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We show with several examples that renormalization group (RG) theory can be used to understand

singular and reductive perturbation methods in a unified fashion. Amplitude equations describing
slow motion dynamics in nonequilibrium phenomena are RG equations. The renormalized perturbation

approach may be simpler to use than other approaches, because it does not require the use of asymptotic
matching and yields practically superior approximations.

PACS numbers: 02.30.Mv, 47.20.Ky, 64.60.Ak

The essence of the renormalization group (RG) is
to extract those structurally stable features of a system
which are insensitive to details [1,2]. Thus, RG methods

may be regarded as a means of asymptotic analysis.
The usefulness of this point of view has been amply
demonstrated [3] by the relation between the RG and
intermediate asymptotics [4], which showed that the
anomalous exponents appearing in, e.g., the long-time
behavior of certain hydrodynamic systems were calculable
using RG.

Many different techniques for asymptotic analysis have
been developed including the multiple scaling (MS)
method (which actually subsumes all the others), the
boundary layer (BL) method, the WKB approximation,
and others [5]. Reductive perturbation methods [6] have
been used to extract the dynamics describing the global
space-time behavior of complicated systems near bifurca-
tion points [7].

At a purely technical level, the starting point for both
perturbative RG methods and conventional asymptotic
methods is the removal of divergences from a perturbation
series. Given the above similarities, a natural question

arises: What is the relation, if any, between conventional
asymptotic methods and the RG?

In this Letter, we demonstrate that many singular per-
turbation methods may be understood as renormalized
perturbation theory, and that amplitude equations obtain-
able by the reductive perturbation methods are renormali-
zation group equations [8]. One of the advantages of the
RG approach is that the starting point is simply a straight-
forward naive perturbation expansion, for which very
little a priori knowledge is required; we will see that the
RG approach seems to be more efficient and accurate,
in practice, than standard methods in extracting global
information from the perturbation expansion.

To illustrate the basic idea, let us consider a weakly
nonlinear van der Pol oscillator

d2y dy 1 t'dye+y=e ———
I

—
Idt' dt 3 E dt )

which is usually solved by MS [5]. The method of
uniformization or "renormalization" fails in this case [5].
A naive expansion y =

yp + eye + e y2 + gives

R,'&
y(t) = Rp sin(t + Op) + e AiRpsin(t + Op) + i Bt Rpcos(t + Op)

1 96'

Rp &
1R()+ —1 ——(t —tp) sin(t + Hp) + —cos 3(t + Op) ~ + O(e ),2|, 4i 96 t

(2)
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where Ro, 0{),A], B~ are constants determined by the ini-
tial conditions at arbitrary time t = to. This naive per-
turbation theory breaks down for e(t —tp) ) 1 because
of the secular terms. The arbitrary time to may be in-

terpreted as the (logarithm of the) ultraviolet cutoff in
the usual field theory [3]. To regularize the perturbation
series, we introduce an arbitrary time v, split t —to as

7 + 7 t{), and absorb the terms containing T t{)

into the renormalized counterparts R and 0 of Rp and

8p, respectively. This is allowed since Rp and Op are
no longer constants of motion in the presence of the non-
linear perturbation. We introduce a multiplicative renor-
malization constant Zi = 1 + g", a„e and an additive
one Z2 = g, b„e" such that Rp(tp) = Zi(tp, r)R(r) and

8p(tp) = 0(r) + Z2(tp, r) The. coefficients a„and b„
(n ~ 1) are chosen order by order in e to eliminate the
terms containing r —tp as in the standard RG [9]. The
choice ai = —(1/2)(1 —R2/4)(r —tp) —Ai, bi = —Bi
removes the secular terms to order e, and we obtain the
following renormalization perturbation result [10]

t ~. The second order RG calculation shows that our
assumption of perturbative renormalizability is consistent
and no ambiguity arises. The multip1e time scales used
cn MS for slow vanables T] = et, T2 = e t, . . . appear
naturally [11].

The above example illustrates two important points:
(1) the results of the MS method can be obtained from
renormalized perturbation theory, and (2) the RG equation
describes the long time scale motion of the amplitude and
the phase. In the following we wish to demonstrate (I)
and (2) more generally.

Another important class of singular problems is that for
which the highest order derivative of the equation is mul-

tiplied by a small parameter e, e.g., WKB and BL prob-
lems. For linear cases, it is known [5] that both problems
can be treated in a unified fashion. A typical problem is
of the form

e +a(x) —b(x)y=0, 0~x~ 1, e~p+,2d2Y dy

dx dx

y(t) = {R + e(R/2) (1 —R2/4) (t —r)) sin(t + 8)

—e(l/96)R3 cos(t + 0)

+ e(R'/96)cos 3(t + 0) + O(e ), (3)

where a and b are continuous functions, and we have
chosen a(x) ) 0 so that the boundary layer is at x = 0.
This can be transformed into a form suitable for WKB
analysis:

where R, 0 are now functions of r Since .r does not
appear in the original problem, the solution should not
depend on r Therefo. re, (By/Br), = 0. This is the RG
equation, which in this case consists of two independent
equations

dR/dr = e(R/2) (1 —R /4) + O(e ),
dO/dr = O(e ).

