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Abstract 
The fact implied by Bloch several years ago that in some approximate sense the behavior 

of an assembly of Fermi particles can be described by a quantized field of sound waves in the 
Fermi gas, where the sound field obeys Bose statistics, is proved in the one~dimensional case. 
This fact provides ns with a new possibility of treating an assembly of Fermi particles in terms 
of the equivalent assembly of Bose particles, nam~ly, the assembly of sound quanta. The field 
equation for the sound wave is found to be linear irrespective of the absence or presence of 
mutual interaction between particles, so that this method is a very useful means of dealing with 
many-Fermion problems. It is also applicable to the case where the interparticle force is not 
weak. In the case of force of too short a range this method fails. 

§ 1. Introduction and summary. 

The well-known method of Thomas and Fermi provides us with a very 
practical approximate treatment of many-Fermion problems. Because in this 
approximation, however, each particle is supposed to move independently, the 
effect of interaction between particles being simply replaced by an average field 
of force, one cannot speak of correlations between particles in this rough 
approximation. This simple method does not apply to problems in which inter­
particle correlation plays an important role. A step toward the improvement of 
the method so as to include the correlation was taken by Eulerl, who calculated 
the effect of inter-particle interaction, which causes the correlation, by perturba­
tion theory assuming the interaction to be small. 

The calculation of such a type is carried out in the following manner: In 
the zeroth approximation each particle is in some one-particle quantum state, 
which we shall call a " level". Let us consider the lowest state for the sake of 
definitness. In this state all levels up to some highest one, which shall be 
called the" Fermi maximum ", are each filled by one particle. The perturbation 
energy, the energy due to the inter-particle force, has non-vanishing matrix 

* Now returned to the Tokyo University of Education (T'Jkyo Bunrika Daigaku), Tokyo. 
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Remarks 011 Bloch's lllethod of SOIi1ld Waves 545 

elements which cause virtual transitions to states in which two particles are ex­
cited simultaneously to levels higher than the Fermi maximum. 

The state which results from the inter-particle force is thus such one which 
is a superposition of the zero-order state and variOlls excited states in which 
holes and particles are present in some levels below and above the Fermi 
maximum respectively. In the lowest approximation of the perturbation calcula­
tion, the numbers of holes and excited particles are two; but, if the calculation 
is carried out to higher order, which is necessary when the inter-particle force 
is not small, there appear states in which a considerable number of holes and 
excited particles are present. The amplitudes of such highly excited states will 
be appreciable if the inter-particle force is strong. 

Such a mixture of excited states gives rise to correlation between patticles. 
We can in this way include the effects of correlations in treating certain problems. 
In the case of strong inter-particle forces, however, it is necessary to carry 
through the perturbation calculation up to a very high order, and this is too 
involved to be practicable. Recently, NogamfZ proposed a method which applies 
also to cases of rather strong inter-particle forces. Still his method requires some 
kind of weakness of interaction because he had to neglect the interac;tions of 
holes and of excited particles with each other as well as the interactions between 
holes and exited particles. This neglect cannot be justified when too many holes 
and excited particles are present. 

In such a situation it is desirable to find some approximate method of 
dealing with many-Fermion problems different from the perturbation .method. 

In his famous work on the stopping power of charged particles, Bloch3 has 
treated the excited states of .the Fermi gas not· as states with holes and excited 
particles, but as states in which the gas oscillates. In this work it was not 
necessary to treat the oscillation quantum-theoretically. In a later paper4, he 
also dealt with a problem in which the quantum aspect of the oscillation was 
essential. This was a problem in which the density fluctuation played a role. 
He showed in _this work that the density fluctuation of a degenerate Fermi gas 
(in his theory it was sufficient to treat the gas without inter-particle force) can 
be calculated in two different ways giving the same result. The one was the 
orthodox method whereby one calculates directly the expectation value of the 
operator having expressed in terms of the quantized field variables fjJ and fjJ* 
describing the assembly of the Fermi particles. The other method was to calculate 
the zero-point amplitudes of sound waves in the gas, the equations of motion 
for the sound waves being properly chosen. He showed that the correct value 
of -the fluct,tation was obtained in this way if the choice of the equations of 
motion for the soune waves was properly made and if the zero-point amplitudes 
of the waves had such values as would be expected for a sound field obeying 
Bose statistics. 

If it is proved that the excited states of an assembly of Fermi particles can 
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546 S. TOMONAGA 

be in fact described as an excitation of sO:Jnd waves, where the sound can be 
described by a Bose field, it will provide us with a new method of treating 
many-Fermion problems, not dealing directly with the assembly of the Fermi 
particles, but dealing with the equivalent assembly of Bose particles, i. e. the 
assembly of sound quanta. 

There is a prospect that in this latter method the assumption of the w.eakness 
of inter-pariicle forces will not be essential. This prospect lies in the following 
situation: It is expected that the equations of motion for the sound waves will 
be linear in the field variables describing the sound field ; otherwise we could 
not speak of waves at all. The field variables for the sound field will be the 
density p of the gas and its properly defined canonical conjugate. Now the 
essential point is that the linearity of the problem will not be destroyed even 
when an inter-pal tide force is present, ,because the interaction energy between 
particles is bilinear in p. This fact is in marked contrast to the circumstance 
that in terms of't/J and t/J* the interaction energy contains four t/J's, or, more 
precisely, t" .. o t/J's and twe ¢,*'s; thus the field equations for t/J and ¢,* are no 
longer linear when an inter-particle force is present. This circumstance made 
it very difficult to treat many-Fermion problems with inter-particle forces. This 
difficulty will disappear when we deal with the problem in terms of the p field 
but not of the '" field. 

The purpose of this paper is to show that these expectations are really 
fulfilled. It will be shown that in some approximation, which does not necessarily 
require the weakness of the interaction, excitated states of Fermi gas are in 
fact equivalent to corresponding excitations of sound. waves, and that the sound 
is describable by a Bose field whose field equations are linear in the field variables 
irrespective of the absence or presence of interparticle forces. Thus, Bloch's 
method of sound waves will be a very useful method for many-Fermion problems. 

The possibility of this new method was found independently by Bohm&, who 
discusses a very interesting phenomenon of plasma-like oscillations in a degenerate 
electron gas from a very similar point of view. He, too, gives a proof of the 
fact that these oscillations are describable by a Bose field in some approximation. 
He utilizes further the linearity of the field equations to study such it pure 
correlation phenomenon as plasma oscillations of an electron gas. 

