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I. NON-INTERACTING FERMIONS

We start with a continuum Fermi field, ΨF (x), and expand it in terms of its right and left

moving components near the two Fermi points:

ΨF (x) = eikF xΨR(x) + e−ikF xΨL(x) (1)

The Fermi wavevector, kF , is related to the fermion density, ρ0, by kF = πρ0. We linearize the

fermion dispersion about the Fermi points in terms of a Fermi velocity vF , and then the dynamics

of ΨR,L is described by the simple Hamiltonian

HFL = −ivF
∫
dx

(
Ψ†R

∂ΨR

∂x
−Ψ†L

∂ΨL

∂x

)
, (2)

which corresponds to the imaginary time Lagrangean LFL

LFL = Ψ†R

(
∂

∂τ
− ivF

∂

∂x

)
ΨR + Ψ†L

(
∂

∂τ
+ ivF

∂

∂x

)
ΨL. (3)

We will examine LFL a bit more carefully and show, somewhat surprisingly, that it can also be

interpreted as a theory of free relativistic bosons. The mapping can be rather precisely demon-

strated by placing LFL on a system of finite length L. We choose to place antiperiodic boundary

conditions of the Fermi fields ΨL,R(x + L) = −ΨL,R(x); this arbitrary choice will not affect the

thermodynamic limit L → ∞, which is ultimately all we are interested in. We can expand ΨL,R

in Fourier modes

ΨR(x) =
1√
L

∞∑
n=−∞

ΨRne
i(2n−1)πx/L, (4)

and similarly for ΨL. The Fourier components obey canonical Fermi commutation relations

{ΨRn,Ψ
†
Rn′} = δnn′ and are described by the simple Hamiltonian

H̃R =
πvF
L

∞∑
n=−∞

(2n− 1)Ψ†RnΨRn − E0, (5)

where E0 is an arbitrary constant setting the zero of energy, which we adjust to make the ground

state energy of H̃R exactly equal to 0; very similar manipulations apply to the left-movers ΨL.

The ground state of H̃R has all fermions states with n > 0 empty, while those with n ≤ 0 are

occupied. We also define the total fermion number (“charge”), QR, of any state by the expression

QR =
∑
n

: Ψ†RnΨRn :, (6)

and similarly for QL. The colons are the so-called normal-ordering symbol – they simply indicate

that the operator enclosed between them should include a c-number subtraction of its expectation
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value in the ground state of H̃R, which of course ensures that QR = 0 in the ground state. Note

that QR commutes with H̃R and so we need only consider states with definite QR, which allows us

to treat QR as simply an integer. The partition function, ZR, of H̃R at a temperature T is then

easily computed to be

ZR =
∞∏
n=1

(1 + q2n−1)2, (7)

where

q ≡ e−πvF /TL. (8)

The square in (7) arises from the precisely equal contributions from the states with n and −n+ 1

in (5) after the ground state energy E0 has been subtracted out.

We will provide an entirely different interpretation of the partition function ZR. Instead of

thinking in terms of occupation numbers of individual fermion states, let us focus instead on

particle–hole excitations. We create a particle–hole excitation of “momentum” n > 0 above any

fermion state by taking a fermion in an occupied state n′ and moving it to the unoccupied fermion

state n′ + n. Clearly the energy change in such a transformation is 2nπvF/L and is independent

of the value of n′. This independence on n′ is a crucial property and is largely responsible for

the results that follow. It is a consequence of the linear fermion dispersion in (3), and of being in

d = 1. We will interpret the creation of such a particle–hole excitation as being equivalent to the

occupation of a state with energy 2nπvF/L created by the canonical boson operator b†Rn. We can

place an arbitrary number of bosons in this state, and we will now show how this is compatible

with the multiplicity of the particle–hole excitations that can be created in the fermionic language.

