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Abstract. The explicitly soluble Luttinger model is used as a basis for the description of 
the general interacting Fermi gas in one dimension, which will be called ‘Luttinger liquid 
theory’, by analogy with Fermi liquid theory. The excitation spectrum of the Luttinger 
model is described by density-wave, charge and current excitations; its spectral properties 
determine a characteristic parameter that controls the correlation function exponents. 
These relations are shown to survive in non-soluble generalisations of the model with a 
non-linear fermion dispersion. It is proposed that this low-energy structure is universal 
to a wide class of 1D systems with conducting or fluid properties, including spin chains. 

1. Introduction 

This paper is the first in a series that will present a general description of the low-energy 
properties of a wide class of one-dimensional quantum many-body systems, which I will 
call ‘Luttinger liquids’. The work to be described was originally motivated by the search 
for a replacement for Fermi liquid theory in one dimension, where it fails because of the 
infrared divergence of certain vertices it assumes to remain finite; these divergences 
make an approach based on conventional fermion many-body perturbation theory 
useless. However, there is a certain model of an interacting one-dimensional spinless 
fermion system, the Luttinger model (Luttinger 1963), which has been explicitly solved 
(Mattis and Lieb 1965). This solution, by a Bogoliubov transformation, in effect 
resums all the divergences encountered in perturbation theory. The excitation spec- 
trum of the diagonalised model is described in terms of non-interacting boson collective 
modes. 

The feature of the Luttinger model that allows its solution is its exactly linear fermion 
dispersion. What will be demonstrated in this paper is that correction terms representing 
non-linearity of the fermion dispersion can be added to the model, and give rise to 
non-linear boson couplings between the collective modes. A boson many-body pertur- 
bation expansion in these terms is shown to be completely regular, so the Bogoliubov 
transformation technique that solves the Luttinger model is shown to provide a general 
method for resumming all the infrared divergences present, at least in the spinless 
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Fermi gas. The name ‘Luttinger liquid’ has been chosen to reflect the idea that such 
systems have a low-energy excitation spectrum similar to the Luttinger model spec- 
trum, but with interactions between the elementary excitations. This resembles the 
relation’ between the Fermi liquid theory and the soluble model on which it is based, 
the free Fermi gas. 

This paper is perhaps the most technical of the planned series. It sets up the essential 
machinery for working with the Luttinger model and its generalisations, and uses it to 
discuss the effects of a non-linear fermion dispersion. The previous treatments of the 
model in the literature are often ambiguous on certain points, and there has been a 
certain amount of confusion, particularly associated with the role of cut-offs. I have 
therefore aimed to present a completely self-contained and precise treatment of the 
original Luttinger model, in particular emphasing the key role played by charge and 
current excitations (as opposed to collective density wave modes) which have in general 
been neglected in previous treatments. It was attention to these details that allowed the 
identification of a key part of the underlying structure of the solution that proved to 
remain valid in the ‘Luttinger liquid’ generalisation, with applications to be described 
in future papers. 

The characteristic properties of a ‘Luttinger liquid’ that have emerged are: (i) a 
conserved charge; (ii) a characteristic ‘Kohn anomaly’ wavevector ‘2kF’, varying linearly 
with charge density; (iii) persistent currents at low temperatures, quantised in units that 
carry momentum 2kF; (iv) a spectrum of collective density wave elementary excitations, 
with a dispersion linear in 141 at long wavelengths that defines a sound velocity US; (v) 
two additional velocities, uN and UJ, associated with charge and current excitations, 
obeying us = (uNuJ)ln; (vi) power-law decay of correlation functions at T = 0, with 
coupling-strength-dependent exponents that depend only on exp( -2q), where 
uN = us exp( -2q)  and uJ = us exp(2q). It should be emphasised that this means that 
exp( -2q) is a measure of the essential renormalised coupling constant, and can thus be 
obtained from knowledge of US and the change of ground state energy with charge, 
which gives UN. 

1D systems with this Luttinger liquid structure so far identified include: (a) interacting 
spinless fermions; (b) interacting spin-) fermions (and those with higher internal sym- 
metries; (c) the Bose fluid (including systems with internal symmetries); ( d )  the finite- 
density gas of solitons of the Sine-Gordon theory; ( e )  uniaxially anisotropic spin systems 
(the ‘charge’ here is azimuthal spinfiantiferromagnets (only in the case of finite azi- 
muthal magnetisation in the easy-axis case) and ferromagnets (easy-plane only). For 
many of these classes there exist models exactly soluble by the Bethe ansafz (Bethe 
1930), and the Luttinger liquid structure can then be explicitly tested and verified 
(Haldane 1981). Subsequent papers will present such ‘case studies’ (see also Haldane 
1980). 

The Luttinger liquid has a characteristic instability if a multiple of its fundamental 
momentum 2kF is equal to a reciprocal lattice vector reflecting an underlying periodicity. 
For large enough values of the parameter exp( -2q), a gap opens in the spectrum, and 
the system becomes insulating. This instability can be studied in detail using the precise 
operator machinery set up in this paper, and will be the subject of paper I1 in this series. 
A universal description of the behaviour of the strongly renormalised Luttinger liquid 
near this instability emerges. The precise agreement between the predictions of this 
description and the features found in many of the ‘test case’ models solvable by the 
Bethe ansatz will provide strong evidence for the universality of the ‘Luttinger liquid’ 
description. 
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The organisation of this paper is as follows. To avoid confusion, it deals only with 
the spinless form of the model. The necessary generalisation to spin4 fermions, and 
from these to the Bose fluid and spin systems, will be dealt with in subsequent articles. 
In 0 2 there is a brief introduction to specifically one-dimensional features of the Fermi 
gas. Section 3 contains the bulk of the technical development, and describes the structure 
of the non-interacting Luttinger model. The machinery set up in § 3 leads quickly to the 
solution of the interacting-fermion Luttinger model in § 4. Section 5 uses the machinery 
to discuss the effects of a non-linear fermion dispersion. Finally, 9 6 summarises the 
results, and formulates the hypothesis that the ‘Luttinger liquid’ structure is universal 
to conducting spinless fermion systems in 1D. 

2. The one-dimensional Fermi gas 

Fermion systems in one dimension have features quite distinct from those in higher 
dimensions. This is because the one-dimensional Fermi surface consists of two discrete 
points, while in higher dimensions it is continuous. The special spectral structure result- 
ing from this can be seen by examining the full spectrum of excited states above a ground 
state with Fermi wavevector kF. Figures l (a)  and (b )  show the single-particle dispersion 
(and ground state occupancy) and the particle-hole pair spectrum of the (spinless) 1D 
Fermi gas with periodic boundary conditions on a length L. The distinctive one-dimen- 
sional feature of the pair spectrum is the non-existence of low-energy pairs for 
0 < Ik/ < 2kF;  in higher dimensions this region of ‘missing’ states is filled in. The full 
spectrum of excited states with zero excited charge (with respect to a ground state with 
odd charge NO = kFL/n) is obtained by using figure l (b)  to determine the allowed 
energies of multiple-pair states, and is shown in figure l(c). 