Setting r = t in (3) eliminates the secular term, giving

y(t) = R(t) sin(t) + (e/96)R(t)3cos(3t) + O(e ), (5)

where R(t) and 0'(t) are obtained from (4) with t = r:
R(t) = R(0)[e " + R(0)z(1 —e ")/4] 't and 8(t) =
8(0), which we take to be zero. The final result ap-
proaches a limit circle of radius tending towards 2 as

ez = Q(x)u(x),

with Q(x) —= az(x) /4e2 + a'(x)/2 + b(x) and

y(x) = exp —
II a(x') dx' u(x).

2@2 J

It is convenient to introduce a new variable t such that
dt = ~gdx/e and (7) becomes

d Q 1 32 I dQ

dt2 2
—u = ——Q i (x(t))Q'(x(t)) —,

dt
'

where Q'(x(t)) is assumed to be a function of order unity

varying slowly on the time scale t, and Q(x) 4 0 holds
for 0 ~ x ~ 1 for simplicity. Naively expanding u as
u(t) = up(t) + eui(t) +,we find the bare perturbation
result

f f

u(t) = e' Ap + eAp S(x(s))ds —eApe ' S(x(s))e 'ds
fp fp

pt
+ -'iB, + B, I S(())d — B, "

fp

S(x(s))e 'ds~ + O(e ),

where S(x) =— —Q 3t2Q (x)/4, and Ap, Bp are constants dependent on the initial conditions at t = tp. The terms in the
curly brackets are the secular terms divergent in the limit t —tp ~. These terms are renormalized away with the aid
of the multiplicative renormalization Ap = ZiA(r) and Bp = ZzB(r), where A, B are the renormalized counterparts of
Ap, Bp, respectively. Here Zi = 1 + e f, S(x(s))ds + " = Zz, with r being some arbitrary time, as in the example of
the van der Pol oscillator. The renormalized perturbation result is
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t

u(t) = e' A(r) + eA(r) S dst

pt
+ e ' B(r) + eB(r) ( S ds + O(e), (11)

T

where O(e) refers to all regular terms of order e which
remain finite even as t —to ~. The RG equation
Bu/Br —= 0 gives

dC 1 32 t

d7 4
+ e —Q 'i2Q'(x(r))C = O(e'), (12)

u(x) —Q i (x) Ci exp — dx Q(x')
l e

+ C2exp ——
) dx' Q(x'), (13)

where C& and C2 are integration constants. The asymp-
totic result y(x) uniformly valid for ex ( 1 for the general
linear boundary-layer problem (6) is given by (8) with an

appropriate asymptotic expansion formula for Q(x). No-

tice that the above RG approach gives uniformly reliable

where C = A or B. Again, (12) corresponds to
the amplitude equation with r = t, which gives
C(x) —Q 'i4(x). This is just the adiabatic invari-

ant A(x)Q'i (x) = A(0)Q'i4(0) = const. Therefore, the
"physical-optics" approximation for (7) reads

results from the "inner expansion" alone without any (in-
termediate asymptotic) matching.

We have seen that the RG equation becomes the
equation of motion for the slow behavior of the system.
To see how RG reproduces reductive perturbation results,
let us consider the following equation (this type covers
most examples so far studied in the literature):

[X((B,) + L2(V)]u = eg[u], (14)

Q["]= QQ-,.H.H"'"-- + R,

where R is the remainder such that L&R + 0, L2R 4 0,
and Q „are coefficients dependent on the set of a „'s
collectively denoted by {a). The general form of the

singular (secular) part [ui], of the general solution is

where Li and L2 are constant coefficient linear dif-
ferential operators, Q is a possibly nonlinear operator,
and e is a small parameter. We assume, for simplic-

ity, spatial isotropy. Suppose that the operators have
the following structures X( = P (8, + ice) ", X2 =
[] (V —ip, )"(& and uo = g a„e'(&" "' is a solu-
tion to (14) with e = 0 [12]. The order e correction u( in

the naive perturbation obeys (Xi + X2)u) = Q[uo]. We
assume without any loss of generality that Q[uo] can be
expanded as

m( ) m(co) n(~) n(p)

[ ], =yg. , HH~&( )
'

', +(1 —~)&(p) ', +P-,
)

'"""'
m co! n p, !