The present paper is of a rather more mathematical nature than physical in 
that it aims mainly at the analysis of the mathematical structure of the method, 
clarifying the underlying assumptions and the limit of applicability. A mathe­
matically closed and clear-cut presentation of the theory is achieved, however, at 
the expense of physical usefulness, because, thus far, the author has succeded 
only in giving a complete formulation for a one-dimensional assembly of particles. 

It is rather certain that a similar metbod applies to the three dimensional 
case too-this, indeed, has been done by Bohm-but the situation is more 
complicated in this case. 
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Remarks on Bloch's Method of Soulld Waves 547 

The mathematicl relation between the field of sound quanta on the one hand 
and the original field of Fermi particles on the other is very similar to the 
relation between the field of light quanta and the field of neutrinos in the neutrino 
theory of lightS. One will find everywhere a marked parallelism between our 
theory and the neutrino theory of light. 

The discussions will be performed in several steps: In § 2 we shall prove 
that the sound can be described by a Bose field under some assumptions imposed 
on the states under consideration. Then we shall set <.lp in § 3 the Hamiltonian 
for the sound field. We shall see that the Hamiltonian is in fact bilinear in the 
field variables, so that the whole problem is liner. In § 4 we shall show that 
this Hamiltonian is really equal to the original Hamiltonian for the assembly of 
Fermi particles, and, therefore, the assembly of sound quanta is equivalent to the 
original assembly of Fermi particles. In § 5 we will go over to the solution of 
the eigenvalue problem. This can be done very simply by finding the normal 
coordinates for the sound field, because the field equations are linear. In § 6 we 
shall give several general formulae of physical interest which are derived directly 
by our method. A criterion for the applicability of the method will also be 
given in this section. In the last section we shall briefly mention the bearing of 
our results on the plasma oscillations treated by Bohm. Also, the relation 
between the two kinds of descriptions of the system, one as an assembly of 
Fermi particles and the other as an assembly of sound quanta, is discussed briefly. 

In § 6 we shall see that our method does not work if the inter-particle force 
is of short range. The range of force must be larger than four times the mean 
distance between particles. Since sound waves with wave length shorter than 
the mean distance between palticles have no meaning, it is quite conceivable 
that the method of sound waves fails in describing the event occuring in a small 
space region comparable with the mean distance between particles. This is the 
reason why the method fails in the case of ShOI t range force. The method is, 
on the other hand, very suitable for dealing ·with the case of long-range force in 
which a considerable number of holes and excited particles are present in the 
neighborhood of the Fermi maximum. Thus the present method covers a field 
where the known methods have failed. 

§ 2. Approximate commutation relations for the density field. 

Let us consider an assembly of Fermi particles in a one-dimensional "box" 
of length L. Let fjI(x) and if1*(x) be the quantized wave functions describing 
the assembly. The density p(:t) of the palticles is then given by 

p(x~ =fjI*(x)fjI(x). (2.1) 

We introduce the Fourier transf'lrms fjI .. and fjI.* of fjI(r) andfjl*(x) respectively. 
They are defined by 
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548 S. TOMONAGA 

I </1(x) = '}L ~ </1" expe;i nx). 

1 (2tt:) 
</1* (x) = .../ L ~</1,,*exp ---tnx • n=O. ±l. ±2.···. (2.2) 

The Fourier transform of p(x). which is defined by 

p(x) =~ ~ p .. exp( 27ri nx). 
L .. L 

(2.~ 

is evidently given by 

p .. = lJ </1'%, </1,.,+,,= lJ ¢~ .. </1 .. +'" (2.4) .' ~ -~ ~ 

where n takes integral values when n is ~ven and half-odd integral values when 
n is odd. 

Our purpose is to describe the system in terms of .the density field p(x) 
instead of describing it by the wave field </1 (x) . The first task is to find the 
commutation relations between the field quantity p(x) and its properly defined 
canonical conjugate. For this purpose we separate each p into two parts P: and 
p; by means of 

(2.5) 

We have evidently 
p.= p: + p; (2.6) 

(in case of even n the term with n=O is absent in (2.6), but this dOes not 
cause any serious error.) We have further 

p:=p~:. p;=p::. (2.7) 
It will be seen later that the separation of p .. by (2.6) corresponds to the 
separation of the field into parts with positive and -negative frequencies, which is 
the usual procedure in field theory. (See (3.1) and (3.2». 

We now examine the commutation relations of the p's. The commutation' 
relations between the </1's and </1*'s are 

{ [</1.*, ¢.,]+=~ .... " 
(2.8) 

[</1 .. *. ¢ .. ,*J+=[¢;.. </1 .. ,]+ =0. 

From these relations we get the commutation relations of the p's. For the p+'s 
they are 

for n >0. n' < -n, 

for n >0. -n < n<n. (2.9) 

for n> O. n' > n. 
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Remarks on Bloch's Method of Sound Waves 

which, for the special cases of n' = - n, reduce to 

[Pot, p.! .. ]= 1: r/J .*r/J .. 
--i<ii~-i 

In the same way, we get for the p-'s 

for n > O. 

for n >0, n' > -1t, 

549 

(2.9') 

[p;;, p;;,] = for n >0, -n < n' <n, (2.10) 

for n > 0, n' > n, 

and 

n>O. (2.10') 

The commutation relations between the p+'s and p-'s are found to be 

for -n < n', 

for n < -n', (2.11') 

and 

(2.11') 

We now show that the commutation relations (2.9)-(2.11') can be r:eplaced 
by simpler ones if the states under consideration satisfy, at least approximately, 
some conditions which will be specified below. These simplified commutation 
relations tell us that the density field can be regarded as a Bose-field under 
these restricting conditions. 

We first consider the case of the ideal Fermi gas in which there are no 
interactions between particles. If the gas is not excited too highly, only particles 
in the neighborhood of the Fermi maximum are raised to higher levels. There 
exist holes and excited particles only in the neighborhood of the surface of the 
Fermi sea. Now, in the case of a non-ideal .Fermi gas, the inter-particle forces 
cause virtual transitions of palticles. Thus extra holes and exited particles appear. 
But, if the range of the inter-particle force is not too short and the force itself 
is not too strong, these virtual holes and excited particles are still present only 
in the neighborhood of the Fermi maxImum. Such are the states to which we 
will confine ourselves. 