The key observation is that there is a precise one-to-one mapping between the fermionic labeling

of the states and those specified by the bosons creating particle–hole excitations. Take any fermion

state, |F 〉, with an arbitrary set of fermion occupation numbers and charge QR. We will uniquely

associate this state with a set of particle–hole excitations above a particular fermion state we label

|QR〉; this is the state with the lowest possible energy in the sector of states with charge QR, that

is, |QR〉 has all fermion states with n ≤ QR occupied and all others unoccupied. The energy of

|QR〉 is

πvF
L

|QR|∑
n=1

(2n− 1) =
πvFQ

2
R

L
. (9)

To obtain the arbitrary fermion state, |F 〉, with charge QR, first take the fermion in the “topmost”

occupied state in |QR〉, (i.e., the state with n = QR) and move it to the topmost occupied state

in |F 〉 (see Fig. 1). Perform the same operation on the fermion in n = QR− 1 by moving it to the

next lowest occupied state in |F 〉. Finally, repeat until the state |F 〉 is obtained. This order of

occupying the boson particle–hole excitations ensures that the b†Rn act in descending order in n.

Such an ordering allows one to easily show that the mapping is invertible and one-to-one. Given

any set of occupied boson states, {n}, and a charge QR, we start with the state |QR〉 and act on
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FIG. 1. Sequence of particle–hole excitations (bosons bRn) by which one can obtain an arbitrary fermion

state |F 〉 from the state |QR〉, which is the lowest energy state with charge QR. The filled (open) circles

represent occupied (unoccupied) fermion states with energies that increase in units of 2πvF /L to the right.

The arrows represent bosonic excitations, bRn, with the integer representing the value of n. Note that the

bosons act in descending order in energy upon the descending sequence of occupied states in |QR〉.

it with the set of Bose operators in the same descending order; their ordering ensures that it is

always possible to create such particle–hole excitations from the fermionic state, and one is never

removing a fermion from an unoccupied state or adding it to an occupied state. The gist of these

simple arguments is that the states of the many-fermion Hamiltonian H̃R in (5) are in one-to-one

correspondence with the many-boson Hamiltonian

H̃ ′R =
πvFQ

2
R

L
+

2πvF
L

∞∑
n=1

nb†RnbRn, (10)

where QR can take an arbitrary integer value. It is straightforward to compute the partition

function of H̃ ′R and we find

Z ′R =

[
∞∏
n=1

1

(1− q2n)

][
∞∑

QR=−∞

qQ
2
R

]
. (11)

Our pictorial arguments above prove that we must have ZR = Z ′R. That this is the case is an

identity from the theory of elliptic functions. (The reader is invited to verify that the expressions

(7) and (11) generate identical power series expansions in q.)

A. Tomonaga-Luttinger liquid theory

The above gives an appealing picture of bosonization at the level of states and energy levels, but

we want to extend it to include operators, and obtain expressions for the bosonized Hamiltonian

in a continuum formulation. From the action of the bRn operator on the fermion states, we can

anticipate that it may be proportional to the Fourier components of the fermion density operator

So we consider the operator ρR(x) representing the normal-ordered fermion density:

ρR(x) =: Ψ†R(x)ΨR(x) :=
QR

L
+

1

L

∑
n 6=0

ρRne
i2nπx/L, (12)
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where the last step is a Fourier expansion of ρR(x); the zero wavevector component is QR/L, while

nonzero wavevector terms have coefficient ρRn. The commutation relations of the ρRn are central

to our subsequent considerations and require careful evaluation; we have

[ρRn, ρR−n′ ] =
∑
n1,n2

[
Ψ†Rn1

ΨRn1+n,Ψ
†
Rn2

ΨRn2−n′
]

=
∑
n2

(
Ψ†Rn2−nΨRn2−n′ −Ψ†Rn2

ΨRn2+n−n′
)
. (13)

It may appear that a simple of change of variables in the summation over the second term in

(13) (n2 → n2 + n) shows that it equals the first, and so the combined expression vanishes.