I 
I n )  

-6kF -4kF -2kF 0 2kF LkF 6kF 
I C )  

Figure 1. (a) Single-particle spectrum of the free Fermi gas in 1D; ( b )  Particle-hole pair 
spectrum; (c) full zero-charge (multiple particle-hole) excitation spectrum (energy differ- 
ences E(n) = 2nv~n’IL of extrema1 states at k = 2nkF greatly exaggerated). 
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At low energies E < uFkF, where U F  is the Fermi velocity de(kF)/dk, the spectrum 
splits up into separate sectors that can be labelled by an even integer J, and can be 
described as excitations about a set of extremal states with momentum kFJ. These states 
have an energy ~ ( ~ / L ) v ~ J * ,  and this quadratic energy dependence (valid for energies 
<<uFkF) is shown on a greatly exaggerated scale in figure l(c). The spectrum of excitations 
with non-zero but even values of extra charge (N - No) is similar, but with kF replaced 
by (kF + n(N  - No)/L) ,  and the addition of a term i ( n / L ) o ~ ( N  - No)* to the energy. The 
spectrum of excitations with odd values of (N - NO) differs only in that extremal states 
correspond to odd values of J .  The form of the excitation spectrum suggests that at low 
energies it can be described by linear boson (‘sound wave’) excitations about the extremal 
states labelled by integers N and J. Such a classification breaks down at higher energies 
not only because of the non-linearity of the electron dispersion, but also because there 
is no longer any unambiguous operational way of assigning the quantum number J .  

These observations can be summarised by the hypothesis that the low-energy spec- 
trum can be represented by the form (where biare boson creation operators) 

where qLI2n = +1, *2, . . . ; N and J are integers, subject to the selection rule (for 
periodic boundary conditions) 

(-1)J = -(-1)N. (2.3) 

(2.4) 

The parameters are identified as 

V S  = U N  = U J  = UF, 

where uF is the Fermi velocity. Such a spectral form is obviously compatible with the 
above discussion, but only has the status of a plausible hypothesis until it has been 
verified that it gives the correct multiplicity of states. This can in fact be verified, as is 
shown in the next section, by examination of the non-interacting Luttinger mode l ,  for 
which the spectral form (2.1)-(2.3) holds exactly at all energies. 

Though the three parameters U S ,  U N  and U J  are all equal to the Fermi velocity in the 
case of the non-interacting Fermi gas, they describe quite distinct properties of the 
spectrum. It is thus natural to wonder whether in fact interacting gapless fermion systems 
also have a low-energy spectrum described by (2.1)-(2.3), but with renormalised and 
unequal values of the three velocity parameters U S ,  U N  and uJ. This can in fact be 
confirmed by the study of the interacting Luttinger model  (described in 0 4, which is 
explicitly soluble. Though it has the feature that US, U N  and V J  are no longer equal, they 
are not independent, and their ratios are determined by a parameter that characterises 
the essential interaction strength and low-energy physical properties such as the asymp- 
totic forms of the various correlation functions. I will argue that these relations, together 
with the spectral form (2.1)-(2.3) are universally valid for the description of the low- 
energy properties of gapless interacting one-dimensional spinless fermion systems. The 
assignment of different values to the parameters US, U N  and V J  in this ‘Luttinger liquid 
theory’ will be analogous to the assignment of different effective masses to the quasi- 
particles for the characterisation of different physical properties in Fermi liquid theory, 
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3. The Luttinger model and its solution: I. The non-interacting limit 

3.1. Historical development 

The Luttinger (1963) model is an exactly soluble model of interacting fermions in one 
dimension with the following key features: 

(i) its elementary excitations are non-interacting bosons; 
(ii) the mean fermion current j is a good quantum number; 
(iii) all its correlation functions can be explicitly evaluated. 

The complete solubility of this model only emerged over a period of a decade; because 
the resolution of certain ambiguities in versions of the solution developed in the literature 
over this period turned out to be a key step in the work reported in this series of papers, 
I will merely cite some of the key papers in the literature, and then present a detailed 
version of the solution without further reference to its historical development, 

The model was proposed by Luttinger (1963), but this first step in its correct solution 
was taken by Mattis and Lieb (1965), who discovered the free boson elementary exci- 
tations. Soon after, Overhauser (1965) pointed out that these bosons could be used to 
construct a complete set of eigenstates. Theumann (1967) and Dover (1968) gave early 
calculations of the single-particle correlation function, but the systematic calculation of 
correlation functions became trivial after the simultaneous discovery of the existence of 
a simple representation of the fermion operators in terms of the boson fields by Mattis 
(1974) and Luther and Peschel(1974). In fact, these fields are not on their own sufficient 
for the full construction of fermion operators in the diagonal basis, and both these early 
forms have problems associated with the characterisation of q = 0 modes. In particular, 
Luther and Peschel(l974) introduced a certain cut-off parameter Lvin their version, with 
the stipulation that it only became an exact operator identity in the limit a-+ 0. The 
necessity for any such limiting procedure has been entirely eliminated in the exact 
formulation reviewed below. The first completely precise formulation in the solid-state 
literature (though from a field-theory viewpoint) was given by Heidenreich et a1 (1975), 
though there has been an entirely parallel development in the field-theoretical literature 
on the related ‘massless Thirring model’ which I will not review here. The first construc- 
tion of the important unitary charge-raising operators in terms of the bare fermions was 
apparently given by Haldane (1979). An important paper essentially parallel to, but not 
part of, the above developments is that of Dzyaloshinskii and Larkin (1973) who studied 
the spin4 version of the (originally spinless-fermion) model, and provided an interpret- 
ation of the Mattis-Lieb solution from the point of view of conventional many-body 
diagrammatic perturbation theory. Similarly, Everts and Schulz (1974) have shown 
how the power-law character of the correlation functions can be simply recovered by 
the standard equation-of-motion techniques. Below, I give a description of the spinless 
fermion form of the model; the simple extension to the spin-b case will be discussed 
elsewhere. 

3.2. The fermion description 

It is useful to begin a discussion of the Luttinger model by characterising its Hilbert 
space: this is not the usual electron Hilbert space, but has been expanded to include a 
branch of ‘positron’ states as well. This second, unphysical set of fermions will require 
high energies for their excitation, so will not qualitatively affect low-energy properties, 
but are absolutely necessary for the construction of the new basis of eigenstates given 
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here. Note that definition of the Hilbert space does not require any precise specification 
of the electron and positron dispersions, only that these energies are bounded below, 
and increase without limit as the momentum I kl+ W .  The model is defined on a finite 
ring of length L;  only periodic fermion boundary conditions will be considered. It is 
then useful in developing the formalism to take the ground-state charge NO = kFL/n  to 
be odd, so the ground state is non-degenerate (this restriction is eventually dropped). 
The Hilbert space worked in is spanned by the set of finite-energy eigenstates of the free 
Luttinger model, measured from a ground state with electron states from -kF to k~ 
filled, and all positron states empty. 

A correct definition of the Hilbert space is required before any operator acting in it, 
such as the Hamiltonian, is defined. It gives meaning to ‘operator identities’ such as 
a = 8, shorthand for (alAIP) = (a/BIP) for all la), Ip) forming a set that spans the 
Hilbert space. Operators are only well defined if (ala 1P) is finite for all a, /3; the problem 
of ill-defined operators does not arise in finite-dimensional Hilbert spaces such as in 
lattice systems, but problems can arise with infinite-dimensional spaces arising from 
continuum problems. This type of problem flawed Luttinger’s original solution of the 
model. One standard way to ensure all operators worked with are finite is to consider 
only quantities that are normal-ordered in a set of creation operators that create excited 
states out of the ground state. 

Instead of working directly with charge +l  electron states, and charge -1 positron 
states, it is useful to describe the Luttinger model in terms of charge +1 ‘right-’ and 
‘left-moving’ fermions labelled by p = * 1 (note that this label should not be confused 
with a momentum label, for which k is used here). The kinetic part of the Luttinger 
Hamiltonian is then given (using units where h = 1) by 

@ = UF E (pk - kF) ( n k p  - ( n k p ) O )  ( n k p ) O  = B(kF - p k )  (3.1) 
kP 

where :( ...) : means fermion normal-ordering with respect to the ground state of (3.1). 
The term kF is essentially a chemical potential to fix the ground state charge. The 
spectral diagrams corresponding to figure 1 for the non-interacting Luttinger model 
(3.1) are shown in figure 2. The fermion field ~ & ( x )  is given by 

The limiting procedure E-+ 0’ is usually left implicit, but has been explicitly included 
here to emphasise the similarity with a analogous construction that will appear later. It 
is necessary for the definition of the periodic delta function generated by the anticom- 
mutation relations: 

m 

where z = exp(2Jciu/l), and allowed k-values in the sum satisfy exp(ikl)  = 1. 
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h 

-bk ,  -LkF -2k, 0 2kF 4k, 6kF 
( C )  

FigureZ. Diagramscorrespondingto figure 1, thistime for thespectrumof thenon-interacting 
Luttinger model (3.1). Dotted areas indicate the presence of ‘unphysical’ states involving 
excited ‘positrons’. 