If we confine ourselves to states of such type, we can simplify the commuta­
tion relations (2.9)-(2.11') in the following manner. 

Let us consider, for instance, the first commutation relations [pot, p;,] for 
which n> 0 and -n < n' '< 11. We notice that the expression on the right-
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hand side 
n n' n+-+-2 2 

is a sum of operators each bringing one particle from the level 

t th I I - n n' B the ummatl'on over -n I'S extended oe eve n----. ecause s 
2 2 

n' n _11 n' 1 only between - and -. the final levels n---- lie in a limited interva 
2 2 2 2 

between -~ and 
2 

tt' --a 
2 

Now. let nmax denote the value of Inl at the Fermi. 

maximum. Then. if nand In'l are both sufficiently small compared with 11max 

(the discussion about how small they should be will be given below). the levels , 
-!!..- and -~ both lie deep in the bottom of the Fermi sea where there are 

2 2 
holes. In such a case the operator ¢+_ VI .. ,¢~ .. fI' will give a vanishing result 

.. -~-~ .. +~+~ 
because the final level is occupied. Thus. for the states under considration our 
commutators [p:. Pit, I are equivalent to zero. 

We next consider [P:. {J-~]. In this case. the right-hand side is 

(2.9") 

where Ni is the occupation number of the level n. Since the level n, which lies 
I 

between -~ and ~. lies deep in the Fermi sea if n is small compared with 
2 2 

nmax. it is occupied by one particle. Then the sum 2:N .. is simply equa.1 to the 

number of levels between -~ and ~. which is just n. So we find that [p,i, p_~] 
2 2 

is equivalent to n. 
A similar consideration applies to the remaining commutators. We can see 

that the following commutation relations hold in -the sense of -equivalence .: 

[p,i. p .. ~] = mj", -R' 

[p;. p,;; ] = -1ll1 .. , -R' 

[P:. P • .-i] =0. 

(2.12) 

In order that these simpler commutation relations can be used instead of 
the original ones.it was necessary that Inl and in'l be sufficiently small compared 
with Umax' We now discass this point more quantitatively. 

First we notice that the total number N of the particles is related to Umax by 

(2.13) 

which we shall make use of in later considerations. 
We now assume that in the states under consideration· there are no holes 

under the level specified by Inl=anmax' a being a positive numberless than unity. 

Then, we can easily see that 
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Remarks on· Bloch's Method of Sound Waves ~U 

.!Inl • .!In'l < anmax (2.14) 
2 2 

is the required condition for the validity of t11e simplar commutation relations. 
(The factor 3/2 is required in order that- (2.11) be equivalent to the third 
relation of (2.12». 

So far as the present consideration is concerned. there is no restriction on 
a. But we shall see later that a must be 3/4 in order that the whole treatment 
work consistently. The required conditions will be found to be the following: 

(1) In the region Inl < ~nmax. there should be no holes. 
4 

(II) In the region Inl> !.nmax• there should be no excited patticles. 
4 

1 
(III) The absolute values of n in p: and p; should not exceed 2"nmax : 

(2.15) 

Our' method works when and only when these conditions are satisfied. The 
conditions (I) and (II) restrict the states; therefore, it is always necessary in 
applying our method to verify whether the states obtained as an answer do 
really satisfy these conditions. The condition (III) requires that no sound waves 
having shorter wave length than 2L/nmax playa role in the problem. This con­
dition will be satisfied if the range of inter-particle force is sufficiently long. 
The reason for the the necessity of the special choice of a=3/4 will be given 
later. 

§ 3. Equation of motion and Hamiltonian for· the density field. 

We first consider the case of non-interacting particles. In this case the 
change with time of p: and p;; can be obtained easily because we know the 
change with time of ¢,. and ¢,. *. In the general case we them find a. very com­
plicated time dependence of the p's. The motions of p: and p; are by no 
means simple harmonic because each term of 2J¢~ ,. ¢ _ .. has a frequency which 

.. -~ ,.+~ 

depends not only 011 . n but also on 1i. This fact means that the density does by 
no means behave like waves. 

However. we may here make use of our conditions imposed on the states. 
According to them holes and excited particles are present in a narrow interval only, 
from (3/4)nmax to (5/4)nmax• in the neighborhood of nmax• This results in non­
vanishing matrix elements in 2Jsb~ ,. ¢_ ,. being contributed solely by terms ,. -~ ,. +v. 
with n ± ~ nearly equal to 11ma'l< or - nmax according as we are dealing with p: ... 
or p;;. We may then approximate the frequencies of ¢* and ¢ by their expansion 
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552 s. TOMONAGA 

in the neighborhood of It ± ; = lZmax or Ii ± ; = -11max respectively. The frequency 

of ¢,_ .. is, for instance, 
.. +~ 

1 1 ( 2d )2 (_ 11 )2 
2n-Jl 2m L 1l+ 2 ' 

In being the mass of the particles. If we here expand (n + ; y in the neighbor-

h d f- 11 t . 00 0 11 + 2=nmax, we ge 

q 2 (-'1 ) = 11i'.1l1X. + nmRx n + 2"" -Ilmax + .... 

Neglecting the small term (n+; -l'max y. the time dependence of tPn+iJ 
becomes 

,I. . .[+ 1 (2mi)2 ,?max 1 (2d)2 nmax(:-+ n )]t )"._ ,,""d expt --- -- ---- -- -- II - • 
" +"2" }i L 2m 12 L m 2 

In the same way we have 

" .[ 1 (2d)2 11;nRx+ 1 (2d)2 11max(- n)] ~~- .. ""deXpt -- -- -- - -- -- n-- t . 
.. -"2" 11 L 2m }i L m 2 

Then,combining these two, we get a time dependence for p: of the form 

(3.1) 

By the same consideration using the expansion in the neighborhood of n ± ; 

= - nmax, we get 

[ i (2d )! nmax ] t p; ""d exp +"i L -;;;-n . (3.2) 

From (3.1) and (3.2) we see that ,0+ and ,0- satisfy the equations of motion 

{

.+ i(21Z'1l)211max + 
P .. = -"i" L --;;;-l1P" 

._ i (2d)2 lZmax _ 
p .. = +"i L --;;;-lIp ... 