(16)

where A is an arbitrary numerical constant, not equal
to 0 or 1, P „ is a polynomial of t and IxI of lower
order than m(ru) and n(p, )/2, respectively (whose explicit
form is not required), Zi(co) = P„~„(ice —ice') ( ) and

82(p) = P„»(ip' —i p)"(" )
R. enor. malization of the

secular terms divergent in the global space-time limit
can be done following the procedures given above, and
is tantamount to replacing in (16) t" —to with t"—

)xI" with Ixl" —Irl", and the "bare" coefficients
{a) with their renormalized counterparts {A), regarded
as functions of r and r The renorm. alization group
equation can be obtained from the condition that u is
independent of the parameters 7 and r introduced in the
renormalization process. The term P is dependent upon,
e.g., initial conditions. Thus, to obtain a universal result,
we differentiate u sufficiently many times with respect to
7. and r to eliminate P. Further eliminating A, we find the
following mode-coupled amplitude equation:

pm(cu)A

Z)(cu)
(

)'" + 82(p)b, "(")iA„= eg ({Aj). (17)

Here we have used the isotropy to introduce the Laplacian
This is the renormalization group equation indepen-

dent of the arbitrariness due to initial conditions, solution
methods, etc.

As an example, consider the Swift-Hohenberg equa-
tion [13]

au/at = eu —(1 + V )'u —u', (18)

BA BA= 4 + (eA —3IAI A). (19)

Scaling out e identifies the slow time and spatial variables
as T = et, X = x/2~e. The scaled result is the well-
known time-dependent Ginzburg-Landau amplitude equa-
tion. Because the secular terms et and ex have been re-
moved from (16) the outcome (19) should be uniformly
valid up to time scale 1/e and spatial scale 1/~e for
e « l. In our approach, spatial and time coordinates
are treated on an equal footing, in contrast to the standard
reductive perturbation method [6].

where e is a control parameter. Here J'
(

= B„L2= (1 +
V2)', eQ[u] = eu —u', and uo = ae'" + a*e '". Thus
8( = 1, Ez(~1) = —4, ego((A, A') = eA —3IAI A, and

ego i(A, A*) = eA* —3IAI A*. That is,
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d u 2 du du+ ——+u —=0, u(x=e)=0,
dx2 x dx dx

u(x=~)=1
(20)

We regard (20) as an initial-value problem, given an ini-
tial condition u(xp) = Ap at some arbitrary point x = xp,
where Ao is a finite constant. Assuming a naive expansion
u(x; E) = up(x} + Ai(e)ui(x) + A2(E)u~(x) +, where

A;(e), i = 1, 2, . . . will be determined in a self-consistent
way, we obtain up(x) = Ap. Solving to O(Ai(e)) gives

u(x) = Ap + Ai(e)AiAp(e2(Apxp) e (Apx)}

To demonstrate that there are not only conceptual but
also technical advantages to the RG approach, we con-
clude with a problem involving the so-called "switch-
back": conventionally, only through subtle analysis in the
course of actually solving the problem is it possible to
realize the need for, e.g. , unexpected order terms to make
asymptotic matching consistent. An example is a cari-
cature of the Stokes-Oseen singular boundary layer prob-
lem, which describes the low Reynolds number viscous
flow past a sphere of unit radius. After scaling the radial
coordinate r to x = er, where e is the Reynolds number
squared, the equation is [14]

]. In addition, we require that Ai/A. =- O(1). so that
the equation for u2 yields new information. The result-

ing asymptotic solution is correct to O(e]ne! and agrees
with that obtained by asymptotic matching. Note that in

our method, the e lne term appears naturally from the
asymptotic expansion of e.(e}, whereas some artistry is
required to obtain this term conventionally. The result to
O(e) given by asymptotic matching [14] is obtained from
the renormalized perturbation expansion to O(A. ). The
asymptotic expansion to O(e) is not uniformly valid in r

and a much better approximation„ in practice, is our full

result 1
—e.(e r) /e. (e) to order A, .

In summary, we have demonstrated that various singu-
lar perturbation methods and reductive perturbation meth-
ods may be understood in a unified fashion from the
renormalization group point of view, with some attendant
technical advantages.
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+ O(Ai(e), A2(e)), 421)

where Ai(xp) is some constant of integration, and we
define eq(t) —= I, dp p e v —1/t + 1nt + (y —1)—
t/2 + O(t2) as t 0 with Euler's constant y = 0.577.
The naive perturbation result (21) breaks down when both
xo is small and x —xo is large. To cure this we introduce
the renormalization constant Z = 1 —A(e)Ai(e2(Ap, )—
e2(Axp)) such that A(p, ) = ZAp, giving the renormalized
perturbation series

u(x) = A(p, ) + Ai(e)AiA(e2(Ap, )
—e~(Ax))

and we find the final uniformly valid asymptotic result

u(x) = A(x).
Equation (23) can be solved iteratively along with the

required boundary conditions A(~) = 1 and A(e) = 0 as

A(x) = 1 —A i (e)A i d p p '-e v + O(Ai (e), A2(e)) .

(24)

The condition A(e) = 0 gives Ai(e)Aie2(e) = 1. There-
fore, the expansion coefficient A& can be explicitly chosen
as Ai(e)Ai = I/e2(e), with the asymptotic expansion, in

the limit e 0, Ai Ai(e) —a[I —e 1ne —(y —1)e +

The RG equation iiu/d p, = 0 yields, after setting p, = x.

dA(x) e
—A(x }.z.

Ai(t)Ai „+O(Ai(e), A2(e)),
dx X
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