Note that the quantity E appears as a dimensionless infinitesimal quantity necessary for 
controlling the sums over the infinite range of values of k ,  and in no way plays the role 
of a ‘cut-off length’. 

The fundamental electron and positron fields are related to the fields v i ( x )  in a 
non-local way: in terms of the ckp, they are given by 

v t (x )  = L - ” ~  C ~ ( k p )  eikr clp 

v + ( x >  = L - ” ~  C. ~ ( - k p )  e-ikx ckp. 

kP 

kP 

- 
(3.5) 

When expressed in terms of v ; ( x ) ,  the electron field t/.~’(x) is given by 

where KCy) = ( d L )  [tan(ny/L)]-’. 

3.3. The boson description: construction from fermion operators 

A central role in the theory of the Luttinger model is played by the density operator for 
type-p fermions: 

Pqp = 7 CL +qpCkp (4  0 )  

E Np = 7 nkp - (nkp)O ( 4  = 0).  (3.7) 

Note that the subtraction of the (infinite) ground state density of type-p fermions means 
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that the q = 0 component of pqp is a well defined operator in the sense discussed above: 
this procedure is equivalent to normal-ordering in the fermion variables. The commu- 
tation relations of the pqp are 

[Pqp, P - q ' p ' l  = 4P,4M,(LPq/24. (3 8) 

This is easily established by direct evaluation of the commutator, then writing pair 
operatorsc,&ckjF as (c,&+ -(cipck'p)O) + (C$ck,p)O, where (c,&,ck'p)O dkk'(nkp)O: this guar- 
antees that operator quantities are effectively normal-ordered, and hence well defined, 
so they can be manipulated safely. The commutator (3.8) trivially vanishes when 
p # p' ;  for equal indicesp, it is given by 

6 p q q '  - o p q q '  + aqq' 

t t 
o p q q '  E 7 (ck+q-q'pckp - (ck+q-q'pckp)O)* 

((nk+qp)o - ( n k p ) O ) ;  

Being well defined, the operators OPqq, can safely be cancelled, and the remaining 
c-number term gives the RHS of (3.8). A second important commutation relation is that 
with the fermion fields: 

[Pqp, IC;w1 = a p p ,  e-'q*W;(x). (3 * 9)  

It will prove useful to define the following partial Fourier transforms: 

pF) (x )  = L - ~  E q t p q )  eiq* pqp. (3.10) 

These operators have the property that (pb-)(x))' = p r ) ( x ) ,  and that p$-)(x) 
annihilates the vacuum state of (3.1). They satisfy periodic boundary conditions, 
py)(x +L) = p$')(x). The local density ofp-type fermions, with respect to the ground 
state density, is 

4 

(3.11) 

The limiting procedure a -+ 0 is to avoid direct reference to the infinite quantity 

The commutation algebra (3.8) immediately suggests the construction of boson 
operators. For q # 0, 

4 = (2n/Llq1)1'2 N P q ) P q P  ( q  f. 0 ; q  = 2nn/L,n = k l ,  r 2 , .  . .). (3.12) 

These obey exact boson commutation relations, and have the property that aq annihilates 
the ground state of (3.1). There is no q = 0 boson mode (indeed, the form (3.12) is 
undefined at q = 0); the q = 0 mode is represented by the number operator N p ,  which 
commutes with the bosons ai.  The density operators are then expressed by 

(3.13) 

The algebra of the operators (a;, a,, N p )  that have been constructed so far is incom- 
plete: it lacks a ladder operator Up that raises the fermion charge Np in unit steps, while 
commuting with the bosons aq. The ladder of allowed values of Np has no upper or lower 
limit, so (in contrast to the case of boson or finite spin ladder algebras) the number 
operator cannot be expressed in terms of the raising operator and its conjugate lowering 
operator. The raising operator can be chosen to be unitary, U;' =(Up)+ .  Finally, the 

( V M  % ( x )  )o* 

P 

pqp = N p S p O  + (Llq1/241'2{~(pq)al; + F p q b - , ) .  
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fermion nature of the ladder operators means that U, will anticommute with U-, and 

It is useful to study the construction of the ladder operators U, in detail. It is important 
that these operators be given in a well defined form. A heuristic understanding of their 
form can be gained from the following argument. A special subset of eigenstates of (3.1) 
are those with occupations n k ,  = 6(kF + (2nN,/L) - p k ) ;  these states i{N,}) include the 
vacuum, and share with it the property that they are annihilated by a4. The ladder 
operator U, must have the property that 

U:;. 

U, IN,, N- , )  = q(p, N,, N-p) IN, + 1, N - J ,  17 = +I. -t 

A construction with this property is 

2 cfi,d(pk - [kF + (2Np + 1)dL]) .  
k 

Writing this in a more symmetrical form, using an integral representation of the Kro- 
necker delta function, this becomes: 

L 
U, = ~ - 1 ' 2  

#,(4 = P(a/L)N,.  (3.14) 

The ladder operator U, must also have the property that it commutes with the boson 
operators a4, or equivalently with the density operators pqp, when q # 0. The commu- 
tation relation (3.9) means that the trial form above does not have this property. 
However, it would if the operators @,(x) were modified so that 

(3.15) 

dx exp(-ipkG) exp[-i@;(x)]qj;~(x) exp[-i@,(x)l; 

[p,, @,(x)] = -i~,,@pq) e - ' V  - 6,d. 

Because this commutator is a c-number, 

[p,,, exp{-i~.$(x))] = - e(-pq) (a,,, e-'q") exp{--i@;(x)W - d q d .  (3.16) 

When q # 0, these terms exactly counterbalance the commutator (3.9), so when U, is 
given by the form (3.14) with a @,(x) that satisfies (3.15), 

[P,, U,,] = 4 J P 4 l O ~ P .  (3.17) 

The explicit construction of the quantities @,(x) is now easily given; using the property 
(3.8): 

(3.18) 
q = o  

The first term in this is just the q = 0 component of the sum, with the limit q + 0 properly 
taken, so this can be re-expressed as 

@,(x> = lim (2ninipl~) 2 e(-pq)e-iqX/q) exp[-E(jqj~/2x)l pup). (3.19) 

The limiting procedure E +  0' has been included in order to properly define the sum in 
much the same spirit as in equation (3.3), and it will be needed to properly define the 
periodic delta function. E is a positive dimensionless infinitesimal, and in no way should 

[p,, exp(-i@,,(x>>] = - e ( p w , , ,  e-iqx) ex~{--i@,(x)}U - &), 

@,(x> = ( 2 n p / ~ )  iXxivp + i c 6(-pq)(e+x/q)pqp). 

E+ o+ ( 4 

t q depends on the ordering convention used in constructing / { N p } ) .  
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be interpreted as a cut-off length, despite the formal similarity to the length parameter 
a introduced by Luther and Peschel(l974). The field @,(x) is easily found to have the 
following properties: 

V@p(X> = 2 W - ) ( x )  (3.20) 

[@p(x), @&’)I = [@XX>, @;,(x’)l = 0 ;  

[@,(x), @(x’)] = lim {b,,(-ln(I - e - * Y  ’ p ) ) ) }  (3.21) 

where z = exp(in(x - x’)/L). @,(x) has the property that it annihilates the vacuum state 
of (3.1); this is easily seen when @,,(x) is written in terms of N, and a4: 

(3.22) 

This means that the operator U, defined by (3.14) plus (3.19) is normal-ordered in the 
boson operators that annihilate the vacuum state of (3.1). As will shortly be seen, this 
guarantees that this construction of U, defines a well defined operator. 