(3.3) 

We notice here that the commutation relations (2.12) lead to the fact that 
the canonically conjugate momentum for 

P .. =P:+P; (3.4) 
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is given by 

(3.5) 

As can be easily verified, we see that 

[.0 .. , no .. ,]=i~", .. ,. (3.6) 

By the equation of motion we then find 

no" =..! (~ Y ~1.P-". 2 21%'11, nmsx 1. (3.0') 

The last relation gives a physical meaning to our canonical momenta: As usual, 
momenta are proportional to the time derivatives of the coordinates. Though th¢;> 
er-1uations of motion of the form of (3.3) hold only for the case of non-interacting 
particles, we shall see later that (3.6') holds more generally. 

We shall now set up the Hamiltonian for the p field. The Hamiltonian is 
determined by the requirement that 

'.:1: [c::. :1:] ~p .. = '10', 1' .. (3.7) 
z 

yield the equations of motion (3.3) wtih the help of the commutation relations 
(:!.12). vVe then find that the Hamiltonian has a very simple form: 

c::. (' 2d )2 nmax ~ ( + + __) ow = -L --'",-, p-.. p .. + p .. p-.. . 
m .. >0 

(3.8) 

The order of non-commuting factors is here specified by the condition that ~ 
has no zero point value. 

Though we have set up the Hamiltoni<i11 in this way, it is by no means 
~elf-evident that this Hamiltonian gives in fact the energy of the system (or 
eventually energy pius some additive constant). That this is actually the case· 
will be proved in the next section. 

So far we have neglected the mutual interaction . between particles. I t is 
quite simple to introduce the interaction into the theory, when the interaction 
force is of the ordinary type, peither of exchange type nor velocity dependent. 
In this case the interaction energy has the form 

H =~J' r p(x)p(r)J( Ix-z1 I)dxth' -~Jp(x)J(O)tb, 
M 2 J' 2 

(3.9) 

1(lx-x'l) being the potential of the inter~particle force. The term ! Sp(x)J(O)dr 

is subtracted in order to remove the interaction of a particle with itself. In. terms 
of the Fourier transform we find 

(3.10) 
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where J.. is the matrix element of the potential defined by 

J,.= ~ J j(x) exp (2~i 11X) dx=J_ ... (3.11) 

The prime on the ~' symbol means that the term with n=O should be omitted. 
Po is the quantity defined by 

(3.12) 

i.e. tne total number of particles. 

Since H. .. t commutes with each (I .. , which is the sum (1:;+(1;, the equation 
of motion for (I .. is not affected by the interaction, while the equations of motion 
for (I:' and (I;. separately are affected by the interaction. This fact means that 
the canonically conjugate momenta r.-.. are still. given by (3.5') irrespective of the 
pres.ence or absence of the interaction. 

In terms of ()+ and (1- the interaction Hamiltonian can be expressed as 

8. .. t= ~J,.«(I~i.p:; + P;(I-,; + p:p-; + (I;p~i.) 
,,>0 

(3.13) 

The term }J ni... appeared when we performed the rearrangement of factors in 
">0 

p:'p-i. and p_;p;; into the correct order. 
It is the essential point of our method that the energy, the ~'kinetic part" 

.p as well as the .. potential part" 8. .. t, is bilinear in the p*'s. This fact is in 
marked contrast to the fact that, in terms of (I and (1*, only the kinetic part is 
bilinear; the potential part contains four (I's. This latter fact makes it necessary 
to solve a complicated non-linear problem if one wishes to deal with a many­
particle problem with inter-particle force. Now that we have found the Hamiltonian 
to be bilinear in the p's, irrespective of the presence or absence of the inter­
particle force, we have no such difficulty if we deal with the problem in terms 
of the p. field not in terms of the cP field. The problem is simply to perform the 
principal-axes transformation of the bilinear form, i. e. to find the normal coord;nates 
for the p field. 

Before we enter into this problem, we shall show that the Hamiltonian ~ 
is in fact equal to the kinetic energy of the system minus some constant which 
depends only on the total number of particles. 

§ 4. Energy and momentum of the system. 

In this section we give the proof that the Hamiltonian ~ really gives the 
kinetic energy of the system. This can be done by a straightforward calculation 
in the following manner. 

For this purpose we first examine ~ (1_"';" p:;. We examine the diagonal and 
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the non-diagonal parts of 2J P_;' P: separately, where the matrix is supposed to 
be referred to in the representation in which the occupation numbers of the 
particles are diagonal. 

We have 

2J P-+"P:=" 2J ~ 2J tPt"tP;;_"tP;,_"tP;;,+" 
"max>" >0 ...!!!!!:.,,>o ;;>0 "'>0 'I 'I 'I 'I 

2 2 

= 2J (~2J)' tP~+" tP;;_R tP~,_R tP;;,+. 
"1DAl<. 0 ;;>0 ;;'>0 'I 'I 'I 'I -2->R> 

+ ~ ~ (l-N_ .. )N- n 
R - n -'I n+'I' 
~>R>O">O 

(4.1) 

The prime on (2J ~)' means that terms with 1i=I" are omitted. By this 
omission the first sum on the right-hand side of (4.1) gives the non-diagonal 
part and the second sum the diagonal part of 2J P~;' p:. The summation over It 

is to be extended only up to nmax/2 because of our condition (2.15) (III). 
We first observe the diagonal part 

" 

nmas n=-r 

1&=71 ....... 

Fig. 1. 

(4.2) 

B 

We make use of the fact that, because of the first two conditions of (2.15), the 
summanci {l-N- ,,)N_ R has a non-vanishing value only at points (n, n) lying 

R-'I R+'I 
inside the triangle ABC (see Fig. 1) enclosed by the thteestraight lines 
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_ n 3 
n--=-nmax 

2 4 

n=O. 

Since the summand vanishes outside this triangle, two of the boundaries of the 

domain of summation 

n= nmax 
2 

and (4.3) 

can be changed at our will so long as the changed boundaries lie outside the 
triangle. So we may use the boundaries 

n=OO and 
_ n 
n=-

2 

instead of the original ones. Then we have 

We now notice that 

and 

Nn;= ~ "ii' Nn; 
fti~o 

We then get from (4.4) 

1 n+= ~ nNn--2 nmax (nmax +l). .. ~ 
In the same way we get the corresponding result. for ~ p;p-7. 

n-= ~ InlNII-l.nmax (nma.~+l). 
n~ 2 

We now go over to the non-diagonal part: 

C+= ~ (~~ )' tP~+n tP;;_1I tP~'_" tP-'+" 
n"" ti>o ti'>' 0 ~ ~ ~ II ~ 2",':<>11>0 

and show that C + vanishes. 