However, this is incorrect because it is dangerous to change variables on expressions that involve

the summation over all integer values of n2 and are therefore individually divergent; rather, we

should first decide upon a physically motivated large-momentum cutoff that will make each term

finite and then perform the subtraction. We know that the linear spectrum in (5) holds only for

a limited range of momenta, and for sufficiently large |n|, lattice corrections to the dispersion will

become important. However, in the low-energy limit of interest here, the high fermionic states at

such momenta will be rarely, if ever, excited from their ground state configurations. We can use

this fact to our advantage by explicitly subtracting the ground state expectation value (“normal-

order”) from every fermionic bilinear we consider; the fluctuations will then be practically zero

for the high energy states in both the linear spectrum model (5) and the actual physical systems,

and only the low energy states, where (5) is actually a good model, will matter. After such

normal-ordering, the summation over both terms in (12) is well defined and we are free to change

the summation variable. As a result, the normal-ordered terms then do indeed cancel, and the

expression (13) reduces to

[ρRn, ρR−n′ ] = δnn′

∑
n2

(〈
Ψ†Rn2−nΨRn2−n

〉
−
〈
Ψ†Rn2

ΨRn2

〉)
= δnn′n. (14)

This key result shows that the only nonzero commutator is between ρRn and ρR−n and that it is

simply the number n. By a suitable rescaling of the ρRn it should be evident that we can associate

them with canonical bosonic creation and annihilation operators. We will not do this explicitly

but will simply work directly with the ρRn as a set of operators obeying the defining commutation

relation (14), without making explicit reference to the fermionic relation (12). We assert that the

Hamiltonians H̃R, H̃ ′R are equivalent to

H̃
′′
R =

πvFQ
2
R

L
+

2πvF
L

∞∑
n=1

ρR−nρRn. (15)

This assertion is simple to prove. First, it is clear from the commutation relations (14) that the

eigenvalues and degeneracies of (15) are the same as those of (10). Second, the definition (15) and
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the commutation relations (14) imply that

[H̃
′′
R, ρR−n] =

2πvFn

L
ρR−n. (16)

Precisely the same commutation relation follows from the fermionic form (5) and the definition

(12).

We can now perform the same analysis on the left-moving fermions. The expressions corre-

sponding to (4), (5), (12), (14), and (15) are

H̃L = −πvF
L

∞∑
n=−∞

(2n− 1)Ψ†LnΨLn − E0, (17)

ΨL(x) =
1√
L

∞∑
n=−∞

ΨLne
i(2n−1)πx/L, (18)

ρL(x) =: Ψ†L(x)ΨL(x) :=
QL

L
+

1

L

∑
n6=0

ρLne
i2nπx/L, (19)

[ρLn, ρL−n′ ] = −δnn′n. (20)

H̃
′′
L =

πvFQ
2
L

L
− 2πvF

L

∞∑
n=1

ρLnρL−n. (21)

We have now completed a significant part of the bosonization program. We have the “bosonic”

Hamiltonian in (15) in terms of the operators ρRn, which obey (14), and we also have the simple

explicit relation (12) to the fermionic fields (along with the corresponding expressions for the left-

movers above). Before proceeding further, we introduce some notation that will allow us to recast

the results obtained so far in a compact, local, and physically transparent notation. We combine

the operators ρRn and ρLn (the Fourier components of the left-moving fermions ΨL) into two local

fields φ(x) and θ(x), defined by

φ(x) = −φ0 +
πQx

L
− i

2

∑
n6=0

ei2nπx/L

n
[ρRn + ρLn] ,

θ(x) = −θ0 +
πJx

L
− i

2

∑
n6=0

ei2nπx/L

n
[ρRn − ρLn] ,

(22)

where Q=QR +QL is the total charge, J =QR−QL, and φ0 and θ0 are a pair of angular variables

that are canonically conjugate to J and Q respectively; that is, the only nonvanishing commutation

relations between the operators on the right-hand sides of (22) are (14), [φ0, J ] = i and [θ0, Q] = i.