It is useful to give a representation of the unitary operators U, in terms of Hermitian 
phase variables 3, = JJ, conjugate to N,: 

U, = ( - 1 ) ( W - ? q ,  U, = exp(igP); (3.23) 

E+ o* 

@,(x) = p ( n x / ~ ) ~ ,  + i X e(pq) (23t.l~ /q  1) 112 e-iqxa,. 
qi’o 

- 

[N,, J,,] = ib,,,, [e,, s,,] = [N,, N,’] = 0. (3.24) 

The prefactor (-l)(*pN-?) ensures that U, and U-, anticommute, so that the unitary 
operators Up and U-,  can commute. This choice of anticommutation factor corresponds 
to a particular ordering convention in constructing states I{N,}) in terms of fermion 
operators; other choices are possible. 

For some purposes, it is useful to introduce a local phase field e,(x): 

e&) = 8, + @,(x) + @;(x). (3.25) 

(3.26) 

It can easily be seen that pp(x) and O,(x) are canonical conjugate fields: 

[p,(x>, t),’(x’)l = idpp$ b(x - x’ +- nL). (3.27) 
n 

3.4.  Boson form of the Hamiltonian 

So far, no use whatsoever has been made of the fact that the Hamiltonian (3.1) has a 
linear fermion dispersion, and the above discussion has only depended on identification 
of its vacuum state and the structure of the associated Hilbert space. The linear spectral 
property will now be used to construct a new basis of eigenstates that will be shown to 
be complete and hence to span the Hilbert space defined by all finite-energy eigenstates 
of (3.1). The operators N, commute with (3.1), but ai  and U, do not: first note the 
commutator of the density operator with the Hamiltonian: 

[@, Pqpl = uFPqPqp* (3.28) 
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With this, the definition (3.12) of the boson operators u4 leads to 

[@, ai] = V F  141 a:. (3.29) 

Instead of attempting to directly evaluate the commutator [p ,  U,], I use the following 
argument: the special set of states i{Np}) can be constructed from the vacuum by acting 
on it with U,: 

(3.30) 

this is verified by explicitly showing that Up as constructed indeed has the property 
UPIN,, = q /Np  + 1, Np).  Becausea, annihilates the states l{Np}), (3.22) implies that 

u,I{N,>) = ~ - 1  j L  d~ exp[i(k -pkF)x] exp[-i4i(x)lcip e x p [ - i p ( m / ~ ) ~ , ]  I{N,}) 

IW,}) = 2 rI ( ~ p > N p l o ) ;  
P 

k O  

P 

The Kronecker delta ensures that no states containing boson excitations survive in this 
sum, and (3.30) is verified. 

The energies of the eigenstates I{N,}) are easily obtained by examining their con- 
struction: E({Np}) = u ~ ( n / L )  2p(Np)2. A larger set of eigenstates is obtained by acting 
these with the boson operators: 

(3.31) 

In its action on these eigenstates, the Hamiltonian is given by 

~0 = u F  [ c 141 .:a4 + ( ~ I L )  C: ( ~ ~ 1 ~ 1 .  (3.32) 
4 P 

This can be written in terms of the phase fields Op(x) as 

(3.33) 

where boson normal-ordering is implied. The momentum operator is similarly given by 

P = C p[kF + (~/L)N,]N, ,  + C: qag ,  (3.34) 
P 4 

(3.35) 

The question arises: are the eigenstates (3.31) a complete set? If so, U, is proved to be 
a well defined operator, and (3.32) and (3.34) have the status of identities in the full 
Hilbert space based on the vacuum of (3.1). The possibility of two such different sets of 
eigenstates of the free Luttinger Hamiltonian (3.1) arises because of the high degree of 
degeneracy of the spectrum due to the linear dispersion: all eigenstates with even (odd) 
fermion charge N - No have energies that are even (odd) multiples of nuF/,!, with respect 
to the ground state. One way to check the completeness of the set (3.31) is to directly 
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investigate the degeneracy of states at a given energy. An equivalent, more elegant, 
way is to compute the grand partition sum of the Hamiltonian at arbitrary inverse 
temperature /3, first using the ‘obvious’ set of fermion excitation states, then the set 
(3.31). This is a sum over positive definite quantities, so if any states were missing from 
(3.31), the result of the second calculation would be less than the first. 

Defining w = exp( -pnu~/L) ,  the direct evaluation of the partition function using the 
free fermion basis gives 

m 

Z(w) = ( n = l  rI (1 + w2n-1 1 lZ. 
Using the set (3.31), one obtains 

m m 

2n -l)’( .(“2))’ Z(w) = ( n = l  r I (1 -  w ) m = - m  

(3 .36~)  

(3.36b) 

These apparently different expressions are in fact both equal, since the elliptic theta 
function &(O; w) (Gradsteyn and Ryzhik 1965, p 921) has both a series and a product 
representation: 

m m I 

&(O; w) = w(n2) = l-I (1 + W2n-1)*(1 - W2n). 
n = - m  n = l  

The set (3.31) is thus complete, and spans the full Hilbert space. 

3.5. Boson form of fermion operators 

With the completeness of the set of eigenstates (3.31) established, the remaining task is 
to construct the representation of the fermion operators $(x) in this basis. The ground 
work has been laid: vj(x) is trivially obtained by inverting the expression (3.14) for U,: 

vi(.) = L-1’2 exp(ipkFx) {exp[i@.%)l up exp[i@,(x)l) 

= ( - I ) ( ~ ~ - P ) L - ” ~  exp(ipkFx) {exp[iq$(x)] exp(ii7,) exp[i@,(x)]}, (3.37) 

where GP(x) is now defined directly by (3.22). This is an explicitly well defined operator, 
since it is normal-ordered in terms of the bosons ag. The anticommutation relations can 
be explicitly verified; here the limitingprocedure defined in (3.19) and (3.21) is required: 
the procedure is to construct the anticommutators, and then re-normal-order the result- 
ing products in terms of the bosons, so they become explicitly well defined operators 
that can be manipulated and cancelled. The anticommutation of fields with different 
labels p is trivially assured by the anticommuting properties of U p ;  for equal p ,  the 
anticommutator {y$(x), qj(x’)} is given by 

L-’ exp[ipkF(x + x‘)] exp[ibl(x, x ’ ) ] ~ ;  exp[iOl(x, x ‘ ) ] ~ ~ ( x ,  x ’ )  

&(x,x’> = @&) + @p(X’) 

F ~ ( x ,  x‘) = G ~ ( x  - x’) + Gl(x‘ - X) 

GI(. - x’) = exp[iq(x - x‘)/L] exp{-[@,(x), @i(x‘)]}. (3.38) 

The c-number function Fl(x, x’) is multiplying a well defined (i.e. normal-ordered) 
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operator expression. Fl(x, x’) can be evaluated using equation (3.21): setting z = 
exp[in(x - x‘)/L], 

F~ = lim (zP(1 - e-*%- 2p) + Z-P(I - e-’&z2p)} = 0. (3.39) 
&’Of 

G2(x - x’) = exp[ip(x - x’) /L]  exp(+[Gp(x), @6(x‘)]}, (3.40) 

Again this is a normal-ordered operator expression, times a c-number function F2(x,  x’). 
Again using (3.21), 

(3.41) 

whenx - x’ = nL, the operator-valued expression that multiplies F2 in (3.41) takes the 
simple c-number values L-’ exp( -inpkFL) = L-’( - 1)“. The anticommutator is thus 
correctly given by the periodic delta function as in (3.3). 