(4.3') 

(4.4) 

(4.5) 

(4.5') 

(4.6) 

\.4.7) 

(4.8) 
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By writing -ninstead of n, Tt' instead of Ii and n instead of n', we see that 
C + can be written also in the following form: 

(4.8 ) 

where we have used the fact that 1'~ .. 1'- .. commutes with ifJ~ .. ifJ- .. since 
"+~ .. -"2 "'-"2 .. '+~ 

tl 'I: ?i'. From (4.8) and (4.8') we get 

1 
C+=- ~' (~~ )' ifJ~ "ifJ- .. ifJ! .. ifJ- ... 

2 "max "max ;;>0 ;;'>0 "+"2 .. -~ "'-.~ .. '+~ 
--2-<"<-2-

(4.8") 

Now a considerasion similar to the above one shows that, because of the condi­
tion (2.1:5), we can change the boundaries of summation 

in to new ones 

We then get 

C+=l. 
2 

n- ± nmax '1l=0 and n'=O - -2-' 

n= ±oo, 
_ n 
n=--, 

2 
n'=~. 

2 

but this C + vanishes as is shown in the following manner. 
By rearranging factors in (4.10) we get 

C + = _l. ~' (~ "E)' 1'~ " ifJ;; _: ifJ~ +: tP;;,+:. 
2 -"'<,,<'" ;;>_";;, >.. "'-1" .. .. .. 

If we put here 

= 1" =1" 

r I=n'-n 
.- 1 
1'="'2(n' +n+n) 

( l-! ("'HI-o). 

we can write (4.10') in the form: 

(4.9) 

(4.9') 

(4.10) 

(4.lO') 

(4.11) 

That the domains of summation over I, 1 and ji are really as specified by the 
inequalities under the summation symbols can' be. easily shown. One has only 
to notice the identities 
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{ n+~=l'_~ 
n'-!!....=J +1-. 

2 2 

Comparing (4.11) with (4.10) we find C+=-C+, which means that 

e+=o. (4:12) 

A similar consideration applies to ~ P; (1_;. We find that the non-diagonal 
part of ~ (I; (1_; vanishes: 

C-=o. (4.13) 

This rather lengthy proof that C+=C-=O can be summ:lrized in the follow­
ing way. Each term in C + or C - corresponds to a simultaneous transition of 
two particles. If there is a term corresponding to a transition a _ b, c - d, 
there is always a term corresponding to the transition a - d, c - b. Because of 
the Fermi statistics, the latter term has a sign which is opposite to the former 
so that they ~ancel each other when added together. 

Substituting (4.6), (4.7), (4.12) and (4.13) into ~, we obtain 

~=( 2d)2 nmax {1: Inl N .. -llma .. (nmax +1)} 
L m .. 

=( 2d )2 nm"" { ~ Inl (N .. -I) + 1: Inl N .. I. 
L m i'"'~"mRl< Iwl >"max 

(4.14) 

On the other hand the kinetic energy of the system is evidently 

( 2d)2 1 " ~In= --, - -- 1: n-N ... 
L 2m" 

(4.15) 

In the state of perfect degeneracy, i. e., in the state where all levels between 
-nmax and nmax are occupied and all other levels are empty, this energy becomes 

( 2d )' 1 • Ho= -- -- 1: n°. 
L 2m 1"1 ~ "ma" 

( 4.16) 

We shall now show that, in the same approxim:ltion, which is allowed by our 
condition (2.15), our Hamiltonian '$:) is equal to the energy (4.15) min~s the 
constant energy (4.16) : f{)=Hk1n-Ho. 

We calculate Hk1n-Ho in the following way: From (4.15) and (4.16) we 
get 

Hkfn-Ho=( 2d )2 ~{ Ll n2(N .. -1)+ Ll n! N.il. 
L 2m Iftl ~ "rna>: 1>01 >"max 

(4.17) 

Making use of the assumption that hales and excited particles are present only 
iiI the neighborhood of ±nm. .... ", we see that N .. -l and N. differ from zero only 
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Remarks 011 Bloch's Method of Sound Waves 559 

when n lies in the neighborhood of ±nmax. This allows us to lise instead of n2 

its expansion: 

n2= { ±nmax+ (1z=F nmax) }2 

~n!.ax ± 211max (n=F 1lmax) 

= -n!ax+ 2nmax Inl· 

Substituting this in (4.17), we find 

( 2d )2 112 Hk1n-Ho= - -- ~{N-(2nmax+1)}+.p. 
L, m 

Then the lise of (2.13) gives immediately the required result: 

Hk1n-Ho=,p· 

( 4.17') 

( 4.18) 

This result means that our Hamiltonian .p is really the kinetic energy of 
the assembly minus a constant which depends only on the total number of particles. 
This constant is the energy of the assembly in the case of perfect degeneracy 
and thus .p can be interpreted as the deviation of the kinetic energy from this 
standard value. We express this fact by simply calling .p" the excitation kinetic 
energy':. 

The total energy of the system is evidently 

H-.p + Hint + Ho (4.19) 

when there are inter-particle forces. 
The relations (4.6) and (4;7) can be used to express the momentum of the 

assembly in terms of p. Let the momentum be denoted by G. Then 

G ( 2m2) ~ ( + + - -) = L ~o p-.. p .. -p .. ('-... (4.20) 

The expression for G applics irrespective of the presence or absence of the inter­
particle force. 

One sees that for the proof of the relation (4.18) the possibility of change 
of domains of summation •. the replacement of (4.3) by (4.3') and the replacement 
of (4.9) by (4.9'). were essential. These are possible only when the three 
conditions in (2.15) are simultaneously satisfied. This is the reason why we had 
to choose the special value or u=3/4. It is easy to see that, another choice of 
a would make it impossible to change the summation domains so that we would 
not get the relation (4.18). 

§ 5. Solutio. of the eigen-value problem. 