For future use it is also useful define

ϕR(x) ≡ φ(x) + θ(x) , ϕL(x) ≡ φ(x)− θ(x). (23)
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From (22) it is clear that ϕR and ϕL are ‘chiral’ fields, as they only involve operators associated

only with the right- and left-moving fermions respectively.

Our objective in introducing these operators is to produce a number of simple and elegant

results. First, using (22), and the commutators just noted, we have

[φ(x),∇θ(y)] = [θ(x),∇φ(y)] = −iπδ(x− y), (24)

implying that −∇θ/π is canonically conjugate to φ, and −∇φ/π is canonically conjugate to θ;

alternatively, we can write the unified form

[φ(x), θ(y)] = i
π

2
sgn(x− y). (25)

In terms of the chiral fields, the non-zero commutation relations are

[ϕR(x), ϕR(y)] = iπ sgn(x− y) , [ϕL(x), ϕL(y)] = −iπ sgn(x− y), (26)

while ϕR and ϕL commute with each other. For future applications, it is also useful to express

these commutation relations in terms of exponentials of the fields

eiαφ(x)eiβθ(y) = eiβθ(y)eiαφ(x) e−iαβ(π/2)sgn(x−y)

eiαϕR(x)eiβϕR(y) = eiβϕR(y)eiαϕR(x) e−iαβπsgn(x−y)

eiαϕL(x)eiβϕL(y) = eiβϕL(y)eiαϕL(x) eiαβπsgn(x−y). (27)

Second, (15) can now be written in the compact, local form

H̃ ′′R + H̃ ′′L =
vF
2π

∫ L

0

dx

[
1

K
(∇φ)2 +K(∇θ)2

]
, (28)

where the dimensionless coupling K has been introduced for future convenience; in the present

situation K = 1, but we will see later that interactions will lead to other values of K. The expres-

sions (28) and (24) can be taken as defining relations, and we could have derived all the properties

of the ρRn, ρLn, θ0, φ0 as consequences of the mode expansions (22), which follow after imposition

of the periodic boundary conditions

φ(x+ L) = φ(x) + πQ, θ(x+ L) = θ(x) + πJ. (29)

These conditions show that φ(x) and θ(x) are to be interpreted as angular variables of period π.

Our final version of the bosonic form of H̃R + H̃L in (5) is contained in Eqns. (24), (28), and

(29), and the two formulations are logically exactly equivalent. The Hilbert space splits apart into

sectors defined by the integers Q = QR +QL, J = QR−QL which measure the total charge of the

left- and right-moving fermions. Note that

(−1)Q = (−1)J (30)
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and so the periods of φ and θ are together even or odd multiples of π. In terms of the chiral fields,

this conditions translates into ϕR and ϕL being angular variables with period 2π. All fluctuations

in each charge sector are defined by the fluctuations of the local angular bosonic fields φ(x) and

θ(x), or equivalently by the fermionic fields ΨR(x) and ΨL(x).

We close this subsection by giving the general form of the effective action for a Tomonaga-

Luttinger liquid. The derivation above was limited to the case K = 1, but we will see later that

the generalization to K 6= 1 describes a wide class of interacting, compressible, quantum systems

in one dimension. From the Hamiltonian (28) and the commutation relations (24) we can use the

standard path-integral approach to write down the imaginary time action

STL =
vF
2π

∫
dxdτ

[
(∇φ)2

K
+K(∇θ)2

]
− i

π

∫
dxdτ∇θ∂τφ. (31)

From this action, we can integrate out θ to obtain an action for the φ field alone

STL =
1

2πKvF

∫
dxdτ

[
(∂τφ)2 + v2F (∇φ)2

]
. (32)

This is just the action of a free, massless, relativistic scalar field. Conversely, we also have a

“dual” formulation of STL in which we integrate out φ, and obtain the same action for θ but with

K → 1/K

STL =
K

2πvF

∫
dxdτ

[
(∂τθ)

2 + v2F (∇θ)2
]
. (33)

Finally, it is useful to express (31) in terms of the chiral fields ϕR and ϕL using (23)

STL =
vF
8π

∫
dxdτ

[(
1

K
+K

)(
(∇ϕR)2 + (∇ϕL)2

)
+ 2

(
1

K
−K

)
∇ϕR∇ϕL

]
− i

4π

∫
dxdτ [∇ϕR∂τϕR −∇ϕL∂τϕL] . (34)

The last kinematic “Berry phase” term reflects the commutation relations in (26). Note that the

left- and right-movers decouple only at K = 1, and that is the only case with conformal invariance.