This completes the derivation of the operator algebra needed to describe the model 
using the alternative basis set of eigenstates (3.31). This algebra is a precise tool, and I 
now use it to recover the expressions (3.32) and (3.34) for H“ and P directly from the 
fermion representation (3.37). Consider the quantity 

i,” dx exp(-ipkFa) qi(x + ia)vp(x - ha). (3.42) 

Using the expression (3.3) for %(x), this is easily found to be 

w ~ P ’ ) - ’  + 7 e x p ~ k  - pkF)a] (nkp - (nkp)o) (3.43) 

where a’ = (L/n)sin(na/L). Using the alternative expression (3.37), and then normal- 
ordering, it is found to be 

@,(XI = i 2 ( 2 x 1 ~  /q/)1’2 e-’qXo(qp) 2 sin(.iqa)a,. 

2 b k  - kF) (nkp - (nkp)O) = (n/L)N; + EPq8(qp)a&q. 

(3.44) 
4 

Cancelling the divergent t e m  L(2nipa’)-’ and comparing the term O(a) in the expan- 
sions of the two expressions, one directly obtains 

(3.45) 
k 4 

The expressions for H“ and P are now trivial to obtain. 
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3.6. The charge and current formalism 

So far, the formalism has been developed in terms of operators labelled by p = +1, 
corresponding to the right- and left-going fermions. It is convenient for some purposes 
to introduce the symmetric and antisymmetric combinations, labelled by N andJ  respec- 
tively, which will be related to charge and current variables. It is also useful to include 
the ground state electronic charge (number of electrons minus number of positrons) 
NO = kFL/nin the charge variables. The following combinations are defined: 

Phase fields ON(x> and @(x) are then defined by, e.g., 

ON(X) = e, + @ N ( X )  + @L(X). 
The following relations are found: 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

[pN(x), edx’)] = [pJ(x>, eJ(x’)l = i X 6 ( x  - x’ + n ~ )  ; (3.52) 
n 

[PN(X) ,  M X ’ > l  = [PJ(X), 6&’>l = 0. (3.53) 

The fields (pN(x), eN(x)) and (pJ(x), e&)) are canonically conjugate pairs. Note however 
that [pN(x) ,  pJ(x’)] and [OJ(x), eN(x’)] do not vanish, except at equal positions, x = x ’ .  
On the other hand, [eN(x), eN(x’)], [ p ~ ( x ) ,  pN(x’)], etc, do vanish. 

When the quantities pN(x), @N(x), etc are expressed in terms of boson variables, they 
are explicitly given by 

pN(x) = (NIL)  + X ( / q 1 / 2 n ~ ) ~ ’ ~  e+ (a; + a-,) 

@ N ( x )  = ?G(J/L)X + i X ( 2 n / ~  jq 1) 

pj(x) = (J /L)  + C, (/41/2n~)~’* sgn(q) eiq*<a; - a-4) 

4 

4 

4 

~ ~ ( x )  = ~ ( N / L ) X  + i X ( 2 n / ~  / q / ) 1 ’ 2  sgn(q) e-iqxaq. (3.54) 
4 

Note how sgn(q) characteristically appegs in the boson part Of J-labelled quantities. 

raise Nand J by one. In this basis, the fermion field operator qi(x)becomes 

qi(x) = L-*(-l>*’PJ-“(exp[~i@~~ + 

The commuting unitary operators UN = exp(igN) and U J  = exp(igJ> respectively 

exp[ii@SJ + SN)] 

x eXPw@@J + @N)1). (3.55) 

The dependence on kF has been absorbed into the definition of @J(x). 
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The Hamiltonian takes the form 

@ = OF (C (41 a 2 q  + :(JdL) ( ( N  - No)2 + J T )  1 ( -1 )J  = -( -1)N; (3.56) 
4 

P = [ k ~  + n ( N  - No)/L] J + I3 qa&, kF = nNdL.  (3.57) 
9 

This is just the form postulated in 0 2. The selection rule linking allowed values of J and 
N arises because N, and N-, are both integral. 

In the phase field variables, the Hamiltonian can be written 
L 

H = o F i  \ dx :(vedx)>2 + (vedx))2: 
n 0  

P = - :veN(x)veJ(x): + HC. (3.58) 

Since p ~ ( x )  = (2n)?t)-1V6~(x) is the canonical conjugate to e,&), and pJ(x) to e J ( x ) ,  the 
Hamiltonian (3.58) can be written as a Klein-Gordon field Hamiltonian in either the N 
or the J variables. The periodic fermion boundary conditions that must be satisfied by 
(3.55) imply that exp[iON(x + L)]  = exp[ieN(x)], etc, so BN(x + L )  = 2nd + ON(x + L ) ,  
and OJ(x + L )  = 2nN + The quantum numbers N and J thus can be related to 
topological excitations of the phase fields e.&) and e&), while the bosons relate to 
their small fluctuations. 

The physical interpretation of the quantum number N is simple: it is just the total 
electronic charge (electrons minus positrons). Similarly, it will now be shown that J is 
proportional to the mean current. It would be tempting to identify pN(x) with the local 
charge density operator p ( x ) ;  unfortunately, this is not correct, due to the non-local 
relation between the electron field and $ ( x ) .  The fundamental definition of the local 
electronic density in terms of the electrons and positrons leads to 

n0 I L  

At low energies, the extra term z(x) involves only fluctuations with q - 2kF. The fund- 
amental definition of the current j ( x )  is through the continuity equation for local charge: 

(3.60) 
d - p(x) =_ i[H, p(x)]  = V j ( x ) .  
dt  

The mean current j is then given by 

pq being the Fourier transform of p(x).  In a low-energy subspace, and provided kF is 
finite, the contribution from z(x) can be neglected, and p , ~  substituted for p4 in (3.61). 
Then it is easily found that 

j = UF(J/L).  (3.62) 

Actually, this is exact in the case of the free Luttinger model, but in a more general 
model extra terms will be present, and a linear relation like (3.62) will only be valid in 
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a low-energy subspace, where the presence of long-wavelength boson excitations does 
not affect the current. 

Finally, I note a useful low-energy, finite k~ approximation for ~ ( x ) :  
4x1 - 22 v;(x)v-P(x)* (3.63) 

P 

4. The Luttinger model and its solution: 11. The interacting model 

The full Luttinger model is obtained by taking the kinetic term (3.1), (3.32) and adding 
the fermion two-particle interaction: 

H1 = (x/L) 2 (Vl@pp, + V2qSp,-p')P*pP-qp'. (4.1) 
PP '4  

The density operators pqP are defined by (3.7) and (3.13). The coupling constants 
Vl, E Vl(lqlR) and V2q V2(lqlR) have dimensions of velocity. They will be required 
to satisfy the following conditions: 

(i) Vl(O), V2(0) are finite; 
(ii) v2q/(UF + v',) 
(iii) (Vzql < (uF + VI,) for all q. 

o as 141 + CQ, faster than lql-*; 

Conditions (i) could be relaxed somewhat, but this would alter the physics of the model. 
Conditions (ii) and (iii) are necessary to ensure that the Hilbert space of the model 
@ + H' remains the same as that of @. The conditions (i) and (ii) imply the existence 
of some length scale R that controls the crossover from the small-q to large-q regimes. 
The inclusion of this length scale in (4.1) means that V I  and V2 can be written as functions 
with a dimensionless argument. R is an effective range of the interaction in real space. 

uF/R) form of the 
Hamiltonian can be written 

Using the phase-field formalism of $3.6 ,  the low-energy ( E  

where 

It is also useful to define the quantities 

Then the quantities us and ~3 are defined by 

us = lim (oq//ql); 
4-0 4-0 

The definitions (4.2)-(4.5) imply the relations 

~3 = lim ( ~ 3 ~ ) .  