We now go over to the solution of the eigen-value problem of our Hamiltonian. 
As mentioned before. this can be done by performing the principal-axes trans­
formation of the bilinear forn representing the Hamiltonian. 
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Adding (3.8), (3.13) and Ho, the total Hamiltonian is obtained: 

H: e+H;;.t+Ho 

~ {( 2n-4)2 nmax .J,}( + ++ - -) -.f>'o ---y- -~-+.. (1-.. (I.. (I .. (1-" 

+ :EJ,.(p! P--"+p; (I-~) 
R>O 

1 1 + :E nJ,.+-N'lJo--NJ(O)+Ho· 
.. >0 2 2 

(5.1) 

We introduce real coordinates Q .. and real momenta p .. by means of 

(P: ~ J; (Q.+iP.) 

(I-~= J ~ (Q .. -iP .. ) 

p; = J; (Q_ .. -iP_ .. ) 

p--..= J ~ (Q_,,+iP_,,), 

where the suffix n is considered positive. Then in terms of P's a. 'Q's the 
Hamiltonian is expressed as 

H'-~Inl {( 2~~ Y n;;;x + J .. }(! P,,2+ ! Q .. 2_ !) 
1 +- :E1,11J,.(Q .. Q-.. -P .. P_,,) 
2 " 

1 1 1 +- :E I III,/" +-N'l Jo--N/(O) +90. (5.3) 
2 R 2 2 

111 this expression. the suffix n takes both positive and negative values and the 
summation :E is extended over positive as well as negative valus ofn . .. 

The commutation relations for the P's and Q's are 

{ [Q .. , P",] = i (J" ... , 
(5.4) 

[Q .. , Q .. ,]=[P ... p .. ,]=O. 

The transformation of H into principal form can be performed by defining 
new variables q,. and P.. by means of the canonical transformation 
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with the abbreviations 

1 T. - (2~ )2 ?'max / I .. - -- -- 11, 
L m 

U,.= 1111J ... 

1t can be easily seen that the POI and q .. satisfy 

{ [q .. ,P .. ,]=i~ ..... , , 
[q .. , q .. ,] = [P .. , P .. ,] =0, 

and that H is transformed into 

561 

(5.6) 

(5.7) 

H ~vT. {vT .. +2U,.(~P .. !+ ~q .. l!_ ~)+~ VT .. +2U .. - ¥T .. )} 

+ ~ Nl!.Io- ~ N 1(0) +90. (5.8) 

The momentum G. expressed in teIms of q's and p's, is 

G= (2n}i) II n (~ .. 2+~q .. 2_~). 
L .. 2 2 2 

(5.9) 

The expressions (5.8) and (5.9) show that our system is in fact equivalent 
to an assembly of uncoupled harmoI,lic oscillators. or, better. to an assembly of 
uncoupled sound quanta. Each sound quantum has momentum and energy given 
by 

(2d) momentum= --z- n n=O. ± 1. ± 2.· .. (5.10) 

and 

energy= VT .. (T .. +2U .. ) 

=[( ~Ry n;;x {( 2~}i Y n;:x +2J .. }J'2/?I/. (5.10') 

h f d . h h ( 2n~ ) . d and t e number 0 soun quanta W1t t e momentum . --L ~ 11 1S represente by 

the operator 

In terms of M,. the energy and the momentum are 

H=~vT .. {..!T .. +2U .. lJ-f,.+ ! (.vT .. +2U .. _VT,.)} 

+ ! N 2]0- ! NJ(O) +Ho • 

(5.11) 

(5.8') 
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anct 

(2d) G= L ~nM,. (5.9') 

respectively. 
In the wave language the relations (5.10) and (5.11') state that the sound 

wave with the wave length 

L A .. =- (5.12) 
Inl 

has the frequency 

JJ .. = 2~[( ~rn:x {( 2~4 Y 11:x +2J,. }J'2Inl . {5.12') 

The phase velocity of t:hesound wave is 

(5.13) 

The. phase velocity given by (5.13) is dependent on n and hence on A,. when 
J,. does not vanish. This means that, when the inter-particle force is present, 
our Fermi gas is dispersive. (5.13) shows further that the phase velocity of the 
sound waves increasts or decreases from its value in the idt;al gas according as 
the inter-particle force is repulsive or attractive. 

The formula (5.8') enables us immediately to calculate the energy in various 
stationaly states. In the lowest state, for instance, where there are no sound 
quanta, we get 

1 1 +-N"jo--Nj(O)+Ho. 
2 2 

(5.14) 

In the case of an attractlve inter-particle force it may happen that E, con­
sidered as a function of L. has a minimum for some value of L. Then this· will 
mean that the assembly- is capable of forming a stable aggregate. 

In the :ase where J,. is very small, we can expand "';-;:;r.;:;-.. --:+--:2"U.7<.. and thus 
express .l!: as a power series in JR. We shall th~ri find that the term linear in 
j .. together with t~e term Ho gives the energy in the usual Tomas-Fermiap­
approximation including the effect of exchange. The energy quadratic in j" 
.corresponds to the energy obtained by Euler as the second order term of a 
perturbation calculation. 

§ 6. Correlation between partiCles_ Transitions caused by an external 
perturbing force. Criterion for applicability of the method. 

In this section we shall mention some general results of physical interest 
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which can be obtained directly by our theory. We shall give also a criterion 
for the applicability of our method. 

(I) Correlation of position or particles. 

As is known there is no correlation between particles in an ideal gas besides 
thi:ttdue to the exclusion principle. The -interadioll between particles causes 
an extracorrelatiQn, which can be calculated very simply. 

Mathematically the correlation of p,osition can be exppessed by tile quantity 

(6.1) 

C(~)a;giving the probability of finding another particle at a distance between 
~ and e+~ ftom a oalticle. This correlation function can be calculated in the 
following manner. 

Expressing (6.1) in terms of the Fourier transform of p(x), we have 

(6.2) 

so that our task is to find (P,.f1-n).Av. 10 terms of the q's and Jis defined by 
(5.2) and (5.5) the operator p" p_ .. is 

Pnp_,,=2nj T,,!2UIJ~ (p .. 2+ q,n +~ (P": .. +q": .. }+q .. q-,.-P .. P-• .}. (6.3) 

It then follows that 

j T (p .. P_n):.t..,=211 ~. (.M;.+M_ .. +I). 
T,,+2U .. 