B. Operator mappings

We are going to make extensive use of the fields φ(x), θ(x) in the following, and so their physical

interpretation would be useful. The meaning of φ follows from the derivative of (22), which with

(12) gives

∇φ(x) = πρ(x) ≡ π(ρR(x) + ρL(x)). (35)

So the gradient of φ measures the total density of particles, and φ(x) increases by π each time

x passes through a particle. The expression (35) also shows that we can interpret φ(x) as the

displacement of the particle at position x from a reference state in which the particles are equally
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spaced as in a crystal; that is, φ(x) is something like a phonon displacement operator whose

divergence is equal to the local change in density. Turning to θ(x), one interpretation follows

from (24), which shows that Πφ(x) ≡ −∇θ(x)/π is the canonically conjugate momentum variable

to the field φ(x). So Π2
φ in the Hamiltonian is the kinetic energy associated with the “phonon”

displacement φ(x).

A physical interpretation of θ is obtained by taking the gradient of (22), and we obtain the

analog of (35):

∇θ(x) = π(ρR(x)− ρL(x)); (36)

hence gradients of θ measure the difference in density of right- and left-moving particles i.e. the

current. Of course, we can combine (35) and (36) to obtain expressions for the chiral fields

separately:

∇ϕR(x) = 2πρR(x) , ∇ϕL(x) = 2πρL(x). (37)

Finally, to complete the connection between the fermionic and bosonic theories, we need ex-

pressions for the single fermion annihilation and creation operators in terms of the bosons. Here,

the precise expressions are dependent upon the short-distance regularization, but these fortunately

only effect overall renormalization factors. With the limited aim of neglecting these non-universal

renormalizations, the basic result can be obtained by some simple general arguments. First, note

that if we annihilate a particle at the position x, from (35) the value of φ(y) at all y < x has to be

shifted by π. Such a shift is produced by the exponential of the canonically conjugate momentum

operator Πφ:

exp

(
−iπ

∫ x

−∞
Πφ(y)dy

)
= exp (iθ(x)) . (38)

However, it is not sufficient to merely create a particle. We are creating a fermion, and the

fermionic antisymmetry of the wavefunction can be accounted for if we pick up a minus sign for

every particle to the left of x, that is, with a Jordan–Wigner–like factor

exp

(
imπ

∫ x

−∞
Ψ†F (y)ΨF (y)dy

)
= exp (imkFx+ imφ(x)) , (39)

where m is any odd integer, and Ψ†FΨF measures the total density of fermions (see (1)), including

the contributions well away from the Fermi points. In the second expression in (39), the term

proportional to kF represents the density in the ground state, while φ(x) is the integral of the

density fluctuation above that. Combining the arguments leading to (38) and (39) we can assert

the basic operator correspondence

ΨF (x) =
∑
m odd

Ame
imkF x+imφ(x)+iθ(x), (40)

where the Am are a series of unknown constants, which depend upon microscopic details. We will

see shortly that the leading contribution to (40) comes from the terms with m = ±1, and the
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remaining terms are subdominant at long distances. Comparison with (1) shows clearly that we

may make the operator identifications for the right- and left- moving continuum fermion fields

ΨR ∼ eiθ+iφ, ΨL ∼ eiθ−iφ. (41)

The other terms in (40) arise when these basic fermionic excitations are combined with particle–

hole excitations at wavevectors that are integer multiples of 2kF .