U N  = v s  exp( -2~3); U ]  = U S  exp(2~3). (4.7) 
It will be convenient to represent qg as rpg(lqlR), where the function g(y) has the 
properties 

g(0) = 1; y1I2g(y)+O as y +  CQ. (4 * 8) 
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The conditions (i)-(iii) assure this, and also that q4 is finite, w4 is positive definite (except 
at q = 0) and uN,  uJ are positive definite. The model is fully parametrised by L ,  kF, wq, 
and q4 (or q, R and g(y)). R has not been defined up to a multiplicative factor: it 
should be chosen so the crossover in g(y) is around y - 1 (a unique definition might be 
provided by demanding that (g(y))’ is normalised, for example). 

When the full Hamiltonian @ + H1 is written out in terms of a4 and the number 
operators N ,  J ,  it takes the simple bilinear form 

H = - & ( x U F I q / )  + $ ( d L ) ( U N N 2 + U J J 2 )  
4 

-+ a 2 141 [(VF $’ VIq)(a&a, + a&:) + V2q(agt_q + a&-4)]- (4.9) 
4 

This is trivially diagonalised by a Bogoliubov transformation. The new ground state is 
given by 

I G S )  = exp[ - (A’LIR)] exp tanh( qq)a&t,) IO, O} 

For the ground state to belong to the Hilbert space of @, the normalisation constant 
must be finite; this means that the limit R --$ 0 cannot be taken. The condition (4.8) 
assures that the constant A2 is finite. 

bi = cosh(q4)ai - sinh(q4)a-, = 2 a(pq, -q4) pqp 

4 q ,  Qlq) = (2rl’L 141)”2[w cosh(q4) + e(-q)s iwq,) l .  

The diagonalised Hamiltonian is given by substituting these into (4.9): 

The Hamiltonian is diagonal in terms of the new boson operators 

(4 f 0); (4.11) 

(4.12) 

P 

H = Eo + 2 wsb:b, + a(dL)  (U”’ + v J ~ ,  

Eo = & (04 - U F  191). (4.13) 

The ground state energy shift EO may well be divergent if o4 does not tend to V F  141 fast 
enough as 141 4 CO; however, in contrast to the case of a divergence of the ground state 
normalisation parameter A’, this divergence is subtractable, and causes no problems. 
The form of the momentum operator remains essentially unchanged: 

P = [kF + n(N/L)]J + qb;bq. (4.14) 

The relation between the ‘true’ Fermi momentum [kF + n(N/L)]  and the total charge N 
is unaffected by the interactions. 

In addition to the total charge N with respect to the ground state remaining a good 
quantum number, the current quantum number J is also conserved. This reflects an 
invariance of the Hamiltonian, under which it is unchanged by independent global gauge 
transformations of the ‘right-’ and ‘left-moving’ (‘clockwise’ and ‘anticlockwise’) fer- 
mion fields lyp(x),p = t l .  The density operators pqp are given by 

4 

4 

4 

Pqp = 1(N + PJ) 640 + (L 14//2Jt)[a(Pq’ + a(-qp7 91Jb-41, 

[H,  P4P1 = P sgn(q)w,[cosh(2Ql4)p, - Sinh(2qq)Pq -PI]. (4.15) 
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Following the arguments of (3.60)-(3.62), the mean currentj is given by 

(4.16) 

From (4.7) the mean current is found to be j = VJ(J/L); vJ thus plays the role of the 
renormalised Fermi velocity for fermion currents, as well as controlling the energy of 
2 k ~  excitations. Note that it is somewhat unphysical for VI and V2 to differ: if they are 
set equal, as would be the case if the model was derived as an effective Hamiltonian for 
a model where only the total charge density was coupled, uJ remains equal to the bare 
value u ~ d u e  to the kinetic term, and is not renormalised. 

It is now necessary to transcribe the fermion field vp(x) (3.37) into a form normal- 
ordered in the new basis. First the definition of the quantities Qp(x)  (3.22) must be 
generalised: 

(4.17) Q~P(X, qq) = p ( n x / ~ ) ~ ~  + i IC, abq, -qq) e-'qxb,; 
q + o  

note that the phase field OP(x) is still given by 

eP(x> = 3, + Q P b ,  Yq) + QXG q q )  (4.18) 

independent of qq. Then the fermion field is given by 

q&) = e-'L-vRy-1'2 exp(ipkFx) exp[i&(x, q p ) ] U p  exp[iQp(x, qq)] (4.19) 

where v = 4 cosh(2q), and the cut-off-dependent constant A(cp, g(y)) and a similar 
quantity g are given by 

m 

E' o+ 
C + In( d2n) + 1 dy y-l2 sinh2(qg(y)))] , 

- 
B = lim [ -sinh(2q) ( C  + ln(d2n) - dy y-' sinh(2qg(y)))] ; 

E+ 0' 
(4.20) 

(C here is Euler's constant). 

Al(u) = Al(u; qg(,v')) and &(U): 
It is also useful to define two cut-off-dependent and q-dependent functions 

Al(u) = [ dyy-' sinh2(qg(y))[2 ~ i n ( b y > ] ~ ,  

BI(u) = -4 lm dy y-' sinh(2qgCy)) [2 sin(4uy)]*. (4.21) 

The even functionsAl(u) and Bl(u) vanish as U +O; for large 1 ~ 1 ,  they behave as 

Al(u) -x + 2 sinh2(q) ln(2nIul) + O(~U\- ' ) ,  

&(U) - B - sinh(2q) ln(2n/u/)  + O(lul-'). 

Together with 2 and g, they vanish in the non-interacting limit q-+ 0. 

- 
(4.22) 

These quantities characterise the commutation algebra of the quantities @&x, qo), 
which I henceforth write as $p(x ) ,  suppressing the explicit dependence on qq: in the limit 
La., 
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[ ~ ~ ( x ) ,  r$(x’)] = lim {-ln[l - e-*&exp(-2nip(x - x’)/L)]} 
E-+ n+ 

-Al(d(x - x ’ ) / R )  + - 2 sinh2(q) ln(R/L), 

[@&), @f-,(x’)] = -Bl(d(x - x ’ ) / R )  + B + sinh(2q) ln(RIL). (4.23) 

Here d(x) E (Lln)t)sin(mlL)I is the chord distance between points with separation x 
along the circumference of the ring of length L. 

The necessary mechanism for calculation of correlation functions has now been 
established: the desired quantity must be constructed in terms of the fermion operators 
(4.19), and then manipulated into normal-ordered form in boson variables. The limit 
L --.) CO can then be taken. As anexample, the electronsingle-particle correlation function 
is easily constructed (using (3.5) to construct the electron field in terms of V p ( x ) ) ;  the 
finite-temperature terms are easily evaluated using the familiar property that (exp(abt) 
exp(db)) = exp(ad(btb)) if H = wb’b: 

(V+(x)V(o)>r=n = ( ~ F / J G )  [sin(k~x)@~x)] exp[ -A i(lx VR)] ; (4.24) 

F(x)  = Im dq 4-l [exp(@w,) - 11-l cosh(2q,) [2 sin(+qx)l2 
0 

(4.25) 

At T = 0 the familiar free-electron result is reduced at large separations by a factor 
e ~ p ( - A ) / 2 m l R 1 ~ - ~ ” .  At low but finite temperatures T 4 us/R, it is further reduced at 
separations 1x1 % vs/T % R by a factor exp(-2vlxlg), where 5 = (usnT) .  Note that when 
models with the same sound velocity U S  are compared, the single-particle correlation 
function of the interacting model is always reduced below that of the free model. 