(6.4) 

which' gives 

C(e) =1-+~}J (jJt.!,.+~) /, . T., IIlI cos(27rn ~). 
L N~L.. 2, '" T .. +2U.. L 

(6.5) 

fhe correlatIon tunction C(~) consists of two parts. The one is the part ex­
pressing the correlation whIch already exists in the absence of the inter-particle 
force. This part is due solely to the exdusi'on principle. This part of the 
correlation can be obtained by putting U,.=O in (6.5). Denotmg this part of 
C(~) by Co(~). we have 

(6:6) 

The second part of C(~) is that part of the correlation which is purely due to 
inter-particle forces. Denoting this second part by C1 (e). we get 

C1a)=_I_}J (M .. +~-)( / T.. l)lltl cos (27r1l e). (6.7) 
N 2 L .. 2· . '" TIf+2U" . L 
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(6.7) can also be written as 

Cl(~)=~{_l . 2: (.M..+..l)( /_~_1)sin(21l'lnl !)}. 
0; 21l'JV2.. 2 ~ T .. ;-2U,. L 

(6.7') 

Then the quantity 

(t:) 1 ~ (M. 1)( / T. 1) sin( 21l'L11Z1 ~) 
D] .. =21l'N2 ~ "+2 ~ T .. +2U .. (6.7") 

can be interpreted as' the change of probability due to the inter-particle force of 
finding another particle within the distance ~ from a particle. 

(n) Matrix element of an external perturbing force. 

Suppose an external perturbing force is impressed upon thesystetll. Then 
the perturbation will cause transitions of the system. As is well known, the 
transition probabilities depend essentially on the matrix elements of the perturbing 
energy. Now, it is very simple to calculate these matrix elements. 

Let the potential of the perturbing force be V(.~). Then the perturbation 
energy is 

H'=J p(z)V(z)dz 

=!:l !v..(p:+p;)+V_ .. (p_~+p_;)}, 
">0 

(6.8) 

where v.. and V_ .. are the matrix elements of V(z) defined by 

{ ~_ ~!.:(X) _( 2;: .. )ax (6.9) 

In terms of the q's and j/s it is found that 

(6.10) 

Now, the matrix elements of q-j,,.+ip-j,;' as well as q*,.-ip-j,n are all l<nown. 
They are the matrix elements for harmonic oscillators. Our result (6.10) shows 
that the matrix elements of H' are given simply by multiplying .these universal 

matrix elements by the factor (T,,/1~+2U .. )1/4,vn/2 V-j, .. ' When the inter-particle 

force is absent, the factors are simply.../n/~ V-j,R' Our result shows that the 

eff~ct of the inter-particle force is simply to replace -vn/2 V-j, .. by {T .. +2U.)J/f 

x -V n/2 V-j,n' The effect of the inter-particle force can thus be dealt with as an 
apparent change of the perturbing potential by the factor (T../T,,+2U .. )1/f, the 
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effective potential beIng expressed as 

Veil' =( T" )1/4 V . 
:1:,. T,.+2U,. :1:" 

(6.11) 

( T. )1/4 
The factor .. is larger or smaller than unity according as the 

T .. + 2U .. 
inter-particle force is attractive or repulsive. This means that in the case of an 
attractive Inter-particle force the effect of an external perturbing force becomes 
larger, and in the case of a repulsive one the perturbing force becomes less 
effective as compared with the case of an ideal gas. 

(In) Criterion for the applicability of the method. 

Because our theory is based on the fundalI\ental conditions of (2.15), it is 
necessary to see under what CIrcumstances we can be sure that these conditions 
are satisfied, at least approximately. 

It is first clear that the range of the inter-particle force should not be too 
short in order that the third condition of (2.15) be satisfied. This condition 
requires that sound waves with wave lengths shorter than 2L/nmax play no role. 
Let us fist consider the lowest state. Then this condition requires that in the 

sum 2J "tI'T,. ("tI'T .. +2U .. -.vr::) of (5.14) no contribution should arise -from .. 
terms with n > 1tmax/2. This requires that J,. is negligibly small for n > nma. ... /2. 
Thus, roughly speaking, the range of the force should be longer than 2LjnDlIJ.X or 
larger than four times the mean distance of particles. 

In the excited states we have to impose a further condition: There should 
not be any sound quanta with wave length shorter than 2L/nmax. 

In order to see whether or not the first two conditions of (2.15) are satisfied, 
it is necessary to examine the eigen function which is obtained and see how the 
holes and excited particles are distributed among the levels. If this eigen function 
is such that the probability distribution of holes and excited particles is essentially 
limited between the levels (3/4)nmax and (5/4)nm"", the solution obtained will 
be a good approximation. There is a rough but simple criterion to see under 
what circumstance~ such will be the case. 

It is to calculate the mean excitation kinetic energy per particle. If this 
energy is too large, we must expect that there will be a large number of highly 
excited particles and many holes lying deep in the Fermi sea. If this energy 
is small, we are sure that the excited particles and holes are present only in the 
neighborhood of the Fermi maximum. 

The excitation kinetic energy per particle is given by 

1 (c:..) 1 ( 2d )2 lImBx ~ ( + + _ _) 
N 'l>' AV=2. 1 -L --,u ,0-.. ,0 .. +,0 .. ,0-.. A •• , 

llmax+ m .. >0 
(6.12) 
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where we have 

p-+,. p~ +p; P_-;=i[(jT .. ~~U .. + J~~){! (p,.2+qn2) + ! (p! .. +q!,J } 

+( /1~+2U .. _ / T.. )(-IJ -IJ _ )-2] 
~ T,. ~ Tn + 2U.. rnr-.. q .. q-n . 

Taking the expectation value, we then get 

+i(JT .. +2U .. +J T.. 2)}ln21; 
2 T,. T .. + 2U,. 

(6.13) 

in particular, for the lowest state 

~(~)A"=( 2d )2~Il (JT .. +2U .. + / T.. 2)lnl. 
N L 8m.. T", ~ T .. +2l;: .. 

