tasks applications in
combination with QoS in the computational grid”, Future Generation
Computer Systems, vol. 21, pp. 271-280, 2005.

[6] Chen J, Kong L, Pan X, “Research on Grid Resource Scheduling
Algorithm Integrating Forecast Mechanism with QoS Constraint”,
Journal of Computer Research and Development, vol. 45, pp. 11-16,
2008.

[7] TD. Braun, H. J. Siegel, and A. Maciejewski, “Static resource allocation
for heterogeneous computing environments with tasks having
dependencies, priorities, deadlines, and multiple versions”, Parallel
Distributed Computing, pp. 1504–1516, 2008.

[8] K Golconda, F Ozguner, A Dogan1, “A comparison of static QoS-based
scheduling heuristics for a meta-task with multiple QoS dimensions in
Heterogeneous Computing”, In : Proc of the Int’ l Parallel and
Distributed Processing Symposium. Los Alamedas, CA: IEEE Computer
Society Press, 2004.

[9] M.Dorigo, V.Maniezzo, and A.Colorni, “Positive feedback as a search
strategy”, Technical Report, Dipartimento di Elettronica, Politecnico di
Milano, IT, pp. 91-106, 1991.

[10] Ruay-Shiung C, Jih-Sheng Ch, Po-Sheng L, “An ant algorithm for
balanced job scheduling in grids”, Future Generation Computer Systems,
vol. 25, pp. 20-27, 2009.

[11] Zhihong X, Xiangdan H, Jizhou S, “Ant Algorithm-based task
scheduling in grid computing”, Proc of 2003-Canadian Conf on
Electrical and Computer Engineering, vol. 2, pp. 1107-1110, May 2003.

[12] Chatterjee BSS, Sydir MDJJ, Lawrence TF, Taxonomy for QoS
specifications, In: Proc. of the 3rd Int'l Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS'97), Newreport Beach, pp.
100-107.

[13] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hengsen, “Task Execution
Time Modeling for Heterogeneous Computing” , In IPDPS Workshop
on Heterogeneous Computing, , pp. 185–199, May 2000.

427427419419