The recipe for such calculations of correlation functions was first given by Luther 
and Peschel (1974). The calculation is easily extended to give the dynamic correlation 
functions, as shown by these authors. In table 1 I summarise the low-energy properties 
of the spinless fermion Luttinger model, and list the static single-particle, density, and 
pair correlation functions. In the Luttinger model itself, the linear relation (3.6) between 
the electron field V(x) and the fields qp(x) means that the single-particle correlation only 
has a kF oscillatory component, while the density and pair correlations only have 0 and 
2 k ~  components, just as in the case of the free Fermi gas. However, in a more general 
model where J is not strictly conserved, interaction effects will give rise to additional 
periodic components with extra multiples of 2 k ~  in the period. For example, in addition 
to the two components Vi(x) and V$,(x) making up the operator representing the 
electron field ?‘(x), there will be admixture of terms like Vj(x) VVj(x) V-&) which 
adds a 3 k ~  oscillatory term to the single-particle correlation function. Charge conserva- 
tion allows terms with periodicity (2m + l ) k ~  in the single-particle correlation function, 
and 2 m k ~  in the density and pair correlation functions, and the relevant terms are listed 
in table 1. 

To conclude the discussion of the Luttinger model solution, I note that the low- 
energy properties of the diagonalised model depend on five distinct parameters: u s ,  uN 
and UJ parametrise the Hamiltonian, kF the momentum operator, and q the fermion 
field operator. A fundamental result is the relations U N  -- US exp( -2q), UJ = us exp(2q), 
which were deduced from the structure of the solution. The question arises: are these 
relations fundamental, in that they can be deduced solely from the low-energy structure 
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Table 1. Summary of 'Luttinger liquid' properties of the spinless 1D Fermi gas. [VP(x) lm 
means 

Iim [ a - * m ~ m - ' ) ~ p ( ~ ) ~ p ( x  + a ) .  . . qp(x  + (m - I)a)]. 
0-0 

Higher harmonics of 2kF allowed by charge conservation, and likely to be present in a more 
general model, are also included in the list of correlation functions. The phase (cos or sin) 
of the asymptotic oscillations is also indicated. 
1. Interaction parameter (> 1 for repulsive forces): exp ( -2~)  
2. Relation of Fermi vector k~ to charge density p = NIL: k~ = n p  
3. Density fluctuation sound velocity: U S  
4. Change of chemical potential with Fermi vector: U N  E dfldkp = uSe-'P 
5 .  Fermi velocity (for currents): UJ = useZP 
6.  Asymptotic form of low-temperature correlation functions: 

- 
Correlation At(x) Luttinger model form n 11 

of the diagonalised form of the Hamiltonian, without reference to the 'bare' form of the 
model? The answer is yes: the relations (4.7) can be obtained by considering the static 
response functions of the density components Xppp4 and Zppppq; when q # 0, the cal- 
culation only involves the boson variables, and U S  and exp(-2q). In the limit q + 0, the 
results must go over into the results 1 / 2 n u ~  and l i2nu~ calculated when q = 0, and the 
relations (4.7) are recovered. 

In addition to the above five characteristic parameters, various multiplicative factors 
appear in the asymptotic form of the various correlation functions. These depend only 
on the length scale R ,  and the two constants 2 and B ;  however, in contrast to (4.7), 
the relation between these various multiplicative factors_is likely to be a model-depen- 
dent feature of the Luttinger model, as R ,  A and B depend on the high-energy 
structure of the model (i.e., the cut-off function g0.I)). 

5. Generalisation to non-soluble models: the 'Luttinger liquid' concept 

The complete solubility of the Luttinger model makes it a fascinating example of an 
interacting one-dimensional system. Nevertheless, its solubility rests on quite specific 
properties that are lost if the model is modified. However, I will argue that its low-energy 
structure still provides a model of the most important features of more general, non- 
soluble models. As an example I consider a generalisation of the Luttinger model that 
incorporates a non-linear fermion dispersion relation: 

&(kp) = UF(kp - kF) + (1/2m)(kp - k ~ ) *  + k(1/12m2U~)(kp - k ~ ) ~ .  (5.1) 
For stability reasons, it is necessary to include the cubic term: the ground state of the 
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non-interacting model is altered unless h > 9, when sgn(e(kp)) = sgn(kp); ~ ( k p )  
increases monotonically if h > 1. In general, the interacting model will remain stable for 
A greater than some positive limit hc. This modification of the model retains the feature 
that J i s  a good quantum number; though the non-linear dispersion means that the mean 
current operator j is no longer simply proportional to J ,  it remains so in a low-energy 
subspace. 

The procedure for translating this generalised Luttinger model into normal-ordered 
boson form is extremely simple. An expansion technique as in equations (3.42)-(3.45) 
can be used to transcribe the non-linear fermion dispersion terms. The general fermion 
representation (4.19) should be used, with arbitrary parameter q4. The final result is a 
boson normal-ordered Hamiltonian with quadratic boson terms that depend on N and 
J ,  plus new cubic and quartic boson interaction terms. The parameter g?,(N/L, JIL) is 
then chosen to diagonalise the quadratic boson terms, giving a Luttinger model with 
N -  and J-dependent parameters, plus irreducible boson interaction terms. The depend- 
ence of the Luttinger model parameters on N and J merely reflects the change in Fermi 
velocity for non-zero Nand J ,  so in order to show up more clearly the other new feature 
(the boson-boson interaction), I give the new Hamiltonian only in the subspace N = 
J = 0; when J # 0, the structure of the boson spectrum is slightly altered in that 
cpq(N/L, JIL) and (o,(N/L, JIL) are no longer even functions of q because the right- and 
left-travelling fermions then have different Fermi velocities. The boson part of the 
Hamiltonian has the form 

The colons :( ...) : mean boson normal-ordering. The parameters oq and qq are now 
given by modified versions of the expressions (4.4) and (4.5), where uF has been replaced 
by L~F* = U F  + (A/4m2uF) (c1 + @); the equation for qq must be solved self-consistently, 
since the constant term c1 itself depends on rp4: 

2n 
c1 = yz /q1 sinh2(qq) =A;‘(0)/RZ. 

4 

The constant c1 exists provided the large-q behaviour of the fermion interaction matrix 
elements is sufficiently good for yg(’y) to vanish as y + CQ. In fact, as will be seen, the 
requirement that the renormalisation of the ground state of the quadratic part of (5.2) 
by the boson interactions be finite imposes the stronger requirement y3g(y)  + 0 as 
y+ W .  Assuming Vl(q)  does not diverge as q+ CO,  this implies the condition 
qV2(q) + 0 as q + CQ, a slightly stronger condition than in the absence of a non-linear 
dispersion (q1”V2(q) + 0 ) .  

With the explicit construction ( 5 . 2 )  of the boson-boson interaction terms induced 
by a non-linear fermion dispersion, it is possible to construct an expansion in m-’ for the 
changes in the model properties due to the modification. This is particularly interesting 
in the case of the correlation functions: it allows the rigorous proof, at least for this type 
of generalised model, that the relations (4.7) between the spectral parameters us, u N ,  
and uJ and the parameter Q,, and the relation between Q, and the correlation exponents, 
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remain unchanged from those found in the unmodified Luttinger model. This provides 
evidence in favour of the universal nature of these relations which will be proposed in 
this paper. 

The relation between the spectral parameters is easiest to demonstrate; I give the 
form of the Hamiltonian in the subspace where no boson modes are excited: 

H(n,  = 0) = ~ ( ~ / L ) ( v N N '  + vJ2)  + (l/6m)(n;/L)2(N3 + 3NJ3 

+ (3J48m2v~) (JGIL)3(N4 + 6N2J2 + J4) ; 

UN = 'is, + Vl(0) + V2(0); V J  = UFO + Vl(0) - v2(0). (5.3) 

The relations (4.7) between U N ,  V J ,  U S  and Q, are clearly unchanged. The stability 
condition giving the lower bound Ac to allowed values of il is clearly obtained by demand- 
ing that the ground state of (5.3) has N = J = 0. A necessary condition is that U N  and uJ 
are positive definite, i.e., ;that \V2(0)/  < U F  + Vl(0) + ()3/4m*U~)cl(A) ; since c1(A) is 
positive, this is a less restrictive condition than that in the original Luttinger model with 
rn-l = 0. The condition W U F  > max(3/4uN, U U J )  ensures (5.2) has no stationary points 
other than N = J = 0, and is sufficient to guarantee stability. 