(6.13') 

We must now determine the value of tlJis mean excitation energy below 
which our method works. In order to find this critical value, we consider a 
special state in which all particles in the levels between (3/4)nmax and lZm8x are 
raised to the levels between 11max and (5/4)1Imax• In this state the mean excitation 

energy per particle is ( 2~1i r~ n~;~. If the mean excitation energy is larger 

than this amount in some state, it is certain that in this state some particles are 
excited to levels higher than (5/4)llmax or some holes are present in levels below 
(3/4)nmax• So our method cannot work consistently in such a case. We find 
in this way that the necessary condition for the applicability of our method is 

~( .... ) . « 2d )2~ 11;,Rx. 
N ow A. l m 16 (6.14) 

In the lowest state (6.14) is 

Il(JT .. +2U .. +j- T~ 
'II Tn T,.+2U", 

(6.15) 

Of course the condition (6.14) or (6.15) is only necessary but not sufficient. 
There may be cases in which this condition is satisfied and still our method does 
not work. But such circumstances will occur rather exceptionally. 

The condition (6.1:» is certainly satisfied if the inter-particle force is so 

small that we can expand the square root of the form -vT .. +2U .. a~ a power 
series in J .. and use only a few terms. This condition is just the one required 
by the validity of the perturbation theory. But the condition (6.15) is weaker 
than the condition arising in the perturbation theory, because (6.15) does not 
require that J,. be uniformly small for all values of n. It requires only the 
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smallness of the sum as a whole, and therefore our method has a wider domain 
of applicability than the perturbation theory. Because of the factor 1t outside 
the bracket, terms with 1t small do not contribute much to the sum on the left­
hand side of (6.15), so that./.. with small n may even be very large, provided 
that Tn + 2U" does not become negative. This fact means that our method is 
especially suitable for long-range repulsive interactions. As has been first noticed 
and worked out by Bohm, the method of sound waves provides a very promising 
means for the study of an assembly of electrons interacting with each other 
through a repulsive Coulomb force. 

§ 7. Concluding remarks. 

In concluding the paper, we shall give a few disconnected remarks. 

(I) Plasma-like oscillations. 

In order to relate the results 'of our considerations to the work of Bohm, 
we shall mention briefly the bearing of our results 0,11 plasma-like oscillations of 
a degenerate electron gas. In this case the inter~partic1e force is the Coulomb 
repulsion. By Coulomb force is meant here the fact that J" is proportional to 
to 1/112• (Notice that the Poisson equation for a point source is ff J .. =const. 
\\hen expressed.in terms of the Fourier transform of the potential). According 
t.) (5.12') we find that in this case V" is independent of n for small n, i. e. for 

II so small that we can neglect ( 2111" Y n;;:x as compared with 2J,.= const/n2• 

This means that tl1e frequency of the wave is independent of the wave length, 
which is characteristic of plasma oscillations. 

Another remarkable fact which occurs in the case of Coulomb repulsion is 
the following. According to (6.11) we find that the matrix elements of the ex­
ternal perturbing force become very small for small n. This means that the 
pla~ma oscillations are disturbed very little by external perturbing forces. This 
fact has been anticipated by Rohm in his p"aper about superconductivity.7 

(II) Relation between the two kinds of descriptions. 

As we have seen, the system can be described either as an assembly of Fermi 
particles, or as an assembly of sound quanta. Then the question arises: What 
relation will exist between the states, in one of which the occupation numbers 
of the Fermi particles have some specified values, and in the other of which the 
occupation numbers of the sound quanta have some specified values.s As the 

operator l.- (p,,2+ qn2)_l.-, which represents the number of sound quanta, and 
2 2 

the operator ¢::- ¢ .. , which represents the number of Fermi particles, do not 
commute with each other, it is clear that one cannot assign numerical values 
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simultaneously to both kinds of occupation numbers. In other words, a state in 
which the occupation numbers of sound quanta have some definite values is a 
complicated superposition of various states, each of which is specified by a different 
set of which is specified by a different set of values of occupation numbers of 
Fermi particles, and vice versa. The statistical relation between the two kinds 
of occupation numbers will be obtained if one can determine the amplitude of 
each state in this superposition. We shall describe here briefly the general pre­
scription to get this statistical relation. 

First consider the case of a system of non-interacting particles. In this case, 

we can use ~(P .. 2+Q .. 2) -~ instead of ~(p .. 2+qR2) -~. The operator ~, re-
2 2.2 . 2 

presenting the energy of the system, is a function of the number of sound quanta. 
At the same time, it is a function of the number of the Fermi particles too. 
This means that a state in which the occupation numbers of sound quantn have 
some specified values, and a states in which the occupation numbers of Fermi 
particles have some specified values, are both some eigen-states of the energy 
-operator. This fact results in all states in the superposition mentioned above 
belonging to the same eigenvalue of the energy. Now, because the number of 
linearly independent states belonging to one eigenvalue of ~ is finite, one has 
-only to solve a secular equation of finite degree in order to determine the coef­
ficients in the superposition under consideration. So it is always possible, at 
least in principle, to answer the question about the statistical relation between 
the two kinds of occupation numbers. 

In the case of interacting particles, we must first express the state in which 
the occupation numbers of the sound quanta have definite values as a superposition 

of various states,each having some definite set of values of ~(Pn2+Q .. 2)_~. 
2 2 

The problem is none other than to expand Hermite functions of q's in terms of 
other Hermite functions of Q's. We then apply the method mentioned above 
to each term of this superposition. In this way we find the required statistical 
relation for the general case. 

In a stationary state the occupation numbers of the sound quanta have some 
definite values, but the occupation numbers of the Fermi particles do not. The 
stationary state is a very complicated superposition of states with various numbers 
of holes and excited particles at various levels. This means that the ·stationary 
state is very far from a state where only one particle is excited to some higher 
level. This fact corresponds to Bohr's statement9 that the one-particle model is 
a very bad approximation for the stationary states of such an assembly. 

(HI) A possible application to the case of exchange forces. 

Though our method is applicable only to the case of ordinary forces, there 
see. to be a hope of applying it also to the case of exchange forces. It is to 
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combine- it with Ritz's procedure using a tri~l function whose form is suggested 
by our method when applied to ordinary forces. This procedure means physically 
to replace the exchange force by an equivalent ordinary force in such a way as 
to gives the best approximation. 

Unfortunately, the mathematical structure of the method when generalized to 
the three-dimensional case is not simple and the author has not yet accomplished 
it. So in this paper we must be content only to present considerations of a 
rather mathematical nature without entering into real physical problems. 
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