In terms of the chiral fields, the operator correspondences separate simply into left- and right-

moving sectors, as they must:

ΨR ∼ eiϕR , ΨL ∼ e−iϕL . (42)

As alternative to the above derivation, we can also obtain (42) by using the commutation relations

[ρR(x),ΨR(y)] = −δ(x− y)ΨR(y) , [ρL(x),ΨL(y)] = −δ(x− y)ΨL(y) (43)

It can now be verified that (37) and (42), combined with the commutation relations (26), are

consistent with (43).

Actually, (42) is not precisely correct, but this will not be an issue in our subsequent discussion.

From the commutation relations in (27) we can verify that ΨR(x) and ΨR(x′) anti-commute with

each other for x 6= x′, which is precisely the relationship expected for fermion operators (and

similarly for ΨL). However, upon using (42) with (27) we find that ΨR(x) commutes with ΨL(x′).

This problem can be addressed by introducing the so-called Klein factors

ΨR ∼ F1e
iϕR , ΨL ∼ F2e

−iϕL . (44)

which obey the anti-commutation relations FiFj = −FjFi for i 6= j.

II. INTERACTING FERMIONS

We now add two-body interactions between the ΨF fermions. For generic values of the wavevec-

tor kF , the only momentum conserving interaction for spinless fermions near the Fermi points is

HU =
U

2

∫
dx [(ρR(x) + ρL(x))(ρR(x) + ρL(x))] . (45)

For special commensurate densities, there can be additional ‘umklapp’ terms, but we defer consid-

eration of such terms to the following section. Using the bosonization formula (35), we can write

HU as

HU =
U

2π2

∫
dx(∇φ)2. (46)
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This can be easily absorbed into the bosonized version of HFL in (28) by a redefinition of vF and

K. In this way we have shown that the Hamiltonian HFL +H12 is equivalent to (28) but with the

parameters

vF → vF

[
1 +

UvF
π

]1/2
,

K =

[
1 +

UvF
π

]−1/2
.

(47)

The values of the parameters only hold for small U ; however, the general result of a renormalization

of vF and K, but with no other change, is expected to hold more generally. Notice that now K 6= 1,

as promised earlier.

We can now evaluate the correlators of the interacting fermion field using the operator mapping

in Eq. (42). These can be obtained by use of the basic identity

〈eiO〉 = e−〈O
2〉/2, (48)

where O is an arbitrary linear combination of φ and θ fields at different spacetime points; this

identity is a simple consequence of the free-field (Gaussian) nature of (28). In particular, all results

can be reconstructed by combining (48) with repeated application of some elementary correlators.

The first of these is the two-point correlator of φ:

1

2
〈(φ(x, τ)− φ(0, 0))2〉 = πvFK

∫
dk

2π
T
∑
ωn

1− ei(kx−ωnτ)

ω2
n + vFk2

=
K

4
ln

[
cosh(2πTx/vF )− cos(2πTτ)

(2πT/vFΛ)2

]
, (49)

where Λ is a large-momentum cutoff. Similarly, we have for θ, the correlator

1

2
〈(θ(x, τ)− θ(0, 0))2〉 =

1

4K
ln

[
cosh(2πTx/vF )− cos(2πTτ)

(2πT/vFΛ)2

]
. (50)

To obtain the θ, φ correlator we use the relation Πφ = −∇θ/π and the equation of motion iΠφ =

∂τφ/(πvFK) that follows from the Hamiltonian (28); then by an integration and differentiation of

(49) we can obtain

〈θ(x, τ)φ(0, 0)〉 = − i
2

arctan

[
tan(πTτ)

tanh(πTx/vF )

]
. (51)

This expression can also be obtained directly from (31). Finally, we can combine these expressions

to obtain fermion correlator (in imaginary time)〈
Ψ†R(x, τ)ΨR(0, 0)

〉
∼ exp

[
−1

4
(K + 1/K) ln

[
cosh(2πTx/vF )− cos(2πTτ)

(2πT/vFΛ)2

]