The effect of the non-linear dispersion on the correlation functions will now be 
discussed. I study the single-electron correlation function ( @"'x)q(0))T=o (4.24) dis- 
cussed earlier, as an example. Following that discussion, this is given (after a little 
manipulation) by 

(V'I)) = (kF/n), so the relation between kF and electron density is unaffected by the 
non-linear dispersion. The expectation value is of course taken in the ground state of 
the interacting boson system (5.2), and hence differs from unity when m-l is non-zero. 
A perturbation expansion in m-l can be developed; the ground state expansion is 

The normalisation constant X is given by 

X = 1 - ~ ( ~ / ~ V ~ ) * ( L / ~ ~ R ) C ~ [ ~ ( Y ) ]  + O(WZ-~) ;  

c2[qg(y)] is a positive dimensionless constant that is finite provided y3g(Y) --f 0 as 
y + CQ , as mentioned earlier: 

c2 = [ dx [ dy x- ' (x2  - y2) h(x ,  y)' 
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h(x ,  Y) = @g(x + Y)C& - Y)sg(b) + sg(x + Y M X  - y)cgPx)l (5.7) 
where cg(x) and sg(x) are cosh(qg0.l)) and sinh(qg0.l)). Note that c2 vanishes in the 
absence of fermion interactions ( Q, = 0), when there is no renormalisation of the ground 
state by the boson interactions. 

I now calculate the single-electron correlation function to O(m-’). From (5.4) and 
( 5 . 9 ,  this is given by 

F(u) = 4 ~ m & [ d y x - 1 s i n x ( c o s x  - co~y)h(x/u,y/u)~.  

The function F(u) vanishes at U = 0, and remains bounded as U+ w ;  the corrections to 
the correlation function thus do not affect the asymptotic behaviour of the correlation 
functions, Physically, this is because the factors /qillR in the interaction matrix elements 
of (5.2) kill the effects of the boson interactions at long wavelengths. The relation 
between the various correlation exponents and the parameter q is thus identical to that 
in the original Luttinger model; the value of the parameter q, on the other hand, is 
affected by the interaction terms, and varies with the ground state charge density. 

6. Discussion: the Luttinger liquid concept 

To summarise the results of this paper: it has been shown that the low-energy.excitation 
of the soluble Luttinger model of interacting fermions in one dimension consists of three 
parts: the well known collective density fluctuation boson modes, plus charge and current 
excitations, which have not previously been emphasised. Associated with these three 
types of excitations are three velocities, US, U N  and UJ, which obey the relation 
us = ( U ~ U ~ ) ” ~ .  The current of the Luttinger model is a good quantum number, and is 
quantised in units 2v~ /L ,  each unit carrying momentum 2kF. UN = dp/dkF describes the 
rate of change of chemical potential with the Fermi vector, which is unrenormalised by 
interactions, and given by the charge density, k~ = n(N/L);  U S  is the density excitation 
sound velocity. The relation between the three velocities defines a parameter q: U N  = 
V S  exp(-2q), UJ = vsexp(2q). This parameter Q, is the intrinsic renormalised coupling 
constant of the model, and determines the non-integer power laws characterising the 
asymptotic behaviour of the correlation functions. The elementary excitations of the 
Luttinger model are non-interacting, which explains why it can be explicitly solved. An 
important tool for working with the model and its generalisation is the representation 
of the fermion fields in terms of the elementary excitations: this is given here in a fully 
precise form. 

A generalisation of the Luttinger model with a non-linear fermion dispersion, but 
where the current quantum number J is still conserved, was considered here. It was 
shown that the characteristic low-energy structure of the Luttinger model was preserved, 
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including the relations between its velocities and correlation exponents, but that its 
renormalised parameters now depend on the position of the Fermi level, and non-linear 
couplings appear between the elementary excitations. 

On the basis of this demonstration that this structure remains valid in a much wider 
class of models than the Luttinger model itself, I will propose that it is generally valid for 
conducting spinless fermion systems in one dimension. For full generality, it is necessary 
to consider models where the current quantum number J is no longer a good quantum 
number: this will be done in the next paper in this series. What emerges is that unless a 
multiple of the fundamental wavevector 2kF is some multiple of a reciprocal lattice 
vector reflecting an underlying periodicity of the system, momentum conservation 
eventually inactivates a non-J-conserving term at low energies (though such terms will 
give rise to renormalisations of the low-energy spectral parameters), and the low-energy 
structure is again of the form described here. If 2kF = (n/m)G, this remains valid 
provided exp(-2q) is less than a critical value 4m2, above which an instability against an 
insulating pinned charge-density-wave state occurs. If such Umklapp processes are 
present, but exp(-2rp) < +m2, there is a characteristic non-analytic scaling dependence 
of the renormalised exp(-2q) on 12k~ - (n/m)Gl, reflecting the power laws of the 
correlation functions. 

A very important test of the universality of the Luttinger model structure is provided 
by the class of models exactly soluble by the Bethe ansatz, mentioned in the Introduction. 
For these models, us,  u N ,  and uJ can be explicitly calculated, though their correlation 
functions have not as yet been obtained. As described in Haldane (1981), the relation 
us = ( U ~ U ~ ) ” ~  can be explicitly verified, and the parameter exp(-2rp) obtained from 
these velocities shows the characteristic behaviour due to Umklapp processes when 
2 k ~  - (n/m)G mentioned above, providing additional confirmation that the relation 
between exp( - 2 q )  and the correlation exponents is valid (Haldane 1980). 

It is obviously possible to generalise the discussion to the case of spin-4 fermions; the 
spin-; Fermi gas has a characteristic instability against a gap opening in the spin excitation 
spectrum in zero magnetic field, if 2kF exchange (backscattering) processes are attractive 
(Luther and Emery 1974); the resulting state is the one-dimensional analogue of 
superconductivity, though no long-range order is involved, and can be related to the 1D 
Bose fluid. Similarly, when Umklapp processes open up a gap in the charge density 
excitation spectrum, leaving gapless low-energy spin-wave modes (Emery et a1 1976), 
the resulting system models the antiferromagnetic chain. This in turn can be related to 
a ferromagnetic chain by a sublattice rotation. In this way, the apparently diverse 
collection of systems mentioned in the Introduction can be brought into the framework 
of what I propose to call ‘Luttinger liquid theory’, which can be tested on those models 
soluble by the Bethe ansatz. Of course, this description of these models is only valid in 
those regimes where they have a gapless linear density wave excitation, and are con- 
ductors of a locally conserved charge, with associated quantised persistent currents at 
T = 0. This underlying unity explains the rather bizarre fact that spin systems and Bose 
fluids in one dimension have the fermion-like property of a characteristic momentum 
2 k ~ ,  as seen in the equivalence of the S = 4 X Y  spin chain and hard core bose lattice gas 
to a spinless fermion system (Lieb et al 1961, Matsubara and Matsuda 1956). These 
generalisations will be discussed in detail in subsequent papers. 

The emphasis here has been on spectral properties and correlation functions. As a 
final comment, I note that the approach introduced here could be used as the basis of a 
theory of transport processes in ‘Luttinger liquids’; for example, in the Luttinger model 
itself, transport of energy by the boson modes would be purely ballistic, since they are 
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non-interacting. The boson interactions due to a non-linear fermion dispersion would 
introduce lifetime effects and dissipative behaviour. 
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