− i arctan

[
tan(πTτ)

tanh(πTx/vF )

]]
(52)
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In general, this is a complicated function, but it does have some useful limiting values. At K = 1

it takes the simple form 〈
Ψ†R(x, τ)ΨR(0, 0)

〉
∼ 1

sin(πT (vF τ − ix))
(53)

expected for free fermions. Taking the Fourier transform of (52) for general K, and analytically

continuing the resulting expressions to real frequencies is, in general, a complicated mathematical

challenge; details can be obtained from Refs. 1 and 2. We quote some important results in the

limit of T = 0. The fermion spectral function has the following singularity at small frequencies

near ω = vFk

− ImGR
R(k, ω) ∼ θ(ω − vFk) (ω − vFk)(K+1/K)/2−2 , ω > 0, k > 0. (54)

At K = 1, the spectrum function is a delta function ∼ δ(ω − vFk) and that is indicative of the

presence of quasiparticles in the free fermion model. However, a key observation is that for K 6= 1

the delta function transforms into a branch-cut in the frequency complex plane, and this indicates

the absence of fermionic quasiparticles. We can obtain the equal-time fermion Green’s function of

the original fermion field ΨF in (1) directly from (52)

〈Ψ†F (x)ΨF (0)〉 ∼ sin(kF |x|)
|x|(K+1/K)/2

. (55)

Taking the Fourier transform of this, we conclude that momentum distribution function of the

fermions, n(k), does indeed have a singularity at the Fermi wavevector k = kF , but that this

singularity is not generally a step discontinuity (as it is in Fermi liquids):

n(k) ∼ −sgn(k − kF )|k − kF |(K+1/K)/2−1. (56)

Thus, interacting fermions in one dimension realize a new non-Fermi liquid phase, the Tomonaga-

Luttinger liquid, whose momentum distribution function has a singularity at the Fermi surface,

but the singularity is not a step discontinuity, and is instead given by (56).

III. COMMENSURABLE DENSITIES

There are conditions under which the Luttinger liquid state is unstable to a gapped insulator:

this requires that the fermion density, ρ0 is a rational number. The simplest example is when the

spinless Fermi gas of Section I is at half-filling. Then ρ0 = 1/2 and kF = π/2. This special value of

kF allows an umklapp process, when two right-moving fermions scatter to become two left-moving

fermions: the total momentum transfer is 2π, and this is allowed by the unit-periodicity of the

underlying lattice. In the continuum formulation, this term is

Hu = v

∫
dx
[
Ψ†R∇Ψ†RΨL∇ΨL + Ψ†L∇Ψ†LΨR∇ΨR

]
. (57)
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We can now bosonize this using (41), and we again obtain the sine-Gordon theory for the Luttinger

liquid in the presence of periodic potential:

SsG = STL − λ
∫
dxdτ cos(4φ) (58)

From the chapter on the XY model, we deduce the RG equation

dλ

d`
= (2− 4K)λ. (59)

Now the critical point is at K = 1/2, and for K < 1/2 there is a flow towards large |λ|, and we

have an instability to a strongly-coupled phase. This strong-coupling state is expected to be an

insulator, but the insulator breaks translational symmetry (so strictly speaking, it is not a Mott

insulator). The breaking of translational symmetry can be understood from the fact that cos(2φ)

and sin(2φ) are observables which break translational symmetry. This follows from (41),

Ψ†RΨL ∼ e−2iφ, (60)

and the fact that

Ψ†RΨL → (−1)nΨ†RΨL (61)

under translation by n lattice spacings, for kF = π/2. When λ flows to +∞ (say), then the values

of φ will be pinned at πp/2, where p is an integer. Consequently cos(2φ) takes the two values

(−1)p, and this implies a two-fold breaking of translational symmetry. A possible state is a charge

density wave of fermions with period 2. Similarly, when λ flow to −∞, there are two possible

values of sin(2φ), and this corresponds to a ‘valence bond solid’, or a dimerization of the lattice

with period 2.
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